

Hydrodynamics and the quantum butterfly effect in black holes and large N quantum field theories Scopelliti, V.

Citation

Scopelliti, V. (2019, October 9). *Hydrodynamics and the quantum butterfly effect in black holes and large N quantum field theories. Casimir PhD Series.* Retrieved from https://hdl.handle.net/1887/79256

Version:	Publisher's Version
License:	<u>Licence agreement concerning inclusion of doctoral thesis in the</u> <u>Institutional Repository of the University of Leiden</u>
Downloaded from:	https://hdl.handle.net/1887/79256

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/79256</u> holds various files of this Leiden University dissertation.

Author: Scopelliti, V. Title: Hydrodynamics and the quantum butterfly effect in black holes and large N quantum field theories Issue Date: 2019-10-09

Hydrodynamics and the quantum butterfly effect in black holes and large N quantum field theories

Proefschrift

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN RECTOR MAGNIFICUS PROF. MR. C.J.J.M. STOLKER, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP WOENSDAG 9 OKTOBER 2019 KLOKKE 16:15 UUR

DOOR

Vincenzo Scopelliti

geboren te Messina (Italië) in 1991

Promotor: Prof. dr. K. E. Schalm Promotiecommissie: Dr. D. Bagrets (University of Cologne) Dr. M. Blake (Massachusetts Institute of Technology) Prof. dr. E. R. Eliel Prof. dr. J. W. van Holten Prof. dr. ir. W. van Saarloos

Casimir PhD series, Delft-Leiden 2019-27 ISBN 978-90-8593-410-3 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

The research presented in this thesis was supported in part by a VICI award of the Netherlands Organization for Scientific Research (NWO) and by the Netherlands Organization for Scientific Research/Ministry of Science and Education (NWO/OCW).

Cover: the front cover represents Poseidon, the Greek god who rules the sea and the water, as represented on a Greek vase (ca. 480 - 460 BCE) by the Aegisthus Painter. The vase is now part of the collection of the Yale University Art Gallery, New Haven, CT, USA. In front of Poseidon, a representation of a black hole, the most chaotic object in nature, is displayed, surrounded by Hawking radiation. The relation between quantum chaos and hydrodynamics is the main focus of this thesis. On the back cover, one sees a photo of a wood-inlay work by Giovan Francesco Capoferri, dated 1524, in the Basilica di Santa Maria Maggiore in Bergamo, Italy, with the title: *Magnum chaos*. The black hole on the front of the cover is a modification of this work.

The original pictures of the wood-inlay and the vase are in the public domain and can be respectively found at: https://upload.wikimedia.org/wikipedia/commons/7/79/Lotto_Capoferri_Magnum_Chaos.jpg and

https://artgallery.yale.edu/collections/objects/25657.

To my family

Contents

1	Intr	oduction	
	1.1	Classical thermalization	
	1.2	Quantum thermalization	
	1.3	Information scrambling and out-of-time ordered correlators	
		(OTOC)	
	1.4	Quantum systems without quasiparticles	
	1.5	Holographic duality	
	1.6	A hydrodynamical refresh	
	1.7	Hydrodynamic transport coefficients at weak coupling and	
		in holography	
	1.8	Quantum chaos and hydrodynamics	
	1.9	Summary of results	
	1.10	This Thesis	
		1.10.1 Chapter 2 \ldots	
		1.10.2 Chapter 3 \ldots	
		1.10.3 Chapter 4 \ldots	
		1.10.4 Chapter 5 \ldots	
0	Oversteine share in dilated merble sounded field the series		
4	Qua	Intum chaos in diluted weakly coupled field theories	
	2.1	Boltzmann transport and chaos from a gross onergy or	
	2.2	change kinetic equation	
	93	A derivation of the gross exchange kinetic equation from	
	2.0	the OTOC	
	24	Regults and discussion	
	2.4 2 A	Diagrammatic expansion of $ \mathcal{T}_{12}, _{2}^{2}$ in the theory of $N \times N$	
	2.11	Hermitian matrix scalars	
3	Tow	ards the Quantum Critical Point	
	3.1	Introduction	
	3.2	Hydrodynamic transport at weak coupling and scrambling:	
		formal similarities	
		3.2.1 Relevant correlation function for transport in the	
		hydrodynamic regime	

v

Contents

		3.2.2	Decoupling of the OTOC in the extended Schwinger-	
			Keldysh formalism	50
		3.2.3	Decoupling of the OTOC BSE: ϕ^4 matrix model	
			example	56
	3.3	Kinet	ic theory of many-body chaos	59
		3.3.1	Quick review of the Boltzmann equation	60
		3.3.2	From the BSE to the quantum Boltzmann equation	63
		3.3.3	The Quantum Boltzmann equation for many-body	
		_	chaos	65
	3.4	Bosor	nic $O(N)$ vector model at the quantum critical regime	67
		3.4.1	Transport in the $O(N)$ vector model with the 2PI	
			formalism	71
		3.4.2	Kinetic theory analysis	78
	~ -	3.4.3	Towards the bosonic Quantum Critical Point	83
	3.5	Gross	-Neveu model at the quantum critical point	84
		3.5.1	Brief review of many-body chaos in GN	85
		3.5.2	Hydrodynamic transport in GN model	86
		3.5.3	The kernel in the helicity basis	92
		3.5.4	The physics behind the analytic continuation	95
		3.5.5	Kinetic theory analysis	98
		3.5.6	Towards the fermionic Quantum Critical Point	101
	3.6	Concl	usion	102
	3.A	Notat	ion for fermions	102
	3.B	Some	identities	103
	$3.\mathrm{C}$	Imagi	nary part of the self energy in the GN model	105
	3.D	Pinch	ing-poles approximation	106
	3.E	Analy	tic continuation	108
	3.F	Consi	stency of the result for the $N \times N$ matrix model	111
	3.G	From	the BSE to the kinetic equation in the ϕ^* matrix mode	el112
4	Bla	ck Ho	le scrambling from hydrodynamics	117
	4.1	Intro	luction	117
	4.2	Scran	bling and hydrodynamical transport	119
	4.3	Shock	waves from linearized gravitational perturbations .	120
	4.4	Hydro	odynamics and the sound mode	123
	4.5	Discu	ssion	124
5	Reg	ulato	dependence of the OTOC and kinetic theory	
0	at r	escue	appendence of the or oc and kinetic theory	127
	5.1	Intro	luction	127
	U.1			

5.2	A two-parameter family of extended Schwinger-Keldysh				
	contours	130			
	5.2.1 The α -contour	133			
	5.2.2 OTOCS and physical observables in SK formalism	135			
5.3	Contour dependence of the Lyapunov spectrum in a weakly				
	coupled Φ^4 theory	137			
	5.3.1 The contour dependence regulates the IR \ldots	144			
	5.3.2 Kinetic theory interpretation of the α -deformed OTOC	2145			
5.4	Contour dependence of the Lyapunov exponent in the SYK				
	model	148			
	5.4.1 Study of the OTOC in SYK in the strongly coupled				
	limit: conformal limit analysis	151			
	5.4.2 Study of the OTOC in SYK in the limit of large				
	interaction order	152			
5.5	The Lyapunov spectrum and the Loschmidt echo	155			
	5.5.1 Loschmidt echo	156			
5.6	Conclusion	160			
$5.\mathrm{A}$	Numerical calculation in matrix model	162			
Bibliog	Bibliography				
Samen	vatting	195			
Summa	Summary				
Curric	Curriculum Vitæ				
List of	List of publications				
Acknowledgements					