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1 Introduction

How does a closed quantum system thermalize? And why do black holes
emit thermal radiation? Over the last decades, these two seemingly
unrelated questions have attracted the attention of researchers in physics
with backgrounds as different as condensed matter, quantum information,
statistical mechanics and high-energy physicists. The reason behind this
renewed interest is the idea that an underlying unknown mechanism might
explain several puzzles that are still open problems in these fields, starting
from the black hole information paradox, to the properties of cold atomic
systems, till the very basic foundations of quantum statistical mechanics.
It all relates to an essential feature of quantum mechanics: the role and the
dynamics of quantum information. Since quantum mechanics is unitary,
the information must be preserved. Nonetheless, experiments on closed
quantum systems and theoretical predictions on black hole dynamics
indicate that these systems have a thermal behaviour. Regardless of
the unitary time evolution, quantum information seems to be degraded,
dissipated. How to reconcile these contradictions is one of the most exciting
challenges of today’s physics. Beyond the purely theoretical appeal, the
solution of these questions may heavily affect the near future technologies
in light of the recent progresses towards building a quantum computer.

The dynamics of quantum information has recently been recast in terms
of the information spreading in a quantum system. This information
scrambling has some properties that reminds one of quantum chaos and
is often referred to as the quantum butterfly effect. Whether these two
concepts are indistinguishable or not is an open question we are not going
to directly address in this thesis, but we believe it deserves caution.

In this thesis we try to understand the microscopic origin of scrambling
in two opposite limits: weakly coupled field theories and strongly coupled
field theories with holographic duals. By doing so, we push forward a very
fascinating idea, namely that this microscopic quantum butterfly effect
leaves imprints in the late-time physics, by affecting transport properties
of the hydrodynamical excitations of the system. This could provide new
techniques to study scrambling and shed some light on the above-mentioned
problems.

As required by the object of investigation, this thesis contains topics
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1 Introduction

from different fields within physics. For this reason, in this chapter we
try to provide the basic elements to enable the reader to understand the
motivations that led our research. In the following two sections, we review
the concepts of classical and quantum thermalization. In section 1.3 we
present a recently proposed observable to study scrambling. We conclude
this chapter by summarizing the results of this thesis and by giving an
overview to the following chapters.

1.1 Classical thermalization

When we focus on a closed classical system, for example a gas of particles,
we know that after some time the velocities of the particles will be described
by the Maxwell-Boltzmann distribution, even though they were randomized
at the very beginning. This property, the fact that everywhere in the box
the distribution function is the same, can be considered as a definition of
classical thermalization. Classical systems reach this state in a dynamical
way. Because of the nonlinear, and hence chaotic, equations of motion,
each particle starts to explore the full phase space manifold allowed by
energy conservation. This ergodization of the motion is such that, after
some time, particles with different velocities will likely have a velocity very
close to the center of the Boltzmann distribution.1 Therefore it is clear
that, in classical physics, one of the main drivers to ergodicity and so to
thermalization is chaos2. A convenient definition of classical chaos is an
extreme sensitivity to the initial conditions. Given two trajectories on the
phase space which are very close to each other at a given time, they will
quickly depart from each other with a rate set by the Lyapunov exponent

λL = lim
t→∞,δX0→0

1

t
Log

( |δX(t)|
|δX(0)|

)
. (1.1)

This property of dynamical systems has been brought to the general public
under the suggestive name of butterfly effect, which is nowadays used also
in the scientific community.

1During the time evolution, a finite size system eventually returns arbitrarily close to
its initial state. This property, representing the statement of the Poincaré recurrence
theorem [1], does not represent a problem for thermalization since the recurrence
time is exponentially long in the system size. Moreover, statistical mechanics allows
for atypical configuration as far as they have exponentially small probability.

2The connection between chaotic dynamics and ergodization is still an open problem.
While chaotic systems are ergodic, the opposite does not necessarily have to be true.
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1.2 Quantum thermalization

1.2 Quantum thermalization

The dynamical thermalization, occurring in classical mechanics, cannot
be extended in a simple way to quantum mechanics, because this means
that a pure initial state would evolve into a mixed state (thermal), in
contrast with the unitarity of the time evolution. Nevertheless, we expect
the out-of-equilibrium dynamics of closed quantum systems to drive it
into a state whose properties are very similar to what we would naively
define as a thermal state: a stationary value of macroscopic quantities
and stability over a wide range of initial conditions. This expectation is
driven not only by physical intuition, but also by numerical results on
isolated quantum systems [2].3 One definition of thermalization involves
the expectation value of the observable and can be stated as follows. Let’s
consider a closed quantum system driven out-of-equilibrium and let it
evolve in time. If the system was initially prepared in a state with a well
defined mean energy and, during the evolution, the expectation value of
the observable can be well approximated by the microcanonical expression,
we can consider the system as having thermalized [3] . Given an initial
state φ =

∑
n cn|n〉 and the observable O, the expectation value evolves

with time as follows

〈φ(t)|O|φ(t)〉 =
∑
n

|cn|2Onn +
∑

n,n6=m

c∗mcne
i(Em−En)tOmn. (1.2)

Requiring that this correlation function, after some thermalization time τt,
matches a microcanonical result is a highly non trivial constraint. A first
reason is that the time independent part of (1.2), |cn|2Onn, should match
the microcanonical result. Furthermore, we should also impose the second
term to vanish. At first sight, the latter requirement might seem very easy
to satisfy, as in long time limit the second term averages to zero. But clearly
it is very important to estimate the time scale at which it starts to hold.
This is related to the spacing of the energy levels, a property which discerns
whether a system possesses quasiparticle excitations or not. Indeed, the
high energy spectrum of a generic many-body system is characterised by a
level spacing exponentially suppressed in the system size4. The low energy
spectrum, instead, changes. If a system has quasiparticle excitations, the

3A comprehensive list of the literature on the numerical studies can be found in [3].
4This can be easily seen for a quasiparticle system by considering a simple model of

metal (with quasiparticles) with N sites. The energy of the system is described by

E =
∑N
α=1 εαnα + ..., where εα are the single particle energies and nα = 0, 1 the

occupation numbers. As there are 2N many-body levels, the spacing is proportional
to 2−N . This property holds also for systems without quasiparticle excitations [4].
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1 Introduction

single-particle level spacing behaves like 1/N . But in a system without
quasiparticles, the spacing is still exponentially suppressed in N .

This implies that the time at which the second term of (1.2) starts to
vanish, proportional to the inverse level spacing t∗ ∼ (En − Em)−1, in
a many body system can be exponentially long. Moreover the study of
thermalization highly depends on the nature of excitations in the system,
since in absence of quasiparticles even the analysis of the low energy sector
of the spectrum can be non trivial.

A step forward in understanding the quantum thermalization was the
work of Deutsch [5], who used Random Matrix Theory (RMT) to show
that, for a random Hamiltonian, the first term of (1.2) indeed coincides
with the microcanonical result. RMT, though, is a crude approximation
since it washes away all the state dependence of the result, for example
the energy of the state (which is crucial in the microcanonical description).
These results are equivalent to the infinite temperature limit [3, 5].

The more refined explanation for the thermal expectation value of a
local observable is provided by the Eigenstate Thermalization Hypothesis,
conjectured by Srednicki in a series of seminal papers [6, 7]. For quantum
systems that thermalize, the Hypothesis states that the spectrum of the
Hamiltonian H is such that the expectation value of a local observable
over the eigenstates n and m of H is of the following form5

〈m|O|n〉 = O(Ē)δmn + e−S(Ē)/2fO(Ē, ω)Rmn. (1.3)

In the above equation, Ē is the average energy of the states n and m,
Ē = En+Em

2 , and ω the difference, ω = Em − En. Moreover, O(Ē) and
fO(Ē, ω) are smooth functions of the arguments and O(Ē) corresponds to
the microcanonical expectation value at energy Ē of the operator O. Rmn
are random numbers with zero mean and unit variance and S(Ē) is the
microcanonical entropy.

Despite the successes of the ETH ansatz in describing the thermal
behaviour of the correlation functions of local operators, there are still
many open questions. In quantum mechanics a pivotal role is played
by quantum information, which also in this case seems to be crucial [3].
Nevertheless, what ETH is not able to describe is the dynamics behind
thermalization. Thanks to the collective effort of the last decade, we
now understand that, under time evolution, the information spreads and

5The ETH can be formulated also in terms of operators which are not strictly local,
but still subextensive with respect to the number of degrees of freedom, as in [8].
This allows to study ETH also in intrinsically non local systems, as for example
SYK model.
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1.3 Information scrambling and out-of-time ordered correlators (OTOC)

delocalizes (it scrambles) over the system, becoming inaccessible to local
experimental measurements which locally only probe an effectively thermal
state.

This can be considered one of the qualitative explanations behind ETH
and justifies the use of local operators. In more clear terms, it is important
to understand the dynamical process that underlies the ETH ansatz. By
drawing an analogy with the classical case, this might be connected to some
mechanism that naively could be defined quantum chaos. Furthermore, as
we see from equation (1.3), checking thermalization with the ETH ansatz
requires the knowledge of the spectrum and the eigenstate of the system,
which in a many-body systems is remarkably hard to compute.

The problems listed in the previous paragraphs raise the question
whether it is possible to study the dynamics of quantum thermalization us-
ing some new observables or new techniques. In the coming section, we will
review the out-of-time correlation function (OTOC), which has recently
attracted lots of interested in the study of quantum chaos. Afterwards we
will discuss a seemingly exotic idea, representing one of the main drives for
this thesis, which is to understand quantum chaos by looking at properties
of the late-time physics encoded in the hydrodynamical excitations.

1.3 Information scrambling and out-of-time
ordered correlators (OTOC)

In the previous section we reviewed some essential features of the ETH
and stressed how it seems to release the tension between thermalization
and the unitary evolution of quantum mechanics. We can think of it as
a precise understanding of thermalization in energy space, but it would
be interesting to see what it means in the position space and in time.
The way the community understands quantum thermalization nowadays
is highly connected to the concept of local operators. When we perform
an experimental measurement, in many cases we are probing the system
locally, and we have no access to the degrees of freedom in regions far
from the probe. This operation corresponds to tracing those degrees
of freedom out, giving rise to the thermal spectrum. Clearly, if the
information in a quantum system was not subjected to dynamics, i.e. it
stayed localized, it would be easily detected in an experiment and we would
not see thermalization. Our understanding of quantum thermalization
strongly indicates that in quantum systems information has a dynamics
and, consequently, it spreads over the degrees of freedom of the whole
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1 Introduction

system. This process is called information scrambling, and has acquired an
essential role in the studies of Black Hole information paradox, quantum
thermalization and quantum information theory.

In order to probe the information scrambling, a so-called out-of-time
correlations function (OTOC) has been put forward. This 4-point function
was first introduced in the context of superconductivity by Larkin and
Ovchinnikov [9] . There, this correlation function was not put in relation
with quantum chaos but it was shown to measure the difference between
the classical and the quantum results. Only subsequently the connection
with quantum chaos arose [10–16]; since then, this correlation function
has appeared in the context of black holes physics and the Sachdev-Ye-
Kitaev (SYK) model [17] [10, 18] and there has been a big effort to create
experimental protocols to measure it [19–29]. Moreover, several techniques
were used to compute it either numerically or analytically [10, 11, 14,
30–49] and its connections with operator growth were studied in [31, 32,
38, 50–54]

The OTOC is defined as follows: given two operators V and W , oppor-
tunely normalized, it is

C(x, t) = 〈[V (x, t),W (0)]†[V (x, t),W (0)]〉. (1.4)

We can understand the information scrambling in terms of the time
evolution of an operator, in this case V , initially located at the position x.
As a consequence of time evolution, this operator will start spreading over
the system. The spreading of the operator can be easily visualized in a
spin chain where V at time zero is a single site spin operator [55]. In the
Heisenberg picture, the time evolution can be written in terms of nested
commutators of the operator V with the full Hamiltonian H and, because
of these commutators, the time evolution will contain spin operators of
other sites.

We can probe the spreading by considering the commutator with an
operator inserted in 0, for example with [V (x, t),W (0)]. At time zero the
commutator vanishes because of causality. However, with time evolution
the operator V (x, t) will become more and more delocalized, and at some
time t∗ its front will hit the insertion W (0) , developing a non trivial value
of the commutator. This simple picture would suggest the following

C ′(x, t) = 〈[V (x, t),W (0)]〉 (1.5)

as a good observable for operator spreading. Such correlation function
corresponds to the retarded (advanced) Green’s function for t positive
(negative). Unfortunately, the time ordered 2-point correlation functions,

6
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Figure 1.1: Representation of operator spreading. Figure taken from [56].

computed on a thermal state, decay very quickly and they are too con-
strained to carry information about scrambling. In order to extract such
information, (1.4) turns up to be a fruitful choice.

If we focus on hermitian operators W and V , (1.4) can be rewritten as

C(x, t) = 2− 2 ReF (x, t) (1.6)

where
F (x, t) = 〈V (x, t)W (0)V (x, t)W (0)〉. (1.7)

The latter expression represents the out-of-time order contribution to
C(x, t) and it contains all the physics about scrambling. The time depen-
dence of this correlation function for chaotic system can be parametrized
as

F (x, t) = 1− ε eλL(t−g(x)) (1.8)

where λL is conjectured to be the highest Lyapunov exponent of the system,
ε is a small term inversely proportional to the local number of degrees
of freedom and g(x) is a function that represents the spatial profile. For

many large N field theories, g(x) has a linear behaviour g(x) = |x|
vB

, where
vB is the speed at which the front depicted in Fig. (1.1) moves and it is
called the butterfly velocity.

On a thermal state, the OTOC is often defined as follows

C(x, t) = −〈ρ[V (x, t),W (0)]†[V (x, t),W (0)]〉, (1.9)

ρ being the thermal density matrix. A slightly different definition involves
a symmetric insertion of the density matrix in the correlation function

CS(x, t) = −〈ρ1/2[V (x, t),W (0)]†ρ1/2[V (x, t),W (0)]〉. (1.10)

7



1 Introduction

That (1.9) and (1.10) might have different properties is a topic that has
not been considered in the last few years and will be discussed in chapter 5.
With this configuration, the out-of-time ordered function acquires a new
fundamental property. Under mild hypotheses, such as analyticity of corre-
lation functions and unitarity of time evolution, Maldacena, Shenker and
Stanford proved in [16] that, if the correlation function (1.10) presents an
exponential growth regime, the Lyapunov exponent satisfies the following
upper bound

λL ≤
2πkBT

~
. (1.11)

The bound is saturated by systems which have a gravitational dual; this
proves the fast scrambling conjecture, introduced in [11], which states that
Black Holes are the fastest scramblers in nature. Nevertheless it is not
known yet whether the saturation of the bound represents a sufficient
condition for a theory to have a holographic dual. The right hand side
of (1.11) is intimately connected to the nature of black holes and, in
particular, to their event horizon. It can be shown [12, 14, 15] that, in a
theory with a holographic dual, the OTOC corresponds to the effect on
the geometry of few particles moving from the boundary towards the bulk.
Once in the proximity of the event horizon, the energy of the particle, in
the local frame, will be highly boosted, creating a shock wave along the
horizon. The Lyapunov exponent is a measure of such a boost, which for
any Black Hole results in the value 2πkBT

~ .

The bound (1.11) appears like a fundamental property of quantum
mechanics, and its possible interpretations and consequences are very
fascinating. For the moment, we can rewrite the bound (1.11) in terms of
the Lyapunov time τL = 1/λL

τL ≥
1

2π

~
kBT

. (1.12)

In this form it will soon be clear why the bound has been intensively
studied in the last years, and it has to do with transport in strongly
coupled systems without quasiparticles. This is one of the main open
problems of today’s physics, both from the theoretical and experimental
point of view and in the next section we will try to highlight its connection
with the above mentioned bound.
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1.4 Quantum systems without quasiparticles

In this section we take an apparent departure from the topics of the
previous pages, which hopefully will be soon clear to the reader. Our
current understanding of transport in ordinary metals is provided by the
Landau theory of Fermi liquids [57], which is built on the concept of
quasiparticles. There, the relevant excitations are long lived and have a
pivotal property: the energy of a state made of quasiparticles is simply
the sum of their energies. These quasiparticles have the same quantum
numbers as electrons, and interact with each other. When the system
is perturbed, the interactions restore thermal equilibrium after a local
equilibration time, which we indicate with τe. If the system is gapless, τe
has a temperature dependence that, in the T → 0 limit, goes as τe ∼ 1/T 2.
In the presence of a gap ∆, instead, the equilibration time is even longer
and scales as τe ∼ e∆/T . Despite its success, there are still materials
which Landau theory is not able to describe, such as cuprates, heavy
fermions, ruthenates, pnictides, vanadium dioxide, fullerenes and organics.
The electrons in these materials are strongly correlated and present a
linear in T resistivity in a wide region of their phase space [58, 59]. The
resistivity scaling suggests that the local equilibration time is exceptionally
short and scales as τe ∼ 1/T . The surprising feature of this scaling is
that, besides being very robust against disorder, it is present in systems
with very different microscopic details. It seems thus that some universal
mechanisms underlies the physics in this regime. This mechanism has
been named Planckian dissipation [60–62] and states that strongly coupled
systems without quasiparticles are the fastest in thermalizing. Furthermore
their local equilibration time saturates the lower “dimensional analysis”
bound

τe ≥ C
~

kBT
, (1.13)

where C is some temperature independent constant of order one. More
recently, measurements on thermal diffusivities [63] showed Planckian
dissipation in YBCO samples.

The similarities between (1.12) and (1.13) might be interpreted as
the existence of a connection among the Lyapunov time and the local
equilibration time. Moreover, in this light, it was proposed by Blake
[64, 65] that charge and thermal diffusivities of critical systems could be
expressed as

DC/T ∝ v2
BτL, (1.14)

where the identity holds up to a numerical prefactor. This proposal
was tested in several systems [66] but soon it became evident that the
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1 Introduction

connection with charge diffusion was not as robust as thermal diffusion.
The latter connectio is quite robust. Indeed in [67–69] it was shown that,
in the infrared, the thermal diffusivity of a generic strongly coupled system
with holographic dual satisfies relation (1.14) regardless of charge density,
periodic potential strength, or magnetic field. Those results were obtained
by using the holographic duality, which we are going to quickly review in
the following section.

1.5 Holographic duality

Since its discovery in 1997 by Maldacena [70], AdS/CFT has profoundly
changed the way we look at gravity and strongly coupled field theories.
In this section we will try to give a very general overview on the topic,
mainly focusing on the aspects that are necessary to understand some of
the results of this thesis, and the reason why we have tried to address
certain questions.6

The idea of holography can be traced back to two important results. In
1974, ’t Hooft realized that SU(Nc) gauge theories greatly simplify in the
large Nc limit, keeping the ’t Hooft coupling λ = g2

YMNc fixed [75]. In this
limit, organized as a perturbative expansion in λ, the leading contribution
is given by planar diagrams. In the same work, t’Hooft noticed that this
expansion could be connected to a string theory path integral. On a
completely different perspective, the work of Bekenstein on black holes
thermodynamics [76] showed that the entropy of a Black Hole depends on
its surface, and not on its volume. This indicates that in a gravitational
theory gravitational degrees of freedom rearrange the information on a
surface of codimension one, making possible (in principle) a description of
d+ 1 dimensional gravity in terms of a field theory defined in d dimensions
[77, 78].

AdS/CFT is an exact realization of this idea. In its most essential
definition, the AdS/CFT correspondence is a duality between a conformal
large N supersymmetric Yang-Mills theory (Large N SYM) defined in d
dimensions and a classical gravitational theory defined on a d+1 spacetime
with a negative cosmological constant, namely Anti-de-Sitter. Its origins
lies in string theory, where large N SYM is equivalent to string theory in
AdS. It is a strong-weak duality, i.e. it relates a strongly coupled theory
to a weakly coupled one. This means that it allows to quantitatively

6For a review on the topic, see [71]. Applications to condensed matter physics are
reviewed in the following books [72–74].
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1.5 Holographic duality

understand properties of strongly coupled field theories by studying classic
gravitational dynamics.

Bekenstein’s argument gives a hint about the holographic nature of
gravity, but a natural question to ask is what does this extra dimension
correspond to from the QFT point of view. Given a QFT defined on a d
dimensional spacetime, we know since Wilson [79] that the theory changes
according to the energy (or spacetime) scale µ we focus on. The way the
theory changes by varying this scale is described by the Renormalization
Group (RG) equation

µ
dg(µ)

dµ
= β(g(µ)), (1.15)

where g(µ) schematically represent the coupling constants of the theory.
A remarkable fact of equation (1.15) describing the renormalization group
flow is that it is local in the energy scale. This might seem a minor aspect
but has strong implications, specially in AdS/CFT. In holography, the
renormalization scale not only becomes dynamical, but also geometrical. Its
dynamics is governed by the Einstein action with a negative cosmological

constant −2Λ = d(d−1)
L2

S =
1

2κ2

∫
dd+1x

√−g
(
R+

d(d− 1)

L2

)
, (1.16)

with κ = 8πGN and GN the Newton’s constant and L is the AdS radius.
The zero temperature solution in vacuum is described by the metric

ds2 =

(
L

z

)2

(ηµνdx
µdxν + dz2), (1.17)

where µ, ν = 0, ..., d− 1. The direction z can be considered as a renormal-
ization group scale and the excitation of the theory are rearranged along
z according to their wavelength, as represented in Fig. (1.2). We see that
motion in z → λz precisely can be accounted for by scaling x→ λx.

On a more quantitative ground, the holographic correspondence can be
stated in terms of an identity of two partition functions, called the GKPW
rule [81, 82]

〈e
∫
ddx

∑
i Ji(x)Oi(x)〉QFT =

∫
DgDφi eiSbulk[g,φi(x,z)]|φ(x,z=0)=J(x) . (1.18)

The left hand side of the equality is the partition function of a QFT
deformed by a source J . The right hand side corresponds to the gravi-
tational partition function, dominated by the saddle point value, where
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IR UVz

d−1,1

z

R
AdSd+1

minkowski

UV
IR

...

Figure 1.2: The emerging dimension in the AdS/CFT correspondence can be though of
as a renormalization scale. The excitations of the dual field theory are rearranged over
the boundary according to their wavelenghts: the long wavelenght, low energy dynamics of
the dual theory is captured by events in the bulk. Short distance, high energy excitations
are described by the gravitational degrees of freedom close to the boundary. The duality
rearranges the excitation. Figure taken from [80].

the boundary value (at z → 0) of the field φ is set by J , the value of the
source of its dual operator O. Including this fundamental identity, the
duality can be summarized in terms of a dictionary, where quantities of
the two theories are related. Some of the entries of the dictionary are
presented in the tabular below. The order used to list them is not casual
since the connection between the gravitational dynamics in the bulk and
stress tensor properties in the boundary will be the essential motivation
to pursue the results of chapter 4 that connect quantum chaos to the
energy-energy correlation function.

Another feature of gravity that holography incorporates naturally that
deserves attention for this thesis is the fluid/gravity correspondence [83].
This states that the spacetime dynamics, on a AdS background, can be
mapped into the dynamics of a fluid living on the boundary. Since the long
wavelength of the fluid is described by hydrodynamics and, in the AdS/CFT
correspondence, the IR of the boundary theory is described by the bulk
gravitational degrees of freedom, the fluid/gravity correspondence connects
the hydrodynamic behaviour of the fluid living on the boundary with the
gravitational perturbation of the event horizon. After a perturbation,
Einstein’s equations reproduce hydrodynamical equations and allow to
compute the conductivities of the fluid [83, 84]. This does not imply
that the event horizon is purely hydrodynamical, because very far from
equilibrium the hydrodynamic approximation is not valid. Nevertheless,
Black Holes have the surprising feature that they hydrodynamize very
quickly.

12



1.6 A hydrodynamical refresh

The idea of a connection between the dynamics of black hole horizons
and the Navier-Stokes equations of hydrodynamics dates back to the 80’s
when Thorne, Price and MacDonald formulated the so-called membrane
paradigm [85]. They realized that, for an external observer, the behaviour
of black holes would resemble the behaviour of a fluid membrane, sur-
rounding their event horizon, with well-defined properties as viscosity and
conductivity.

Boundary (Operators) Bulk (fields)
stress-energy tensor Tab metric field gµν
global current Ja Maxwell field Aa
scalar operator O scalar field φ
conformal dimension of the oper-
ator

mass of the field

source of the operator boundary value of the field
VEV of the operator boundary value of radial momen-

tum of the field
global symmetry local symmetry
temperature of the field theory Black Hole temperature
phase transition Black Hole instability

1.6 A hydrodynamical refresh

When focusing on the long-wavelength and late-time description of a given
system, often the result is a very old theory, whose origins go back to the
early works of Euler and Bernoulli in the XVIII century: hydrodynamics.
Even though it is a very old theory, there are still many properties that are
not understood, like turbulence for example, and in the last years we have
witnessed a revival of interest about its applications. In the present-day
view, hydrodynamics is an effective field theory that is conventionally
formulated in terms of equations of motion. The action formulation has
recently been addressed in7 [87–98] and, as often happens going from the
equations of motion to the action, it has revealed new symmetries and
constraints. The equations of motions of (relativistic) hydrodynamics are
simply the conservation laws of the systems; for example, if there are no
more conserved currents than the stress energy tensor, the EOMs are

∂µT
µν = 0. (1.19)

7For review on the topic see [86] and references therein.
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As stated, this does not represent a well-posed problem in d ≥ 2 since
there are d(d + 1)/2 degrees of freedom and d equations of motion8. A
crucial step in deriving the hydrodynamical equation is the hypothesis of
local thermal equilibrium, which reduces sensibly the number of degrees of
freedom. When the system is perturbed at long wavelength, it is possible
to consider as dynamical variable the temperature T (x) as a function
of space and time, and the velocity four vector uµ(x), subject to the
normalization condition uµuµ = −1. This choice makes the problem well
posed, since there are d unknowns and d equations of motion. As typical
for effective field theories, the stress-energy tensor can be written in terms
of a gradient expansion in spatial derivatives and as a function of the
dynamical variables. At zero-th order the expansion gives

Tµν(x) = ε uµuν + pPµν , (1.20)

where ε is the energy density, p the pressure density and with Pµν =
uµuν + gµν we have indicated the projectors along the direction transverse
to the four-velocity uµ. In this order, the hydrodynamical equations do not
present any dissipation, as can be easily shown [99]. Entropy production
appears in first order, with the introduction of the dissipation tensor and
transport coefficients

Tµν(x) = ε uµuν + pPµν − σµν . (1.21)

The dissipation component of the stress energy tensor can be generally
parametrized as follows

σµν = PµαPνβ
[
η

(
∂αuβ + ∂βuα −

2

3
gαβ∂ρu

ρ

)
+ ζgαβ∂ρu

ρ

]
, (1.22)

the coefficients η and ζ being respectively the shear and the bulk viscosity.
The form (1.22) of the dissipation tensor is not unique, but is chosen in
such a way to affect only the spatial component of the stress-energy tensor
T ij .

The analytical structure of the hydrodynamical correlators, namely the
location of the poles, can be extracted from the normal modes of the
linearised hydrodynamical equations, i.e. by looking at solutions of the
form e−iωt+ik·x. For example, let’s restrict the analysis to the stress-energy
tensor, and choose a frame where the spatial momentum is aligned with
the z direction, k = (0, 0, k). It is possible to show that the stress energy

8In CFT, the case d = 2 is well defined since there is an extra constraint on the stress
energy tensor which has to be traceless.
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1.7 Hydrodynamic transport coefficients at weak coupling and in holography

tensor has two physically different hydrodynamical modes, the shear and
the sound modes [99]. The components T 0i and T zi, with i = (x, y), satisfy
the following linearised hydrodynamic equation

∂tT
0i = − η

ε+ p
∂2
zT

0i, (1.23)

which can be immediately recognized as a diffusion equation. Indeed by
looking for a solution of the form e−iωt+ikz we get

ω(k) = −i η

ε+ p
k2, (1.24)

with diffusion constant Ds = η
ε+p . Besides shear modes, there are also

propagating sound modes, represented by simultaneous excitations of T 00,
T 0z and T zz. After diagonalizing a system of coupled hydrodynamic
equations, the condition these modes have to satisfy is the following [100]

ω(k) = vsk −
i

2

(
4

3
η + ζ

)
k2

ε+ p
, (1.25)

where vs =
√

∂p
∂ε is the speed of sound.

1.7 Hydrodynamic transport coefficients at
weak coupling and in holography

The late-time and long-scale physics of a generic classical or a quantum
many-body system is governed by the long-lived quantities, which are
nothing but the conserved currents. Their conservation laws become
the equation of motion and the theory is called hydrodynamics, which
indeed is nothing but the dynamics of the conserved quantities. This in
turn expresses the universality of its prediction, which heavily rely on
symmetries arguments. Although it has a high degree of universality,
the hydrodynamic prediction is intimately connected to the underlying
microscopic physics via some of the coefficients of this expansion: the
transport coefficients like viscosities and diffusivities. Given a Lagrangian
the computation of these coefficients represents a challenge even at weak
coupling, since they often manifest a nonanalytic dependence on the
coupling parameters. Traditionally, for high-energy applications like QCD
or relativistic QFTs in 3 + 1 dimensions, the main tool has been to solve
the Boltzmann equation [101–108]. Another approach, based on quantum
field theory, can be found in [109, 110].
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Another way to compute transport coefficients, more used in low-energy
many-body physics condensed matter, makes use of the Kubo formulae
for specific correlation functions, like the following ones for shear viscosity
η or electrical conductivity σ [111]

η =
β

20
lim

p0,p→0

∫
d4xeip·x〈Tij(x)T ij(0)〉, (1.26)

σ =
β

6
lim

p0,p→0

∫
d4xeip·x〈Ji(x)J i(0)〉, (1.27)

where Tij is the traceless stress-energy tensor, Ji is the U(1) current and
the sum over repeated indices is intended. In the weakly coupled regime,
the formulae (1.26) and (1.27) might suggest that, by simply performing
loops expansion of the correlation function in the integral, we could get
the proper perturbative results for the shear viscosity. Unfortunately, this
expansion is not reliable due to the appearance of infrared singularities
[112], and a full resummation of a series of diagrams is required [101]. This
becomes an even more challenging task when relativistic gauge theories
are considered. The pioneering computation of the shear viscosity for a
scalar field with φ4 interaction

L =
1

2
(∂µφ)2 − 1

2
m2φ2 − λ

4!
φ4, (1.28)

was performed in [101, 112]. There, by using a finite temperature optical
theorem, Jeon derived the cutting rules at finite temperature and then
showed that an infinite set of ladder diagrams had to be resummed in
order to obtain the correct leading order result. Since then, several works
addressed this question for more complicated field theories and using
different techniques, such as the real time close time-path contour (CTP)
[113, 114] and the Imaginary Time Formalism (ITF) [115] of thermal
field theory. Within the latter approach, a non perturbative resummation
provided by the two-Particle-Irreducible (2PI) formalism was introduced
in the computation of transport quantities in [116, 117] .

In this thesis we will extensively make use of those techniques, developed
to compute the Kubo formulae, to evaluate the following correlation
function

iGR(x, p|y, q) = θ(x0 − y0)〈[ρ(x, p), ρ(y, q)]〉 (1.29)
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1.8 Quantum chaos and hydrodynamics

where we have defined the Wigner transport of the bilocal density operator

ρ(x, p) =

∫
y

e−ipy Tr [φ(x− y/2)φ(x+ y/2)]

=

∫
k

eikx Tr [φ(p+ k/2)φ(p− k/2)] , (1.30)

and the trace is taken over the internal indices of the field φ.
While in a weakly coupled QFT the computation of correlation functions

which appear in the Kubo formulae is very involved, in strongly coupled
field theories with holographic dual things simplify remarkably. By using
the dictionary, it is possible to show that the stress-energy tensor two-point
functions can be extracted by a perturbative gravity computation in the
bulk. This allows an exact numerical solution and, in the hydrodynamic
limit, an analytical solution [99, 100, 118–120]. We will use these techniques
in chapter 4 to derive one of the most important results of this thesis.

1.8 Quantum chaos and hydrodynamics

In the previous sections we have briefly reviewed the conundrum repre-
sented by the thermalization of a closed quantum system. We have also
given the qualitative understanding on how this thermal behaviour emerges,
namely because of the scrambling of quantum information. Nevertheless,
several questions have no satisfactory answer yet. We still lack a com-
prehensive dynamical understanding of how this information-scrambling
happens. Moreover, we don’t know whether scrambling and quantum chaos
are the same phenomenon. We believe that these are essential questions to
address, especially in light of the fast scrambling conjecture. The latter is
likely to be a fundamental result, able to classify different states of matter.
Unfortunately, it does not explain the mechanisms that determine whether
a system can be close to saturation of the bound or not.

On general grounds, we know that, for relativistic theories, the mech-
anisms underlying the way a system (nearly) out-of-equilibrium reaches
the thermal state leaves clear imprints in the analytic structure of the
conserved currents-correlation functions [121, 122]. Since the dynamics
of conserved currents is by definition hydrodynamics, it seems reasonable
to try to understand many-body chaos by looking for signatures in the
analytical structure of hydrodynamic excitations.

There is further evidence in support of this idea. As already mentioned,
the scrambling properties of strongly coupled theories with holographic
duals at finite temperature are set by the gravitational dynamics in the
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bulk. By using the membrane paradigm, we can imagine that this involves
the correlation functions of the stress-energy tensor, which very quickly
assume a form dictated by hydrodynamics.

Furthermore, some insights come from the study of the Sachdev-Ye-
Kitaev (SYK) model. This is a (0 + 1) theory of fermions with quartic
all-to-all interaction, and Lagrangian (in the case of Majorana fermions)

H = −
∑
ijkl

Jijkl χ
iχjχkχl. (1.31)

This model saturates the bound on chaos and is supposed to have a gravity
dual. In the infrared limit, it exhibits a SL(2,R) symmetry, which is
reminiscent of the AdS2 geometry. In [123], Jensen wrote a hydrodynamic
effective field theory which is maximally chaotic and captures some features
of the AdS2 geometry. The fact that the IR physics of the SYK model
can be captured by a hydrodynamical mode which is also maximally
chaotic should be considered as further evidence that, at least for (nearly)
maximally chaotic systems, hydrodynamics carries some information about
scrambling.

1.9 Summary of results

In this thesis we address some of the questions raised so far. In the first
part, we try to understand what is the dynamics of scrambling, or of
quantum chaos. We tackle this problem for weakly coupled quantum
field theories (or large N) and we draw an analogy with the quantum
Boltzmann equation (QBE). Even though the QBE relies on the concept
of quasiparticles, in 1997 Damle and Sachdev showed [124] that the QBE
can be used also to study conductivities and transport properties above
the two-dimensional superfluid-insulator quantum critical point. This
means that, by carefully controlling the QBE, it can give predictions about
excitations of systems in the absence of quasiparticles. The QBE can be
generally written in the form

(∂t + v · ∇)f(t,x,p) = −L[f ] (1.32)

where L is the linearized collision integral, which clearly encodes all the
relevant information about the physics.

The starting point of our results is that, while the QBE is usually
extracted from two-point functions [125–127], it is possible to obtain the
linearized QBE in a clean way from the 4-point function (1.29). As we
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1.9 Summary of results

explain with (hopefully sufficient) detail in chapter 2, the conceptual
advantage is the immediate matching of the QFT expressions with their
kinetic theory counterparts. In this approach, the operator (∂t+v ·∇)+L,
which defines the QBE, is fully encoded in the analytical structure of
this 4-point Greens function9. Indeed such correlation function f(ω, p, q),
in the spatially homogeneous case, satisfies the following Bethe-Salpeter
equation (BSE)

−iω f(ω, p) = δ(p2
0 − E2

p)

(
1 +

∫
l

R̂transp(p, l)f(ω, l)

)
. (1.33)

where f(ω, p) =
∫
q
f(ω, p, q). Once on-shell, the kernel R̂transp reproduces

exactly the collision operator Ĉ, determining the matching of the QFT
result with the Boltzmann equation. Moreover, all the information about
the relaxation times, eventual branch cuts and hydrodynamic modes are
intrinsically hidden in R̂, as the correlation function is formally obtained
by inverting (1.33)

f(ω, p) =
Ip

−iω −
∫
l
R̂transp(p, l)

. (1.34)

Focusing on the OTOC, f ′(t,x), at weak coupling the computation
requires a resummation of ladder diagrams and it is also performed by a
Bethe-Salpeter equation (BSE). This BSE can be recast into the following
integro-differential equation

−iω f ′(ω, p) = δ(p2
0 − E2

p)

(
1 +

∫
l

R̂OTOC(p, l)C(ω, l)

)
. (1.35)

f ′(ω, p) being the Fourier transform in p and Laplace transform in ω of
the OTOC. Clearly, since in the late time regime (ω → 0 limit) the OTOC
has the form f ′(t) ∝ eλLt, the spectrum of the integral operator R̂′(p, l)
contains all the informations about ergodicity, i.e. the Lyapunov spectrum
is given by its positive eigenvalues.

In order to understand the scrambling dynamics, we can dissect the
OTOC-BSE. The way we have phrased it highlights it on purpose, but the
surprising result is that the OTOC-BSE is also a kinetic equation of the
form

(∂t + v · ∇)f ′(t,x,p) = −L′[f ′] (1.36)

9This can be considered as the analogue of what happens in hydrodynamics. There,
as reviewed in section 1.6, the universality of the equation of motions is translated
in the universal form of the pole structure.
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where the collision integral is nearly the same as (1.32). Instead of mea-
suring the net number of collisions, as the standard QBE, it counts the
gross number of collisions. This is to say that the terms appearing in L
and L′ are the same, with one of the signs flipped. We showed this results
for φ4 matrix model (chapter 2), (bosonic) O(N) vector model in (2 + 1)
dimensions and the Gross-Neveu model in (2 + 1) dimensions (chapter 3) .
Moreover, we also show that the linearised kinetic operator, R̂transp(p, l),
is analytically related to the kernel of the BSE of the OTOC, R̂OTOC(p, l),
as follows

R̂OTOC(p, l) = sinh(βp0/2)−1 R̂transp(p, l) sinh(βl0/2). (1.37)

It is tempting to read the previous expression as a new fluctuation
dissipation relation:

C(ω, p) = sinh(βp0/2)f(ω, p), (1.38)

which would suggest that the OTOC can be obtained as analytical con-
tinuation of the hydrodynamic correlation function governing transport.
However, in this thesis we will not succumb to this temptation and we
will postpone this question to future work. Another reason why we wrote
(1.37) in this form is that it makes clear that the relation is nothing but a
similarity transformation, which preserves the spectrum and other prop-
erties. Nevertheless we warn the incautious reader that, both in (1.35)
and (1.37), there are delta functions which project out some eigenvalues.
Indeed we know that unitarity forbids eigenvalues with positive imaginary
part for the collision integral of the (standard) Boltzmann equation.

We now comment about the consequences of (1.37). Since, as we have
argued before, the full physics of scrambling is encoded in R̂OTOC(p, l) and
most of the hydrodynamical transport physics is encoded in R̂transp(p, l),
this relation has a profound meaning and should be considered as a
starting point for any further attempt to find imprints of ergodicity in the
hydrodynamic spectrum. Moreover, we stress that (1.37) not only holds for
the φ4 model (chapter 2), but also for models which describe the physics
above a QCP (chapter 3), where there are no quasiparticle excitations.10

Therefore this seems to be a quite general result for weakly coupled
systems, or large N QFTs. We have repeatedly hinted the suggestive
similarities between transport computations and scrambling computations.
At infinite coupling and for theories with gravitational dual, the idea that
quantum chaos constrains transport is indeed true and it is realized in

10For fermions, we prove in chapter 3 that (1.37) is modified by replacing sinh→ cosh.
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the phenomenon discovered in chapter 4 of this thesis (based on [128]),
and later termed pole-skipping [56]. In section 1.3, we sketched the
classification of the hydrodynamical modes and we showed that the energy-
energy correlation function contains sound modes, whose perturbative
dispersion relation is given by (1.25). Let us define the following point in
the analytically continued (ω, k) plane

kc = i
λL
vB
, ωc = ω(kc) = iλL, (1.39)

where λL = 2πT and vB is the butterfly velocity, defined in the previous
pages. Pole-skipping is the statement that the fully resummed hydrody-
namic series (1.25), after the analytic continuation ω → iω and k → ik,
passes through the point (ωc, kc). Since the dispersion relation (1.25)
parametrizes the pole structure of the energy-energy two-point function,
this implies that this correlator has the form

GEER (ω, k) =
b(ω, k)

a(ω, k)
(1.40)

and a(ωc, kc) = 0. Moreover, (2) at the point (ωc, kc) also the residue
vanishes,

b(ωc, kc) = 0. (1.41)

This implicates that the pole in the correlator GEER (ω, k) disappears. This
phenomenon has been later understood in terms of an effective field theory
[56] as the fact that both ergodicity and hydrodynamics are governed
by the same mode, which survives at late time. The robustness of such
modes is due to the exsistence of a new symmetry (a shift symmetry) of
the effective action. Whether this is a feature of systems saturating the
bound on chaos is still an open problem. Furthermore, we now know that
mathematically pole-skipping, as described in holographic systems, is a
manifestation of a degeneracy of Einstein equation [129]. Recently, it was
also proven that this phenomenon is present not only for energy density
correlators [130] but persists also away from infinite coupling [131]. New
constraints on thermal correlators (in holographic systems) coming from
pole-skipping (although not immediately relatable to chaos) have been
recently discovered in [132].

What happens going towards the weak-coupling limit, and so departing
from the bound, it is still unknown.
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1.10 This Thesis

1.10.1 Chapter 2

We first write a Boltzmann-like equation for the gross energy exchange
in a bosonic system. We do this by modifying the collision integral
in order to take into account the gross number of interactions between
particles instead of the net number of interaction, which corresponds to
the standard Boltzmann equation. After that, we show how this kinetic
equation matches the BSE satisfied by the OTOC. We then review how
to compute the out-of-time ordered correlation function in quantum field
theory. This can be done by using the Schwinger-Keldysh (SK) formalism
over the closed time path (CTP) contour . After analyzing the properties
of this modified SK contour, we show that the computation of the OTOC
is remarkably simplified. We explicitly use this framework to compute the
OTOC in a N ×N matrix φ4 bosonic theory, without taking any large N
limit.

1.10.2 Chapter 3

In this chapter, we focus our attention to the interplay between chaos and
hydrodynamics in systems close to the quantum critical point (QCP). In
the quantum critical regime, there is no quasiparticle interpretation, but it
was shown that many transport properties can be inferred by analytically
extending the result in the symmetric phase to the quantum critical phase.
This chapter is mainly based on [133]. To understand these questions, we
make an extensive use of some results regarding transport obtained in the
imaginary time formalism (ITF) and we use the two-particle-irreducible
effective action. We first analyze the bosonic O(N) vector model, and we
study the 4-point correlation function which is relevant for transport in
the hydrodynamic limit. This computation generalizes at small external
frequency some previous results by Aarts et Martinez [134, 135] which
were obtained at strict zero frequency. This allows us to compare the
equations governing transport with the BSE for the OTOC, which was
obtained by Chowdhury and Swingle in [136]. Again, the mapping between
the two results holds and confirms our conjectured connection between
chaos and hydrodynamics. By going into the kinetic theory limit, we
observe that indeed the OTOC is nothing but a gross energy exchange
kinetic equation. In the second part of this chapter, we address a similar
analysys to a system in a fermionic quantum critical regime, namely the
2 + 1 the Gross-Neveu model. Here we first use the 2PI formalism to
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1.10 This Thesis

compute the 4-point function relevant to transport and then we compare
it with the OTOC computation performed in [137]. This case, in a even
more clear way, shows how transport and chaos are described by the same
BSE equation but correspond to two different boundary conditions. Such
difference, in turn, determines the sign flip of the kinetic equation for
chaos with respect to the QBE. We explicitly show how the linearized
Boltzmann equations emerge from a QFT computation of a time ordered
4-point function. By inspecting these results, it is straightforward to see
that indeed the kinetic theory for gross particle exchange reproduces the
BSE for the out-of-time correlation function.

1.10.3 Chapter 4

In this chapter we investigate the connection between quantum chaos and
hydrodynamics in theories with a holographic dual. These theories are
strongly coupled large N theories, and the out-of-time order correlation
function can be computed by means of the AdS/CFT correspondence.
This result was obtained some years ago by Shenker and Stanford in [12],
who showed that the Lyapunov exponent can be extracted by studying a
shockwave geometry in the bulk. We show that this shockwave computa-
tion can be understood in terms of a sound-wave excitation of the bulk
geometry. Since these excitations have a physical interpretation as hydro-
dynamical energy-energy correlation functions of the dual boundary theory,
we prove that for holographic theories the Lyapunov exponent and the
butterfly velocity characterize the response to an highly out-of-equilibrium
perturbation. We moreover identify the imprinting of quantum chaos in
the analytical properties of the energy-energy correlation function which
is now known as pole-skipping.

1.10.4 Chapter 5

In this last chapter we address an important question regarding the out-of-
time correlation function. We try to understand whether this correlation
function is independent of the way it gets regularised on the thermal
circle. This should have been one of the first questions to ask because
of the high interest of the community in this observable. Over the last
years, several authors have computed this correlation function using a
particular regularization, claiming a regularization independence of the
result. Drawing a comparison, it would be like computing a correlation
function in a gauge theory without verifying it is gauge independent.
Based on the results obtained in [138], we show both in weak and strongly
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coupled theories that the OTOC strongly depend on the regularization.
For the weak-coupling analysis we use the φ4 bosonic theory, while for
the strong coupling limit we focus on the SYK model. We explain why
this correlation function depends on the contour and we explain why most
of the investigations by other authors have overlooked this. This result
gives rise to the question of which of the correlation functions is physically
sensible. By using the kinetic theory results of the previous chapters, we
show that the only meaningful OTOC is the symmetrical one (separated
by half the thermal circle), which corresponds to a gross energy exchange.
All the other OTOCs correspond to kinetic equations which give too much
weight to either the gain or the loss terms in the collision integral. This
results indeed shows that the only meaningful OTOC (in QFT) is the one
for which a bound on the Lyapunov exponent has been proven.
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2 Quantum chaos in diluted
weakly coupled field theories

For perturbative scalar field theories, the late-time-limit of the out-of-time-
ordered correlation function that measures (quantum) chaos is shown to be
equal to a Boltzmann-type kinetic equation that measures the total gross
(instead of net) particle exchange between phase space cells, weighted by
a function of energy. This derivation gives a concrete form to numerous
attempts to derive chaotic many-body dynamics from ad hoc kinetic
equations. A period of exponential growth in the total gross exchange
determines the Lyapunov exponent of the chaotic system. Physically, the
exponential growth is a front propagating into an unstable state in phase
space. As in conventional Boltzmann transport, which follows from the
dynamics of the net particle number density exchange, the kernel of this
kinetic integral equation for chaos is also set by the 2-to-2 scattering rate.
This provides a mathematically precise statement of the known fact that
in dilute weakly coupled gases, transport and scrambling (or ergodicity)
are controlled by the same physics.1

2.1 Introduction

The weakly interacting dilute gas is one of the pillars of physics. It
provides a canonical example for the statistical foundation of thermody-
namics and its kinetic description—the Boltzmann equation—allows for a
computation of the collective transport properties from collisions of the
microscopic constituents. Historically, this provided the breakthrough
evidence in favor of the molecular theory of matter. A crucial point in
Boltzmann’s kinetic theory is the assumption of molecular chaos whereby
all n > 2 quasi-particle correlations are irrelevant due to diluteness and
the validity of ensemble averaging, i.e. ergodicity [127, 139–146]. However,
finding a precise quantitative probe of this underlying chaotic behavior in
many-body systems has been a notoriously difficult problem. In the past,

1The contents of this chapter have been published in S. Grozdanov, K. E. Schalm and
V. Scopelliti, Phys.Rev. E 99 (2019) no.1, 012206.
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2 Quantum chaos in diluted weakly coupled field theories

phenomenological approaches positing a Boltzmann-like kinetic equation
(see e.g. [147]) have reproduced numerically computed properties of chaos,
such as the Lyapunov exponents, but a fundamental origin supporting this
approach is lacking.

A measure of chaos applicable to both weakly coupled (kinetic) and
strongly coupled quantum systems (without quasi-particles) is a period of
exponential growth of a thermal out-of-time-ordered correlator (OTOC):

C(t) = θ(t) 〈[Ŵ (t), V̂ (0)]†[Ŵ (t), V̂ (0)]〉β , (2.1)

where W (t) and V (0) are generic operators and β = 1/T . For example,
choosing W (t) = q(t), V (0) = p(0) ≡ −i~ ∂

∂q(0) one immediately sees

that C(t) probes the dependence on initial conditions—and, hence, if this
dependence displays exponential growth, chaos. This OTOC was first
put forth in studies of quantum electron transport in weakly disordered
materials [148–150], which noted that in quantum systems the regime of
classical exponential growth cuts off at the so-called Ehrenfest time, and
of late, it has been used to detect exponential growth of perturbations
characteristic of chaos in strongly coupled quantum systems [12, 15, 16, 151].
This has led in turn to a reconsideration of this OTOC in weakly coupled
field theories [136, 152–157]. A strong impetus for this renewed interest
has been a possible connection between chaotic behavior and transport, in
particular, late-time diffusion (see e.g. recent [66, 128, 158–160]). Many
weakly coupled studies have indeed found such a connection. Intuitively,
this should not be a surprise. In weakly coupled particle-like theories,
chaotic short-time behavior is clearly set by successive uncorrelated 2-to-2
scatterings, but the dilute molecular chaos assumption in Boltzmann’s
kinetic theory shows that 2-to-2 scattering also determines the late-time
diffusive transport coefficients. A mathematically precise relation, however,
between chaos and transport in dilute perturbative systems did not exist.

In this chapter, we will provide this relation. We will show that a direct
analogue of the conventional Boltzmann transport equation, but where one
traces the total gross exchange between phase space cells weighted by an
energy factor, rather than net particle number density, computes the late-
time behavior of chaos in terms of the exponential growth of the OTOC
of a bosonic system before the Ehrenfest time. The resemblance between
the OTOC computation and kinetic equations was already noted in [152],
although with a different interpretation. Our result is explicit in the
physical meaning of the kinetic equation for chaos and makes particularly
clear the relation between chaos and transport in dilute weakly coupled
theories, as the kernel in both cases is the 2-to-2 scattering cross-section,
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2.2 Boltzmann transport and chaos from a gross energy exchange kinetic equation

even though transport is a relaxational process and chaos an exponentially
divergent one. This OTOC-derived gross exchange equation shares many
of the salient features of the earlier postulated chaos-determining kinetic
equations [147, 161], explaining post facto why they obtained the correct
result.

2.2 Boltzmann transport and chaos from a
gross energy exchange kinetic equation

To exhibit the essence of the statement that chaos-driven ergodicity follows
from a gross exchange equation analogous to the Boltzmann equation, we
first construct this equation from first principles and show how it captures
the exponential growth of microscopic energy-weighted exchanges due to
inter-particle collisions. Then, in the next section, we derive this statement
from the late-time limit of the OTOC in perturbative quantum field theory.

Consider the linearized Boltzmann equation for the time dependence of
the change of particle number density per unit of phase space: δn(t,p) =
n(t,p)− n(Ep), where n(p) is the equilibrium Bose-Einstein distribution
n(p) = 1/(eβE(p) − 1) that depends on the energy E(p).2 In terms of the

one-particle distribution function, f(t,p) = δn(t,p)
n(p)(1+n(p)) , the linearized

Boltzmann equation is a homogeneous evolution equation for f(t,p) (see
e.g. [162–164]):3

∂tf(t,p) = −
∫

l

L(p, l)f(t, l), (2.2)

where the kernel of the collision integral

L(p, l) ≡ − [R∧(p, l)−R∨(p, l)] (2.3)

measures the difference between the rates of scattering into the phase-space
cell and scattering out the phase space cell. The factor

R∧(p, l) =
1

n(p)(1 + n(p))

∫
p2,p3,p4

dΣ(p,p2|p3,p4)

× (δ(p3 − l) + δ(p4 − l)) , (2.4)

2For simplicity, we assume spatial homogeneity of the gas with the energy E(p) and
think of all quantities as averaged over space, e.g. n(t,p) =

∫
dxn(t,x,p).

3In relativistic theories
∫
p≡
∫ d3p

(2π)3
1

2E(p)
and

∫
p ≡

∫ d4p
(2π)4

. For a non-relativistic

system,
∫
p ≡

∫ d3p
(2π)3

, and similarly,
∫
x ≡

∫
d3x and

∫
x ≡

∫
d4x.
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2 Quantum chaos in diluted weakly coupled field theories

counts increases of the local density by one unit. The factor

R∨(p, l) =
1

n(p)(1 + n(p))

∫
p2,p3,p4

dΣ(p,p2|p3,p4)

× (δ(p− l) + δ(p2 − l)) , (2.5)

counts decreases of the number density by one unit. Here,

dΣ(p,p2|p3,p4) = n(p)n(p2)
1

2
|Tpp2→p3p4 |2

× (1 + n(p3))(1 + n(p4))

× (2π)4δ4(p+ p2 − p3 − p4) (2.6)

with |Tpp2→p3p4 |2 the transition amplitude squared. By defining an inner
product

〈φ|ψ〉 =

∫
p

n(p)(1 + n(p))φ∗(p)ψ(p) , (2.7)

one can use the symmetries of the cross-section dΣ(p1,p2|p3,p4) =
dΣ(p2,p1|p3,p4) = dΣ(p3,p4|p1,p2) = dΣ(p1,p2|p4,p3) to show that
the operator L(p, l) is not only Hermitian on this inner product, but also
positive semidefinite—all its eigenvalues are real and ξn ≥ 0. Hence, the
solutions to the Boltzmann equation are purely relaxational:

f(p, t) =
∑
n

Ane
−ξntφn(p), (2.8)

where
∑
n formally stands for either a sum over discrete values or an

integral over a continuum (see e.g. [162–165]). Moreover, every ξ = 0
eigenvalue is associated with a symmetry and has an associated conserved
quantity—a collisional invariant.

Let us instead trace the total gross exchange, rather than the net flux,
by changing the sign of the outflow R∨(p, l) in the kernel of the integral
L(p, l). A distribution function that follows from Eq. (5.4) with the
kernel Ltotal(p, l) = − [R∧(p, l) +R∨(p, l)] counts additively the total in-
and out-flow of particles from a number density inside a unit of phase
space. However, this over-counts because the loss rate R∨(p, l) consists
of a drag (self-energy) term, 2Γp, caused by the thermal environment —
the term proportional to δ(p − l) in Eq. (3.57) — in addition to a true
loss rate term, R∨T (p, l) = R∨(p, l)− 2Γpδ(p− l). Only R∨T changes the
number of particles in f(t,p) due to deviations coming from f(t,p 6= l).
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2.2 Boltzmann transport and chaos from a gross energy exchange kinetic equation

Accounting for this, and changing only the sign of the true outflow, we
arrive at a gross exchange equation

∂tfgross(t,p) = (2.9)∫
l

[R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)] fgross(t, l) .

The central result of this chapter is that tracking the time-evolution of
this gross exchange—weighted additionally by an odd function E(E) of the
energy E to be specified below—is a microscopic kinetic measure of chaos
(or scrambling). It is thus quantified by the distribution fEX ≡ E(E)fgross

and governed by

∂tfEX(t,p) = (2.10)∫
l

E [Ep]

E [El]
[R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)] fEX(t, l) .

Specifically, Eq. (2.10) can be derived from the late-time behavior of the
OTOC of local field operators in perturbative relativistic scalar quantum
field theories. The OTOC selects a specific functional E(E), such that in
the limit of high temperature, E(E) → 1/E. The distribution fEX can
grow exponentially and indefinitely because the Hermitian operator

LEX(p, l) = − El

Ep
(R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)) (2.11)

is no longer positive semi-definite. It permits a set of negative eigenvalues,
ξm < 0, which characterize the exponential growth in the amount of gross
energy exchanged inside the system. This exponential evolution persists
to t→∞ [156], so ξm specify a subset of all Lyapunov exponents λL of
the many-body system, with λL,m = −ξm by definition. Finally, since
choosing a different odd E(E) results in a similarity transformation of the
kernel, the spectrum of fOTOC equals the spectrum of fEX .

The above construction tremendously simplifies the computation of
the Lyapunov exponents for weakly interacting dilute systems. Beyond
providing a physically intuitive picture of chaos, it reduces the calculation
of Lyapunov exponents to a calculation of |Tpp2→p3p4 |2, which is entirely
determined by particle scattering. For example, in a theory of N × N
Hermitian massive scalars Φab,

L = tr

(
1

2
(∂tΦ)

2 − 1

2
(∇Φ)2 − m2

2
Φ2 − 1

4!
g2Φ4

)
, (2.12)
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2 Quantum chaos in diluted weakly coupled field theories

for which the transition probability appropriately traced over external
states equals

|T12→34|2 =
1

6
g4
(
N2 + 5

)
. (2.13)

Eq. (2.10) directly computes the Lyapunov exponents (see Fig. 2.1). In
the β → 0 limit, the leading exponent becomes

λL '
0.025T 2

48m

1

2
|T12→34|2 '

0.025

4

g4(N2 + 5)T 2

144m
. (2.14)

In the large N limit, Eq. (5.47) recovers the explicit OTOC result of [152]
after correcting a factor of a 1/4 miscount (see Appendix 2.A).

2.3 A derivation of the gross exchange
kinetic equation from the OTOC

To set the stage, we first show how the linearized Boltzmann equation
(5.4) arises in quantum field theory, using the theory in Eq. (2.12) as an
example. The derivation is closely related to the Kadanoff-Baym quantum
kinetic equations [144, 166]. It builds on similar derivations in [101, 126,
167]. A complementary approach to the derivation here, which is closer
in spirit to the Kadanoff–Baym derivation, but makes the physics less
transparent, is the generalized OTOC contour quantum kinetic equation
of [153].

The one-particle distribution function f(t,x,p) follows from the Wigner
transform of the bilocal operator

ρ(x, p) =

∫
y

e−ip·y Tr [Φ(x+ y/2)Φ(x− y/2)]

=

∫
k

eikxTr [Φ(p+ k/2)Φ(p− k/2)] . (2.15)

When the momentum is taken to be on shell, the Wigner function ρ(x, p)
becomes proportional to the relativistic one-particle operator-valued dis-
tribution function ρ(x,p, Ep) = n(x,p) [144]. The expectation value of
the scalar density is then 〈ρ〉β .

We now consider the linearized Boltzmann equation as a dynamical
equation for fluctuations δρ(x, p) = n(p)(1 + n(p))f(x, p) in the bilocal
density operator:

[∂x0δ(x− y)δ(p− q) + L(x, p|y, q)] δρ(y, q) = 0 . (2.16)
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2.3 A derivation of the gross exchange kinetic equation from the OTOC

If the fluctuations are small, and the assumption of molecular chaos
holds, the central limit theorem implies that the two point function of the
fluctuations in the bilocal density is the Green’s function for the linearized
Boltzmann operator

iGρρR (x, p|y, q) = θ(x0 − y0)〈[δρ(x, p), δρ(y, q)]〉
= [∂x0δ(x− y)δ(p− q) + L(x, p|y, q)]−1

. (2.17)

Because the linearized Boltzmann equation is causal and purely relax-
ational, the two-point function in (5.80) is retarded. This implies that it
is possible to extract the collision integral of the linearized Boltzmann
equation directly from the analytic structure of the retarded Green’s func-
tion GρρR (x, p|y, q). As a result, the eigenvalues of the Boltzmann equation
ξn are also the locations of the poles of GρρR . This establishes a direct
connection between weakly coupled quantum field theory and quantum
kinetic theory. From the definition of ρ(k, p), Eq. (5.80) can be expressed
in terms of the connected4 Schwinger-Keldysh (SK) four-point functions

(see Ref. [168]) of the microscopic fields GρρR (k, p; `, q) = −GΦ2Φ2

1111 +GΦ2Φ2

1122 ,
where

GΦ2Φ2

1122 = i 〈Tr [Φ1(p+ k/2)Φ1(−p+ k/2)]

× Tr [Φ2(q + `/2)Φ2(−q + `/2)]〉SK , (2.18)

and similarly forGΦ2Φ2

1111 . Here, Φ1,2 denote the doubled fields on the forward
and backward contours of the SK path integral, respectively. In translation-
ally invariant systems, ` = −k. It is convenient to introduce the Keldysh
basis, Φa = Φ1 − Φ2 and Φr=1

2 (Φ1 + Φ2). Then GρρR is a linear combina-
tion of 16 four-point functions Gα1α2α3α4 = i2nrαi 〈Φα1Φα2Φα3Φα4〉 with
αi = {a, r} and nrαi counting the number of αi indices equal to r. In the

limit of small frequency and momenta, ω ≡ k0 → 0 and k→ 0, however,
it is only a single one of these four-point functions that contributes to the
final expression [133, 168, 169]:

lim
k→0

GρρR (p, q|k) = − lim
k→0

βk0

2
N (p0)G∗aarr(p, q|k)

= − lim
k→0

βk0

4
N (p0)N (q0) 〈f(p, k)f(q,−k)〉 , (2.19)

whereN (p0) = n(p0)
(
1 + n(p0)

)
. The exact four-point functionG∗aarr(p, q|k)

obeys a system of Bethe-Salpeter equations (BSEs) that nevertheless still

4The disconnected part gives a product of the equilibrium one-point functions 〈ρ〉β .
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2 Quantum chaos in diluted weakly coupled field theories

couples all 16 Gα1α2α3α4
. However, it turns out that in the limit of small

ω and k, G∗aarr decouples and is governed by a single BSE [133, 168]:

G∗aarr(p, q|k) = ∆ra(p+ k)∆ar(p)

[
i(2π)4δ4(p− q)N2

−
∫
l

Rtransp(p, l)G∗aarr(l, q|k)

]
, (2.20)

where ∆α1α2 = −i 2nrαi 〈Φα1Φα2〉 is the Schwinger-Keldysh two-point
function and Rtransp(p, `) = dΣp→l/N (p0), with dΣp→l the transition
probability of an off-shell particle with energy-momentum (p0,p) scattering
of the thermal bath to an off-shell particle with energy-momentum (l0, l).5

Defining G∗aarr(p|k) =
∫
q
G∗aarr(p, q|k), Eq. (2.20) reduces to

G∗aarr(p|k) = ∆ra(p+ k)∆ar(p)

[
iN2

−
∫
l

Rtransp(p, l)G∗aarr(l|k)

]
. (2.21)

The product ∆ra(p+ k)∆ar(p) has four poles with imaginary parts ±iΓp.
However, as k → 0, only a contribution from two poles remains. This
pinching pole approximation, ubiquitous in the study of hydrodynamic
transport coefficients and spectra of finite temperature quantum field
theories [101, 168], gives

G∗aarr(p|k) =
π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp

[
iN2−

∫
l

Rtransp(p, l)G∗aarr(l|k)

]
. (2.22)

To find the solution of the integral equation (2.22), we make the ansatz
whereby G∗aarr(p|k) is supported on-shell:

G∗aarr(p|k) = δ(p2
0 − E2

p)Gff (p|k). (2.23)

Hence,

(−iω + 2Γp)Gff (p|k) =
iπN2

Ep
−
∫

l

1

2Ep

×
[
Rtransp(p, Ep|`, E`) +Rtransp(p, Ep|`,−E`)

]
Gff (l|k) . (2.24)

5Rtransp(p, `) = − sinh(βp0/2)

sinh(β`0/2)
R(l− p) where R(l− p) is the rung function computed

in [152]. Note that the R(l − p) in [152] is not the same as R∧ or R∨ used here.
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2.3 A derivation of the gross exchange kinetic equation from the OTOC

It can be shown that 6

1

2Ep
Rtransp(p, Ep|`, E`) = −R∧(p, l) (2.25)

and [101, 133, 168]

1

2Ep
Rtransp(p, Ep|l,−El) = R∨(p, l)− 2Γpδ(p− l) . (2.26)

Thus, Eq. (2.24) is solved by

Gff (p|k) =
iπN2

Ep

1

−iω −
∫
l
[R∧(p,k)−R∨(p,k)]

. (2.27)

Hence, the spectrum of Gff (p|k0 = ω,k = 0) equals the spectrum of the
one-particle distribution f(t,p) determined by the linearized Boltzmann
equation (5.4).

The derivation of the kinetic equation (2.10) for quantum chaos from
the OTOC now follows from an analogous line of arguments. The OTOC,

C(t) =− i
∫
k

e−ikt
∫
p,q

〈
[Φab(p+ k),Φ†a′b′(−q − k)]

×[Φ†ab(−p),Φa′b′(q)]
〉
, (2.28)

is a four-point function, which, as shown in [152], also obeys a BSE in the
limit of ω → 0. Indicating with GOTOC(p, q|k, p + q − k) the term inside
the integrals in Eq. (5.79), i.e. C(t) ≡

∫
k
e−ikt

∫
p,q
GOTOC(p, q|k, p+ q−k),

we define

G̃(p|k) =

∫
q

GOTOC(p, q|k, p+ q − k) . (2.29)

The correlator G̃(p|k) then obeys the following integral equation:

G̃(p|k) =
π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp

[
iN2

−
∫

d4`

(2π)4

sinh(β`0/2)

sinh(βp0/2)
RtranspG̃(`|k)

]
. (2.30)

6See Appendix 3.G in next chapter.
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2 Quantum chaos in diluted weakly coupled field theories

Eq. (2.30) agrees with the result found in [152], even though it is expressed

here with different notation. The advantage of writing G̃(p|k) as in (2.30)

is that it makes transparent the similarities between G̃(p|k) and G∗aarr(p|k)
from Eq. (2.22), which governs transport. A priori, there is no reason to

expect G̃(p|k) and G∗aarr(p|k) to be related. Nevertheless, by comparing
(2.22) with (2.30), it is clear that in this calculation, the only difference

between the two BSE equations is the factor sinh(β`0/2)
sinh(βp0/2) appearing in the

measure of the kernel of (2.30). As we will see in Section 2.4, this factor
is crucial for the fact that, while related, the spectra of G∗aarr(p|k) and

G̃(p|k) are distinct: the spectrum of G∗aarr(p|k) only possesses relaxational

modes while G̃(p|k) exhibits exponentially growing modes which can be
associated with many-body quantum chaos.

To find a solution of Eq. (2.30), as in the case of Eq. (2.22), we again

introduce an on-shell ansatz G̃(p|k) = δ(p2
0 − E2

p)Gff(p|k). This gives

(−iω + 2Γp)Gff(p|k) =
iπN2

Ep
−
∫

l

sinh(βEl/2)

sinh(βEp/2)

1

2Ep

×
(
Rtransp(p, Ep|l, El)−Rtransp(p, Ep|l,−El)

)
Gff(l|k), (2.31)

where one of the signs in front of K is now reversed due to the fact that

factor sinh(β`0/2)
sinh(βp0/2) in the measure is an odd function of energy. Thus, the

spectrum of Gff(l|k), and hence, of the OTOC, equals the spectrum of the
following kinetic equation

∂tfOTOC(t,p) =

∫
l

sinh(βEl/2)

sinh(βEp/2)

× [R∧(p, l) +R∨(p, l)− 4Γpδ(p− l)] fOTOC(t, l) , (2.32)

which precisely matches with the kinetic equation for the OTOC put for-
ward in Eq. (2.10), with E(Ep) = 1/ sinh(βEp/2), or limβ→0 E(Ep)/E(El) =
El/Ep. As noted there, this spectrum of Eq. (2.10) is in fact independent
of E(E) as long as the function E is odd.

2.4 Results and discussion

In addition to greatly simplifying the computation of chaotic behavior
in dilute weakly interacting systems and providing a physical picture
for the meaning of many-body chaos, the gross energy exchange kinetic
equation recasting of the OTOC makes it conspicuously clear how in such

34



2.4 Results and discussion

systems scrambling (or ergodicity) and transport are governed by the
same physics [128]. The kernel of the kinetic equation in both cases is the
2-to-2 scattering cross-section. Nevertheless, the equations for fOTOC, or
equivalently, fEX , and f are subtly different, which allows for the crucial
qualitative difference: a chaotic, Lyapunov-type divergent growth of fEX
versus damped relaxation of f . Their spectra at k = 0 and small ω are
presented in Figure 2.1. As already noted below Eq. (2.30), the two
off-shell late-time BSEs (2.22) and (2.30) are the same upon performing
the following identification:

G̃(p|k) = G∗aarr(p|k)/ sinh(βp0/2). (2.33)

The most general solution to this BSE thus includes the information about
chaos and transport. However, the divergent modes (in time) of the OTOC
are projected out by the on-shell condition and thus do not contribute to
the correlators that compute transport. For example, the shear viscosity
η can be inferred from the following retarded correlator (see e.g. [101]):

〈T xy(k), T xy(−k)〉R =

∫
p,q

pxpyqxqy G
ρρ
R (k|p, q) , (2.34)

where k = (ω, 0, 0, kz). The integrals over p and q, together with the
on-shell condition, project out the odd modes in p0 which govern chaos,
and transport is only sensitive to the even, stable modes [170].

The fact that, when off shell, the BSEs (2.22) and (2.30) can be mapped
onto each other is by itself a highly non-trivial result which opens several
questions. In particular, this observation seems to indicate that in some
cases, the information about scrambling and ergodicity, which has so far
been believed to be accessible only by studying a modified, extended SK
contour and OTOCs, can instead be addressed by a suitable analysis
of the analytic properties of correlation functions on the standard SK
contour. How our result implies such new analytical properties, remains
to be discovered. We remark, however, that studies in (holographic)
strongly coupled theories uncovered precisely this type of a relation between
hydrodynamic transport at an analytically continued imaginary momentum
and chaos. In particular, as we discovered in [128], chaos is encoded in
a vanishing residue (“pole-skipping”) of the retarded energy density two-
point function, which tightly constrains the behavior of the dispersion
relation of longitudinal (sound) hydrodynamic excitations. The same
imprint of chaos on properties of transport was later also observed in a
proposed effective (hydrodynamic) field theory of chaos [56]. Despite the
fact that it is at present unknown how general pole-skipping is and whether
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2 Quantum chaos in diluted weakly coupled field theories

other related analytic signatures of chaos in observables that characterize
transport exist, it may be possible that properties of many-body quantum
chaos in dilute weakly coupled theories are also uncoverable from transport,
as in strongly coupled theories [128]. We defer these questions to future
works.

The kinetic equation for many-body chaos, that we have derived here,
also gives concrete form to past attempts to do so, which were based on
a phenomenological ansatz that one should count additively the number
of collisions [147, 161]. In essence, that is also what our gross exchange
equation does. The exponential divergence can thus be understood as a
front propagation into unstable states [172]. This analogy was already
noted in [153] who derived a kinetic equation for chaos from the Dyson
equation for the 4× 4 matrix of the four-contour SK Green’s functions. By
our arguments above that relate the poles of the OTOC to a dynamical
equation for fOTOC, the resulting equations in [153] should contain a
decoupled subsector that is equivalent to the kinetic equation derived here.

Finally, we wish to note that the small parameter that sets the Ehrenfest
time and controls the regime of exponential growth in the OTOC in all
these systems is the perturbative small ’t Hooft coupling λ = g2N . The
BSE from which the kinetic equation is derived is formally equivalent to a
differential equation of the type

(
d

dt
− g4N2L

)
f = N2 . (2.35)

This is solved by

f = − 1

g4L
+ c0 e

g4N2Lt. (2.36)

The Ehrenfest (or scrambling) time, where the exponential becomes of
order of the constant term, is therefore

tscr =
1

g4N2L
ln(1/g4Lc0). (2.37)

For small g2, this can be an appreciable timescale for any value of N , and
there is no need for a large N number of species.
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Figure 2.1: The spectra of the kernel L(p, l) for the linearized Boltzmann equation (and
also of 〈Txy(kz), Txy(−kz)〉R, cf. Eq. (2.34)) (top left) and of the kernel LEX(p, l) for the
kinetic equation for the OTOC (top right) are plotted over the complex ω plane and in the
limit of βm → 0. In the lower half of the complex ω plane, there is a dense sequence of
numerically obtained poles. In both spectra, these poles are believed to be the signature of
a branch cut. See [170] and also [121, 122, 165, 171]. In the upper half of the complex ω
plane, only the kernel LEX(p, l) has distinct poles which are identified with the Lyapunov
exponents, as explained below equation (2.11). The dependence of these two Lyapunov
exponents and the branch cuts on βm is depicted in the inlay (bottom). For large values of
βm, the Lyapunov exponents decay exponentially. The plots are obtained by diagonalizing
the kernels of the integral equations (2.20) and (2.32) after a discretization with N = 1000
grid points on the domain p ∈ [m/N,N × m]. The discretization is not uniform. This is
done in order for the diagonalization to appropriately account for the contributions of both
the soft momenta and collinear momenta p ≈ l, which are not negligible even when both
p and l are large [101, 133]. The finite size of the branch cuts, i.e. its end point for large
Im(ω), is related to finite domain of the discretization procedure.
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2 Quantum chaos in diluted weakly coupled field theories

2.A Diagrammatic expansion of |T12→34|2 in
the theory of N ×N Hermitian matrix
scalars

Here, we present the diagrammatic expansion and the relevant combinato-
rial factors for each of the diagrams that enter into the 2-to-2 transition
amplitude |T12→34| in the theory of N ×N Hermitian matrix scalars (9).
The square of the 2-to-2 transition amplitude, |T12→34|2, is the square of
the amputated connected four-point function. At lowest non-trivial order:

For N = 1 the theory is just scalar φ4 theory and the answer is straight-
forward: |T12→34|2 = g4.

For N > 1 theory, the actual amplitude we wish to compute is addition-
ally traced over the external indices, since,

C(t) =− i
∫
k

e−ikt
∫
p,q

〈
[Φab(p+ k),Φ†a′b′(−q − k)]

×[Φ†ab(−p),Φa′b′(q)]
〉
, (2.38)

The way that the matrix indices need to be contracted is across the cut.
An easy way to see this from the free non-interacting result: C(t)g2=0 =

Gab,cdR Gcd,ab;R. Graphically,
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2.A Diagrammatic expansion of |T12→34|2 in the theory ofN×N Hermitian matrix scalars

Above the arrows denote momentum-flow. We are interested in the way
the weight changes as a function of N .

To find this answer, we use that Hermitian matrices span the adjoint of
U(N). Following ’t Hooft, one can then use double line notation in terms
of fundamental N -“charges”. Using this double line notation, the vertex
equals.

One needs to connect the two vertices across the cut, and then contract,
i.e. trace over the external indices, in all possible ways. We will do so
step-wise.

Consider first the transition probability. Connecting the first leg across
the cut is unambiguous, i.e., each possible choice gives the same answer:

|T12→34|2 =

2

Contracting the next line, however, gives rise to in-equivalent possibilities,
each with the same weight w. They are
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2 Quantum chaos in diluted weakly coupled field theories

|T12→34|2 = w2 + +

2

Now, multiplying out the various combinations, each of the six indepen-
dent combinations can be contracted in two ways over the external indices.
As a result, we obtain the following set of twelve independent diagrams.

Diagram 1 with weight N4 and multiplicity 1:

Diagram 2 with weight N2 and multiplicity 1:

Diagram 3 with weight N2 and multiplicity 2 (a crossterm diagram):
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2.A Diagrammatic expansion of |T12→34|2 in the theory ofN×N Hermitian matrix scalars

Diagram 4 with weight N2 and multiplicity 2 (a crossterm diagram).
It equals Diagram 3 mirrored across the horizontal axis:

Diagram 5 with weight N2 and multiplicity 2 (a crossterm diagram):

Diagram 6 with weight N2 and multiplicity 2 (a crossterm diagram):

Diagram 7 with weight N4 and multiplicity 1:
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2 Quantum chaos in diluted weakly coupled field theories

Diagram 8 with weight N2 and multiplicity 1:

Diagram 9 with weight N2 and multiplicity 2 (a crossterm diagram):

Diagram 10 with weight N2 and multiplicity 2 (a crossterm diagram).
It equals Diagram 9 mirrored across the horizontal axis:

Diagram 11 with weight N4 and multiplicity 1:
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2.A Diagrammatic expansion of |T12→34|2 in the theory ofN×N Hermitian matrix scalars

Diagram 12 with weight N2 and multiplicity 1:

In total, we thus have three diagrams with weights N4, each with
multiplicity 1. Moreover, we have nine diagrams with weights N2, three
of which have multiplicity 1, and six have multiplicity 2. This gives us a
total relative weight of

weight = 3N4 + 15N2 . (2.39)

The transition probability therefore equals

1

N2
Tr |T12→34|2 = w2(3N2 + 15) . (2.40)

By demanding that this expression reproduces the result for N = 1 (the
theory of a single real scalar field), we find w2 = g4/18. The total transition
probability is therefore

1

N2
Tr |T12→34|2 =

g4

6
(N2 + 5) , (2.41)

which we used in the kinetic theory prediction, i.e. in Eq. (10), to give us
the leading Lyapunov exponent λL.
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3 Towards the Quantum
Critical Point

In weakly coupled or large N QFTs, we show the existence of an analytical
relation between the off-shell out-of-time ordered correlation function
(OTOC) and the correlation function which determines hydrodynamic
transport. We explicitly exhibit such relation for a φ4 matrix model and for
systems close to a quantum critical point (QCP), respectively the bosonic
O(N) vector model and the Gross-Neveu model in (2+1) dimensions. This
result opens a new and precise direction to understand how information
is scrambled in QFTs and which imprints this leaves on the physics of
the long-lived excitations governed by hydrodynamics. A Boltzmann-like
interpretation of many-body quantum chaos readily follows from this result,
showing that also in the quantum critical regime many-body chaos can be
understood as the counting of a gross (energy) exchange.

3.1 Introduction

Traditionally the QBE is obtained from the statistical two-point function
[125–127],. The starting point of our results is that it is possible to obtain
the linearized QBE in a very clean way from a 4-point function.

This 4-point function must also be resummed; this resummation is
expressed in terms of a BSE which, in the spatial homogeneous case and
long time limit (ω → 0), reads

−iω f(ω, p) = δ(p2
0 − E2

p)

(
1 +

∫
l

R̂transp(p, l)f(ω, l)

)
. (3.1)

where f(ω, p) =
∫
q
f(ω, p, q). Once on-shell, the kernel R̂transp reproduces

exactly the collision operator Ĉ. All the information about the relaxation
times, eventual branch cuts and hydrodynamic and non hydrodynamical
modes are intrinsically hidden in R̂transp.
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3 Towards the Quantum Critical Point

The similarity of this equation with the BSE for chaos,

−iω C(ω, p) = δ(p2
0 − E2

p)

(
1 +

∫
l

R̂OTOC(p, l)C(ω, l)

)
, (3.2)

is not coincidental. We can now summarize the most important results
of this chapter. We show that, for a broad class of theories, φ4 matrix
model, (bosonic) vector model in (2 + 1) dimension and the Gross-Neveu
model in (2 + 1) dimensions (for fermions), the linearised kinetic operator,
R̂transp(p, l), is analytically related to the kernel of the BSE of the OTOC
(3.31), R̂OTOC(p, l), as follows

R̂OTOC(p, l) = sinh(βp0/2)−1 R̂transp(p, l) sinh(βl0/2) bosons, (3.3)

R̂OTOC(p, l) = cosh(βp0/2)−1 R̂transp(p, l) cosh(βl0/2) fermions.
(3.4)

This form in which we wrote (3.3) moreover makes clear that the relation
is nothing but a similarity transformation which naively preserves the
spectrum and other properties, even though the OTOC should have expo-
nentially growing modes while the QBE only relaxing ones. The correct
eigenvalues for either chaos or Boltzmann transport are only obtained
after a projection out of some eigenvectors.

For the QBE, these precisely project out the growing modes whereas
the OTOC contains the complementary spectrum. As our models are
sufficiently generic, we are confident to put forward that this holds for all
perturbative QFTs.

This is the significant finding we wish to present. Naively, the full physics
of scrambling is encoded in R̂OTOC(p, l) and most of the hydrodynamical
transport physics is encoded in R̂transp(p, l), but in truth they are literally
the same. This relation has a profound meaning and should be considered
as a starting point for any further attempt to find imprints of ergodicity in
the hydrodynamic spectrum. Moreover, as we show in the present chapter,
(3.3) not only holds for the φ4 model, but also for models which describe
the physics above a QCP, where there are no quasiparticle excitations.
Therefore this is a quite general result for weakly coupled systems or
systems studied in the large N limit.

Our presentation of the results (3.3) starts in section 3.2, where we
show some formal similarities between the out-of-time ordered correlation
function and the correlation function which defines transport. Those
similarities can be summarized in two fundamental properties:

1 using the real time formalism, with a doubling of fields, by performing
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3.2 Hydrodynamic transport at weak coupling and scrambling: formal similarities

the Keldysh rotation of the fields, only one of the 24 correlation
functions contributes to the late time limit;

2 the BSE a priori couples all different 24 Keldysh components of the
correlation function; in the late time limit a single 4-point function
decouples and the BSE can be written in closed form.

For the case of transport, those results were shown in a series of papers
first by Jeon [101], then in real time formalism by Wang and Heinz [113,
114] and later in the imaginary time formalism by Valle Basagoiti [115].
In section 3.2.2 we prove (1) for the OTOC, and in section 3.2.3 (2). In
each case we only do so for N ×N matrix scalar φ4 field theory, but the
results clearly extend to the other models.

In section 3.3 we review the derivation of the quantum Boltzmann
equation. We summarize what the complementary solution is and argue
that this other kinetic equation is a kinetic equation for chaos. In the
following sections, we will give the full background for the connection
between scrambling and transport. We show how this works for a bosonic
O(N) vector model in 2 + 1 dimensions and for the Gross-Neveu model in
(2 + 1) dimension, respectively in section 3.4 and 3.5. Moreover we show
that the relations (3.3) hold even in the proximity of the QCP. We do this
by computing in both systems the BSE for transport and comparing the
results with the studies of the OTOC performed in [136, 137].

At the end of sections 3.4 and 3.5 we derive from the BSE the kinetic
theory equations both from chaos and transport. We prove that, in both
cases, they agree with the kinetic equations for quantum chaos agree stated
in section 3.3. Moreover, we show that the OTOC can be obtain from the
transport BSE simply by a different choice of boundary conditions (and
vice versa).

3.2 Hydrodynamic transport at weak
coupling and scrambling: formal
similarities

In this section we show some formal similarities ((1) and (2) in the above
discussion) between the out-of-time-order correlation function and the late
time limit of the density-density correlation functions, which are used to
describe transport.
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3 Towards the Quantum Critical Point

3.2.1 Relevant correlation function for transport in
the hydrodynamic regime

The Wigner transform of the scalar density operator

ρ(x, p) =

∫
d4ye−ipyφ

(
x+

y

2

)
φ
(
x− y

2

)
, (3.5)

corresponds to the quantum field theory analogue of the single particle
distribution function which appears in the Boltzmann equation. Obviously∫
dp ρ(x, p) = φ2(x). If we write the Fourier transform of (3.5) with respect

to the coordinate x, we see that

ρ(k, p) = φ(p+ k/2)φ(−p+ k/2). (3.6)

Generally, all currents can be constructed out of this bilocal density
operator. Consider for instance the contribution ∂iφ∂jφ that appears in
the spatial components of the stress-energy tensor operator

F [∂iφ∂jφ](k) =

∫
d4p (p+ k)i φ(p+ k) pjφ(−p); (3.7)

this can be written in terms of the Wigner transform defined above,

F [∂iφ∂jφ](k) =

∫
d4p (p+ k)i pj ρ(k, p+ k/2)

=

∫
d4p (p+ k/2)i (p− k/2)j ρ(k, p). (3.8)

This shows that, for i 6= j we can express the stress energy tensor as

T ij(k) =

∫
d4p (p+ k/2)i (p− k/2)j ρ(k, p). (3.9)

In QFT, correlation functions can be obtained as variations of the path
integral with respect to external sources. Such variation provides a well
defined time ordering. When studying out-of-equilibrium physics, a conve-
nient technique is given by the Schwinger-Keldysh path integral [173–176],
which doubles the time branch and involves both time-ordered and anti
time-ordered contributions (see Fig. 3.1 for the finite temperature case).
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Im[t]

Re[t]

−iβ

0
1

2

Figure 3.1: The Schwinger-Keldysh time contour includes two real time branches that are
respectively labelled as 1 and 2. Correlation functions on this contour are always contour-
ordered as shown by the arrows. Operators inserted in the branch 1 are time-ordered, while
operators inserted in branch 2 are anti time-ordered.

By construction, the retarded Green’s function of the stress energy tensor
Gij,lmR (x, y) is

Gij,lmR (x, y) = Gij,lm11 (x, y)−Gij,lm12 (x, y), (3.10)

where the subscripts 1, 2 label the time branch where the stress-energy
tensor is inserted. In Fourier transform, (3.10) is

Gij,lmR (k,−k) = Gij,lm11 (k,−k)−Gij,lm12 (k,−k). (3.11)

We can now easily show that the retarded Green’s function of the non-
diagonal component of the stress-energy tensor is related to the retarded
Green’s function of the operator (3.5). By using (3.9), we have

− iGij,lmR (k,−k) = 〈T ij1 (k)T lm1 (−k)〉 − 〈T lm2 (−k)T ij1 (k)〉 (3.12)

=

∫
d4pd4q (p+ k/2)i (p− k/2)j (q − k/2)l (q + k/2)m

× (〈ρ1(k, p)ρ1(−k, q)〉 − 〈ρ2(−k, q)ρ1(k, p)〉),
with i 6= j and m 6= n. We remind the reader that the correlation functions
are always contour-ordered along the Keldysh contour, this explains the
ordering T lm2 (−k)T ij1 (k) in the expectation value. We can recast (3.12) in
the more readable form

GT
ij ,T lm

R (k,−k) =

∫
d4pd4q (p+ k/2)i (p− k/2)j (q − k/2)l (q + k/2)m

× GρρR (k|p, q).
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The Kubo formula for shear viscosity involves the correlation functions of
the shear channel components of the stress-energy tensor. For this reason,
we choose the external momentum in the z direction, k = (k0, 0, 0, kz),
and i = l = x and j = m = y

Gij,lmR (k,−k) =

∫
d4pd4q pxpyqxqy G

ρρ
R (k|p, q). (3.13)

By definition (indicating with TSK the contour ordering)

iGρρR (k|p, q) = 〈TSK [φ1(p+ k)φ1(−p)φ1(−q − k)φ1(q)]〉 (3.14)

− 〈TSK [φ1(p+ k)φ1(−p)φ2(−q − k)φ2(q)]〉
= −i(G1111(p+ k,−p,−q − k, q)−G1122(p+ k,−p,−q − k, q)).

The previous expression states that the GρρR (k|p, q) corresponds to the
difference of two 4-point functions. In order to simplify (3.14), we can try
to perform a Keldysh rotation,

φr =
φ1 + φ2

2
, φa = φ1 − φ2, (3.15)

to basis where GR = Gra and GA = Gar. After such rotation, the right-
hand-side of (3.14) contains the linear combination of 24 = 16 correlation
functions.

However, in the limit of vanishing ω = k0 and k = (0, 0, kz), Wang and
Heinz showed in [113] that, for any bosonic field theory, the following holds

G1111(p+ k,−p,−q − k, q)−G1122(p+ k,−p,−q − k, q) (3.16)

ω→0≈ 1

4
(Nq+k −Nq)Grraa(p, q|k) =

1

4
(Np −Np+k)G∗aarr(p, q|k).

In the long time limit in which we are interested, the retarded 2-point
function of the bilocal density operator, written in terms of fundamental
fields in the Keldysh basis, GρρR (k|p, q), thus assumes the simple form:

GρρR (k|p, q) =
1

4
(Nq −Nq+k)Grraa(p, q|k)

=
1

4
(Np+k −Np)G∗aarr(p, q|k). (3.17)

3.2.2 Decoupling of the OTOC in the extended
Schwinger-Keldysh formalism

In this section we show how a similar simplification applies to the OTOC by
using an extended version of the real time formalism of QFT. Considering
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an hermitian operator O, we will focus on the following out-of time
correlation function

C(t,x) = 〈ρ1/2[O(t,x), O(0,0))]ρ1/2[O(t,x), O(0,0))]〉. (3.18)

Im[t]

Re[t]

−iβ

0

a)

Im[t]

Re[t]

−iβ/2

−iβ

b)

Figure 3.2: The different time contours. a) is the standard time contour in Schwinger
Keldysh; b) is the extended contour necessary to compute the OTOC.

By expanding the commutators in (3.18), a new type of contribution
appears besides the two-time ordered terms. The two terms are

−〈ρ1/2O(t,x)O(0,0))ρ1/2O(t,x)O(0,0))〉 − [(t,x)↔ (0,0)]. (3.19)

In order to include these new terms, the contour of the path integral
depicted in Fig. 3.1 has to be modified as shown in Fig. 3.2 b), by adding
another time fold.

To preserve the ordering in the out-of-time correlation function,

C(x, y, w, z) =〈[O(x), O(y)][O(w), O(z)]〉 = 〈O(x)O(y)O(w)O(z)〉
+ 〈O(y)O(x)O(z)O(w)〉 − 〈O(y)O(x)O(w)O(z)〉
− 〈O(x)O(y)O(z)O(w)〉, (3.20)

we need to insert the operators in the correct branch. Labelling the 4
branches of the modified contour as in Fig. 3.3,

then (3.20) can be rewritten as

C(x, y, w, z) =C4321(x, y, w, z) + C3412(x, y, w, z)− C3421(x, y, w, z)

− C4312(x, y, w, z). (3.21)
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1

2

3

4

Figure 3.3: The insertions on the extended Keldysh contour can be labelled with an index
i = 1, ..., 4.

In the last line, we have used the fact that, in the Schwinger-Keldysh
formalism, correlation functions are contour-ordered. This means that the
operator inserted in branch 4 will always appear on the most left side of
the correlator. For example, as shown in fig. 3.4,

C3412(x, y, w, z) ≡〈TSK [O3(x)O4(y)O1(w)O2(z)]〉
= 〈O(y)O(x)O(z)O(w)〉. (3.22)

Now we can perform the standard Keldysh rotation pairwise in the space
of the operators, namely independently rotating the fields in the first and
second time-fold,

Or =
O1 +O2

2
, Oa = O1 −O2; (3.23)

OR =
O3 +O4

2
, OA = O3 −O4. (3.24)

Subscripts (a, r) are the Keldysh indices of the first time fold and (A,R)
of the second time-fold. The basis change is implemented by the following
block-diagonal matrix

Q̃ =

(
Q 0
0 Q

)
, Qiα =

(
1 −1/2
1 −1/2

)
. (3.25)

Then, the commutator-squared (3.21) can be expressed as follows

C(x, y, w, z) = (Q4αQ3β −Q3αQ4β)(Q2γQ1δ −Q1γQ2δ)

× Cαβγδ(x, y, w, z). (3.26)
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O(w)

O(z)

O(x)

O(y)

Figure 3.4: The evaluation of correlation functions is such that the insertions on the ex-
tended Keldysh contour are always contour ordered in the SK path integral.

Clearly, because of the block-diagonal structure of the Q̃ matrix, the only
non vanishing contribution is for (α, β) = {(A,R), (R,A)} and (γ, δ) =
{(a, r), (r, a)}. So

4C(x, y, w, z) =CRAra(x, y, w, z) + CARar(x, y, w, z)− CRAar(x, y, w, z)
− CARra(x, y, w, z)

= CRrAa(x,w, y, z) + CAaRr(x,w, y, z)− CRaAr(x,w, y, z)
− CArRa(x,w, y, z). (3.27)

So far we studied the correlator square with arbitrary insertions (x, y, w, z).
The commutator-squared is defined by the choice w = x and y = z = 0.
For this choice, rotating back to the old basis, it is possible to show that,
for any t, it holds 1

CRaAr(x, x, 0, 0) = CArRa(x, x, 0, 0) = 0. (3.28)

The previous results remarkably simplifies the form of the commutator-
squared

4C(x, 0, x, 0) = CRrAa(x, x, 0, 0) + CAaRr(x, x, 0, 0). (3.29)

Equation (3.29) makes clear that the OTOC can in general be split into
two channels, according to the sign of the time argument. Indeed it is
possible to show that

CRrAa(x, x, 0, 0) = θ(x0)CRrAa(x, x, 0, 0),

CAaRr(x, x, 0, 0) = θ(−x0)CAaRr(x, x, 0, 0).

1This result is reminiscent of the fact that the product of the advanced and the
retarded Greens functions with the same time argument is zero
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3 Towards the Quantum Critical Point

If we are interested in the late time regime of the OTOC, with t > 0, we
can simply focus on the CRrAa(x, x, 0, 0). Consequently we can restrict
our analysis to f(x) ≡ CRrAa(x, x, 0, 0) and

f(k) =

∫
x

eikxf(x) ≡
∫
x

eikxCRrAa(x, x, 0, 0)

=

∫
x,p1,p2,p3,p4

ei(k−p1−p2)xCRrAa(p1, p2, p3, p4)(2π)4δ4(p1 + p2 + p3 + p4)

=

∫
pq

CRrAa(p+ k,−p,−q − k, q). (3.30)

Thus the computation of OTOC reduces to the study of the 4-point
function on a modified SK contour

f(k) =

∫
pq

CRrAa(p, q|k), (3.31)

where, for brevity, we indicated (p, q|k) = (p+k,−p,−q−k, q). Comparing
(3.31) with (3.17), we observe that the commutator square resembles an
analytical continuation of the GρρR (k|p, q) in the long time limit. Let us
also observe that, by consistently reshuffling the momenta and the SK
indices in the integral, we obtain

f(k) =

∫
pq

CRrAa(p, q|k) =

∫
pq

CAaRr(p, q| − k). (3.32)

We will use (3.32) as a consistency check for our results.

In order to compute (3.31), we shall need some further knowledge of
the structure of the Green’s functions in this extended SK path integral.
We first define the correlation functions in this extended SK contour as
follows

Ga1...an(x1, .., xn) = (−i)n−1〈TSK [O(x1)a1 ...O(xn)an ]〉 (3.33)

where the index ai runs over the time brannches, a1 = 1, ..., 4. After
performing the rotation to the Keldysh basis, the correlation functions
read

Gα1...αn(x1, .., xn) = (−i)n−12nr−12nR−1〈TSK [O(x1)α1
...O(xn)αn ]〉,

and nr and nR count respectively the the r and R indices among {αi}.
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3.2 Hydrodynamic transport and scrambling: formal similarities

We now specialize to the bosonic case. It can be shown that

Gra(k) = GRA(k),

GRa(k) = GRa(k) = 0,

Gar(k) = GAR(k),

GrR(k) =
1

2
eβk

0/2(N(k0)− 1) [Gra(k)−Gar(k)] ,

GRr(k) =
1

2
e−βk

0/2(N(k0) + 1) [Gra(k)−Gar(k)] ,

with N(k0) = 1 + 2nB(k0), nB(k0) being the Bose-Einstein distribu-

tion function nB(k0) = 1
eβk0−1

. Moreover, since eβk
0/2(N(k0) − 1) =

e−βk
0/2(N(k0) + 1), the (rR) and (Rr) components are all same

GrR(k) = GRr(k),

GrR(−k) = GRr(k) = GrR(k).

In this extended Keldysh basis, the set of Green’s functions can be sum-
marized as follows

G =

(
Gαβ G1

G2 Gαβ

)
, (3.34)

with

Gαβ =

(
Grr Gra
Gar Gaa

)
, G1 =

(
GrR 0

0 0

)
, G2 =

(
GRr 0

0 0

)
.

(3.35)

Furthermore, many properties in this contour are remnant of the canonical
SK path integral. By using that any n-point function with only a indices
vanishes in standard SK, it is easy to see that any n-point functions with
at least an index A (a), but without a R (r), vanishes. An example of this
statement is the following

GAAα3α4(x, y, w, z) = GAα3Aα4(x, y, w, z) = GAα3α4A(x, y, w, z)
(3.36)

= Gα3AAα4(x, y, w, z) = Gα3Aα4A(x, y, w, z) = Gα3α4AA(x, y, w, z) = 0,

if (α3, α4) ∈ {a, r}.

55



3 Towards the Quantum Critical Point

3.2.3 Decoupling of the OTOC BSE: φ4 matrix model
example

The framework presented in the previous section is valid for any bosonic
theory and can be easily generalized to the fermionic case. We shall stay
with the bosonic theory, however. We will now show that the BSE that
determines the exact expression for GRrAa(p, q|k) (3.31) remains a closed
equation in the late time limit, decoupling from all the other Green’s
functions. We will specialize to the case of N × N Hermitian massive
scalars Φab, with a Φ4 interaction in (3 + 1) dimensions. The Lagrangian
we are considering is

L = tr

(
1

2
(∂Φ)2 − 1

2
(∇Φ)2 − m2

2
Φ2 − g2

4!
Φ4

)
. (3.37)

We are interested in the the following class of 4-point functions

Gα1α2α3α4(p, q|k) = i2nr−1〈TSK [φabα1
(p+ k)φbaα2

(−p)φa′b′α3
(−q − k)φb

′a′

α4
(q)]〉.

(3.38)

This correlation function satisfies the following Bethe-Salpeter equation

Gα1α2α3α4(p, q|k) = iGα1α3(p+ k)Gα2α4(−p)(2π)4δ4(p− q) (3.39)

− 1

2
Gα1β1(p+ k)Gα2γ1(−p)

∫
l

Kβ1γ1β4γ4(p, l|k)Gβ4γ4α3α4(l, q|k)

where the indices run on α = {a, r}. (3.39) represents a nested set of
equations which couples all the 24 correlation function. In order to compute
hydrodynamical transport coefficients, as shear viscosity η, only Grraa and
its complex conjugate are needed. In the hydrodynamical limit, k → 0
and k0 = ω → 0, this coupled system of BSE also considerably simplifies
and the relevant components, Grraa and G∗rraa, decouple [114, 168]. In
this limit, a crucial role is played by the pinching-poles approximation,
which we discuss in Appendix 3.D. Building on the results for a purely
scalar field [113, 169], for any values of N the BSE reads [44]

Gaarr(p, q|k) =Gar(p+ k)Gar(−p) (3.40)

×
[
i(2π)4δ4(p− q)−

∫
l

Rtransp(p, l)Gaarr(l, q|k)

]
where the kernel is

Rtransp(p, l) = −g
4

2

N2 + 5

6

1 + n(l0)

1 + n(p0)

∫
l

n(s0)(1+n(s0−l0+p0))ρ(s)ρ(s−l+p).
(3.41)
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3.2 Hydrodynamic transport and scrambling: formal similarities

V (x)

V (y)

Figure 3.5: In the computation of the OTOC, each vertex insertion (V ) can be inserted in
one of the 4 time branches. The insertions in the same fold is already taken into account
by using the dressed Green’s functions on the rails. The new contribution comes from the
insertions in the different folds.

The factor in front of the kernel is the two-to-two particle scattering

amplitude 1
2 |T2→2|2 = g4

2
N2+5

6 , which indeed reduce to the standard
|T2→2|2 = g4 for the single scalar case (N = 1). If we are interested in
computing the OTOC, the BSE (3.39) does not change form. We simply
take the indices in 2-fold contour α = {a, r, A,R} and we need to evaluate
the expression for the kernel Kβ1γ1β4γ4 .

Kα1β1α4β4
(p, l|k) =

N2 + 5

6
λα1α2α3α4

λβ1β2β3β4

∫
s

Gβ2α2
(s)Gβ3α3

(s−l+p),
(3.42)

with

λα1α2α3α4 = g2 1− (−1)na

4
. (3.43)

Each vertex can be inserted in only 2 of the 4 branches (either 1, 2 or 3, 4).
This means that the indices {α1, α2, α3, α4} need to be either {A,R} or
{a, r}, as for example shown in fig. 3.5.

Now let’s specialise the BSE to the commutator squared (3.31). The BSE
becomes

GRrAa(p, q|k) = iGRA(p+ k)Gra(−p)(2π)4δ4(p− q)+

− 1

2
GRα1(p+ k)Grβ1(−p)

∫
l

Kα1β1α4β4(p, l|k)Cα4β4Aa(l, q|k), (3.44)
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3 Towards the Quantum Critical Point

which simplifies with the use of the relations (3.36),

GRrAa(p, q|k) = iGRA(p+k)Gra(−p)(2π)4δ4(p−q)−1

2
GRα1(p+k)Grβ1(−p)

×
∫
l

(
Kα1β1Rr(p, l|k)CRrAa(l, q|k) +Kα1β1rR(p, l|k)CrRAa(l, q|k)

)
.

(3.45)

Focusing on first term in (3.45), the possible choices for the indices are
α1 ∈ {A,R, r} and β1 ∈ {a, r,R} since, expanding the product GRα1Grβ1 ,
few terms vanish due to the identities GRa = GrA = 0 . Moreover, from
the definition of the kernel (3.42), Kα1β1α4β4

= 0 if α1 and α4 or β1

and β4 belong to different time folds. This reduces the combinations to
α1 ∈ {A,R} and β1 ∈ {a, r}. By using KRrRr = KRaRr = KArRr = 0, we
can furthermore simplify the first term in (3.45)

GRα1(p+ k)Grβ1(−p)
∫
l

Kα1β1Rr(p, l|k)CRrAa(l, q|k) =

GRA(p+ k)Gra(−p)
∫
l

KAaRr(p, l|k)CRrAa(l, q|k). (3.46)

In a similar manner, it is possible to show that the second term in (3.45)
vanishes

GRα1(p+ k)Grβ1(−p)
∫
l

Kα1β1rR(p, l|k)CrRAa(l, q|k) =

GRr(p+ k)GrR(−p)
∫
l

KrRrR(p, l|k)CRrAa(l, q|k) = 0. (3.47)

This means that the BSE for the OTOC is the following

GRrAa(p, q|k) =GRA(p+ k)Gra(−p)
(
i(2π)4δ4(p− q) (3.48)

− 1

2

∫
l

KAaRr(p, l|k)CRrAa(l, q|k)

)
.

Thus, the kernel of the BSE is simply given by the product of Wightman
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3.3 Kinetic theory of many-body chaos

functions connecting the two time folds

KAaRr(p, l|k) =
1

4
g4N

2 + 5

6

∫
s

GRr(s)GRr(s− l + p)

= g4N
2 + 5

6
eβ(l0−p0)/2

∫
s

n(s0)(1 + n(s0 − l0 + p0))ρ(s)ρ(s− l + p).

(3.49)

The BSE of the commutator squared eventually reads

GRrAa(p, q|k) = GRA(p+ k)Gra(−p)
(
i(2π)4δ4(p− q) (3.50)

−
∫
l

ROTOC(p, l)CRrAa(l, q|k)

)

and

ROTOC(p, l) = g4N
2 + 5

12
eβ(l0−p0)/2 (3.51)

×
∫
s

n(s0)(1 + n(s0 − l0 + p0))ρ(s)ρ(s− l + p).

Our derivation of the GRrAa, which is summarized by equations (3.50)
and (3.51), is valid for any N , even N = 1. Similarly to the case of
transport, the BSE for the commutator squared decoupled, even though
a priori the RHS of the BSE couples all the 44 4-point functions. By
comparing (3.40) and (3.41) with (3.50) and (3.51), we can easily see that

ROTOC(p, l) =
sinh(βl0/2)

sinh(βp0/2)
Rtransp(p, l). (3.52)

We observe that the term eβ(l0−p0)/2 is remnant of the regularization,
as it comes from eσ(l0−p0), σ being the time width of the extended SK
path integral. For an analysis of the consequences of the regularization
dependence of the OTOC, we refer to chapter 5.

3.3 Kinetic theory of many-body chaos

In the previous section we have shown that, although a priori very different,
once the late time limit is taken the commutator squared and the retarded

59



3 Towards the Quantum Critical Point

Green’s function of the bilocal density field have many properties in
common. In this section we make this connection more precise, within the
quantum Boltzmann equation framework.

The BSE for the correlation function of the bilocal density operator
is the QFT analogue of the Boltzmann equation. It was already noted
in the literature that the collision integral entered the form of the BSE
[101, 110, 126] and that it can be used to compute transport coefficients
through Kubo relations. We reviewed this above. We now show that
the BSE not only contains the collisional integral, but by appropriately
retaining the first order in the external frequency, the BSE is nothing but
the Fourier transform of the Boltzmann equation. This result, which is
by itself of interest, acquires more appeal in light of the findings of the
previous sections, namely the connection between the BSE that defines the
OTOC and the BSE of the bilocal density operator. This thus allows us to
derive the kinetic equation for many-body chaos which reproduces exactly
the computation of the OTOC, and thus the Lyapunov spectrum. This
kinetic equation shows that the OTOC, so the scrambling of information
in a system, computes some gross (energy) exchange in contrast to net
number exchange for transport.

In the subsequent sections we shall show that, since the relation holds
also in the quantum critical limit of both bosonic and fermionic states, our
kinetic equation unequivocally implies that, even in this critical regime,
energy dynamics plays a crucial role in the information scrambling.

3.3.1 Quick review of the Boltzmann equation

The Boltzmann equation governs the time evolution of the single-particle
distribution function f(p, r, t). In terms of the change of particle number
density per unit of phase space: δn(t,p) = n(t,p)−n(Ep), the distribution
function can be expressed as

f(t,p) =
δn(t,p)

(1 + n(p))n(p)
(3.53)

where n(p) is the equilibrium Bose-Einstein distribution n(p) = 1/(eβE(p)−
1) which depends on the energy of the on-shell particle E(p). Here we
restrict the analysis to the spatially homogeneous case and consider all
quantities as space-averaged (e.g. n(t,p) =

∫
dxn(t,x,p)). Moreover we

focus only on the contribution given by the two-to-two scattering to the
dynamics of the phase-space. Higher order contributions require to go
beyond the uncrossed ladder approximation, and we will not consider
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3.3 Kinetic theory of many-body chaos

this case. The linearized Boltzmann equation is a homogeneous evolution
equation for f(t,p) (see e.g. [162–164]):2

∂tf(t,p) = −
∫

l

L(p, l)f(t, l), (3.54)

where the kernel of the collision integral

L(p, l) ≡ − [R∧(p, l)−R∨(p, l)] (3.55)

measures the difference between the rates of scattering into the phase-
space cell and scattering out the phase space cell. The term R∧ takes into
account the increases of the local density by scattering with a thermal
excitation and it reads

R∧(p, l) =
1

n(p)(1 + n(p))

∫
p2,p3,p4

dΣ(p,p2|p3,p4) (δ(p3 − l) + δ(p4 − l)) .

(3.56)
The factor R∨(p, l), instead, involves the loss of the density in the phase
cell occurred by the annihilation into the thermal bath or scattering from
the bath into the same cell

R∨(p, l) =
1

n(p)(1 + n(p))

∫
p2,p3,p4

dΣ(p,p2|p3,p4) (δ(p− l) + δ(p2 − l)) .

(3.57)
Here, the infinitesimal cross section is weighted with the phase space
contribution given by the equilibrium distribution function ((nB) for
initial states and (1 + nB) for final states)

dΣ(p,p2|p3,p4) =
1

2
|Tpp2→p3p4 |2 n(p)n(p2) (1 + n(p3))(1 + n(p4))

× (2π)4δ4(p+ p2 − p3 − p4) (3.58)

and |Tpp2→p3p4 |2 the two-to-two transition amplitude squared. Some of
the spectral properties of the Boltzmann equation can be studied by
introducing the following inner product

〈ψ′|ψ〉 =

∫
p

n(p)(1 + n(p))ψ′∗(p)ψ(p). (3.59)

2To make the formula easier to read, we indicate with
∫
p ≡

∫ d4p
(2π)4

and
∫
p ≡∫ d3p

(2π)3
1

2E(p)
for relativistic theories. For a non-relativistic system,

∫
p ≡

∫ d3p
(2π)3

.

Similarly,
∫
x ≡

∫
d4x and

∫
x ≡

∫
d3x.
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3 Towards the Quantum Critical Point

By using the symmetries of the cross-section

dΣ(p1,p2|p3,p4) = dΣ(p2,p1|p3,p4) = dΣ(p3,p4|p1,p2)

= dΣ(p1,p2|p4,p3) (3.60)

it is possible to show that the operator L(p, l) is not only Hermitian on
this inner product, but also positive semidefinite. This in turn means
that all its eigenvalues are real and ξn ≥ 0 and that the solutions to the
Boltzmann equation are purely relaxational:

f(p, t) =
∑
n

Ane
−ξntφn(p). (3.61)

In the previous equation we have formally indicated with
∑
n either a sum

over discrete values or an integral over a continuum (see e.g. [162–165]).
Another remarkable property of the spectrum is that every ξ = 0 eigenvalue
corresponds to a symmetry and hence an associated conserved quantity (a
collisional invariant). For the bosonic/fermionic field theory, the kinetic
equation thus takes the form

∂tf(p, t) = +
1

1± nB/F (p)

∫
l,p2,p4

(2π)4δ4(pos + p2
os − los − p4

os)|T |2
2Ep

× nB/F (Ep2)(1± nB/F (El))(1± nB/F (E4))f(l, t)

− 1/2

1± nB/F (p)

∫
l,p2,p4

(2π)4δ4(pos + los − p2
os − p4

os)|T |2
2Ep

× nB/F (El)(1± nB/F (Ep2))(1± nB/F (E4))f(l, t)

− 1/2

1± nB/F (p)

∫
l,p2,p4

(2π)4δ4(pos + los − p2
os − p4

os)|T |2
2Ep

× nB/F (El)(1± nB/F (Ep2))(1± nB/F (E4))f(p, t).
(3.62)

where we denoted with pos = (Ep,p) the on-shell momenta and

δ4(pos + p2
os − los − p4

os) = δ3(pos + p2
os − los − p4

os)

× δ(Ep + Ep2 − El − Ep4).

The first line corresponds to the gain term R∧(p, l),

R∧(p, l) = +
1

1± nB/F (p)

∫
p2,p4

(2π)4δ4(pos + p2
os − los − p4

os)|T |2
4EpEl

× nB/F (Ep2)(1± nB/F (El))(1± nB/F (E4)), (3.63)
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3.3 Kinetic theory of many-body chaos

while the second and third line correspond to the loss term R∨(p, l)

R∨(p, l) =
1/2

1± nB/F (p)

∫
p2,p4

(2π)4δ4(pos + los − p2
os − p4

os)|T |2
4EpEl

× nB/F (El)(1± nB/F (Ep2))(1± nB/F (E4))

+
1/2

1± nB/F (p)

∫
p2,p4

(2π)4δ4(pos + los − p2
os − p4

os)|T |2
4EpEl

× nB/F (El)(1± nB/F (Ep2))(1± nB/F (E4)). (3.64)

Moreover, we will see that the second term in R∨ is proportional the
imaginary part of the self energy 2 Γp.

3.3.2 From the BSE to the quantum Boltzmann
equation

We now show how the quantum Boltzmann equation (3.62) can be derived
from the BSE. For the sake of clarity, we first focus on the theory of
N × N Hermitian matrix scalars. We then prove this results for the
case of the bosonic O(N) vector model (section 3.4) and the Gross-Neveu
model (section 3.5). We start with the BSE for the 4-point Green’s
function G∗aarr(p+ k, p) which, up to some thermal factor, coincides with
GρρR (p + k, p) as stated in (3.17). In the long wavelength and late time
limit, k = (ω,0) and ω → 0, this correlation function satisfies the following
BSE [44, 113]

G∗aarr(p+ k, p) = GR(p+ k)GA(p)

[
iN2 −

∫
l

Rtransp(p, l)G∗aarr(l + k, l)

]
,

(3.65)

where GR/A are respectively the retarded/advanced Green’s function and
Rtransp is the kernel of the BSE. Because of the long time limit, the
product GR(p+ k)GA(p) suffers of the pinching-pole singularity, and can
be approximated as follows 3

GR(p+ k)GA(p) =
π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp
. (3.66)

The BSE has thus the form

G∗aarr(p+ k, p) =
π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp

[
iN2 −

∫
l

Rtransp(p, l)G∗aarr(l + k, l)

]
.

(3.67)

3For a discussion about the pinching-pole singularity, see Appendix 3.D.
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2

⃗p1

⃗p2

⃗p

⃗l

⃗p ⃗p1

⃗p2⃗l

⃗p

⃗l

⃗p1

⃗p2

d
dt fBoltz(t, ⃗p ) =

Figure 3.6: Pictorial representation of the linearised Boltzmann equation. The blue halo
indicates the out of equilibrium distribution function, while the red the equilibrium distri-
bution function.

In order to find the solution, we can pose an ansatz. We realize that
the choice can be narrowed down to two different classes. They are

G∗aarr(p+ k, p) = G1(ω,p)δ(p0 − Ep)±G2(ω,p)δ(p0 + Ep). (3.68)

Let’s focus on the ansatz with plus,

G∗aarr(p+ k, p) = G1(ω,p)δ(p0 − Ep) +G2(ω,p)δ(p0 + Ep). (3.69)

We now show that this choice of ansatz for G∗aarr is correct, since it projects
the solution into the physical subspace of relaxing modes described by the
quantum Boltzmann equation. Substituting (3.69) into the BSE, we arrive
to the following system of equations

(−iω + 2Γp)G1(p, ω) =
π

2E2
p

iN2 −
∫

dl

(2π)3

1

4EpEl
(3.70)

(Rtransp(p, Ep|l, El)G1(l, ω) +Rtransp(p, Ep|l,−El)G2(l, ω)),

(−iω + 2Γp)G2(p, ω) =
π

2E2
p

iN2 −
∫

dl

(2π)3

1

4EpEl
(3.71)

(Rtransp(p,−Ep|l, El)G1(l, ω) +Rtransp(p,−Ep|l,−El)G2(l, ω)).

By using the symmetries of the kernel,

Rtransp(p,−Ep|l, El) = Rtransp(p, Ep|l,−El), (3.72)

we can define the variables G±(p, ω) = G1(p, ω)±G2(p, ω) which satisfy
the following equations

(−iω + 2Γp)G±(p, ω) +

∫
dl

(2π)3

1

4EpEl
(3.73)

(Rtransp(p, Ep|l, El) +Rtransp(p, Ep|l,−El))G
±(l, ω) =

π

2E2
p

iN2(1± 1).
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3.3 Kinetic theory of many-body chaos

The physical correlation function G∗aarr corresponds to the solution G+.
Indeed, as we show in Appendix 3.G for the case of N × N hermitian
matrix field (and in the following sections for the O(N) vector model and
the GN model), the terms appearing in the on-shell BSE kernel of G+ can
be identified with the gain and loss terms of the collision integral of the
Boltzmann equation

R∧(p, l) =
1

4EpEl
Rtransp(p, Ep|l, El), (3.74)

R∨(p, l) =
1

4EpEl
Rtransp(p, Ep|l,−El) + 2(2π)3δ3(p− l)Γp. (3.75)

Thus, by comparing (3.74) and (3.75) to (3.73), G+ can be formally solved
as

G+(p, ω) =

[
1

−iω + L(p, l)

]
π

E2
p

iN2, (3.76)

the operator L(p, l) being the collision integral of the Boltzmann equation
(3.55)

L(p, l) = −(R∧(p, l)−R∨(p, l)), (3.77)

as depicted in fig. 3.6. This equation, in the strict ω = 0 limit, equals the
equation used in [101] to find the shear viscosity. Its spectrum is negative
definite and gives the relaxation times of the theory. This proves our
statement that the quantum Boltzmann equation can be derived from the
BSE of the retarded Green’s function of the bilocal density operator GρρR .
Moreover, from (3.76), we can deduce that the poles/branch cuts of GρρR
corresponds to the relaxation times/branch cuts of the theory we can be
easily addressed in this framework.

3.3.3 The Quantum Boltzmann equation for
many-body chaos

In the previous section we have shown that, starting from the BSE for GρρR ,
the solution is found by an appropriate choice of ansatz (plus in (3.68))
and it reproduces the quantum Boltzmann equation. We now want to
study the physics of the other solution of the same BSE, corresponding to
the minus in the ansatz (3.68). We show that the latter exactly reproduces
the commutator squared correlation function.
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3 Towards the Quantum Critical Point

d
dt fChaos(t, ⃗p ) = 2

⃗p1

⃗p2

⃗p

⃗l

⃗p ⃗p1

⃗p2⃗l

⃗p

⃗l

⃗p1

⃗p2

Figure 3.7: Pictorial representation of kinetic equation for the OTOC. The blue halo indi-
cates the out of equilibrium distribution function, while the red the equilibrium distribution
function.

By choosing a minus in (3.68), we obtain the following system of equation

(−iω + 2Γp)G1(p, ω) =
π

2E2
p

iN2 −
∫

dl

(2π)3

1

4EpEl
(3.78)

(Rtransp(p, Ep|l, El)G1(l, ω)−Rtransp(p, Ep|l,−El)G2(l, ω)),

(−iω + 2Γp)G2(p, ω) = − π

2E2
p

iN2 −
∫

dl

(2π)3

1

4EpEl
(3.79)

(−Rtransp(p,−Ep|l, El)G1(l, ω) +Rtransp(p,−Ep|l,−El)G2(l, ω)).

As before, we can define G±(p, ω) = G1(p, ω)±G2(p, ω) which satisfy

(−iω + 2Γp)G±(p, ω) +

∫
dl

(2π)3

1

4EpEl
(3.80)

× (Rtransp(p, Ep|l, El)−Rtransp(p, Ep|l,−El))G
±(l, ω) =

π

2E2
p

iN2(1∓ 1).

Since the commutator squared has an inhomogeneous term, the physical
out-of-time correlation function f(t,p) corresponds to the solution G−. It
can be formally written as

G−(p, ω) =

[
1

−iω + L′(p, l)

]
π

E2
p

iN2. (3.81)

In order to find the Lyapunov exponent(s), one usually study the poles of
G−. The operator L′(p, l) is

L′(p, l) =

∫
dl

(2π)3

1

4EpEl
(3.82)

(Rtransp(p, Ep|l, El)−Rtransp(p, Ep|l,−El))f(l)− 2Γp f(p).
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3.4 Bosonic O(N) vector model at the quantum critical regime

By using the same results of the previous section, (3.74) and (3.75), we can
now give a clear interpretation to the physics captured by the Lyapunov
exponent, which are the eigenvalue of the linearized collision integral L′,

L′(p, l) = −(R∧(p, l) +R∨(p, l)− 4(2π)3δ3(p− l)Γp), (3.83)

depicted in fig. 3.7. Compared to the previous result for transport (3.77),
here the kernel contains a sign difference which encodes the microscopic
dynamics of scrambling, i.e. the OTOC counts the gross number of collision
compared to the the net energy in the collision tracked by the standard
quantum Boltzmann equation.

In order to understand the generality of our results, in the next sections
we will focus on systems close to a quantum critical point, where the effects
of entanglement and long range interaction becomes more important.

3.4 Bosonic O(N) vector model at the
quantum critical regime

In this section we provide further detailed evidences in support of our
findings. We will show that our results even extend into the quantum
critical regime. We focus on vector models with N components real fields
φa in (2 + 1) dimensions. Provided with a O(N) symmetry, these theories
have a quantum phase transition (QPT) at zero temperature [61], between
the disordered phase with vanishing vacuum expectation value , 〈φa〉 = 0,
and the order symmetry breaking phase 〈φa〉 6= 0. They capture the
relevant long wavelength degrees of freedom of many physical systems,
such as the superfluid to bosonic Mott insulator transition [177] (realised
for N = 2) and the paramagnet to Heisenberg antiferromagnet (N = 3)
[17, 178, 179]. Although on both sides of the QCP the system is described
by quasiparticle excitations, the finite temperature regime directly above
the QPT diagram, often referred to as quantum critical regime, does not
have such excitations. This observation might lead the reader to think
that the kinetic theory developed in the previous section does not apply,
since the pillar of kinetic theory is indeed the existence of quasiparticles.

This objection is too quick. Firstly, we stress that our results concerns
hydrodynamical correlation functions. The kinetic theory limit can be
considered as providing a microscopic picture of the physics underlying the
curious relation between hydrodynamical transport correlation functions
and out-of-time correlation functions, but this connection needs not to
be limited to this case. Secondly and more concretely, in their seminal
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3 Towards the Quantum Critical Point

paper [124], Damle and Sachdev showed that one can use kinetic theory
approaches in the quantum critical regime, despite the fact that there are
no quasiparticle excitations. If we are interested in the dc conductivities,
ω = 0, at the quantum critical point, where by definition T = 0, there are
two opposite limit that could be considered: the T = 0, ω → 0 coherent and
collisionless regime, and the ω = 0, T → 0 incoherent, collision-dominated
and hydrodynamic regime. They showed that the coherent regime does not
yield the correct response, since the process considered are not relevant
for the physical properties of the QCP. Instead, it is the hydrodynamic
collision-dominated regime that provides the correct description of the dc
conductivities and of transport. Moreover, such properties can be obtained
by means of the Boltzmann equation, in a regime with quasiparticles and
by continuity must hold in the non quasiparticle regime as well. As it is a
collision-dominated regime, the collision integral plays the major role.

Now we can turn to our findings. In a recent paper [136], Chowdhury
and Swingle studied scrambling in these theories, focusing particularly
on the region of the phase diagram above the QCP. We will now review
some of their findings and explain how they fit in the framework we have
introduced in this chapter and [44]. The Lagrangian of the theory is

L =
1

2
(∂φa)2 − v

2N

(
φ2
a −

N

g

)2

, (3.84)

where v > 0 is the self interaction coupling strength and and g > 0. In
the strong coupling limit, corresponding to v →∞, the 2+1 dimensional
theory is a conformal QFT. By introducing an Hubbard-Stratonovich field,
λ(t,x), to decouple the quartic term , the action becomes

L =
1

2
(∂φa)2 +

λ(t,x)

2
√
N

(
φ2
a −

N

g

)
+
λ(t,x)2

8v
. (3.85)

In order to probe the onset of chaos, the authors studied the squared
commutator

C(t,x) = − 1

N2

∑
a,b

Tr
[
ρ1/2[φa(t,x), φb]ρ

1/2[φa(t,x), φb]
]
. (3.86)

The retarded and Wightman correlation functions involving the φ fields
are

GR(t,x)δab = −iθ(t)〈[φa(t,x), φb]〉 = −iθ(t)Tr (ρ[φa(t,x), φb]) ,

G
β/2
W (t,x)δab = Tr

(
ρ1/2φa(t,x)ρ1/2φb(0)

)
,

GW (t,x)δab = Tr (ρφa(t,x)φb(0)) .
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3.4 Bosonic O(N) vector model at the quantum critical regime

The spectral function of the φ field, as usual related to the imaginary part
of the retarded correlator, in the large N limit is

ρ(ω,k) = −2Im[GR(ω,k)] =
π

Ek
(δ(ω − Ek)− δ(ω + Ek)), (3.87)

with Ek)2 = k2 + µ2, µ being the thermal mass. The Wightman function
is also intimately related to the spectral function, as follows

GW (ω,k) =
ρ(ω,k)

2 sinh(βω/2)
. (3.88)

The Hubbard-Stratonovich field Green’s functions in Euclidean time, which
we will refer to with a λ subscript, in momentum space reads

Gλ(iωn,k) =
1

−1/4v −Π(iωn,k)
. (3.89)

and Π(iωn,k) is the one loop φi bubble in Euclidean time. The retarded
Green’s function can be obtained by analytic continuation of the Euclidean
one, GR,λ(ω,k) = −GE,λ(iωn → ω + iε,k). ΠR(ω,k) is obtained by the
standard analytic continuation

ΠR(ω,k) = Π(iωn → ω + i0+,k), (3.90)

with

Π(iωn,k) =
1

2

∑∫
νm,k

G(iωn + iνm)G(iωn). (3.91)

The Wightman function is

G
β/2
W,λ(ω,k) =

ρλ(ω,k)

2 sinh(βω/2)
= e−

βω
2 G21

W,λ(ω,k), (3.92)

where
G21
W,λ(ω,k) = (1 + n(ω))ρλ(ω,k). (3.93)

To study the quantum critical regime, we will have to take the strong
coupling limit, v →∞, in which the expression for the retarded Green’s
function of the Hubbard-Stratonovich field simplifies

GR,λ(ω,k) =
1

ΠR(ω,k)
, (3.94)

and the spectral density of the Hubbard-Stratonovich field can be approxi-
mated as

ρλ(ω,k) = −2 Im

[
1

ΠR(ω,k)

]
=

2 Im [ΠR]

Im [ΠR]
2

+ Re [ΠR]
2 . (3.95)
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3 Towards the Quantum Critical Point

a) b)

Figure 3.8: The contributions to the kernel of the OTOC. a) corresponds to GW,λ while b)
corresponds to Geff in (3.96).

The derivation of the Bethe-Salpeter equation for C (3.86) is given in
[136] and the result is

C(ω, p) = GR(k − p)GR(p)

[
1 +

∫
l

ROTOC(p, l)C(ω, l)

]
, (3.96)

whose kernel is given by the Wightman propagator of the auxiliary field
and by

ROTOC(p, l) =
1

N
(G

β/2
W,λ(l − p) +Geff (l, p)), (3.97)

Geff (l, p) =

∫
l′
G
β/2
W (l′ − p)Gβ/2W (l − l′)GλA(l′)GλR(l′). (3.98)

Similarly to the matrix model (3.66), in the low frequency limit k = (ω,0)
and ω → 0, the product GR(k− p)GR(p) can be approximated with [136]

GR(k − p)GR(p) ≈ω→0
π

Ep

δ(p2
0 − E2

p)

(−iω + 2Γp)
, (3.99)

so the BSE (3.96) reads

(−iω+2Γp)C(p|ω) =
π

Ep
δ(p2

0−E2
p)

∫
d3l

(2π)3
ROTOC(p, l)C(l|ω). (3.100)

By evaluating the delta function, (3.100) becomes

(−iω + 2Γp)C(ω,p) (3.101)

−
∫

l

1

4EpEl
(ROTOC(Ep,p|El, l) +ROTOC(Ep,p| − El, l)))C(ω, l) =

π

2E2
p
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3.4 Bosonic O(N) vector model at the quantum critical regime

3.4.1 Transport in the O(N) vector model with the
2PI formalism

By computing the transport in this model we will show that , also in this
case, there exists a mapping between the kernels of the OTOC and the
kernels of transport,

ROTOC(p, l) =
sinh(βl0/2)

sinh(βp0/2)
Rtransp(p, l), (3.102)

and that the interpretation of scrambling in terms of the kinetic theory
equation depicted in fig. 3.7 holds also in the region above the quantum
critical point.

Besides the methods we have already mentioned, i.e. the use of the
finite temperature optical theorem by Jeon, and the more compact use of
Schwinger-Keldysh formalism by Heinz and Wang, there is another way to
approach the problem and it is by means of the two-particle irreducible
2PI effective action. The advantage of using this effective action is that,
at the first non trivial truncation in the large N , or in weak coupling, it
automatically provides the proper resummation of the relevant diagrams
[117, 134, 180]. Moreover it can be proved that, in presence of gauge fields,
the result obtained does not depend on the gauge fixing term and respects
the Ward identities [116, 181]. In the present chapter we will focus only
on a self-interacting spin-0 and spin-1/2 fields, but this formalism allows
quite easily a generalization to gauge theories. We will use this method
here.

In this section we will closely follow [134], though with the Lagrangian
(3.84) in (2 + 1) dimensions. The effective action in the bosonic case can
be parametrized as follows [182]

Γ[G] =
i

2
Tr lnG−1 +

i

2
TrG−1

0 (G−G0) + Γ2[G], (3.103)

where the 2PI part Γ2[G] can be expanded in 1/N . For the model consid-
ered, (3.84), the expansion is [182]

Γ2[G] = Γ2[G]LO + Γ2[G]NLO + ... (3.104)

where the leading and the next to the leading order terms are depicted in
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3 Towards the Quantum Critical Point

a) b)a)

Figure 3.9: The contributions to the 2PI effective action in the 1/N expansion. a) is the
leading order contribution in 1/N and b) the next-to-the leading order.

fig. 3.9 and corresponds to the terms

Γ2[G]LO = − v

2N

∫
x

Gmm(x, x)Gnn(x, x) (3.105)

Γ2[G]NLO =
i

2
Tr

[
−4iv

N
Π−

(
4iv

N
Π

)2

−
(

4iv

N
Π

)3

− ...
]

=
i

2
Tr ln B.

(3.106)

In (3.106) the bubble diagram Π(x, y), depicted in 3.10, is

Π(x, y) =
1

2
Gab(x, y)Gab(x, y), (3.107)

and we defined the auxiliary bilocal field B(x, y) as follows

B(x, y) = δC(x− y) +
4iv

N
Π(x, y). (3.108)

The inverse of B(x, y) has a very intuitive physical meaning: by defining

D(x, y) = −2iv

N
B(x, y)−1 (3.109)

and using the identity
∫
y

B(x, y)B(y, z)−1 = δC(x− z), we readily obtain
that the correlator D,which we will now refer to as auxiliary field, satisfies
the following equation, depicted in fig. 3.11,

D(x, y) =
4iv

N

(
δ(x− y)−

∫
z

Π(x, z)D(z, y)

)
. (3.110)

From the effective action (3.104) and the corresponding large N expansion
(3.105), we can obtain the integral equation for the truncated 4-point
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x y

Figure 3.10: The bubble diagram Π(x, y) contributions to the 2PI effective action in the
1/N expansion.

function

Γ
(4)
ab;cd(x, y;x′, y′) = Λab;cd(x, y;x′, y′)

+
1

2

∫
ww′zz′

Λab;ef (x, y;w, z)Gee′(w,w
′)Gff ′(z, z

′)Γ
(4)
e′f ′;cd(w

′, z′;x′, y′)

(3.111)

The previous expression is quite general and can be used both in Imagi-
nary Time Formalism (ITF) and in the Closed Time Path (CTP) formalism,
without any restriction on the number of time folds. So, by properly adding
the indices that parametrize the SK contour, the previous equation gives
the BSE for any time-ordered or out-of-time ordered correlation function in
the large N expansion for a bosonic theory. By imposing the extremization
of the effective action (3.173), we obtain the Schwinger-Dyson equation

G−1
ab (x, y) = G−1

0,ab(x, y)− Σab(x, y), (3.112)

with the free propagator being

G−1
0,ab(x, y) = −δab(�x + 4v2/g2)δ4(x− y). (3.113)

The self-energies are defined as functional derivatives of the 2PI effective
action (3.104) with respect to the bilocal field Gab

Σab(x, y) = 2i
δΓ2[G]

δGab(x, y)
, (3.114)

and the kernels of the (3.111) can be obtained by a further functional
derivative with respect to G

Λab;cd(x, y;x′, y′) =
δΣab(x, y)

δGcd(x′, y′)
. (3.115)
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Figure 3.11: The diagrammatic recursive expression of the propagator D(x, y) (3.110).

Up to this point, the expressions are still in real time and the BSE
for the amputated 4-point function (3.111) is very lengthy and contains
several terms. Nevertheless, since we are interested in the late time physics,
most of these terms are negligible. This statement is the equivalent to
the pinching pole approximation. In order to use it, it is convenient to
move into momentum space and use the Matsubara formalisms, for which
an analogue of the pinching pole approximation was derived in [115]. In
momentum space, the correlation function is

G(iωn,p) =
1

ω2
n + p2 + 4 v

2

g2 + Σ(iωn,p)
. (3.116)

The self energy contributions are computed using (3.114) and read

ΣLO(iωn,p) = 2v
∑∫
νm,k

G(iνm,k) (3.117)

ΣNLO(iωn,p) = −
∑∫
νm,k

G(iωn + iνm,p + k)D(iνn,k). (3.118)

The correlation function D is obtained by inverting the (3.110), choosing
the Matsubara contour and going into momentum space

D(iωn,p) =
1

−N
4v −Π(iωn,p)

. (3.119)

Finally, the bubble diagram is

Π(iωn,p) =
N

2

∑∫
νm,k

G(iωn + iνm,p + k)G(iνm,k). (3.120)

From now on we will use the following convention: with capital case
momenta we indicate momenta in imaginary time formalism, P = (iωn,p),
where ωn = 2πnT is the Matsubara frequency. With lower case, instead, we
indicate momenta after the analytic continuation to Lorentzian signature.
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3.4 Bosonic O(N) vector model at the quantum critical regime

The amputated 4-point function is related to 3-point vertex function by
the following identity

Γab(P +Q,P ) = 2δab +
∑
n′

∫
l

G(L+Q)G(L)Γ
(4)
cc,ab(L,P ;Q) (3.121)

By inserting the BSE for the Γ
(4)
cc,ab into the previous expression, we obtain

a BSE for the 3-point vertex

Γab(P+Q,P ) = 2δab+
1

2

∑
n′

∫
l

G(L+Q)Γcd(L+Q,L)G(L)Λcd;ab. (3.122)

Parametrizing the vertex as

Γab(P +Q,P ) = 2δabΓ(P +Q,P ) (3.123)

we can thus derive the BSE for the diagonal part Γ(P +Q,P ) by simply
substituting the previous expression in (3.122) and contracting with δab

Γ(P +Q,P ) = 1 +
1

2N

∑
n′

∫
l

G(L+Q)Γ(L+Q,L)G(L)Λcc;aa(L,P ;Q).

(3.124)
By means of (3.115), the leading and next-to-leading order contribution

to the kernel of the integral equation are

Λcd;ab(L,P ;Q) =− 4v

N
δabδcd + (δacδbd + δadδbc)D(L− P )

+ 2δabδcdD(R)D(R+Q)G(L−R)G(R− P ),

whose diagonal parts, depicted in fig. 3.12, are

ΛLOcc;aa(L,P ;Q) = −4vN,

ΛNLOcc;aa (L,P ;Q) = 2ND(L− P ) + 2N2D(R)D(R+Q)G(L−R)G(R− P ).

First, in order to compare with the results of [136], we observe that it is
convenient to take the N dependence out of D in (3.119) and of the bubble
loop in (3.120), D → D/N and Π → NΠ. The correlation functions
of the auxiliary field D are identical to the correlation functions of the
Hubbard-Stratonovich field λ of the Lagrangian (3.85), as can be see by
comparing (3.89) and (3.91) with (3.119) and (3.120)

D(iωn,p) = Gλ(iωn,p). (3.125)
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a) b) c)

Figure 3.12: The contributions to the kernel of the 4-point function in the 2PI formalism.
a) corresponds to ΛLOcc;aa(L, P ;Q), while b) and c) to the two terms in ΛNLOcc;aa(L, P ;Q). As

we will show, a) will be subleading with respect to b) and c) after the analytic continuation
to real frequencies.

Moreover, we include the factor of 1/2 in front of the kernels (3.124) and
we have

ΛLO(L,P ;Q) ≡ 1

2
ΛLOcc;aa(L,P ;Q) =− 2vN,

ΛNLO(L,P ;Q) ≡ 1

2
ΛNLOcc;aa (L,P ;Q) =Gλ(L− P )

+Gλ(R)Gλ(R+Q)G(L−R)G(R− P ).

The BSE for the 3-point vertex has thus the form

Γ(P+Q,P ) = 1+
1

N

∑
n′

∫
l

G(L+Q)Γ(L+Q,L)G(L)
[
ΛLO + ΛNLO(L,P ;Q)

]
.

(3.126)
Now, we multiply the bare vertex Γ with the propagators in the loop, as
depicted in fig 3.13, which in Euclidean is∫

p

G̃(p+ q, p) =
∑∫
pn,p

G̃(ipn + iνn′ , ipn)|iνn′→q0+i0+

=
∑∫
pn,p

G(ipn + iνn′)Γ(ipn + iνn′ , ipn)G(ipn)|iνn′→q0+i0+ . (3.127)

This function satisfies the following BSE, which can be obtained from
(3.126),

G̃(P +Q,P ) =G(P +Q)G(P ) (3.128)[
1 +

1

N

∑
n′

∫
l

G̃(L+Q,L)
[
ΛLO + ΛNLO(L,P ;Q)

]]
.
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P +Q

P

Figure 3.13: Diagrammatic representation of the full correlator G̃ as a function of the
vertex 3-point function Γ(P +Q,P ).

This integral equation is still expressed in imaginary time and it has to be
analytically continued after performing the Matsubara sum. Following the
techniques developped in [115, 183], and described in Appendix 3.E, we
obtain the following result

G̃(p+ q, p) =GR(p+ q)GA(p) (3.129)[
1 +

1

N

∫
l

(n(l0 − p0)− n(l0))ΛNLO(l, p)G̃(l + q, l)

]
,

where

ΛNLO(l, p) = ρλ(l − p) +

∫
s

(n(p0 − s0)− n(l0 − s0))ρ(p− s)ρ(l − s)

×GR,λ(s)GA,λ(s). (3.130)

A closer look to the (3.129) shows that the leading order rung, ΛLOcc;aa ,

does not contribute to the BSE in real time. This is because the ΛLOcc;aa
does not contain any pinching-pole singularity and it is subleading with
respect to ΛNLOcc;aa . As shown in appendix 3.B, massaging the product

(n(l0 − p0)− n(l0))ΛNLO(l, p) gives a kernel

(n(l0 − p0)− n(l0))ΛNLO(l, p) =
nB(l0)

nB(p0)
(3.131)

×
[
G21
λ (l − p) +

∫
s

G12(p− s)G21(l − s)GR,λ(s)GA,λ(s)

]
.

Thus the BSE for transport is

G̃(p+ q, p) = GR(p+ q)GA(p)

[
1 +

∫
l

Rtransp(l, p)G̃(l + q, l)

]
, (3.132)
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with

Rtransp(p, l) =
1

N

nB(l0)

nB(p0)
(3.133)

×
[
G21
λ (l − p) +

∫
s

G12(p− s)G21(l − s)GR,λ(s)GA,λ(s)

]
.

Now we want to compare it with the kernel of the OTOC (3.97). By
using (3.92) and

Gβ/2(l − p) = e−β(l0−p0)/2G21
W (l − p) = eβ(l0−p0)/2G12

W (l − p), (3.134)

we obtain that the kernel Rtransp and the kernel ROTOC(l, p) are related
by the simple relation

ROTOC(l, p) =
sinh(βl0/2)

sinh(βp0/2)
Rtransp(l, p), (3.135)

which proves our claim. Substituting the previous relation into the on-shell
BSE for chaos, we obtain the following equation

(−iω + 2Γp)C(ω,p)−
∫

l

sinh(βEl/2)

sinh(βEl/2)

1

4EpEl
(3.136)

× (Rtransp(Ep,p|El, l)−Rtransp(Ep,p| − El, l)))C(ω, l) =
π

2E2
p

Similarly to section 3.3.2, we can find the following solution for the BSE
for G̃(p+ q, p) (3.132)

(−iω + 2Γp)G̃(ω,p)−
∫

l

1

4EpEl
(3.137)

× (Rtransp(Ep,p|El, l) +Rtransp(Ep,p| − El, l)))G̃(ω, l) =
π

2E2
p

.

In the next section we explore the kinetic theory limit of both BSEs.

3.4.2 Kinetic theory analysis

In this section we show how the different the sign in (3.136) and (3.137)
corresponds to a different counting in the collision integral of the kinetic
equation, as depicted respectively in fig. 3.7 and fig. 3.6. We write the
kernel (3.130) as follows

ΛNLO(r, p) = ρλ(r−p)+
∫
l

(n(l0)−n(r0−p0+l0))ρ(l)ρ(r−p+l)|Gλ,R(p−l)|2.
(3.138)
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3.4 Bosonic O(N) vector model at the quantum critical regime

The imaginary part of the bosonic self-energy is given by (3.120) after
performing the Matsubara sum and taking the analytical continuation to
obtain the retarded bubble

ImΠR(r − p) = −1

4

∫
L

(n(l0)− n(r0 − p0 + l0))ρ(l)ρ(r − p+ l). (3.139)

Since
ρλ(p) = −2 ImΠR,λ(p)|Gλ,R(p)|2, (3.140)

by inserting
∫
L′
δ3(r + l − l′ − p), (3.138) becomes

ΛNLO(r, p) =
1

2

∫
l,l′

(n(l0)− n(l′0))ρ(l)ρ(l′)[|Gλ,R(r − p)|2 + |Gλ,R(r − l′)|2

+ |Gλ,R(r + l)|2].
(3.141)

We recognize the term inside parenthesis as the (off-shell) scattering
amplitude for the process (r, l)→ (p, l′), as depicted in fig. 3.14

|T(r,l)→(p,l′)|2 =
1

N
(|Gλ,R(r−p)|2+|Gλ,R(r−l′)|2+|Gλ,R(r+l)|2), (3.142)

and we can rewrite the kernel as

ΛNLO(r, p) =
N

2

∫
l,l′

(n(l0)− n(l′0))ρ(l)ρ(l′)|T(r,l)→(p,l′)|2. (3.143)

Now we express the kernel of the on-shell BSE for chaos (3.136) and
transport (3.137) gain and loss processes. Thus we focus on

1

4EpEl
(Rtransp(Ep,p|El, l)±Rtransp(Ep,p| − El, l))). (3.144)

Using the definition of Rtransp (3.133) we obtain∫
r,l,l′

1

2Ep
(n(Er − Ep)− n(Er))(n(El)− n(El′))δ(Er + El − Ep − El′)

× 1

N
(|Gλ,R(Er − Ep)|2 + |Gλ,R(Er − El′)|2 + |Gλ,R(Er + El)|2)

∓ 1

2

∫
r,l,l′

1

2Ep
(n(Er + Ep)− n(Er))(n(El)− n(−El′))δ(El + El′ − Ep − Er)

× 1

N
(|Gλ,R(Er + Ep)|2 + |Gλ,R(Er − El′)|2 + |Gλ,R(Er − El)|2).

(3.145)
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Figure 3.14: The contributions to the kernel of the kinetic equation of the creation of a
particle with momentum p, first line in eq. (3.147).

By using the identities satisfied by the Bose-Einstein distribution function
and listed in Appendix 3.B, we can rewrite the previous expression as
follows

1

1 + n(Ep)

∫
r,l,l′

1

2Ep
n(El′)(1 + n(Er))(1 + n(El))δ(Er + El − Ep − El′)

× 1

N
(|Gλ,R(Er − Ep)|2 + |Gλ,R(Er − El′)|2 + |Gλ,R(Er + El)|2)+

∓ 1/2

1 + n(Ep)

∫
r,l,l′

1

2Ep
n(Er)(1 + n(El))(1 + n(El′))δ(El + El′ − Ep − Er)

× 1

N
(|Gλ,R(Er − El)|2 + |Gλ,R(Er − El′)|2 + |Gλ,R(Er + Ep)|2).

(3.146)

By comparison with (3.62), it is clear that the first two lines of (3.146)
correspond to Rgain, while the third and fourth lines of (3.146) are identical
to the second line of (3.62).

1

1 + n(Ep)

∫
r,l,l′

1

2Ep
n(El′)(1 + n(Er))(1 + n(El))δ(Er + El − Ep − El′)

|T(r,l)→(p,l′)|2

± 1/2

1 + n(Ep)

∫
r,l,l′

1

2Ep
n(Er)(1 + n(El))(1 + n(El′))δ(El + El′ − Ep − Er)

|T(r,p)→(l,l′)|2. (3.147)

In order to complete the analysis of the BSE, we need to understand
the 2Γp contribution in (3.136) and (3.137). To do so, since Γp =
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3.4 Bosonic O(N) vector model at the quantum critical regime
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Figure 3.15: The contributions to the kernel of the kinetic equation of the annihilation of
a particle with momentum p, last line in eq. (3.147).

−ImΣNLO(Ep,p)/Ep, we start by inspecting ImΣNLO(Ep,p)

Im ΣNLO(P ) =
1

2

∫
R

ρ(R)ρλ(R− P )(n(r0)− n(r0 − p0)). (3.148)

By means of (3.140), expanding Im ΠR with (3.139) and retaining only
the kinematically allowed terms, we arrive to

ImΣNLO(Ep,p) =
1

4

∫
l,l′,r

(3.149)[
(n(El)− n(El′))(n(Er)− n(Er − Ep))|DR(Er − Ep, r− p)|2

× δ(Er + El − Ep − El′)

+ (n(El)− n(−El′))(n(−Er)− n(−Er − Ep))|DR(Er + Ep, r + p)|2
× δ(Er + Ep − El − El′)

+ (n(−El)− n(−El′))(n(Er)− n(Er − Ep))|DR(Er − Ep, r− p)|2

× δ(Er + El′ − Ep − El)

]
.

We can now use the properties of the Bose-Einstein distribution function
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3 Towards the Quantum Critical Point

listed in Appendix 3.B. Thus,

ImΣNLO(Ep,p) =
1

4

∫
l,l′,r

(3.150)[
− 1

1 + n(Ep)
n(El′)(1 + n(Er))(1 + n(El))|DR(Er − Ep, r− p)|2

× δ(Er + El − Ep − El′)

− 1

1 + n(Ep)
n(Er)(1 + n(El))(1 + n(El′))|DR(Er + Ep, r + p)|2

× δ(Er + Ep − El − El′)

− 1

1 + n(Ep)
n(El)(1 + n(Er))(1 + n(El′))|DR(Er − Ep, r− p)|2

× δ(Er + El′ − Ep − El)

]
.

Finally, by properly relabelling the integration variables, we recognize the
expression

ImΣNLO(Ep,p) = (3.151)

− 1/4

1 + n(Ep)

∫
r,l,l′

n(Er)(1 + n(El))(1 + n(El′))δ(El + El′ − Ep − Er)

× (|DR(Er − El)|2 + |DR(Er − El′)|2 + |DR(Er + Ep)|2).

The thermal width is

2Γp =
1/2

1 + n(Ep)

∫
r,l,l′

1

2Ep
n(Er)(1 + n(El))(1 + n(El′)) (3.152)

δ(El + El′ − Ep − Er)× (|DR(Er − El)|2 + |DR(Er − El′)|2+

|DR(Er + Ep)|2).

Thus, also for the bosonic O(N) vector model we have identified the gain
and loss contribution in the kernel of the BSE

R∧(p, l) =
1

4EpEl
Rtransp(p, Ep|l, El), (3.153)

R∨(p, l) = − 1

4EpEl
Rtransp(p, Ep|l,−El) + 2(2π)2δ2(p− l)Γp (3.154)
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3.4 Bosonic O(N) vector model at the quantum critical regime

We can now rewrite the BSE for transport (3.137) and chaos (3.136) as
kinetic equation with the following collision integrals

−iω G̃(ω,p) =

∫
l

(R∧(p, l)−R∨(p, l)) G̃(ω, l), (3.155)

−iω C(ω,p) =

∫
l

(R∧(p, l) +R∨(p, l)− 4(2π)2δ2(p− l)Γp)C(ω, l)

(3.156)

3.4.3 Towards the bosonic Quantum Critical Point

In the previous sections we showed that also in the O(N) model scrambling
and transport are related at the level of Green’s function. From this, it
is possible to derive the kinetic theory interpretation of scrambling as in
equation (3.156). The derivation of these identities merely rely on two
hypothesis: the large N limit and the hydrodynamic limit. Consequently,
our results hold as far as these hypothesis are satisfied. As mentioned in
the introduction, close to the QCP transport can be studied by analytically
continuing the hydrodynamic computation, performed outside the quantum
critical regime, into the quantum critical regime. In the O(N) model, this
regime is obtained in the strong coupling limit (v →∞) of the Lagrangian
(3.84),

L =
1

2
(∂φa)2 − v

2N

(
φ2
a −

N

g

)2

, (3.157)

at the value of the critical coupling gc. This value can be obtained by
imposing that the thermal mass vanishes, and equals to [136]

1

gc
=

Λ

4π
, (3.158)

Λ being the physical cutoff. In the quantum critical region, away from
zero temperature, the thermal mass becomes µ2 ≈ 0.962T [136]. The
only changes in the BSE, both for transport and chaos, are thus the
value of the thermal mass in the on-shell condition, Ep = p2 + µ2 and
the expression of the Hubbard-Stratonovich propagator, which enters the
transition amplitude squared:

D(iωn,k) =
1

−1/4v −Π(iωn,k)

v→∞
= − 1

Π(iωn,k)
. (3.159)

This completes our proof that, also in the proximity of a bosonic quantum
critical point, scrambling can be microscopically understood in terms of
counting the gross (energy) exchange.
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3 Towards the Quantum Critical Point

3.5 Gross-Neveu model at the quantum
critical point

Having discussed the case of bosonic quantum critical point in the previous
section, we now turn our attention to fermionic quantum critical points.
Although the great successes of the bosonic O(N) vector model to capture
critical phenomena within the Landau-Ginsburg-Wilson paradigm, whose
critical regime can be described entirely in terms of fluctuations of a
bosonic order parameter, it is nowadays clear that this does not cover all
possible scenarios. Over the last years, it became evident that a plethora
of interesting phenomena involve massless fermionic excitations at low
energies coupled to vectorial [184–186], real [187, 188] or complex [189–195]
order parameters. Those systems are described by fermionic quantum
critical points which the bosonic O(N) vector model fails to capture. In
this context, a main role is played by the Gross-Neveu model (GN) [196]
and the Gross-Neveu-Yukawa model (GNY) [197]. Specifically, here we
study the Gross-Neveu model in (2 + 1) dimension with N flavours of
Dirac fermions. The Lagrangian is, in Euclidean time,

LGN = ψ†i,α(∂τ − iσ ·∇)αβψi,β −
g

4N
(ψ†i,ασ

z
αβψi,β)2 (3.160)

where we indicated with Latin letters the flavours indices, with Greek
letters the spin indices and ψi is a two-component Dirac spinor. We also
assume the summation over repeated indices. Moreover the Pauli matrices
are defined as usual σ = (σx, σy). This action is symmetric under x→ −x
and ψi → iσxψi. This model has a quantum phase transition separating
the Dirac semimetal phase and the gapped insulator with broken Z2

symmetry. By introducing a Hubbard-Stratonovich field φ to decouple the
quartic interaction,

LGN = ψ†αi (∂τ − iσ · ∇) β
α ψi,β +

1

g
φ2 +

1√
N
φ (ψ†σzψ), (3.161)

the action stays symmetric under x → −x, ψi → iσxψi and φ → −φ.
The expectation value of the field φ is thus the order parameter of the
spontaneous Z2 symmetry breaking. As the Z2 symmetry can be related
to the inversion symmetry of a honeycomb lattice, it captures the physics
of graphene, graphene-like materials [198, 199] and cold atoms in optical
lattice [200–202]. A related theory is the Gross-Neveu-Yukawa (GNY)
model, whose matter content is represented by massless Dirac fermions
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3.5 Gross-Neveu model at the quantum critical point

and a massive Φ4 boson, minimally coupled with Lagrangian

LGNY =ψ†i,α(∂τ − iσ · ∇)αβψi,β +
1

2
(∂φ)2 +

1

2
(∇Φ)2 +

m2

2
Φ2 +

λ

4!N
Φ4

+
u√
N

Φψ†i,ασ
z
αβψi,β . (3.162)

The GNY model describes also other symmetry classes, as chiral Heisenberg
and chiral XY universality classes [203, 204]. Assuming small λ and as far
as we focus on the long wavelength and low energy (compared to the mass
m) degrees of freedom, we can integrate out the boson in (3.162). The
result is (3.161) with the identification g =

√
2u/m. The low-energy, long

wavelength limit of the GNY model thus coincide with the GN model [203]
and the results of this section apply to all classes of systems previously
mentioned.

3.5.1 Brief review of many-body chaos in GN

By means of the introduction of a scalar field to decouple the interaction
in (3.161), the Lagrangian can be expressed as (3.161). The properties of
many-body chaos for the GN model in 2 + 1 dimensions, in the Lagrangian
form of (3.161), were investigated in [137]. There, the authors computed
the OTOC in the large N limit,

fβα (t) =
1

N2

∑
ij,γ

∫
d2x (3.163)

× Tr
[
ρ1/2{ψiα(t,x), ψ† γj (0,0)}ρ1/2{ψjγ(0,0), ψ† βi (t,x), }

]
,

by deriving an integro-differential equation (BSE),

f β
α (ν;ω,p) =

1

N
SR(ω + ν,p) γα SA(ω,p) βδ

×
[
δδγ +

∫
ω′,r

ΛOTOC(ν;ω,p, ω′, r)δγ
′

γδ′f
δ′

γ′ (ν;ω′, r)

]
.

(3.164)

The kernel of the BSE is

ΛOTOC(r, p)δγ
′

γδ′ = (σz)γ
′

γ (σz)δδ′D
β/2
W (p− r)

+

∫
l

(σz S
β/2
W (p− l)σz)δγ (σz S

β/2
W (r − l)σz)γ

′

δ′ D
R(l + q)DA(l),

(3.165)
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3 Towards the Quantum Critical Point

where the retarded Greens function of the fermion and the boson are
respectively4

SR(t,x)βαδij = −iθ(t)〈ρ{ψiα(t,x), ψ† βj }〉, (3.166)

DR(t,x) = −iθ(t)〈ρ[φ(t,x), φ]〉, (3.167)

and the Wightman functions are computed with insertion separated by
half of the thermal circle

SW (t,x)βαδij = −i〈√ρψiα(t,x)
√
ρψ† βj 〉, (3.168)

DW (t,x) = −i〈√ρ φ(t,x)
√
ρ φ〉. (3.169)

In momentum space, the Wightman functions can be expressed in terms
of the spectral function

SW (ω,p)βαδij =
ρβα(ω,p)

2cosh(βω/2)
, (3.170)

DW (ω,p) =
ρD(ω,p)

2sinh(βω/2)
, (3.171)

which satisfy ρ(ω,p) = −2ImGR(ω,p) and ρD(ω,p) = −2ImDR(ω,p).

3.5.2 Hydrodynamic transport in GN model

In this section we use the 2PI formalism to derive the transport equation
for the GN model in 2 + 1 dimensions to compare with the OTOC. The
effective action for the original GN Lagrangian

LGN = ψ†i,α(∂τ − iσ · ∇)αβψi,β −
g

4N
(ψ†i,ασ

z
αβψi,β)2 (3.172)

can be parametrized as follows [115, 182]

Γ[S] = −iTr lnS−1 − iTr lnS−1
0 (S − S0) + Γ2[S], (3.173)

S0 being the free propagator in the Euclidean time and S the full dressed
2-point function, satisfying

S−1 = S−1
0 − Σ. (3.174)

In (3.173), Γ2[S] includes the contribution of all the amputated 2-particle
irreducible diagrams (2PI) with exact propagators on the internal lines.
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3.5 Gross-Neveu model at the quantum critical point

a) b)a)

Figure 3.16: The contributions to the 2PI effective action in the 1/N expansion. a) is the

leading order contribution ΓLO and b) the first terms in the series of next-to-the leading

order ΓNLO.

In the 2PI formalism, the self energies can be derived as functional
derivative of the 2PI effective action

Σij|αβ(x, y) ≡ −i δΓ2[S]

δSji|βα(y, x)
. (3.175)

In the following, unless differently specified, we will use a condensed
notation, using Latin letters both flavour, spin and space-time indices.
This simplifies the previous expression as

Σij = −i δΓ2[S]

δSji
. (3.176)

The 4-point vertex function is defined as the amputated connected
4-point function and satisfies the following functional equation

Γ
(4)
ij,kl = Λij,kl − Λij,efS

ff ′Se
′eΓ

(4)
f ′e′,kl, (3.177)

in which the kernel is by definition the functional derivative of the self
energy with respect to the bilocal field S

Λij,kl ≡ i
δ2Γ2[S]

δSjiδSlk
= −δΣkl

δSji
. (3.178)

Now, following [182], we perform the large N expansion of the effective
action considering the leading and the next-to-leading order, which dia-
grammatically are expressed in fig. 3.16

4For a review on the convention for fermions at finite temperature, see the Appendix
3.A.
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x y x z y

Figure 3.17: The diagrammatic recursive expression of the propagator D(x, y).

ΓLO2 [S] =
g

4N

∫
x

Tr[σzS(x, x)σzS(x, x)], (3.179)

ΓNLO2 [S] =
i

2
Tr lnB, (3.180)

and

B(x, y) = δC(x− y)− ig

2N
Π(x, y), (3.181)

Π(x, y) = −Tr[S(x, y)σzS(y, x)σz] = −S(x, y)ab|αβ σ
z
βγ S(y, x)ba|γδ σ

z
δα.

(3.182)

In the last line we have explicited the indices to stress the structure of the
Hilbert space we are considering and we note that the functional derivative
of the bubble diagram satifies

δΠ(x′, y′)

δSlk|βα(y, x)
= −2δ(x′ − y)δ(y′ − x)(σzαγ S(x, y)kl|γδ σ

z
δβ). (3.183)

Let’s now compute the leading and next-to-the leading order contribution
to the self-energies (for the sake of clarity we will write the indices in the
intermediate steps)

ΣLOkl|γδ(x
′, y′) = −i δΓLO2 [S]

δSlk|δγ(y′, x′)
= −i g

2N
δ(x′ − y′)(σz S(x′, y′)kl σ

z)γδ,

(3.184)

ΣNLOkl|γδ (x′, y′) = −i δΓNLO2 [S]

δSlk|δγ(y′, x′)
=
−ig
4N

∫
w,z

B−1(z, w)
δΠ(w, z)

δSlk|δγ(y′, x′)

=
ig

2N
B−1(x′, y′)(σz S(x′, y′)kl σ

z)γδ

= D(x′, y′)(σz S(x′, y′)kl σ
z)γδ, (3.185)
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= + +

Figure 3.18: Diagrammatic representation of the kernel ΛNLO computed in (3.188).

where we have defined D(x′, y′) = ig
2NB−1(x′, y′) . Inserting (3.181) into

the identity B−1B = 1, we obtain an integral equation for D(x, y), depicted
in fig. 3.17

D(x, y) =
ig

2N

[
δC(x− y) +

∫
z

Π(x, z)D(z, y)

]
. (3.186)

This two-point function is an effective description of the polarization
bubble and, as we will see, corresponds to the propagator of an Hubbard-
Stratonovich field introduced to linearise the quadratic interaction in the
action. Now we compute the kernel using (3.178). The leading order
contribution is simply

ΛLOij;kl|αβ;γδ(x, y;x′, y′) = i
δΣLOkl|γδ(x

′, y′)

δSji|βα(y, x)

=
g

2N
δkjδliδ(x

′ − y′)δ(x′ − y)δ(y′ − x)(σz)γβ(σz)αδ.

(3.187)

Similarly to the bosonic O(N) case, this will not affect the final BSE
after the Matsubara sum. Going to the NLO term,

ΛNLOij;kl|αβ;γδ(x, y;x′, y′) = i
δΣNLOkl|γδ (x′, y′)

δSji|βα(y, x)

= δkjδliδ(x
′ − y)δ(y′ − x)(σz)γβ(σz)αδD(x′, y′)−

∫
w′z′

δ(w′ − y)δ(z′ − x)

(D(x′, w′)D(z′, y′) +D(y′, w′)D(z′, x′))(σz S(x, y)ij σ
z)αβ(σz S(x′, y′)kl σ

z)γδ

= δkjδliδ(x
′ − y)δ(y′ − x)(σz)γβ(σz)αδD(x′, y′)

− 2(σz S(x, y)ij σ
z)αβ(σz S(x′, y′)kl σ

z)γδD(x′, y)D(x, y′). (3.188)

We now go to momentum space and we observe that the the 4-point

function Γ
(4)
kl,ij(R,P ;Q) is related to the 3-point vertex Γij(P +Q,P ), as

shown in fig. 3.19.
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Figure 3.19: Representation of the relation among the 3-vertex and the amputated 4-point
connected Green’s function.

Since more convenient, we will focus on the latter

Γij(P+Q,P ) = Γ0
ij(p)−

∑∫
R

S(R+Q)Γ0(r)klS(R)Γ
(4)
kl,ij(R,P ;Q) (3.189)

where Γ0
ij(p) is the coupling between the fermionic fields and the external

operator. For instance, in the shear viscosity the operator is the stress
energy and we have Γ0

ij(p) = 1
2 (σipj +σjpi− δijσ ·p). If we want to focus

on the density operator, defined as (3.6)

ρ(x, p) =

∫
y

e−ipyTr(ψ(x−y/2)ψ̄(x+y/2)) =

∫
k

eikxTr(ψ(p+k/2)ψ̄(p−k/2)),

(3.190)
such insertion is just δij . From now on we will focus on the latter. As
shown in fig. 3.20, this vertex satisfies the following integral equation

Γij(P +Q,P ) = Γ0
ij(p)−

∑∫
R

S(R+Q)Γ(R+Q,R)S(R)Λkl,ij(R,P ;Q)

(3.191)
The previous equation is written in imaginary time. To obtain the

real time value, a sum over Matsubara frequencies is required, which
corresponds to the proper choice of the analytical continuation. It can be
shown by induction that, because of the form of the BSE, Γij(P+Q,P ) has
branch cuts both in Im(p0) = 0 and Im(p0 + q0) = 0. An analysis similar
to the previous section on the O(N) model can be carried out. Also in
this case, in the long time limit corresponding to q0 → 0, the pinching pole
approximation selects only one analytic continuation of the vertex in the
imaginary time formalism, which corresponds to i(p0 + q0)→ p0 + q0 + i0
and ip0 → p0 − i0. Consequently, the shear viscosity which is obtained by
the resummed skeleton diagram we have focused on but with a different
insertion Γ(0)ij

Gππ(Q) = −
∑∫
P

Tr(S(P +Q)Γij(P +Q,P )S(P )Γ(0)ij(p)). (3.192)
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3.5 Gross-Neveu model at the quantum critical point

Figure 3.20: BSE for the 3-point vertex function.

In the limit of vanishing external momentum, it is given by

lim
q0,q→0

Gππ(q0,q) = − lim
q0,q→0

∫
p

Tr(SR(p+q)Γij(p0+q0+i0, p0−i0)SA(p)Γ(0)ij(p)),

(3.193)
and the shear viscosity is determined by

η =
1

20
lim

q0,q→0

∂

∂q0
ReGππ(q0,0) (3.194)

Now, let’s go back to the evaluation of the density-density correlation
function and define the vertex as

Γ̃βα(p+ q, p) = SR(p+ q)γαΓδγ(p0 + q0 + i0, p0 − i0)SA(p)βδ . (3.195)

The BSE for the (3.195), after the analytical continuation we discussed
above is

Γ̃βα(p+q, p) = SR(p+q)γαSA(p)βδ

[
δδγ +

∫
r

Λ̃(r, p)δγ
′

γδ′ Γ̃(r + q, r)δ
′

γ′

]
(3.196)

where the analytically continued kernel reads

Λ̃(r, p)δγ
′

γδ′ = (nB(r0 − p0) + nF (r0))

[
(σz)γ

′

γ (σz)δδ′ρB(r − p) (3.197)

+ 2

∫
l

(nF (p0 − l0)− nF (r0 − l0))(σz ρF (p− l)σz)δγ

× (σz ρF (r − l)σz)γ
′

δ′D
R(l + q)DA(l)

]
.

This result is similar to the kernel of the BSE for the shear viscosity
obtained in [181] for q = 0 for the large Nf QCD. The main difference,
besides the dimensionality, can be reduced to the presence of vector boson
in QCD, while here the boson is simply a scalar. This suggests that the
analysis performed in this section can be extended to the case of QCD in
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3 Towards the Quantum Critical Point

the large Nf limit. After some algebra, and using the identities written in
Appendix 3.B, we arrive to the final expression

Γ̃βα(p+q, p) = SR(p+q)γαSA(p)βδ

[
δδγ +

∫
r

Λ̃(r, p)δγ
′

γδ′ Γ̃(r + q, r)δ
′

γ′

]
, (3.198)

where the kernel is

Λ̃(r, p)δγ
′

γδ′ = (σz)γ
′

γ (σz)δδ′DW (p− r)

+

∫
l

(σz SW (p− l)σz)δγ (σz SW (r − l)σz)γ
′

δ′ D
R(l + q)DA(l).

We now proceed by showing the relation between the BSE for transport
and the BSE for scrambling. If we express the Wightman functions DW

and SW in terms of the symmetrized ones, after some simplification we
find

Γ̃βα(p+ q, p) = SR(p+ q)γαSA(p)βδ (3.199)[
δδγ +

∫
r

cosh(βp0/2)

cosh(βr0/2)
ΛOTOC(r, p)δγ

′

γδ′ Γ̃(r + q, r)δ
′

γ′

]
,

ΓβOTOC,α(p+ q, p) = SR(p+ q)γαSA(p)βδ (3.200)[
δδγ +

∫
r

ΛOTOC(r, p)δγ
′

γδ′ Γ
δ′

OTOC,γ′(r + q, r)

]
where ΛOTOC(r, p) is the kernel of the BSE for OTOC in the Gross-Neveu
model (3.165) derived in [137]

ΛOTOC(r, p)δγ
′

γδ′ = (σz)γ
′

γ (σz)δδ′D
β/2
W (p− r)

+

∫
l

(σz S
β/2
W (p− l)σz)δγ (σz S

β/2
W (r − l)σz)γ

′

δ′ D
R(l + q)DA(l).

This proves our claim that relates the kernel of the BSE of the OTOC to
the kernel of the BSE of the bilocal density operator.

3.5.3 The kernel in the helicity basis

Now, lets’ try to understand the physics behind the factor cosh(βp0/2)
cosh(βr0/2) for

the fermionic case. In the bosonic case, the factor sinh(βp0/2)
sinh(βr0/2) automatically

provided the natural weighting for the ansatz (and the consequent sign
flip in the kernel). The fermion case it is slightly more elaborate, since
this factor is even with respect to the momenta p0 and l0.
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3.5 Gross-Neveu model at the quantum critical point

In this section we show which are the proper ansätze that give the
correct solutions respectively for the case of transport and chaos. For this
we need to rewrite the kernel (3.197) in a way that allows us to interpret
the physics

Λ̃(r, p)δγ
′

γδ′ = (nB(r0 − p0) + nF (r0))

[
(σz)γ

′

γ (σz)δδ′ρB(r − p)

+ 2

∫
L,L′

(nF (l0)− nF (l′0))(σz ρF (l)σz)δγ (σz ρF (l′)σz)γ
′

δ′ |DR(p− l)|2
]
.

(3.201)

The fermionic spectral density, which is

ρF (p0,p) =
/pπ

|p| (δ(p
0 − |p|)− δ(p0 + |p|)) = /pρ(p0,p), (3.202)

can be written in the helicity basis as follows

ρF (l0, l) = 2π
∑
a

Pa(l)δ(l0 − a|l|), (3.203)

where we introduced the projector into the helicity basis

Pa(k) =
1 + aσ · k̂

2
. (3.204)

Substituting this in the second line of the expression of (3.201), with the
additional substitution

(σz ρF (l)σz)δγ = 2π
∑
a

(σzPa(l)σz)δγδ(l
0 − a|l|), (3.205)

allows us to rewrite the kernel as

Λ̃(r, p)δγ
′

γδ′ = (nB(r0 − p0) + nF (r0))

[
(σz)γ

′

γ (σz)δδ′ρB(r − p) (3.206)

+ 2
∑
a,b

∫
l,l′

(nF (l0)− nF (l′0)) (σzPb(l)σz)δγ(σzPa(l′)σz)γ
′

δ′

(2π)2δ(l′0 − a|l′|)δ(l0 − b|l|)|DR(p− l)|2
]
. (3.207)
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3 Towards the Quantum Critical Point

Similarly as before, the spectral function of the auxiliary field, ρB , encodes
the fermionic bubble diagram and can be rewritten as

ρB(r − p) = −2 |DR(r − p)|2 ImΠR(r − p). (3.208)

In order to find the expression for the imaginary part of the bosonic self
energy ImΠR(p), we can use formula (3.182) in Fourier space and perform
the Matsubara sum, which is done in Appendix 3.C. After analytically
continuing to obtain the retarded contribution, we can take the imaginary
part and the expression reads

ImΠR(p) = −1

2

∑
a,b

∫
l

Kab(l, l + p) (nF (a|l|)− nF (b|l + p|))

(2π)δ(p0 + a|l| − b|l + p|), (3.209)

where we have defined the following quantity

Kab(p, l) = Tr[σzPa(p)σzPb(l)] =
1− ab p̂ · l̂

2
(3.210)

and use it to simplify the expression of the ImΠR(r − p) by introducing
the momentum l′ and imposing the energy conservation:

ImΠR(r − p) =− 1

2

∑
a,b

∫
l

Kab(l, l + r− p) (nF (a|L|)− nF (b|l + r− p|))

× (2π)δ(r0 − p0 + a|l| − b|l + r− p|)

=− 1

2

∑
a,b

∫
l,l′
Kab(l, l

′) (nF (a|l|)− nF (b|l′|))(2π)2

δ2(l′ + p− r− l)× (2π)δ(r0 − p0 + a|l| − b|l′|). (3.211)

We can now write the kernel (3.207) as

Λ̃(r, p)δγ
′

γδ′ = (nB(r0 − p0) + nF (r0))
∑
a,b

∫
l,l′

(nF (l0)− nF (l′0))

× δ(l0 − a|l|)δ(l′0 − b|l′|)(2π)3δ3(r + l − p− l′)
(

(σz)γ
′

γ (σz)δδ′Kab(l, l
′)

× |DR(r − p)|2 + 2(σzPb(l)σz)δγ(σzPa(l′)σz)γ
′

δ′ |DR(p− l)|2
)
,
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3.5 Gross-Neveu model at the quantum critical point

which, by relabelling the momenta l and l′, can be rewritten in terms of
the s, t and u-channels

Λ̃(r, p)δγ
′

γδ′ = (nB(r0 − p0) + nF (r0))
∑
c,d

∫
l,l′

(nF (l0)− nF (l′0)) (3.212)

× δ(l0 − c|l|)δ(l′0 − d|l′|)(2π)3δ3(r + l − p− l′)

×
(

(σz)γ
′

γ (σz)δδ′Kcd(l, l
′)|DR(r − p)|2 + (σzPc(l)σz)δγ(σzPd(l′)σz)γ

′

δ′

× |DR(r − l′)|2 + (σzPd(l′)σz)δγ(σzPc(l)σz)γ
′

δ′ |DR(r + l)|2
)
.

(3.213)

We have massaged the kernel in a way that it is easy to project into helical
basis. This is a convenient way to analyze both the on-shell BSEs, which
we do in the next section.

3.5.4 The physics behind the analytic continuation

To recapitulate, in the previous section we saw that the off-shell BSE for
transport are, up to a similarity transformation, the same

ΓβOTOC,α(p+ q, p) = SR(p+ q)γαSA(p)βδ

[
δδγ+

∫
r

cosh(βr0/2)

cosh(βp0/2)
(3.214)

× Λ(r, p)δγ
′

γδ′ Γ
δ′

OTOC,γ′(r + q, r)

]
,

Γβα(p+ q, p) = SR(p+ q)γαSA(p)βδ

[
δδγ+

∫
r

Λ(r, p)δγ
′

γδ′ Γ
δ′

γ′(r + q, r)

]
,

with a kernel that can be expressed as (3.212). Now we want to explicitly
take the late time limit, q0 → 0, and project both the BSEs (3.214) into
the helical basis. To do so, we observe that the product of retarded and
advanced Green’s function in the pinching pole approximation can be
written as [137]

SR(p+ q)γαSA(p)βδ ≈ 2π
∑
a

Pa(p)γαPa(p)βδ
δ(p0 − a|p|)
−iq0 + 2Γp,a

. (3.215)
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3 Towards the Quantum Critical Point

Since the homogeneous equation is defined with momentum p on-shell, an
obvious ansatz is,

Γβα(p+ q, p) =
∑
a

fa(q0, p0,p)Pa(p)βαδ(p
0 − ap). (3.216)

This will turn out to be the solution that describes chaos. Substituting
into Equation (3.214), one has

∑
a

fa(q0, p0,p)Pa(p)βαδ(p
0 − ap) = 2π

∑
a

Pa(p)γαPa(p)βδ
δ(p0 − a|p|)
−iq0 + 2Γp,a

(3.217)

×
[
δδγ +

∫
r

cosh(βr0/2)

cosh(βr0/2)
Λ(r, p)δγ

′

γδ′

×
∑
b

fb(q
0, r0, r)Pb(r)δ

′

γ′δ(r
0 − br)

]
.

We now study the a component of the above BSE and trace over the spin
indices α, β

fa(q0, p0,p)δ(p0 − ap) = 2π
δ(p0 − a|p|)
−iq0 + 2Γp,a

+
δ(p0 − a|p|)
−iq0 + 2Γp,a

×
∫
r

cosh(βr/2)

cosh(βp/2)
Pa(p)γαPa(p)βδΛ(r, p)δγ

′

γδ′Pb(r)δ
′

γ′∑
b

fb(q
0, r0, r)δ(r0 − br). (3.218)

We can define the effective kernel as Λab(r, p) = Pa(p)γαPa(p)αδ Λ(r, p)δγ
′

γδ′Pb(r)δ
′

γ′ ,

Λab(r, p) = (nB(r0 − p0) + nF (r0))
∑
c,d

∫
l,l′

(nF (l0)− nF (l′0))δ(l0 − c|l|)

× δ(l′0 − d|l′|)(2π)3δ3(r + l − p− l′)

×
(
Kab(p, r)Kcd(l, l

′)|DR(r − p)|2 +Kac(p, l)Kbd(r, l
′)|DR(r − l′)|2

+Kbc(r, l)Kad(p, l)|DR(r + l)|2
)
. (3.219)
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3.5 Gross-Neveu model at the quantum critical point

In (3.219), momenta p and r are not on shell yet. We can use (3.219) to
rewrite (3.218)

−iq0fa(q0, ap,p) = 2π +
∑
b

∫
r

cosh(βr/2)

cosh(βp/2)
(3.220)

×
(

Λab(r,p)− 2Γr,a(2π)2δ2(p− r)δab

)
fb(q

0, br, r),

having defined Λab(r,p) = Λab(b|r|, r, a|p|,p). By means of (3.219), it is
easy to check the following properties of the kernel

Λ++(r,p) = Λ−−(r,p),

Λ−+(r,p) = Λ+−(r,p), (3.221)

which are again consequences of the particle-hole symmetry. We observe

that, at this stage, the ratios cosh(βr/2)
cosh(βp/2) represents a similarity transforma-

tion, so it can be neglected since it does not affect the spectrum. Because
of this, from now on we will drop this factor.

Before we show that (3.220) is the chaos BSE, we now consider an-
other possible ansatz, which we will see is correct one for transport, that
corresponds to (3.216) with the choice

fa(q0, p0,p) = af̃a(q0, p0,p), (3.222)

where the a labels the helicity. This leads to the following BSE (after
multiplying for a and using a2 = 1)

−iq0f̃a(q0, ap,p) = 2πa∑
b

∫
r

(
abΛab(br, r, ap,p)− 2Γr,a(2π)2δ(p− r)δab

)
f̃b(q

0, br, r).

(3.223)

In the previous equation, the factor ab plays the analogous role of the factor
sinh(βr0/2)
sinh(βp0/2) for the bosonic case. We now prove the statement that (3.223)

leads to the Boltzmann equation, while the other reproduces the OTOC.
As before, the difference in the kernel is simply given by a different counting
of the contribution of scattering processes, as shown in the cartoon in fig.
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3 Towards the Quantum Critical Point

3.6 and 3.7. We start by expanding and using the identities

−iq0f+(q0,p) =2π

+

∫
r

Λ++f+(q0, r) + Λ+−f−(q0, r)− 2Γr(2π)2δ2(p− r)f+(q0, r),

−iq0f−(q0,p) =2π

+

∫
r

Λ+−f+(q0, r) + Λ++f−(q0, r)− 2Γr(2π)2δ2(p− r)f−(q0, r)

The sum f(q0,p) = f+(q0,p) + f−(q0,p) satisfies

−iq0f(q0,p)−
∫

r

(
Λ++ + Λ+− − 2Γr(2π)2δ2(p− r)

)
f(q0, r) = 4π.

(3.224)
The eigenvalue of this integral equation correspond to the Lyapunov
exponent of the theory. To derive the transport relaxation time, instead,
we have

−iq0f̃+(q0,p) =

∫
r

Λ++f̃+(q0, r)− Λ+−f̃−(q0, r)− 2Γr(2π)2δ2(p− r)f̃+(q0, r),

−iq0f̃−(q0,p) =

∫
r

−Λ+−f̃+(q0, r) + Λ++f̃−(q0, r)− 2Γr(2π)2δ2(p− r)f̃−(q0, r).

The sum f̃(q0,p) = f̃+(q0,p) + f̃−(q0,p) satisfies

−iq0f̃(q0,p) =

∫
r

(
Λ++ − Λ+− − 2Γr(2π)2δ2(p− r)

)
f̃(q0, r). (3.225)

The eigenvalues of this integral equation corresponds to the relaxation times
of the theory, i.e. the integral operator is nothing but the collision integral
of the Boltzmann equation. We now can continue with the interpretation
of the ansatz (3.216) and (3.222) in terms of kinetic equations.

3.5.5 Kinetic theory analysis

We want to show that, using the notation of the previous sections,

R∧(p, r) = Λ++(p, r),

R∨(p, r) = Λ+−(p, r) + 2Γr(2π)2δ2(p− r). (3.226)
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3.5 Gross-Neveu model at the quantum critical point

The first line is straightforward to verify. Indeed, using the identity (valid
for a|p|+ d|l′| = c|l|+ b|r|)

(nB(b|r| − a|p|) + nF (b|r|))(nF (c|l|)− nF (d|l′|)) =
1− nF (b|r|)
1− nF (a|p|)

× nF (d|l′|)(1− nF (c|l|)).

For a = b = +,

Λ++ = +
1

1− nF (p)

∑
cd

∫
r,l,p4

(2π)3δ(p + l′ − r− l)δ(Ep + cEl − Er − dEl′)

nF (dEl′)(1− nF (Er))(1− nF (cEl))|T r,l→p,l′

bcad |2.
(3.227)

In the previous expressions we defined the scattering amplitude, depicted
in Fig. 3.21∣∣∣T (r,l)→(p,l′)
bcad

∣∣∣2 =Kab(p, r)Kcd(l, l
′)|DR(b|r| − a|p|, r− p)|2 +Kac(p, l)Kbd(r, l

′)

× |DR(b|r| − d|l′|, r− l′)|2 +Kad(p, l
′)Kbc(r, l)

× |DR(b|r|+ c|l|, r + l)|2 (3.228)

For a = +, b = −, the kernel provides the contribution to a different
scattering process, depicted in fig. 3.22, when the particle with momentum
p from the thermal bath is annihilated,

Λ+− = +
1/2

1− nF (p)

∑
cd

∫
r,p2,p4

(2π)3δ(p + r− l− l′)δ(Ep + Er − cEl − dEl′)

nF (Er)(1− nF (cEl))(1− nF (dEl′))|T r,p→l,l′

−+cd |2. (3.229)

To conclude, we need to rewrite the expression of 2Γp,

Γp,a =
1

2N

∑
b

∫
r

[n(b|r| − a|p|) + nF (b|r|)]Kab(p, r)ρD(b|r| − a|p|, r− p)

(3.230)

which satisfies Γp,+ = Γp,−, as a consequence of the particle-hole symmetry.
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Figure 3.21: The contributions to the kernel of the kinetic equation of Λ++ in (3.227). The
helicity indices are suppressed and are (r, d), (l, c), (l′, d) and (p, a).

By using ρD(b|r| − a|p|, r − p) = −2 ImΠR(b|r| − a|p|, r − p) |DR(b|r| −
a|p|, r− p)|2 and (3.211),

ImΠR(b|r| − a|p|, r− p) = −1

2

∑
c,d

∫
L,L′

Kcd(L,L
′) (nF (c|L|)− nF (d|L′|))

(2π)δ(b|r| − a|p|+ c|L| − d|L′|)(2π)2δ2(L′ + p− r− L),

we get

Γp,a =

= − 1

N

∑
b

∫
r

[n(b|r| − a|p|) + nF (b|r|)]Kab(p, r)ImΠR(b|r| − a|p|, r− p)

× |DR(b|r| − a|p|, r− p)|2 =

=
1

2N

∑
bcd

∫
rll′

[nB(b|r| − a|p|) + nF (b|r|)](nF (c|L|)− nF (d|L′|))

×Kab(p, r)Kcd(L,L
′)

(2π)δ(b|r| − a|p|+ c|L| − d|L′|)(2π)2δ2(L′ + p− r− L)

× |DR(b|r| − a|p|, r− p)|2.

By considering the only allowed kinematic contribution, the previous
expression can be written as follows
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3.5 Gross-Neveu model at the quantum critical point

2Γp,a =
1/2

1− nF (aEp)

∑
bcd

∫
r,l,l′

(2π)3δ(cEl + dEl′ − Ep − bEr)δ(l + l′ − p− r)

× nF (bEr)(1− nF (cEl))(1− nF (dEl′))
∣∣∣T (P,R)→(L,L′)
abcd

∣∣∣2 .
(3.231)
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Figure 3.22: The contributions to the kernel of the kinetic equation of Λ+− in (3.229). The
helicity indices are suppressed and are (r, d), (l, b), (l′, c) and (p, a).

This complete the proof of (3.226). Thus,

−iq0f̃(q0,p) =

∫
r

(R∧(p, l)−R∨(p, l))f̃(q0, r),

−iq0f(q0,p) =

∫
r

(R∧(p, l) +R∨(p, l))− 4(2π)2δ2(p− l)Γl)f(q0, r),

(3.232)

also for critical fermions. This is a highly non trivial result, that firmly
establish the validity of our microscopic interpretation to scrambling in
terms of a kinetic equation.

3.5.6 Towards the fermionic Quantum Critical Point

As for the bosonic O(N) model, also for the GN model our results rely on
the large N and hydrodynamic limit. The Gross-Neveu model,

LGN = ψ†αi (∂τ − iσ · ∇) β
α ψi,β +

1

g
φ2 +

1√
N
φ (ψ†σzψ), (3.233)
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has a phase transition at
1

gc
=

Λ

4π
, (3.234)

where Λ is the momentum cutoff. The analytical continuation of our
results to the QCP is simply performed by substituting the value of gc
into the Hubbard-Stratonovich Green’s function (3.186),

D(iωn,k) =
1

−2/gc −Π(iωn,k)
, (3.235)

This completes our proof that the relation between chaos and scrambling.
Such relation holds also for fermionic systems and it extends naturally to
the (fermionic) quantum critical point. Furthermore, this strengthen the
microscopic interpretation of chaos as a gross (energy) exchange.

3.6 Conclusion

We have shown the existence of an analytical relation between the off-
shell BSE that defines the out-of-time order correlation function and the
off-shell BSE that is used to described hydrodynamic transport In weakly
coupled or large N QFTs. The remarkable askect of this relation is that it
can be extended also beyond the regime of the quasiparticle framework
and close to the quantum critical points, as we have proved for the bosonic
O(N) vector model and the Gross-Neveu model in 2 + 1 dimensions. A
straightforward consequence of this result is the microscopic understanding
of scrambling, which is described by a Boltzmann-like equation that takes
into account the gross energy exchange (compared to the standard BE
that consider the net energy exchange). Moreover, since scrambling is
related to the information spreading, we expect that an interpretation of
our results in terms of more standard information theory quantities, as
thermodynamic entropy of Kolmogorov-Sinai entropy, is viable. We refer
these questions to future work.

3.A Notation for fermions

Given a fermion ψα with α labelling both spin and vector indices, the finite
temperature correlation function in the Close Time Path (CTP) formalism
are

S12|αβ(x, y) = −〈ψ̄β(y)ψα(x)〉 (3.236)

S21|αβ(x, y) = 〈ψα(x)ψ̄β(y)〉 (3.237)
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3.B Some identities

By writing the correlation function in terms of their Fourier transform
in momentum space, and allowing a separation in the thermal circle of σ
between the two operators, we get

Sσ12(x) = S12(x, t+ iσ) =

∫
d4p e−ipxeσp

0

Sσ=0
12 (p) (3.238)

Sσ21(x) = S21(x, t− iσ) =

∫
d4p e−ipxe−σp

0

Sσ=0
21 (p). (3.239)

where the expression of the Green’s function in momentum space are

S21(p) = (1− nF (p0))ρF (p) (3.240)

S12(p) = −nF (p0)ρF (p). (3.241)

where ρF (p) is the fermionic spectral function and it is related to the
Green’s function

ρFαβ(p) = S21|αβ(p)− S12|αβ(p). (3.242)

The system of equations (3.238) can be recast in momentum space as

Sσ12(p) = eσp
0

Sσ=0
12 (p) (3.243)

Sσ21(p) = e−σp
0

Sσ=0
21 (p). (3.244)

It is important to stress that the relation (3.242) holds only with the σ = 0
Wightman functions.

3.B Some identities

In this section we state some useful identities that we need to prove the
relation among the kernel of the BSE for the OTOC and of the retarded
Green’s function of the bilocal density operator.

Bosonic O(N) vector model

We first focus on the kernel of the bosonic O(N) vector model, which is

ΛNLO(l, p) = ρD(l−p)+N
∫
s

(n(p0−s0)−n(l0−s0))ρ(p−s)ρ(l−s)DR(s)DA(s),

(3.245)
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3 Towards the Quantum Critical Point

multiplied by the factor (n(l0 − p0) − n(l0)). It is easy to see that the
following identities hold:

nB(l0 − p0)− nB(l0) =
nB(l0)

nB(p0)
(1 + nB(l0 − p0)) (3.246)

nB(p0 − s0)− nB(l0 − s0) =
nB(p0 − s0)

1 + nB(l0 − p0)
(1 + nB(l0 − s0)). (3.247)

Consequently the rung is equal to

(n(l0 − p0)− n(l0))ΛNLO(l, p) = (3.248)

nB(l0)

nB(p0)

[
Dσ=0

21 (l − p) +N

∫
s

Gσ=0
12 (p− s)Gσ=0

21 (l − s)DR(s)DA(s)

]
.

rewriting in the Wightman functions in terms of the symmetric ones we
get

(n(l0 − p0)− n(l0))ΛNLO(l, p) =
sinh(βp0/2)

sinh(βl0/2)

×
[
D
σ=β/2
21 (l − p) +N

∫
s

G
σ=β/2
12 (p− s)Gσ=β/2

21 (l − s)DR(s)DA(s)

]
.

Gross-Neveu model

Given the bosonic/fermionic equilibrium distribution function nB/F (p0) =

(eβp0 ∓ 1)−1, the following relations hold

nB(r0 − p0) + nF (r0) =
nF (r0)

nF (p0)
(1 + nB(r0 − p0)), (3.249)

nF (p0 − l0)− nF (r0 − l0) =
nF (p0 − l0)

1 + nB(r0 − p0)
(1− nF (r0 − l0)). (3.250)

The kernel of the BSE for the Gross-Neveu model is (3.201)

Λ̃(r, p)δγ
′

γδ′ = (σz)γ
′

γ (σz)δδ′ρD(r − p)

+

∫
l

(nF (p0 − l0)− nF (r0 − l0))(σz ρF (p− l)σz)δγ (σz ρF (r − l)σz)γ
′

δ′

DR(l + q)DA(l).

times (nB(r0 − p0) + nF (r0)). By means of the (3.249), the first term is

(nB(r0 − p0) + nF (r0))ρD(r0 − p0) =
nF (r0)

nF (p0)
eβ(r0−p0)/2D

β/2
W (r − p)

(3.251)
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3.C Imaginary part of the self energy in the GN model

where with the label β/2 we have indicated the correlation function with
operator inserted at a distance β/2 over the thermal circle. They are
defined as

G
β/2
W (r − p) = e−β(r0−p0)(1 + nB(r0 − p0))ρB(r − p), (3.252)

S
β/2
W (r − p) = e−β(r0−p0)(1− nF (r0 − p0))ρF (r − p), (3.253)

and they can be rewritten in terms of the Wightman function with operator
insertion almost coincident in the thermal circle

G
β/2
W (r − p) = e−β(r0−p0)GW (r − p), (3.254)

S
β/2
W (r − p) = e−β(r0−p0)SW (r − p). (3.255)

The second contribution to the kernel, corresponding to the second and
third diagram in fig. 3.18, is

(nB(r0 − p0) + nF (r0))(nF (p0 − l0)− nF (r0 − l0))ρF (r − l)ρF (p− l)

=
nF (r0)

nF (p0)
S21(r−l)S12(l−p) =

nF (r0)

nF (p0)
eβ(r0−p0)/2S

β/2
W (r−l)Sβ/2W (l−p).

(3.256)

Since the products of thermal factor simplifies as

nF (r0)

nF (p0)
eβ(r0−p0)/2 =

cosh(βp0/2)

cosh(βr0/2)
, (3.257)

we can rewrite the kernel of the BSE of the bilocal density operator as

(nB(r0 − p0) + nF (r0))Λ̃(r, p)δγ
′

γδ′ =
cosh(βp0/2)

cosh(βr0/2)

[
(σz)γ

′

γ (σz)δδ′G
β/2
W (r − p)

+

∫
l

(σz S
β/2
W (l − p)σz)δγ (σz S

β/2
W (r − l)σz)γ

′

δ′D
R(l + q)DA(l)

]
.

3.C Imaginary part of the self energy in the
GN model

We start with the expression in imaginary time

Π(iνn,p) = −
∑
ωm

∫
k

Tr[G(iωm − iνn,k− p)σzG(iωm,k)σz] (3.258)
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3 Towards the Quantum Critical Point

now we insert the expression of the propagator in the helicity basis

Π(iνn,p) = −
∑
ωm

∫
k

Kab(k− p,k)
1

iωm − iνn − a|k− p|
1

iωm − b|k|
(3.259)

and perform the Matsubara sum

Π(iνn,p) = −
∫

k

Kab(k− p,k)
nF (a|k− p|)− nF (b|k|)
iνn + a|k− p| − b|k| . (3.260)

To obtain the retarded, we perform the analytic continuation iνn → ν + iε
and we can extract the imaginary part by simply use Im [1/(x± iε)] =
∓iπδ(x) and shifting the integration variable k− p→ k

Im [ΠR(ν,p)] = −1

2

∫
k

Kab(k,k + p)(nF (a|k|)− nF (b|k + p|))

× (2π)δ(ν + a|k| − b|k + p|)

3.D Pinching-poles approximation

Quantum field theories at finite temperature possess on-shell thermal
excitations. The lifetime of such excitations is inversely proportional
to the coupling constant and indeed, in a non-interacting theory, these
excitations are stable and can live indefinitely long. This is the reason
behind the appearance of the delta function in the spectral density. Besides
this well-known effect, there is another consequence of the existence of those
excitations and it is divergence of the product of two spectral functions with
opposite-sign momentum, i.e. ρ(k + p)ρ(−p), once the zero momentum
(k = 0) and vanishing frequency limit is taken (k0 → 0). The poles
of the two spectral functions pinch the real axis in the complex energy
plane both from below and above and cause a divergence. This is called
pinching-pole divergence. Turning a coupling on, the lifetime becomes
finite and regulates such divergence (which is commonly referred to as
nearly-pinching pole divergence). Nevertheless it still provides the leading
contributions in the weak coupling computations and allows to organize
the diagrammatic expansion. In the latter case, the retarded and advanced
Green’s function take the form

GR(p) =
1

(p0 + iΓp)2 − E2
p

, GA(p) =
1

(p0 − iΓp)2 − E2
p

(3.261)

To understand the analytical structure of the terms GR(p + ω)GA(p),
GR(p+ω)GR(p) and GA(p+ω)GA(p)2, we study the poles of the retarded
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3.D Pinching-poles approximation

(P1/2) and the advanced (P3/4) Green’s function. They are respectively
located at

(P1) : p0 = −Ep − iΓp; (P3) : p0 = Ep + iΓp;

(P2) : p0 = Ep − iΓp; (P4) : p0 = −Ep + iΓp.

In the previous expressions, a non vanishing ω simply shifts the real part
of −ω. Since we will take the zero external momentum limit, we want to
find the most divergent piece in ω.

a)

Re[p0]

Im[p0]

b)

Re[p0]

Im[p0]

c)

Re[p0]

Im[p0]

Figure 3.23: The pole structure of the product GRGA (b), G2
A (c) and G2

R (a).

If we close the contour from below we get the following residues (times a
−2πi factor)

(P1, P3) :
2πi

4E2
p

1

ω + 2Ep
; p0 = −ω − Ep;

(P1, P4) :
2πi

4E2
p

1

ω + 2iΓp
; p0 = −ω − Ep;

(P2, P3) :
2πi

4E2
p

1

ω + 2iΓp
; p0 = −ω + Ep;

(P2, P4) :
2πi

4E2
p

1

2Ep − ω
; p0 = −ω + Ep;

If we close the contour above:

(P1, P3) :
2πi

4E2
p

−1

ω + 2Ep
; p0 = Ep; (P1, P4) :

2πi

4E2
p

1

ω + 2iΓp
; p0 = −Ep;

(P2, P3) :
2πi

4E2
p

1

ω + 2iΓp
; p0 = Ep; (P2, P4) :

2πi

4E2
p

1

2Ep − ω
; p0 = −Ep;

107



3 Towards the Quantum Critical Point

In the limit of vanishing ω, the most singular terms are (P1, P4) and
(P2, P3), so that we can approximate

Gra(p+ k)Gra(−p) ∼ 2πi

4E2
p

δ(p0 − Ep) + δ(p0 + Ep)

ω + 2iΓp
=

π

Ep

δ(p2
0 − E2

p)

−iω + 2Γp
(3.262)

Now let’s study

Gra(p+ ω)Gra(p) =
1

4E2
p

(
1

p0 + ω + Ep + iΓp
− 1

p0 + ω − Ep + iΓp

)
×
(

1

p0 + Ep + iΓp
− 1

p0 − Ep + iΓp

)
The previous expression has 4 poles, respectively at

(P1) : p0 = −ω − Ep − iΓp; (P3) : p0 = −Ep − iΓp;
(P2) : p0 = −ω + Ep − iΓp; (P4) : p0 = Ep − iΓp;

If we close the contour above, the expression vanishes since there is no pole
in the upper-half plane (this is equivalent to the statement that GR(t)2 = 0
for negative t). If we close the contour from below we get the following
residues (times a −2πi factor)

(P1, P3) : 0; p0 = −Ep;

(P1, P4) :
2πi

4E2
p

1

−ω + 2iΓp
; p0 = −Ep;

(P2, P3) :
2πi

4E2
p

1

−ω + 2iΓp
; p0 = Ep;

(P2, P4) :
2πi

4E2
p

1

ω − 2Ep
; p0 = +Ep;

By taking the complex conjugate of Gra(p+ ω)Gra(p), we see that also
the term GA(p+ ω)GA(p) is subleading with respect to GR(p+ ω)GA(p)
in the limit of vanishing ω.

3.E Analytic continuation

Here we present the important steps to derive the analytical continuations
to real time of the BSE. To do this, we closely follow the technique used
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3.E Analytic continuation

in [115, 183]. There, the authors make extensive use of the formula, valid
for a generic function G̃(iωn + iνm, iωn),

T
∑
n

G̃(iωn + iνm, iωn) =
∑
cuts

∫ ∞
−∞

dξ

2πi
n(ξ)Disc G̃(ξ + iνm, ξ)

−
∑
poles

n(ξi)Res[G̃(ξ + iνm, ξ), ξi]. (3.263)

Because of the recursive BSE (3.128), the analytical structures of G̃(iωn +
iνm, iωn) is represented by two branch cuts at Im[ξ+iνn] = 0 and Im[ξ] = 0.
The BSE resums the full series of correlation function with n rungs,
relating the n + 1 to the n, and taking the n → ∞ limit. The n = 0
correlation function is simply G(P +Q)G(P ), so it has two branch cuts at
Im[ξ + iνn] = 0 and Im[ξ] = 0. By induction, it is easy to see that any n
has the same analytical structure, and so for a general BSE of the form
(3.128), the singularities correspond to the singularities of the product
G(P +Q)G(P ) [115]. This means that the expression for the Matsubara
sum is

T
∑
m

G̃(iωm + iνn, iωn) =
∑
cuts

∫ ∞
−∞

dξ

2πi
n(ξ) Disc G̃(ξ + iνm, ξ) (3.264)

= −
∫ ∞
−∞

dξ

2πi
n(ξ) [G̃(ξ + iνn, ω + i0+)− G̃(ξ + iνn, ξ + i0−)]

−
∫ ∞
−∞

dξ

2πi
n(ξ) [G̃(ξ + i0+, ξ − iνn)− G̃(ξ + i0−, ξ − iνn)]

Plugging (3.127) in the previous equation and using G(ω + i0+) = GR(ω)
and G(ω + i0−) = GA(ω), we get

T
∑
m

G̃(iωm + iνn, iωm) =

−
∫ ∞
−∞

dξ

2πi
n(ξ)[G(ξ+iνm)Γ(ξ+iνm, ξ+i0

+)+G(ξ−iνn)Γ(ξ+i0+, ξ−iνn)]GR(ξ)

+

∫ ∞
−∞

dξ

2πi
n(ξ)[G(ξ+iνn)Γ(ξ+iνn, ξ+i0

−)+G(ξ−iνn)Γ(ξ+i0−, ξ−iνn)]GA(ξ)
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3 Towards the Quantum Critical Point

We now use the fact that we are interested in the following analytical
continuation in the external frequency: iνn → ν + i0+. Thus

T
∑
m

G̃(iωm + ν + i0+, iωm) =

−
∫ ∞
−∞

dξ

2πi
n(ξ)

[
G(ξ + ν + i0+)Γ(ξ + ν + i0+, ξ + i0+)

+G(ξ − ν + i0−)Γ(ξ + i0+, ξ − ν + i0−)
]
GR(ξ)

+

∫ ∞
−∞

dξ

2πi
n(ξ)

[
G(ξ + ν + i0+)Γ(ξ + ν + i0+, ξ + i0−)

+G(ξ − ν + i0−)Γ(ξ + i0−, ξ − ν + i0−)
]
GA(ξ) =

−
∫ ∞
−∞

dξ

2πi
n(ξ)

[
GR(ξ + ν)Γ(ξ + ν + i0+, ξ + i0+)

+GA(ξ − ν)Γ(ξ + i0+, ξ − ν + i0−)
]
GR(ξ)

+

∫ ∞
−∞

dξ

2πi
n(ξ)

[
GR(ξ + ν)Γ(ξ + ν + i0+, ξ + i0−)

+GA(ξ − ν)Γ(ξ + i0−, ξ − ν + i0−)
]
GA(ξ).

In the previous expression, we can shift the integration variable in the
second and last term and we get

T
∑
m

G̃(iωm + ν + i0+, iωm) =

−
∫ ∞
−∞

dξ

2πi
[n(ξ)GR(ξ + ν)Γ(ξ + ν + i0+, ξ + i0+)GR(ξ)

− n(ξ + ν)GA(ξ)Γ(ξ + ν + i0−, ξ + i0−)GA(ξ + ν)]

−
∫ ∞
−∞

dξ

2πi
(n(ξ + ν)− n(ξ))[GA(ξ)GR(ξ + ν)Γ(ξ + ν + i0+, ξ + i0−)].

As we are interested in the ν → 0 limit, we know that the product
GA(ξ)GR(ξ + ν) dominates the sum. This allows us to write

T
∑
m

G̃(iωm + ν + i0+, iωm) =

∫ ∞
−∞

dξ

2πi
(n(ξ + ν)− n(ξ))

×GA(ξ)GR(ξ + ν)Γ(ξ + ν + i0+, ξ + i0−).

The previous analysis has to be carried out with all the Matsubara fre-
quency terms in the RHS of the BSE. The full correlation function will
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3.F Consistency of the result for the N ×N matrix model

involve the Matsubara sum over the frequencies pn, which satisfies the
BSE∑
pn

∫
p

G̃(ipn + iνn′ , ipn) =
∑
pn

∫
p

G(ipn + iνn′)G(ipn) (3.265)

×
[

1 +
1

N

∑
m

∫
l

G̃(ilm + iνn′ , ilm)
[
ΛLO + ΛNLO(ilm, ipn; iνn′)

]]
.

A similar treatment was done in [135], where the authors considered a
strict zero external frequency limit. We performed a similar analysis by
retaining the small but still non zero external frequency. In both cases,
the crucial consequences of the Matsubara sum are the following: since the
leading order kernel ΛLO does not present any singularity, it vanishes in
the Matsubara sum. So we are left with only the ΛNLO kernel in the BSE.
Moreover, together with the pinching-pole approximation, the matsubara
sum pick only a particular analytic continuation which can be shown
reproduces the result obtained in real time formalism [115].

3.F Consistency of the result for the N ×N
matrix model

As we anticipated earlier, we can verify our result by means of the identity
(3.32). We study the BSE for GAaRr(p, q|k) and then send k → −k:

GAaRr(p, q|k) = iGAR(p+ k)Gar(−p)(2π)4δ4(p− q)+

−GAα1(p+k)Gaβ1(−p)
∫
l

Kα1β1α4β4
(p+k,−p,−l−k, l)Gα4β4Rr(p, q|k).

(3.266)

By expanding the sum over the extended SK indices, we observe that since
GAA = Gaa = 0, only one combination has a non vanishing contribution

GAaRr(p, q|k) =iGAR(p+ k)Gar(−p)(2π)4δ4(p− q)

−GAR(p+ k)Gar(−p)
∫
l

KRrα4β4
(p, l|k)Gα4β4Rr(l, q|k)

=iGAR(p+ k)Gar(−p)(2π)4δ4(p− q)

−GAR(p+ k)Gar(−p)
∫
l

KRrAa(p, l|k)GAaRr(l, q|k).
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3 Towards the Quantum Critical Point

By writing the kernel KRrAa,

KRrAa(p, l|k) =
1

4

N2 + 5

6

∫
s

GRr(s)GRr(s− l + p) = KAaRr(p, l|k),

(3.267)
we arrive to the BSE for the GAaRr(p, q|k) Green’s function

GAaRr(p, q|k) =GAR(p+ k)Gar(−p)
(
i(2π)4δ4(p− q)

− 1

2

∫
l

KAaRr(p, l|k)GAaRr(l, q|k)

)
. (3.268)

By sending k → −k and using the pinching-pole approximation, we obtain
the identity (3.32).

3.G From the BSE to the kinetic equation
in the φ4 matrix model

In this appendix we explicitly show how the kernel of the BSE for transport
(3.41), once on-shell, reproduces the kinetic equation for transport (3.62).
In the case of the bosonic matrix model, the scattering amplitude is
independent of the momenta and equals, for any N ,

|T |2 = g4N
2 + 5

6
. (3.269)

In the following we will need some identity for the Bose-Einstein distribu-
tion function

n(p1)n(p2)(1 + n(p3))(1 + n(p4))δ(p0
1 + p0

2 − p0
3 − p0

4) =

(1 + n(p1))(1 + n(p2))n(p3)n(p4)δ(p0
1 + p0

2 − p0
3 − p0

4), (3.270)

together with the symmetry property of the Bose-Einstein distribution
function and the spectral density with respect to the s→ −s transforma-
tion

(1 + n(−s)) = −n(s) ⇔ n(−s) = −(1 + n(s)), (3.271)

ρfree(s) =
2π

2Es

(
δ(s0 − Es)− δ(s0 + Es)

)
= −ρfree(−s). (3.272)
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Now, the kernel of the BSE equals (3.41)

Rtransp(p, l) = −|T |
2

2

1 + n(l0)

1 + n(p0)

∫
s1,s2

ρ(s1)ρ(s2)(1 + n(s1))n(s2)

× (2π)4δ4(s1 − s2 + l − p). (3.273)

In the BSE, the structure of the expansion is such that the propagator
occurring in the rungs are taken as free propagators. So we can insert the
free spectral density in the previous equation and we get

Rtransp(p, l) = −1

2
|T |2(2π)2 1 + n(l0)

1 + n(p0)

∫
s1,s2

(1 + n(s1))n(s2)

4Es1Es2

(2π)4δ4(s1 − s2 + l − p)

× (δ(s0
1 − Es1)− δ(s0

1 + Es1))(δ(s0
2 − Es2)− δ(s0

2 + Es2)).

We now have to evaluate the delta function, which constraints the dynamics∫
s1,s2

ρfree(s1)ρfree(s2)(1 + n(s1))n(s2)(2π)4δ4(s1 − s2 + l − p) =

=

∫
s1,s2

(2π)4δ3(s1 − s2 + l− p)
[

(1 + n(Es1))n(Es2)δ(Es1 −Es2 + l− p)+

(1+n(Es2))n(Es1)δ(−Es1 +Es2 +l−p)+n(Es1)n(Es2)δ(−Es1−Es2 +l−p)

+ (1 + n(Es1))(1 + n(Es2))δ(Es1 + Es2 + l − p)
]

=

∫
s1,s2

(2π)4δ3(s1− s2 + l− p)
[

2(1 +n(Es1))n(Es2)δ(Es1 −Es2 + l− p)+

+n(Es1)n(Es2)δ(−Es1−Es2+l−p)+(1+n(Es1))(1+n(Es2))δ(Es1+Es2+l−p)
]
.

Thus

Rtransp(p, l) = −1

2
|T |2 2π

1 + n(p0)

∫
s1,s2

l=p+s2−s1

(3.274)

[δ(Es1 − Es2 + l − p)2(1 + n(l0))(1 + n(Es1))n(Es2)

+ δ(−Es1 − Es2 + l − p)(1 + n(l0))n(Es1)n(Es2)

+δ(Es1 + Es2 + l − p)(1 + n(l0))(1 + n(Es1))(1 + n(Es2))] .

113



3 Towards the Quantum Critical Point

In the pinching pole approximation, the product of retarded and advanced
Green’s function gives a delta function which puts the momentum p on-
shell. This in turn places on-shell also the momentum l, since the only
non trivial solution is supported on physical states. Consequently

Rtransp(p, Ep; l, El) =− 1

2
|T |2 2π

1 + n(p0)

∫
s1,s2

l=p+s2−s1

[δ(Es1 − Es2 + El − p)2(1 + n(El))(1 + n(Es1))n(Es2)

+ δ(−Es1 − Es2 + El − p)(1 + n(El))n(Es1)n(Es2)

+δ(Es1 + Es2 + El − p)(1 + n(El))(1 + n(Es1))(1 + n(Es2))] .

We recognize the processes ps2 → ls1 (with a factor 2 for s2 ↔ s1;
ps2s1 → 1 and p→ s1s2l). These are all “loss-”rates. The last two terms
cancel, however, as it is kinematically forbidden for a on-shell particle of
mass m to decay to three on-shell particles of the same mass m and vice
versa. The previous term notably simplifies into

Rtransp(p, Ep; l, El) =− 1

2
|T |2 2π

1 + n(Ep)

∫
s1,s2

l=p+s2−s1

(3.275)

[δ(Es1 − Es2 + El − Ep)2(1 + n(El))(1 + n(Es1))n(Es2)] .

The other “negative”-energy kernel gives – using (1 + n(−s)) = −n(s)

Rtransp(p, Ep|l,−El) =
1

2
|T |2 2π

1 + n(Ep)

∫
s1,s2

l=p+s2−s1

(3.276)

[δ(Es1 − Es2 − El − Ep)2n(El)(1 + n(Es1))n(Es2)

+ δ(−Es1 − Es2 − El − Ep)n(El)n(Es1)n(Es2)

+δ(Es1 + Es2 − El − Ep)n(El)(1 + n(Es1))(1 + n(Es2))] .
(3.277)

We recognize the processes pls2 → s1, pls1s2 → 0, pl→ s1s2. Using total
energy conservation, these should be interpreted as “gains” pls2 ← s1,
pls1s2 ← 0, pl ← s1s2. Again, the first two processes are kinematically
not allowed. Thus

Rtransp(p, Ep|l,−El) =
1

2
|T |2 2π

1 + n(Ep)

∫
s1,s2

l=p+s2−s1

(3.278)

[δ(Es1 + Es2 − El − Ep)n(El)(1 + n(Es1))(1 + n(Es2))] .
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3.G From the BSE to the kinetic equation in the φ4 matrix model

The object to prove is that the collision kernel equals

Ĉ(p, l) = −
[∫

l

2Γpδ(p− l) +
1

2Ep

(
Rtransp(p, Ep|l, El) +Rtransp(p, Ep|l,−El)

)]
.

(3.279)

Comparing (3.275) and (3.278) to the Boltzmann equation (3.62) which,
in a more compact form, reads

∂tf(p, t) =
1

(1 + n(p))

∫
l,s1,s2

l=p+s2−s1

|T |2/2
2Ep

(3.280)

× [(2π)δ(Es1 − Es2 + El − p)2(1 + n(El))(1 + n(Es1))n(Es2)

−(2π)δ(Es1 + Es2 − El − p)n(El)(1 + n(Es1))(1 + n(Es2))

−
∫
l′

(2π)δ(Es1 + Es2 − El − p)n(El)(1 + n(Es1))(1 + n(Es2))δ(p− l′)f(l′, t)

 ,
we realize that we are missing the last term. As we are going to show, this
is represented by imaginary part of the self-energy 2Γp. We thus wish to
check that

−2Γp = − 2

1 + n(p)
f(p, t)

∫
l,p2,p4

(2π)4δ4(pos + los − p2
os − p4

os)|T |2
2Ep

n(El)(1 + n(Ep2))(1 + n(E4)). (3.281)

The imaginary part of the self-energy can be easily expressed in terms of
the kernel as

Γp = −1

6

∫
d3l

(2π)3

1

4EpEl
(Rtransp(p, Ep|l, El)−Rtransp(p, Ep|l,−El)).

(3.282)
Now expanding the kernel, we obtain
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3 Towards the Quantum Critical Point

− 2Γp =
1

3

∫
d3l

(2π)3

1

4EpEl
(K(p, Ep|l, El)−K(p, Ep|l,−El)) =

= −1

3

|T |2
2

1

1 + n(Ep)

∫
l,s1,s2

(2π)4δ4(s1
os − s2

os + los − pos)

2Ep

2(1 + n(El))(1 + n(Es1))n(Es2)+

− 1

3

|T |2
2

1

1 + n(Ep)

∫
l,s1,s2

(2π)4δ4(s1
os − s2

os + los − pos)

2Ep

n(El)(1 + n(Es1))(1 + n(Es2)). (3.283)

By relabeling s2 ↔ ` in the first line (and switching p → −p and s1 →
−s1), we note that the two lines add into

− 2Γp = −|T |
2

2

1

1 + n(Ep)

∫
l,s1,s2

(2π)4δ4(s1
os − s2

os + los − pos)

2Ep

n(El)(1 + n(Es1))(1 + n(Es2)) =

= − 1/2

1 + n(p)

∫
l,s1,s2

(2π)4δ4(pos + los − s1
os − s2

os)|T |2
2Ep

n(El)(1 + n(Es1))(1 + n(Es2)). (3.284)

The last equation completes the proof that in the late time limit, the BSE
for the retarded Green’s function of the bilocal density operator precisely
reproduces the Boltzmann equation. Thus we conclude that, in terms of
our earlier notation, (3.74) and (3.75) are satisfied.
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4 Black Hole scrambling from
hydrodynamics

We argue that the gravitational shock wave computation used to extract the
scrambling rate in strongly coupled quantum theories with a holographic
dual is directly related to probing the system’s hydrodynamic sound modes.
The information recovered from the shock wave can be reconstructed in
terms of purely diffusion-like, linearized gravitational waves at the horizon
of a single-sided black hole with specific regularity-enforced imaginary
values of frequency and momentum. In two-derivative bulk theories, this
horizon “diffusion” can be related to late-time momentum diffusion via
a simple relation, which ceases to hold in higher-derivative theories. We
then show that the same values of imaginary frequency and momentum
follow from a dispersion relation of a hydrodynamic sound mode. The
frequency, momentum and group velocity give the holographic Lyapunov
exponent and the butterfly velocity. Moreover, at this special point along
the sound dispersion relation curve, the residue of the retarded longitudinal
stress-energy tensor two-point function vanishes. This establishes a direct
link between a hydrodynamic sound mode at an analytically continued,
imaginary momentum and the holographic butterfly effect. Furthermore,
our results imply that infinitely strongly coupled, large-Nc holographic
theories exhibit properties similar to classical dilute gasses; there, late-time
equilibration and early-time scrambling are also controlled by the same
dynamics.1

4.1 Introduction

The notion that dynamics at widely separated timescales is governed by
independent processes lies at the heart of modern physics. The emergence
of collective phenomena is a clear example. At very short timescales,
the physics is described by microscopic “far-from-equilibrium” dynamics;
at long timescales, it is the universal statistics-dominated processes that

1The contents of this chapter have been published in S. Grozdanov, K. E. Schalm and
V. Scopelliti, Phys. Rev. Lett. 120 (2018) no.23, 231601.
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4 Black Hole scrambling from hydrodynamics

control the onset of equilibrium. Ironically, the most prevalent textbook
example of collective emergence, the computation by Maxwell of the shear
viscosity of a classical ideal gas, fails this guideline. As is well known, in
dilute gases the shear viscosity and some other transport coefficients are
directly related to the 2-to-2 scattering rates of the microscopic constituents.
In dilute gases, the early-time physics thus also controls the late-time
approach to equilibrium. Our full understanding of kinetic theory explains
why dilute gases violate the canonical notion of separation of scales. The
dilute gas is a special case for which the BBGKY hierarchy that builds
up the long-time behavior from microscopic processes truncates [127, 139–
146].

On the other hand, in generic (e.g. dense) many-body systems, the
early-time physics is distinct from late-time evolution. Of course, this does
not imply that the early-time physics is irrelevant to collective behavior,
as indeed, it crucially ensures ergodicity or mixing (scrambling). Neverthe-
less, one generically distinguishes (at least) two timescales: an early-time
ergodic and a late-time collective scale. In classical systems, ergodicity is
driven by chaotic non-linear dynamics, whereas statistics and universality
drive collective behavior. These two different scales have a direct man-
ifestation in classical dynamical systems analysis. Chaotic dynamics is
characterized by Lyapunov exponents encoding the exponential divergence
of trajectories with infinitesimally different initial conditions—the butterfly
effect. A Gibbs ensemble of such initial conditions, however, equilibrates
with a generically distinct characteristic timescale set by Pollicott-Ruelle
resonances [151, 205, 206], again exemplifying the notion that widely
separated timescales are driven by different physics.

Perturbative quantum field theories are usually studied in the dilute
regime and as in the classical gas, both timescales are driven by the same
physics [44, 69, 136, 152–154]. Strongly coupled, dense, quantum theories
on the other hand are expected to have distinct scales. Triggered by studies
[12, 16, 151, 207, 208] on collective dynamics in strongly coupled large-Nc
quantum systems holographically dual to black holes, Blake observed that
in the simplest such systems, late-time diffusion and early-time ergodic
dynamics do appear to be governed by the same physics [64], similar to the
dilute gas rather than the generic expectation. Follow-up studies extended
the range of systems [33, 65, 67, 209, 210], found counterexamples [211]
and observed that it only applied to thermal diffusivity [66, 212].

In this work, we will show how the holographic computations of quantum
ergodic dynamics—the holographic butterfly effect—and hydrodynamics
are related. In particular, we will show that the characteristic exponential
growth exists on the level of (retarded) two-point functions when the
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4.2 Scrambling and hydrodynamical transport

hydrodynamic sound mode is driven to instability by a choice of a specific
value of momentum. This result indicates an intriguing similarity between
the behavior of infinitely strongly coupled large-Nc theories holographically
dual to two-derivative gravity and classical dilute gases in the sense that
chaotic dynamics is entirely describable by the same physics of hydrody-
namic modes, albeit excited outside of the hydrodynamic regime of small
frequency ω and momentum k compared to the temperature scale T of
the CFT. In this Letter, we will only focus on charge-neutral systems,
although we expect our findings to be valid also for charged states and
for systems with momentum relaxation in which long-lived longitudinal
modes are controlled by diffusion.

4.2 Scrambling and hydrodynamical
transport

By convention, the early-time onset of ergodicity is characterized by the
scrambling rate λ and the butterfly velocity vB , which are defined from the
early-time rate of exponential growth of out-of-time-ordered correlation
function (OTOC) of local (unbounded) operators,

C(t, x) = −〈[Ŵ (t, x), V̂ (0)]†[Ŵ (t, x), V̂ (0)]〉β
2〈Ŵ (t, x)Ŵ (t, x)〉β〈V̂ (0)V̂ (0)〉β

' e2λ(t−x/vB) . (4.1)

Here, V̂ (t, x) and Ŵ (t, x) are generic operators, and expectation values
are taken in the thermal ensemble with temperature T = 1/β. In systems
with a classical analogue for which such growth persists as t → ∞ and
for special (unbounded) operators, this indeed computes the Lyapunov
exponent λL = λ associated with chaotic behavior underpinning classical
ergodicity [148–150].

Not all systems exhibit late-time regime of exponential growth of this
correlator—in fact, most quantum systems do not [155, 156], illustrating
the tension between classical chaos and quantum dynamics. Large-Nc
systems with a holographic dual do exhibit such growth. Extrapolating
from the insight that any perturbation carries energy, it has been argued
that this exponential rate can be read off from a gravitational shock
wave propagating along the double-sided (maximally extended) black hole
horizon [12].

The non-linear shock wave calculation implicitly focusses on energy-
momentum dynamics in the dual theory, rather than generic dynamics, as
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4 Black Hole scrambling from hydrodynamics

this is what purely gravitational spacetime dynamics and waves encode.
On the other hand, the collective late-time dynamics of energy-momentum
is also well-understood with its IR dynamics governed by hydrodynamics.
Its behavior can be computed from linearized gravitational perturbations
(see e.g. [100, 120, 213]). The mere fact that the gravitational shock
wave encoding early-time ergodicity describes the dynamics of energy-
momentum, as do hydrodynamic excitations, is far from sufficient for
establishing any relation between them. A more telling fact is that the
exact non-linear shock wave solution is actually also a solution to linearized
gravitational equations. This is what we show now. This results then leads
to our discovery that when perturbed with a special imaginary momentum,
the late-time hydrodynamic sound mode reflects the leading-order early-
time instability of the system with the exponential growth set by λL and
the butterfly velocity vB .

4.3 Shock waves from linearized
gravitational perturbations

Chaotic properties normally extracted from shock waves can be inferred
directly from a single-sided, linearized analysis of the bulk gravitational
equations. We study five-dimensional, two-derivative, classical gravity
with the action

S =
1

2κ2
5

∫
d5x
√−g

[
R+

12

L2
+ Lmatter

]
, (4.2)

which gives rise to the following Einstein’s equations (in units where
L = 1):

Gµν ≡ Rµν −
1

2
gµνR− 6gµν = κ2

5 T
matter
µν . (4.3)

In the longitudinal sound channel, in the hµz = 0 gauge with momentum
in the z-direction, we write a first-order perturbed metric as

ds2 = −f(r)dt2 +
dr2

f(r)
+ b(r)

(
dx2 + dy2 + dz2

)
(4.4)

−
[
f(r)H1dt

2 − 2H2dtdr +
H3dr

2

f(r)
+H4

(
dx2 + dy2

)]
,

where Hi are functions of t, z and r, and f(rh) = 0. We demand that the
perturbation is null in the radial direction at the horizon, set H4(rh) = 0
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4.3 Shock waves from linearized gravitational perturbations

and write

H1 = H3 = (C+W+(t, z, r) + C−W−(t, z, r)) , (4.5)

H2 = (C+W+(t, z, r)− C−W−(t, z, r)) . (4.6)

First, consider Tmatterµν = 0 to focus on the AdS-Schwarzschild black
brane background with b(r) = r2 dual to thermal N = 4 supersymmetric
Yang-Mills (SYM) theory. We can write W± as

W±(t, z, r) = e
−iω

[
t±

∫ r dr′
f(r′)

]
+ikz

h±(r) , (4.7)

where h±(r) are regular at r = rh. Using Grr = 0, then

h±(r) = e
∫ r k2±9iωr′−12r′2

3r′f(r′) dr′
. (4.8)

Imposing regularity [214, 215] on (4.8) fixes a single relation between ω,
k2 and rh. Ensuring the remaining equations of motion (4.3) are solved at
r = rh, gives a second, (advanced and retarded) diffusive condition,

ω± ≡ ± iDk2 = ± i 1

3πT
k2 . (4.9)

Combined with the horizon-regularity, this fixes the solution in terms of a
specific imaginary momentum mode

k2 ≡ −µ2 = −6π2T 2 , (4.10)

which gives the Lyapunov exponent and the butterfly velocity, i.e. for
modes with e−iωt+ikz,

ω± ≡ ∓iλL , λL = 2πT , (4.11)

vB ≡
∣∣∣ω±
k

∣∣∣ =
√
λLD . (4.12)

Away from the horizon, the corrections to the present solution can be
consistently constructed in a small

√
r − rh expansion, requiring H4 6= 0.

For a regular Tmatterµν 6= 0, one can see the horizon diffusion arise more
generally. For a background metric (4.4), the regularity of Grr implies

b(rh) = b′(rh)f ′(rh)/8 . (4.13)

Assuming that Ttr(rh) = 0, it follows immediately from Gtr(rh) = 0 that
at r = rh,

∂tW± = ∓D ∂2
zW± , (4.14)
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4 Black Hole scrambling from hydrodynamics

with the horizon diffusion coefficient, as in [64]:

D =
v2
B

λL
=

2

3

1

b′(rh)
=

1

12

f ′(rh)

b(rh)
. (4.15)

Assuming that the solution is not supported by Tmatterµν and requiring
regularity in Grr, we again obtain the Lyapunov exponent from Eq. (4.11)
and imaginary momentum

k2 = −3

4
b′(rh)f ′(rh) = −3πT b′(rh) . (4.16)

Therefore, we have recovered all known shock wave results from a linear
gravitational perturbation of a single-sided black brane. The validity of
this solution requires sufficient decoupling of Lmatter at the horizon, which
is implicitly assumed in the shock wave computation. Generically, this will
not be the case. The sound channel couples all scalar excitations, and one
needs to demand that all their equations of motion are satisfied as well.

Higher-derivative gravity corrections encode (inverse) coupling constant
corrections in the dual field theory [165, 216–223]. An analogous calculation
as in two-derivative theories can now be done e.g. in Gauss-Bonnet theory
(for details regarding the theory see e.g. [223]), where we also recover the
known results of Ref. [15], 2

ω± = ∓2iπT , k2 = −6π2T 2

N2
GB

, v2
B =

2

3
N2
GB . (4.17)

Focusing again on the two-derivative action (5.7) dual to N = 4 SYM
at large Nc and infinite coupling, and transforming the metric (4.4) to
Kruskal-Szekeres coordinates, one finds

ds2 =A(UV ) dUdV +B(UV )dx2

−A(UV ) eikz
(
C+

dU2

U
− C−

dV 2

V

)
. (4.18)

Our solution thus takes the form of the exact shock wave solution ds2 =
A(UV )dUdV +B(UV )dx2−A(UV )δ(U)h(x)dU2, but travelling along both
null U = 0 and V = 0. The only difference is that the shock solution has a
Dirac delta function support hUU ∝ δ(U), whereas the solution presented
here has support given by a (smeared) hUU ∝ ∆(U) ≡ 1/U . At the level

2NGB is conventionally set to N2
GB =

(
1 +
√

1− 4λGB
)
/2, which ensures that the

boundary speed of light is one.
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4.4 Hydrodynamics and the sound mode

of the linearized Einstein’s equations, the function ∆(U) ≡ 1/U satisfies
the distributional identities used to construct the shock wave solution:
U∂U∆(U) = −∆(U) and U2∂2

U∆(U) = 2∆(U). Distributional identities of
the type F (U)∆2(U) ≈ 0, when integrated over U for sufficiently smooth
F (U), are satisfied approximately but not exactly as with δ2(U) (see
e.g. [224]). A distinct difference is that the δ(U)-shock is supported by
energy-momentum at the horizon. The linearized solution (4.18) with a
less singular support is a leading-order in 1/U approximation of an exact
smooth solution to Einstein’s equation with no source of energy-momentum.
It is a longitudinal (sound) mode, which encodes the correct Lyapunov
exponent and the butterfly velocity.

4.4 Hydrodynamics and the sound mode

Sound is well understood as a hydrodynamical phenomenon. In holography,
it is encoded by the low-energy limit of the sound channel spectrum [120,
225] and is described by a pair of longest-lived modes ω∗±(k). Within the
hydrodynamic approximation (expansion of ω∗± for |k|/T � 1),

ω∗±(k) ≈ ±
∞∑
n=0

V2n+1k
2n+1 − i

∞∑
n=0

Γ2n+2k
2n+2, (4.19)

which is analytically known for N = 4 SYM to O(k4) at infinite cou-
pling, i.e. to third order in the hydrodynamic expansion [226]. All Vn
and Γn are real and for N = 4 SYM at infinite coupling, V1 = 1/

√
3,

Γ2 = 1/(6πT ), V3 = (3− 2 ln 2)/(24
√

3π2T 2) and Γ4 = (π2− 24 + 24 ln 2−
12 ln2 2)/(864π3T 3). For real k, Eq. (4.19) describes attenuated propagat-
ing modes. However, for imaginary k, which is required to construct the
above gravitational solution, both ω∗± and k are purely imaginary. To find
ω∗±(k) for imaginary k, we compute the quasinormal mode spectrum (poles
of the retarded sound channel stress-energy tensor two-point function, e.g.
the energy-energy GRT 00T 00(ω, k)) [120], which can be done analytically in
the hydrodynamic expansion (small |ω|/T � 1, |k|/T � 1) or numerically
in the holographic model for any ω and k. Our first observation is that for
imaginary k, the system is driven to instability, which results in at least
one of the two sound modes in (4.19) having Im[ω] > 0. Our main result,
however, is that the fully numerically computed frequency (dispersion
relation) of the most unstable sound mode ω∗+ asymptotically approaches

the Lyapunov exponent growth rate k = iµ =
√

6iπT :

ω∗+(iµ) = iλL . (4.20)
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4 Black Hole scrambling from hydrodynamics

Precisely at k = iµ, the quasinormal mode solution does not exist, even
though it exists infinitesimally close to this point when approached from
either side along the imaginary k dispersion curve. This allows us to
deduce that at the special point ω∗+(iµ), cf. Eqs. (4.10) and (4.11), the
retarded longitudinal two-point function of the stress-energy tensor has
a hydrodynamic pole which contains all information about many-body
chaos, λL and vB . Furthermore, at the point of chaos, its residue vanishes:

ResGRT 00T 00(ω = ω∗+(iµ) = iλL, k = iµ) = 0 . (4.21)

The two-point correlator identity (4.21) is sufficient for uniquely specify-
ing the point of chaos in the CFT, eliminating the need for the OTOC
considerations to find µ.

We note that, intriguingly, the dispersion relation around this point
can be reasonably well approximated by ω = vBk. This is evident from
the numerical computations and from the third-order hydrodynamic ap-
proximation to ω+(k), which reproduces the full dispersion relation of the
dominant mode rather well, giving ω∗+(iµ) ≈ 0.990× iλL. Our results are
presented in Fig. 4.1.

4.5 Discussion

These results show that the holographic butterfly effect and black hole
scrambling can be understood in terms of a hydrodynamic sound mode
at a specific imaginary momentum (exponentially spatially growing fluid
profile), which is fixed by dual Einstein’s equations governing a radially
null sound mode and the condition of regularity (without additional energy-
momentum) at the horizon. At ω∗+(iµ), the sound mode dispersion relation
gives the Lyapunov exponent associated with holographic many-body
chaos. Furthermore, even though |k|/T lies at the edge or outside of
the hydrodynamic regime [165, 227], the full dispersion relation is well
described by the hydrodynamic approximation.

What are the physical implications of our observations? Several recent
papers have speculated on relations between late-time diffusion and the
butterfly effect [64–67, 136, 154, 211, 228, 229]. The late-time behavior of
hydrodynamic excitations in a translationally invariant, uncharged CFTs
is controlled by momentum diffusion. In theories holographically dual to
two-derivative gravity, momentum diffusion D is completely determined
by horizon data [119] while charge diffusion is not. Given a (background)
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Figure 4.1: Dispersion relations of the hydrodynamic sound modes, plotted for imaginary
dimensionless w ≡ ω/2πT and q ≡ k/2πT . The blue lines depict the third-order hydro-
dynamic result [226] and the red crosses the numerically computed w∗±(q). Dashed lines
indicate the values of ω = iλL and k = iµ. The dotted line is the linear dispersion relation
w = vBq. The inlay depicts a zoomed-in plot around k = iµ.

metric (4.4) and the shock wave diffusivity D (cf. Eq. (4.15)):

D

D
=

3 b′(rh)

8πT
. (4.22)

In large-Nc N = 4 SYM theory at infinite coupling, this reduces to
D/D = 3/4. However, as we move away from infinite coupling and
consider higher-derivative bulk theories, D is no longer computable in
terms of simple horizon data, which results in deviations of η/s from
1/4π. Since the butterfly velocity and the Lyapunov exponent are by
construction computed only at the horizon, we have a-priori no reason to
expect that there continues to exist a simple relation between D and D
in holographic duals with more then two derivatives. Indeed, the ratio of
D/D in Gauss-Bonnet has non-trivial coupling dependence [15, 223], and
is thus not universal 3.
3For a discussion regarding the validity of hydrodynamics in the presence of coupling

constant corrections, see [121, 165, 222, 223, 230, 231].
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4 Black Hole scrambling from hydrodynamics

As we emphasized in the Introduction, a relation, such as (4.22), which
depends only on rh ∼ T , between late-time and early-time physics is
rather unexpected. The exception is the classical dilute gas. Its early-time
chaos and late-time diffusion are controlled by the same process (2-to-2
scattering). Our findings show that the situation is similar in an infinitely
strongly coupled, large-Nc CFT. As a result, early-time scrambling and
late-time hydrodynamics are qualitatively related and appear to be driven
by the same physics—hydrodynamics.

The reason that an obtuse relation between microscopic ergodicity
from shock waves and late-time diffusion is sought after is that black
holes are special in that their ergodicity rate λL saturates a conjectured
bound λL ≤ 2πT [16]. If early-time ergodicity indeed controlled late-time
diffusion, this bound could imply a long-sought fundamental diffusion
bound [229, 232] 4. Such a fundamental bound was re-postulated several
years ago based on early results on collective dynamics in holography by
noting that the shear viscosity in these systems only depends on horizon
data [118, 236]. Expressions such as Eq. (4.22) make it clear, however,
that the Lyapunov exponent bound does not yield a diffusion bound. The
dependence on the temperature through rh or the presence of additional
scales allows this ratio to take any value. We note that such temperature
dependence is also present in the classical dilute gas of particles with mass
m and density ρ through the average velocity v. Its shear viscosity η and
the Lyapunov exponent [161] behave as

η ∼ m
√
〈v2(T )〉
σ2−2

, λL ∼ ρ(T )
√
〈v2(T )〉σ2−2 , (4.23)

with σ2−2 the 2-to-2 scattering rate. As a final comment, we note that the
evolution of the unstable hydrodynamic mode, albeit driven to instability
with a choice of an imaginary momentum, may not only grow with expo-
nential growth faster than Im[ω] > λL = 2πT but can also have a local
group velocity larger than vB at various values of imaginary k (cf. Fig. 4.1).
As also found in [160, 229], this indicates that the butterfly velocity may
not in all generality be a bounding velocity. Understanding the relation
between these observations and bounds on λL and the speed of propagation
of quantum correlations remains an important open problem, as does a
better understanding of the relation between many-body microscopic chaos
and instability-induced collective hydrodynamic turbulence.

4For two examples of rigorous diffusion bounds in one-dimensional systems, see [233].
In holography, one can derive bounds on conductivities in disordered systems [234,
235] but as of yet, not on diffusion.
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5 Regulator dependence of the
OTOC and kinetic theory at
rescue

We study the contour dependence of the out-of-time-ordered correlation
function (OTOC) both in weakly coupled field theory and in the Sachdev-
Ye-Kitaev (SYK) model. We show that its value, including its Lyapunov
spectrum, depends sensitively on the shape of the complex time contour in
generic weakly coupled field theories. For gapless theories with no thermal
mass, such as SYK, the Lyapunov spectrum turns out to be an exception;
their Lyapunov spectra do not exhibit contour dependence, though the
full OTOCs do. Our result puts into question which of the Lyapunov
exponents computed from the exponential growth of the OTOC reflects
the actual physical dynamics of the system. We argue that, in a weakly
coupled Φ4 theory, a kinetic theory argument indicates that the symmetric
configuration of the time contour, namely the one for which the bound on
chaos has been proven, has a proper interpretation in terms of dynamical
chaos. Finally, we point out that a relation between these OTOCs and a
quantity which may be measured experimentally — the Loschmidt echo —
also suggests a symmetric contour configuration, with the subtlety that
the inverse periodicity in Euclidean time is half the physical temperature.
In this interpretation the chaos bound reads λ ≤ 2π

β = πTphysical.
1

5.1 Introduction

It has long been known that chaos, understood as the exponential sensitivity
of the dynamics to initial conditions, does not have an immediate equivalent
in the quantum dynamics governed by the Schrödinger equation. In
quantum systems one needs to define quantum chaos in a more indirect
way. One way to do so, is to measure the correlation between an operator
W (t) and some earlier perturbation V (0) and compare this with the

1The contents of this chapter have been published in A. Romero-Bermúdez, K. E.
Schalm and V. Scopelliti, J. High Energ. Phys. 2019, 107 (2019).
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5 Regulator dependence of the OTOC and kinetic theory at rescue

correlation where the perturbation V (0) is performed after operator W (t)
is inserted:

〈ψfinal|W (t)V (0)|ψinitial〉 − 〈ψfinal|V (0)W (t)|ψinitial〉 (5.1)

= 〈ψfinal|[W (t), V (0)]|ψinitial〉 . (5.2)

Choosing W (t) = q(t) and V (0) = p(0) this commutator formally equals

[W (t), V (0)] = i~ ∂q(t)∂q(0) and in that sense the above measures the sensitivity

to initial conditions. The commutator is evaluated between two wave-
functions, however. For a generic |ψinitial〉 and |ψfinal〉, this is a complex
amplitude that also depends on the details of both. An obvious step is to
sum over final states, which converts this to an expectation value

C(t;ψinitial) =
∑
final

〈ψinitial|[W (t), V (0)]†|ψfinal〉〈ψfinal|[W (t), V (0)]|ψinitial〉

= 〈ψinitial|[W (t), V (0)]†[W (t), V (0)]|ψinitial〉 . (5.3)

To also isolate the dynamics driven by V (0) and W (t) as much from the
details of the initial state, one can average over a suitable ensemble. A
physically natural choice is the thermal one

C(t;β) =
∑

initial

e−βE[ψinitial]〈ψinitial|[W (t), V (0)]†[W (t), V (0)]|ψinitial〉

= Trρβ [W (t), V (0)]†[W (t), V (0)] . (5.4)

This commutator-squared C(t;β) or, equivalently, this out-of-time ordered
correlation function (OTOC) has been of much interest as a diagnostic of
chaotic behaviour in many-body systems [16, 237, 238]. Specifically, if this
OTOC has a regime where it exhibits an exponential time dependence,
C(t) ∼ eλt, this behaviour has been proposed to be a signature of chaos,
with λ being the quantum Lyapunov exponent.2 Moreover, this quantum
Lyapunov exponent has been conjectured to be bounded from above
λ ≤ 2πkBT/~ [16].

In practice most computations do not compute C(t) as defined above.
Rather one “smears” the thermal distribution between the two commuta-
tors [16, 239]

C(t;β)regulated ≡ Tr
(
ρ

1
2 [W (t), V ]†ρ

1
2 [W (t), V ]

)
. (5.5)

2Note that the Lyupanov exponent defined this way is in fact twice the chaos exponent
one would surmise from the choice W (t) = q(t), V (0) = p(0) with q(t) ∼ eλchaostq(0),
i.e. λ = 2λchaos.
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5.1 Introduction

Mathematically, this has the advantage of being manifestly Hermitian
(see e.g. [239]). The physical intuition is that in a QFT this correlation
function naively suffers from a short-distance divergences caused by the
insertion of two operators at the same time. As chaos is in principle a long-
time characteristic, the claim is that the information about chaos, and in
particular the Lyapunov exponents λ, do not depend on this regularization
[16, 239].

We will show that this intuition is incorrect, as was also pointed out
earlier in [240] for the specific case of 2D fermions with quenched disorder.
By explicit computation we will show that in the two-parameter family of
“regularized” OTOCs

C(t;β)(α,σ) ≡ (5.6)

− Tr
[
ρ1−α−σ

(
W †(t)ρσV † − V †ρσW †(t)

)
ρα−σ

(
W (t)ρσV − V ρσW (t)

)]
,

the Lyapunov exponents are independent of σ but do depend on α. Our
computation shows that this regularization dependence is an IR-effect and
has nothing to do with short-distance singularities. The more appropriate
comparison for the regularization dependence of the OTOC is the proof
in Schwinger-Keldysh theory that physical correlation functions are inde-
pendent on the choice of contour. In Schwinger-Keldysh theory, there is
a diagrammatic proof that physical Green’s functions involving operator
insertions either on only forward or only backward branches are indepen-
dent of the contour due to energy conservation; this can be found in e.g.
[241, 242]. The OTOC, however, is a correlation on a doubled Schwinger-
Keldysh contour [243] and the two-body Green’s functions involved in
the commutator-squared involve operators inserted on both forward and
backward branches. The arguments of [241, 242] do not generalize to
prove that the correlation functions that appear in C(t;β)(α,σ) must be
independent on the contour. Our explicit computation in Section 5.3 shows
that they indeed are not.

Gapless theories are notoriously more IR sensitive than gapped theories.
Perhaps somewhat counterintuitively, our results show that weakly coupled
gapless theories are in fact less contour-dependent than explicitly gapped
theories, although the thermally generated mass does imbue a suppressed
dependence. The SYK model on the other hand, which has been at the
forefront of many OTOC studies, has no thermally induced mass. In this
model specifically the contour dependence is extremely weak. In fact its
Lyapunov spectrum turns out to be always contour-independent, as we
show in Section 5.4.
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5 Regulator dependence of the OTOC and kinetic theory at rescue

Let us stress that the found contour dependence in generic models is
not a pedantic point. As also pointed out by [240], OTOCs are now being
measured either in numerical or actual physical experiments. Often one
massages the regulator to be the most convenient for the set-up. For
instance, Das et. al. [244] use the canonical thermal OTOC C(t;β)(0,0) in
a numerical study, whereas a cold atom experiment measures a Loschmidt
echo [245], which can be related to C(t;β)( 1

2 ,0). As the theoretical predic-
tion for these two correlation functions is different due to the regulator
dependence, these two experimental results cannot be compared to each
other.

Given the regularization dependence that we and [240] observe, the
immediate question arises: which is the proper regularization that measures
quantum chaos. As the previous paragraph shows, to some extent this is in
the eye of the beholder. One can devise experimental set-ups that measure
either. Nevertheless, we will argue that the OTOC that most closely
reflects physical microscopic chaos is the symmetrized one C(t;β)( 1

2 ,0) used
originally for hermiticity reasons. Our argument rests on the following fact:
in weakly coupled field theories the computation of any of the OTOCs
C(t;β)(α,σ) can be cast in the form of a kinetic equation [44]. This kinetic
equation reveals most closely the physical process one is actually computing.
In terms of the kinetic equation, only the symmetrized OTOC with α = 1/2
can be understood as a microscopic unbiased “collision”-counter. Such
unbiased collision counters have long been successfully proposed as tracking
microscopic classical chaos [161, 246]. This is explained in Section 5.3.2.

We conclude by showing the symmetric OTOC C(t;β)( 1
2 ,0) regulated

this way has a natural interpretation as a Loschmidt echo, rather than an
expectation value in a thermal ensemble as in the introductory thought
experiment. This has as subtle physical consequence that the physical
temperature is set by twice the inverse periodicity in Euclidean time. In
this interpretation the MSS bound reads

λ ≤ kB
~

2π

β
=
πkBTphysical

~
. (5.7)

5.2 A two-parameter family of extended
Schwinger-Keldysh contours

We will assume that W (t) and V (0) are hermitian from here on.

We formally consider the following regularization of the commutator-
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5.2 A two-parameter family of extended Schwinger-Keldysh contours

squared of Eq. (5.4):

C(t;β)(α,σ) = Tr
[
A†A

]
≥ 0 , (5.8)

A ≡ ρα−σ2 [W (t), V (0)]σ ρ
1−α−σ

2 , [A,B]σ ≡ AρσB −BρσA , (5.9)

with σ ∈ [0, 1/4]. First, we note that for 0 ≤ α ≤ 1, C(t;β)(α,0) is positive
definite and for α = {0, 1}, σ = 0 we recover the unregulated thermal
commutator-squaredd in the thermal state.

Expanding the terms in C(t;β)(α,σ) gives Eq. (5.6)

C(t;β)(α,σ) = −Tr
[
ρ1−α−σW (t)ρσV ρα−σW (t)ρσV + ρ1−α−σV ρσW (t)ρα−σV ρσW (t)

]
+ Tr

[
ρ1−α−σW (t)ρσV ρα−σV ρσW (t) + ρ1−α−σV ρσW (t)ρα−σW (t)ρσV

]
,

The last two are conventional Schwinger-Keldysh time-ordered correlation
functions (TOCs), whereas the first two are true out-of-time-ordered
correlators of the type

F (t1, t2)(α,σ) ≡ Tr[ρ1−α−σW (t1)ρσV ρα−σW (t2)ρσV ]

(5.10)

= Tr[ρ1−α W (t1 − iσβ)V ρα W (t2 − iσβ)V ]

(5.11)

= F (t1 − iσβ, t2 − iσβ)(α,0) . (5.12)

Schematically C(t;β)(α,σ) equals

C(t;β)(α,σ) = TOCs−F
(
t−iσβ, t−iσβ

)
(α,0)
−F
(
t−i(1−α−σ)β, t−i(α−σ)β

)
(α,0)

.

(5.13)

Each out-of-time ordered correlator F (t1, t2)(α,σ) may be seen as a cor-
relation function in the extended Schwinger-Keldysh contour. The usual
choice with α = 1/2, σ = 1/4 is shown in Fig. 5.1-(a); the more general
F (t1, t2)(α,σ) corresponds to a more complicated contour like the one shown
in Fig. 5.1-(b) with different separations in imaginary time between each
of the branches.

It is this OTOC F (t1, t2)(α,σ) that controls the regime of exponential

growth and the Lyapunov spectrum F (t1, t2)(α,σ) ∼ 1−A(t1−t2)eλ(α,σ)
(t1+t2)

2 ,
with A(0) a finite positive number. We will now show that the same expo-
nential time dependence and thus the same Lyapunov exponent is obtained
independent of the value of σ if α = 1/2. This follows directly from the
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5 Regulator dependence of the OTOC and kinetic theory at rescue

analyticity property of the function highlighted above: F (t1, t2)(α,σ) =
F (t1 − iσβ, t2 − iσβ)(α,0) for 0 ≤ σ ≤ min{α, 1− α} [16]. Suppose for the
particular value σ = 0 the function F (t1, t2)(α,0) has the exponential behav-

ior F (t1, t2)(α,0) ' A(t1−t2)eλα
t1+t2

2 with λα = λ(α,0). Analyticity implies

that F (t1+iξβ, t2+iγβ)(α,0) ' A(t1−t2 + iβ(γ−ξ mod1))ei
ξ+γ
2 βλαeλα

t1+t2
2 .

Substituting this into Eq. (5.13), we get

C(t;β)(α,σ)'TOCs+
[
A(0)e−iσβλα+A

(
iβ(1−2α mod1)

)
e−i

βλα
2 (1−α−σ+α−σ)

]
eλαt .

(5.14)

For the specific choice α = 1/2 — the one that is made in almost all
previous studies — the prefactor A(iβ(1−2α mod1))|α=1/2 = A(0) is the
same in both cases and equal to the one computed for the α = 1/2. Thus

C(t;β)( 1
2 ,σ)=TOCs+2A(0)e−iβ

λ1/2
4 cos

[(
σ − 1

4

)
βλ1/2

]
eλ1/2t , (5.15)

with λ1/2 = λ( 1
2 ,σ), ∀σ. Although the Lyapunov exponent is not affected

by the deformation parametrized by σ away from (α, σ) = ( 1
2 , 0), we do

see that the prefactor of the exponential depends on the σ-deformation of
the contour. Therefore, similarly to a Wightman function in Schwinger-
Keldysh theory, the full commutator-squared C(t;β)( 1

2 ,σ) cannot be an
observable measurable in an experiment, even though it may contain
physical information.

Im[t]

Re[t]
W (t1)

−i β4 V

−i β2
W (t2)

−i 3β4 V

−iβ

(a)

Im[t]

Re[t]
W (t1)

−i(1−α−σ)β
V

−i(1−α)β
W (t2)

−i(1−σ)β
V

−iβ

(b)

Figure 5.1: (a) Extended Schwinger-Keldysh contour corresponding to

Tr[ρ
1
4 V ρ

1
4W (t2)ρ

1
4 V ρ

1
4W (t1)]. (b) Contour corresponding to a general regularization of

the OTOC Tr[ρσV ρα−σW (t2)ρσV ρ1−α−σW (t1)], which contributes to C(α,σ)(t1, t2).
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5.2 A two-parameter family of extended Schwinger-Keldysh contours

We also point out that the dependence of the prefactor on the contour
seems to be in tension with the recent attempts to associate maximal
chaos, defined as maximal Lyapunov exponent λ = 2π/β, to destructive
interference of the commutator-squared [247, 248]. The destructive inter-
ference refers to the fact that, if the decoherence factor equals cos(λβ/4),
it vanishes for maximal chaos λ = 2π/β. This implies that for maximal
chaos the exponential time-dependence should be absent in the symmet-
ric commutator-squared. Our derivation shows, however, that this is an
artefact of the analytical continuation. In our case, the decoherence factor
of commutator-squared of Eq. (5.15) is cos((1/4− σ)λβ), which does not
vanish for maximal chaos λ = 2π/β, provided 0 < σ ≤ 1/4. This casts
doubts on how universal the relation between maximal chaos destructive
interference may be.

Moreover, it has also been suggested that in SYK the prefactor of the
OTOCs A cos(λβ/4), where A = βJ/N , is an observable which is finite at
zero temperature [249]. However, as we have shown above this quantity is
contour-dependent and therefore, it is not manifestly a physical observable.

To summarize, since the commutator-squared depends on the contour
it is not clear whether the regularised commutator-squared is actually
an observable. Another possibility may be that not all regularizations
of the commutator-squared are physically allowed and one value of σ is
preferred. For the specific deformation parametrized by σ, we could not
find an argument for such case.

5.2.1 The α-contour

Starting from α = 1/2, the parameter σ affects only the decoherence factor
of the commutator-squared but leaves the Lyapunov spectrum invariant.
There is therefore a possibility that the Lyapunov spectrum as defined
through the OTOC does measure a physical quantity. We set σ = 0 from
here on and now explore its dependence on the other contour parameter α
which fixes the distance between the forwards branches, as shown in Fig
5.2:

C(t;β)(α,0) = Tr
[
A†A

]
≥ 0 , A ≡ ρ 1−α

2 [W (t), V (0)] ρ
α
2 . (5.16)

We have already seen that, for α 6= 1
2 , different choices of σ cannot be

related by analytic continuation. Neither can C(t;β)(α,0) and C(t;β)(α′,0)

be related to each other by analytic continuation. In other words, the
distance in imaginary time between the forwards branches cannot be
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5 Regulator dependence of the OTOC and kinetic theory at rescue

compensated by analytic continuation of time. This may be seen explicitly
by rewriting the OTOCs in C(t;β)(α,0) as follows

Hα(t1, t2; t3, t4) ≡ Tr
[
ραV (t3)W (t1)ρ1−αV (t4)W (t2)

]
= Tr

[
V

(
t3 + iβ

(
α−1

4

))
ρ

1
4W

(
t1 + iβ

(
α−1

2

))
ρ

1
4V

(
t4 + i

β

4

)
ρ

1
4W (t2)ρ

1
4

]
,

(5.17)

Gα(t1, t2) ≡ Tr
[
ραW (t1)V (t3)ρ1−αW (t2)V (t4)

]
= Tr

[
W

(
t1 + iβ

(
α−1

4

))
ρ

1
4V

(
t3 + iβ

(
α−1

2

))
ρ

1
4W

(
t2 + i

β

4

)
ρ

1
4V (t4)ρ

1
4

]
,

(5.18)

where we have chosen to compare to the standard contour with ρ1/4

separation. The differences between the complexified times, t1 + iβ(α−
1
2 ), t2, t3 + iβ(α− 1

4 ) and t4 + iβ/4 in Eq. (5.18), no longer vanish in the
analytically continued OTOCs and this prevents relating one Lyapunov
exponent to another. In particular, the imaginary-time separation between
the two operators V (0) in both Gα and Hα depends on α. The standard
choice, F (t)( 1

2 ,
1
4 ), which is the building block used to derive the bound

on the Lyapunov exponent [16], is computed on a contour where the
separation is β/2 and α = 1/2. Therefore, Gα and Hα cannot be related
to F (t)( 1

2 ,
1
4 ) by a simple analytic continuation whenever α 6= 1/2 and we

have to study the behavior of these OTOCs separately.

Im[t]

Re[t]
W (t1)

V

W (t2)

V

−iβα

−iβ

Figure 5.2: Extended Schwinger-Keldysh contour corresponding to
tr[ραW (t1)V ρ1−αW (t2)V ] which enters in C(t; β)(α,0) defined in Eq. (5.16).
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5.2 A two-parameter family of extended Schwinger-Keldysh contours

5.2.2 OTOCS and physical observables in SK
formalism

As one may extrapolate from the previous section, the OTOC and its
Lyapunov spectrum will in general depend on the Schwinger-Keldysh
contour on which it is computed. At first, this result may be surprising
because, in standard Schwinger-Keldysh, it is known that physical Green’s
functions are independent of the contour due to energy conservation [241,
242]. Indeed, since the doubling of the contour is an artificial mathematical
convenience, a priori only correlation functions with external insertions on
a single branch should considered physical, e.g.,

〈O(1)(x1)O(1)(x2)O(1)(x3)〉, 〈O(2)(x1)O(2)(x2)O(2)(x3)O(2)(x4)〉 ,
(5.19)

where we indicated with (i) the branch where each operator is inserted.
With this definition, the fact that the correlation functions do not depend
on the contour is a simple diagrammatic proof. We restate it here for the
sake of clarity; it can be found in [241, 242].

By inspecting the SK effective action, we know that the interaction
vertices are of the form

Lint = L(1)
int − L

(2)
int. (5.20)

Consequently, in the diagrammatic expansion each vertex is either of type
1 or of type 2. The external legs of the vertices are connected to each
other or to external operator insertions with the propagators

〈φ(i)(−k)φ(j)(k)〉 =

(
GFeynman(k) G<Wightman(k)

G>Wightman(k) Ganti-Feyman(k)

)
ij

(5.21)

Without loss of generality, we focus on the simple lowest order 1PI diagram
with n operators inserted the branch 1 and only one n-point vertex:

〈O(1)
1 (k1)....O(1)

n (kn)〉α. Clearly if the vertex is of type 1, there is no
contour dependence in the diagram. When the vertex is of type 2, as in
Fig. 5.3, we need to use a Wightman function. For a general contour
where the forward and backward branches are separated by ρα this is one
of the Wightman functions3

Gβα12 (k) = Trρ1−αφ(1)(−k)ραφ(2)(k)

Gβα21 (k) = Trρ1−αφ(2)(−k)ραφ(1)(k) = eβ(1−2α)k0Gβα12 (k) (5.22)

3In the literature the following notation is sometimes used: G12(k) = G<(k) and
G21(k) = G>(k).
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O(1)
1 k1

O(1)
2k2

O(1)
n

kn O(1)
3

k3

V2

Im[t]

Re[t]
O3O1O2 On

V2−iβα

−iβ

Figure 5.3: A diagrammatic expansion of the correlator with the external legs on the same
branch of the SK contour. The result does not depend on the width βα.

By Fourier transforming the time direction, using ραÔ(t)ρ−α = Ô(t+ iα)
and Fourier transforming back, one readily derives that

Gβα12 (k) = eβαk
0

Gα=0
12 (k),

Gβα21 (k) = e−βαk
0

Gα=0
21 (k). (5.23)

At lowest order, there is a single n-point vertex on branch 2. Contracting
each of the legs of the vertex with the external operators on branch 1, and
by using (5.23), this means that the relation between correlation function
on different contours is

〈O(1)
1 (k1)....O(1)

n (kn)〉α ∼ eβα
∑
i=1,..,n k

0
i 〈O(1)

1 (k1)....O(1)
n (kn)〉α=0 (5.24)

= 〈O(1)
1 (k1)....O(1)

n (kn)〉α=0.

Because of energy conservation at the vertex,
∑
i=1,..,n ki = 0, the overall

factor vanishes and this proves the contour independence of these types of
diagrams.

O(2)
1 k1

O(1)
2k2

O(1)
n

kn O(1)
3

k3

V2

Im[t]

Re[t]
O3

O1

O2 On

V2−iβα

−iβ

Figure 5.4: A diagrammatic expansion of the correlator with all but one external legs on
the same branch of the SK contour. The result does depend on the width βα
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However, if one of the external legs is in the branch 2, see Fig. 5.4, it is
easy to see that now one of the Green’s function no longer depends on the
separation α at all, so the global factor in the n point function does not
simplify anymore. The simplest example of this is the Wightman function
itself. There is no vertex, but we have already shown that Gα12 6= G0

12

above in Eq. (5.22). Extending to an n-point correlation functions with a
single n-point vertex, one has

〈O(2)
1 (k1)....O(1)

n (kn)〉α ∼ eβα
∑
i=2,..,n k

0
i 〈O(2)

1 (k1)....O(1)
n (kn)〉α=0

6= 〈O(2)
1 (k1)....O(1)n(kn)〉α=0 , (5.25)

but now the exponent in the prefactor
∑
i=2,..,n k

0
i = −k0

1 6= 0.
It is not difficult to see that the simple proof shown above extends to

any diagrams. Indeed, given any diagram of the expansion, it is sufficient
to divide it in subdiagrams and to use the momentum conservation in each
vertex.

Turning our attention back to the OTOC, by construction each insertion
occurs on one of four different branches. This indicates that the OTOC
will be contour dependent, similar to two-branch correlation function in
Schwinger-Keldysh theory as depicted in Fig. 5.4. If so, this does not
immediately mean that the OTOC does not measure a physical quantity
(in part). For example, the (bosonic) Wightman function Gβα12 (k) =

eβk
0

(1 + n(k0))ρ(k) depends on the contour, but still encodes a physical
quantity, namely the spectral density ρ(k). Therefore, more care is needed
to understand the relation between the contour-dependent OTOC and
physical properties of the system.

5.3 Contour dependence of the Lyapunov
spectrum in a weakly coupled Φ4 theory

We now prove by direct computation that the OTOC indeed depends
in detail on the contour chosed. In this section, we compute Lyapunov
spectrum obtained from the commutator-squared C(t;β)(α,0) in a pertur-
bative matrix field theory, which has been studied in detail for α = 1/2 in
[243]. The advantage of the perturbative field theory calculation is that
the commutator-squared can be related to a kinetic equation encoding the
microscopic dynamics [44]. From this, we will suggests that this micro-
scopic insight argues that one specific contour, the one with α = 1/2 is
the one that computes microscopic chaos.
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We consider a 3+1 dimensional QFT with a Hermitian matrix field Φab

whose Lagrangian is given by

L = Tr

(
1

2
Φ̇2 − 1

2
(∇Φ)2 − 1

2
m2Φ2 − g2

4!
Φ4

)
, (5.26)

with g2 = λN .
The commutator-squared of Eq. (5.16) in this matrix model is

C(t;β)(α,0) =
1

N4

∑
aba′b′

∫
d3x Tr

(
ρ1−α [Φab(t,x),Φa′b′ ]ρ

α [Φab(t,x),Φa′b′ ]
†
)
.

(5.27)
For t > 0, which we shall assume, the lowest order (disconnected) con-
tribution is the product of two retarded Green’s function arising from a
contraction on the top two folds and the bottom folds separately; there
is therefore no contour dependence. The non-trivial contribution at the
next order, that can seed exponential growth, is the contribution with two
Wightman functions connecting the two retarded Green’s functions. For
α = 1/2, this equals [243]:

C(ω)
(1)

( 1
2 ,0)

=
1

N2

∫
d4p

(2π)4

d4p′

(2π)4
GR(ω − p)GR(p)R(p− p′)GR(ω − p′)GR(p′) ,(5.28)

where the kernel R(p) is determined in terms of Wightman functions with
operators separated by iβ/2:

R(p) =
g4(N2 + 5)

12

∫
d4`

(2π)4
G
β/2
12 (p/2 + `)G

β/2
12 (p/2− `) , (5.29)

Note that it is only G12(k) and not G21(k), independent of the deformation
α = 1/2, which appears inside the kernel. This choice is due to the identity
G12(k) = G21(−k). We will consistently use G12 only; this will not affect
the final result. Defining a function f(ω, p),

C(ω)( 1
2 ,0) =

1

N2

∫
d4p

(2π)4
f(ω, p) , (5.30)

at the next order one of the contributions is

C(ω)
(2)

( 1
2 ,0)

=
1

N2

∫
d4p

(2π)4

d4p′

(2π)4
GR(ω − p)GR(p)R(p− p′)f (1)(ω, p′) ,(5.31)

and by rewriting C(ω)
(2)

( 1
2 ,0)

= 1
N2

∫
d4p

(2π)4 f
(2)(ω, p), one can set up a recur-

sive Bethe-Salpeter equation to determine f(ω, p) and hence C(ω)( 1
2 ,0) to
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5.3 Contour dependence of λL in the weakly coupled Φ4 theory

all orders. Since we are interested in the late-time exponential growth, we
focus on the homogeneous part of the Bethe-Salpeter equation, which in
the low-frequency, late time limit equals

f(ω, p) ' −GR(p)GR(ω − p)
∫

d4k

(2π)4
R(k − p)f(ω, k) , (5.32)

Equation (5.32) is only appropriate in the low ω limit. In this limit the
product of retarded Green’s functions is dominated by a pinching pole
singularity, which amounts to the following approximation [243]

GR(p)GR(ω − p) =
π

Ep

δ(p0
2 − E2

p)

iω − 2Γp
+ . . . . (5.33)

As this concentrates the support of the right hand side of the BSE on the
on-shell delta-function, there is natural ansatz for the solution of f(ω, p)
to be proportional to the same delta-function

f(ω, p)ansatz = f(ω,p)δ(p2
0 − E2

p). (5.34)

The imaginary part of the two-loop (α-independent) self energy Γp also
happens to be determined in terms of (the α = 1/2) R(k) defined in Eq.
(5.29):

Γp =
sinh

(
βEp

2

)
24Ep

∫
d3k

(2π)3

R(Ep − Ek,p− k) +R(Ep + Ek,p− k)

Ek sinh
(
βEk

2

) .

(5.35)
Including both the pinching pole approximation and the self-energy rewrit-
ing in terms of the rung function R(k − p), the low-energy approximation
of the BSE reads

−iωf(ω,p) =

∫
d3k

(2π)3

(
K(p,k)− 2Γk(2π)3δ3(p− k)

)
f(ω,k), (5.36)

where K(p,k) =
R(Ep−Ek,p−k)+R(Ep+Ek,p−k)

4EkEp
. The positive eigenvalues

of the kernel K(p,k)− 2Γpδ
3(p− k), considered as a matrix in k and p,

form the Lyapunov spectrum characterizing the exponential growth at late
times, as we will review below.

Importantly, the Lyapunov spectrum is not set by the off-shell rung
function R(p−k) or the off-shell BSE Eq. (5.39) [44]. Specifically, the “on-
shell” delta-function ansatz for f(ω, p) = f(ω,p)δ(p2

0 − Ep), that naturally
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5 Regulator dependence of the OTOC and kinetic theory at rescue

follows the pinching pole approximation, acts as a projector on the set
of functions f(ω, p). Therefore the set of eigenvalues and eigenvectors of
R(k − p) are not the same as those of the kernel in Eq.(5.36) which sets
the Lyapunov spectrum.

This derivation makes clear that the only α-contour-deformation de-
pendence arises from the Wightman functions in the rung function. It is
then straightforward to derive the contour-dependence of the OTOC. For
α 6= 1/2, the rung function should be modified as sketched in Fig. 5.5.
Mathematically

Im[t]

Re[t]

−iαβ

−iβ

a)

Im[t]

Re[t]

−iαβ

0

b)

Figure 5.5: A pictorial representation of a general time contour (a) and of the 4-points
function in the ladder approximation (b) . The external legs lay on the first time fold
and the second time fold. On the contrary, the rung joins the two time folds and include
Wightman functions which by definition are contour dependent.

R(p)→ eβp
0(α−1/2)R(p) . (5.37)

Again, defining

C(ω;β)(α,0) =
1

N2

∫
d4p

(2π)4
f(ω, p), (5.38)

this will now obey the equation:

f(ω, p) ' −GR(p)GR(ω − p)
∫

d4k

(2π)4
eη(k0−p0)R(k − p)f(ω, k) , (5.39)

with η ≡ β(α − 1/2). Note that the change in the rung function does
not depend on whether it is constructed from G12(k) or G21(−k). This
can be confirmed by the fact that the commutator-squared should obey
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5.3 Contour dependence of λL in the weakly coupled Φ4 theory

a KMS type symmetry α → 1 − α on the doubled time contour. This
follows by redefining k → ω − k and p → ω − p. The kernel R(k − p) is
even in k − p as can be readily seen from its definition Eq. (5.29). The
product GR(p)GR(ω − p) changes into itself, and one obtains an equation
for f(ω;ω − p0,−p) which identical to the original equation.

To solve the Bethe-Salpeter equation (5.39) after the pinching pole
approximation in the late time limit,

f(ω, p) ' π

Ep

δ(p0
2 − E2

p)

−iω + 2Γp

∫
d4k

(2π)4
eη(k0−p0)R(k − p)f(ω, k) , (5.40)

one then makes the natural ansatz

f(ω, p) = f(ω,p)δ(p2
0 − E2

p) . (5.41)

However, note that the choice of the ansatz is very subtle and might lead
to a different physical solution. By inspecting eq. (5.39), one might be
tempted to argue that, since the η dependent term resembles a similarity
transformation, the eigenvalues are unchanged. This conclusion is not
correct. Indeed, as briefly recalled above, we showed in [44] that there are
physical implications in this choice. Most notably, the η = 0 BSE with

the kernel replacement R(k− p)→ sinh(βp0/2))
sinh(βk0/2) R(k− p) corresponds to the

evaluation of a different analytic continuation of the commutator-squared.
This analytic continuation is the retarded correlation function of the
Wigner transform of the bilocal density operator, namely the correlation
function that appears in the Kubo formula of the shear viscosity. From
Boltzmann’s kinetic theory, the spectrum with this ansatz is manifestly
negative definite (i.e. there are only decaying modes). In other words, the
choice of contour dictates the ansatz to solve the BSE. At the same time,
all the contours that are related through analytic continuation arise from
the same contour-independent off shell BSE Eq. (5.40).

Substituting this appropriate ansatz (5.41) into eq. (5.39), we then
perform the integral over p0. This yields

(−iω + 2Γp)f(ω,p) =

∫
d3k

(2π)3
f(ω,k)K(k,p, η), (5.42)

with

K(k,p, η)≡
cosh [η(Ep − Ek)]R

(
Ep − Ek,p− k

)
+ cosh [η(Ep + Ek)]R

(
Ep + Ek,p− k

)
4EkEp

,
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5 Regulator dependence of the OTOC and kinetic theory at rescue

where we have explicitly used that the rung kernel is even in the en-
ergy argument: R(k0,k) = R(−k0,k). Substituting Eq. (5.35) into Eq.
(5.42), we arrive at the final Bethe-Salpeter equation for C(ω)(α,0) =

1
N2

∫
d4p

(2π)4 f(ω, p) in the frequency domain:

−iωf(ω,p) =

∫
d3k

(2π)3
[f(ω,k)K(k,p, η) (5.43)

−f(ω,p)
sinh

(
βEp

2

)
sinh

(
βEk

2

) R(E−,p−k)+R(E+,p−k
)

12EpEk

 ,
where E± ≡ Ep ± Ek. In the time domain this is an equation of the type

∂

∂t
f(t)p =Mpkfk(t). (5.44)

The solutions are the eigenvectors ofMpk with an exponential growth/de-
cay in time proportional to the eigenvalue. The positive eigenvalues of
Mpk are the Lyapunov spectrum. This can be found numerically; the
precise method used to solve this equation may be found in Appendix
5.A. Without computation it is already clear, however, that the result
will depend on the α-deformed contour, as the defining Bethe-Salpeter
equation does so.

Figure 5.6: Contour dependence of the Lyapunov spectrum in the weakly coupled
Φ4-matrix model. Two largest Lyapunov exponents of Lyapunov spectrum of the matrix
Φ4 theory as a function of the coupling. Each value of η, defined in Eq. (5.39), corresponds
to a different contour choice: η = 0 corresponds to the common symmetric regularization.

For brevity, we defined g̃ =
g4(N2+5)

4·144 .

The result is presented in Fig. 5.6. We clearly see the dependence of
the two positive Lyapunov exponents on the contour. The spectrum does
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5.3 Contour dependence of λL in the weakly coupled Φ4 theory

become contour-independent in the high-temperature limit. This follows
directly from the fact that the deformation parametrized by η = β(α−1/2)
becomes negligible for small β (compared to the mass).

That in these models the Lyapunov spectrum is contour independent
for zero mass, will be crucial to understand the SYK model, which we
study in the next section. There, there are only gapless excitations and
not even a thermal mass, and we can therefore expect the same contour
independence of the Lyapunov spectrum as the βm→ 0 limit of weakly
coupled field theories as exhibited in Fig.5.6. Do recall that the full OTOC
always depends on the contour.

For intermediate and small β, the Lyapunov spectrum sensitively de-
pends on the choice of contour. As also noted already in [243], in the
extreme low temperature limit βm→∞, the Lyapunov spectrum vanishes
exponentially in βm. Even though this decreases the relative dependence
on the contour, the contour dependence still persists and is given by
e−(β+2|η|)m, as shown in Fig. 5.7.

Figure 5.7: Exponential decay of the first Lyapunov exponent for various contours.

Dashed lines correspond to the analytical expression Ce−(β+2|η|)m, where C is fixed so that
the dashed line passes through the last point available βm = 10. For brevity, we defined

g̃ =
g4(N2+5)

4·144 .

Let us make one final comment on the connection between the choice
of ansatz and the contour dependence of the Lyapunov spectrum. One
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5 Regulator dependence of the OTOC and kinetic theory at rescue

readily observes that another possible ansatz to the BSE is

f(ω, p) = f(ω,p)eηp
0

δ(p2
0 − E2

p)

= f(ω,p)

(
eηEp

δ(p0 − Ep)

2Ep
+ e−ηEp

δ(p0 + Ep)

2Ep

)
. (5.45)

This η-contour skewed ansatz gives a contour independent Lyapunov
exponent as solution for Eq. (5.40) and coincides with the solution for
η = 0. One may ask why one ansatz is preferred over the other. As is
clear from fig. 5.6, the natural ansatz (5.41) represents a solution with
a larger eigenvalue of the Lyapunov exponent. We therefore argue that
this solution is what a general computation, i.e. using different techniques
than the BSE, of the leading exponential rate of growth in the OTOC
would capture. In support of this, we also refer to the results of [240].
There, the authors computed the OTOC for a 2 + 1 disordered systems by
means of a Keldysh nonlinear sigma model technique that they developed.
Within this framework, the computation of the largest exponent for the
unregularised η = 1/2 case and the regularised η = 0 case gives a different
result. Moreover, the unregularised case has a larger exponetial growth
rate. The explanation is the one we give above.

This is the message to take from these results. When one computes the
OTOC, one is inherently concerned with the late time regime of the corre-
lator and with the largest term in the exponential growth. Mathematically
the Lyapunov exponent of the fastest growing mode is contour dependent.
This gives rise to the physics question of how we can understand the
different contour dependent growing rates. We will answer this question
in sec. 5.3.2.

5.3.1 The contour dependence regulates the IR

The contour dependence of the Lyapunov spectrum explicitly exhibited
above emphasizes an important point regarding the physics behind the
contour deformation. One of the arguments made for deforming contour
symmetrically

C(t;β)regulated = Tr
(
ρ

1
2 [W (t), V ]†ρ

1
2 [W (t), V ]

)
, (5.46)

or

F (t, t)( 1
2 ,

1
4 ) = Tr

(
ρ

1
4W (t)ρ

1
4V ρ

1
4W (t)ρ

1
4V
)
, (5.47)
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5.3 Contour dependence of λL in the weakly coupled Φ4 theory

is that the smearing of the density matrix regulates a short distance
singularity by separating the local operators in imaginary time. If this
were indeed what the smearing should accomplish, then (1) at any finite
value of regulator η we should expect the low -temperature limit to be
universal, and (2) at any finite temperature β in units of the mass m
the answer for the OTOC should diverge as one removes the regulator
|η| → β

2 . The result, however, shows the opposite. The high-temperature
limit is universal, indicating that this is the regime that is insensitive
to the regulator, and, though we do not compute the full OTOC, the
Lyapunov spectrum at fixed βm stays finite for any value of regulator.
This argues strongly that the contour-deformation regulates the IR rather
than the UV. This in fact agrees with Schwinger-Keldysh theory. There,
the “contour-deformation” is the introduction of temperature itself, and
this is a well-known IR regulator.

For results in the literature in perturbative QFTs, this diametrically
opposite interpretation of the contour deformation has little effect. As in
e.g [44, 243, 250, 251] usually the focus is on the universal high temperature
regime. However, for the SYK model, the focus has often been on the
emergent regime at low temperatures. There, this realization that the
contour deformation regulates the IR may imply that the results are in fact
regulator dependent and do not reflect physical information about the true
dynamics. As we will show in Section 5.4, SYK is special in that its gapless
nature and the absence of a thermal mass imply contour independence
of the Lyapunov spectrum even at low temperature, extending from the
βm→ 0 regime of weakly coupled field theories. Before we turn to this,
we first address how to obtain the physical information about the true
chaos/scrambling dynamics at low temperatures.

5.3.2 Kinetic theory interpretation of the α-deformed
OTOC

IR regulators often encode real physical circumstances. The correct ques-
tion to ask therefore is which contour properly reflects physical information
of microscopic chaos. In this section we will argue that this can be decided
by interpreting the result of the previous section in terms of the kinetic
theory for many body chaos derived in [44]. There, the authors showed
that the computation of the α = 1/2, σ = 1/4 OTOC is equivalent to a
Boltzmann-like equation that tracks the time evolution of the gross energy
exchange.

We briefly review this result. The standard Boltzmann equation de-
scribes the time evolution of the single-particle distribution function
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5 Regulator dependence of the OTOC and kinetic theory at rescue

f(t, r,p),4 parametrizing the deviation of the single-particle distribution
function from its equilibrium value:

f(t,p) =
δn(t,p)

(1 + n(p))n(p)
, (5.48)

and n(p) is the Bose-Einstein distribution. For small deviations from the
equilibrium value, the Boltzmann equation can be linearized and, focusing
on the homogeneous case, it reads

∂tf(t,p) = −
∫
l

L(p, l)f(t, l) , (5.49)

where L(p, l) represents the collision integral. L(p, l) contains two contri-
butions, namely the gain term R∧(p, l), counting increase of the density
of the phase-space cell, and the loss term R∨(p, l), which accounts for
scattering out of the phase-space cell. In terms of these two contribution,
the Boltzmann equation is

∂tf(t,p) =

∫
l

[
R∧(p, l)−R∨(p, l)

]
f(t, l). (5.50)

As shown in [44], the Bethe-Salpeter equation of the symmetrised commutator-
squared C(t;β)( 1

2 ,0) is equivalent to considering a Boltzman-like equation
where the sign of the contribution of the true loss term is changed, so
that we account for a gross exchange rather than a net exchange. More
precisely, the gross exchange is given by

∂tf
EX(t,p) =

∫
l

E [Ep]

E [El]

[
R∧(p, l)+R∨(p, l)−4Γlδ(p−l)

]
fEX(t, l) , (5.51)

where E [Ep] = 1/ sinh(Epβ/2) is an energy-related observable which does
not alter the spectrum of the collision integral, as it enters in the form
of a similarity transformation. The extra factor Γl, the self-energy due
to the thermal environment, is present to avoid over-counting. It can be
understood as follows: R∨T (p, l) ≡ R∨(p, l)−2Γlδ(p−l) counts the changes
in the particle number f(t,p) due only to processes with p 6= l. Therefore,
changing the sign of R∨ in Eq. (5.50) would over-count the contribution
from the bath. If one changes only the sign of the true loss term R∨T (p, l),
the gross exchange is exactly given by R∧(p, l) + R∨(p, l) − 4Γlδ(p − l)

4Not to be confused with the commutator-squared function defined in Eq. (5.38).
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5.3 Contour dependence of λL in the weakly coupled Φ4 theory

[44]. The eigenvalues of the integral operator (5.51) are equivalent to those
measuring the exponential growth rate of the OTOC, and thus give the
Lyapunov spectrum of the theory.

As the α-deformation only changes the rung function in the Bethe-
Salpeter equation, resulting in result (5.43), it is immediately recognized
that the kinetic equation encoding the late time behavior of these families
of OTOC is modified as follows

∂tf
EX(t,p) =

∫
l

E [Ep]

E [El]

{
cosh [η(Ep − El)]R

∧(p, l)

+ cosh [η(Ep + El)]R
∨(p, l)

− 2
[

cosh [2η(Ep)] + 1
]
Γlδ(p− l)

}
fEX(t, l) .

(5.52)

The kinetic equation equivalent of the contour-dependent commutator
square gives us a direct physical interpretation of what is computed, as we
understand each term as loss, gain and self-energy terms in the microscopic
dynamics. The explicit η = β(α − 1/2) dependence in Eq. (5.52) shows
that the different contours in the α-family have a different physical origin.
While for η = 0 (symmetric regularization) both the gain and loss processes
are weighted equally, for other contours η 6= 0, their relative weight is
different. For none of these values does the kinetic equation have an
obvious natural physical interpretation in terms of gross, net or otherwise
simple exchange dynamics.

On the other hand, the gross exchange equation has been put forward
independently already a long time ago as a measure of microscopic classical
chaos [246]. This conclusion from the weakly coupled field theory compu-
tation above therefore strongly suggests that, in order to probe dynamical
many-body chaos in QFT, the correct choice for the out-of-time correlation
function is the symmetrically regularized choice with η = 0. Fortuitously,
this is the one that has predominated all the calculations in the literature,
including the derivation of the MSS bound on chaos [16]. It also means
that the naive thermal expectation value of the commutator-squared
Tr[ρ[W (t), V ]2] does not measure microscopic quantum chaos. One is
therefore left with the reversed question: how does one justify from first
principles the symmetrically regularized commutator-squared as a measure
of quantum chaos. We will return to this question in the last section.
First, we will consider the same question of contour-dependence of the
commutator-squared and its Lyapunov spectrum for the case of the SYK
model.
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5 Regulator dependence of the OTOC and kinetic theory at rescue

5.4 Contour dependence of the Lyapunov
exponent in the SYK model

One of the research directions where the commutator-squared has had
important impact is in the emergent strongly coupled low energy regime
of the Sachdev-Ye-Kitaev model. The exponential growth of the symmetri-
cally regularized commutator-squared saturates the MSS bound on chaos
λL ≤ 2πT ; this has given great impetus to the notion that the SYK model
provides a microscopic theory for AdS black holes.

Now that we know that the commutator-squared and its Lyapunov
spectrum depend on the way the contour is regulated, the natural question
on how this affects the insights in the SYK model arises. We shall first show
that, in contrast to the previous weakly coupled massive QFT results, in the
SYK model the Lyapunov spectrum is contour regularization independent.

The SYK Hamiltonian with q/2-body interactions is

H = i
q
2

∑
1≤i1<i2<···<iq≤N

Ji1,i2,...,iq χi1χi2 . . . χiq , (5.53)

where χi are Majorana fermions so {χi, χj} = δij and the coupling
Ji1,i2,...,iq is a Gaussian-distributed random variable with zero average

and diagonal (i.e. for each Ji1,i2,...,iq independently) variance 2q−1

q
J2(q−1)!
Nq−1

[18]. The fermionic two-point function G(τ) = −〈T χ(τ)χ(0)〉 satisfies the
following averaged Dyson equation in the large-N limit [18]:

G−1
n = −iωn − Σn , Σ(τ) = −J2G(τ)q−2G(−τ) , (5.54)

with ωn = (2π/β)(n + 1/2), Gn ≡ G(iωn) and Σn ≡ Σ(iωn). In the
same way as for weakly coupled QFT, the symmetrical contour regularized
commutator-squared C(t;β)( 1

2 ,0) satisfies a Bethe-Salpeter equation. In
the large-N limit, for arbitrary coupling, the homogeneous part of the
BS-equation governs the large time limit and is [18]:

F (t1, t2) = J2(q − 1)

∫
dt3dt4G

R(t13)GR(t24)
[
GW (t34)

]q−2
F (t3, t4) ,

(5.55)

where GR and GW are the retarded and Wightman two-point functions.
There is now a difference with the the perturbative QFT approach.

As recalled in the previous section, there the late time approximation
also involves a pinching pole “on-shell” reduction of the retarded Green’s
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functions. The large N late time limit in SYK, on the other hand, is a
conformal field theory with no on-shell particle-like excitations. There is no
natural simplification of the retarded SYK Green’s functions in this limit.
In contrast to the perturbative QFT solution, the full large N Green’s
functions are obtained by analytically continuing the Dyson equation Eq.
(5.54) to real time and solving these equations numerically with an iterative
procedure [252].5 Then one solves the SYK BSE Eq.(5.55) by making the
explicit ansatz F (t1, t2) = eλL(t1+t2)/2f(t12) and rewriting it as an integral
eigenvalue equation in frequency space:

f(ω′)=(q − 1)J2

∣∣∣∣GR(ω′+iλL2
)∣∣∣∣2∫ dω2π glr(ω′−ω)f(ω) , (5.56)

glr(ω) ≡
∫
dteiωtGW (t)q−2 .

(5.57)

One finally (numerically or analytically) searches for which value of λL
the kernel has an eigenvector with eigenvalue 1 [18].

We can now ask how the subtly different SYK computation of its
Lyapunov spectrum depends on the contour. As in the perturbative QFT
of the Sec. 5.3, the only place the contour regularization shows up is in
the Wightman functions.6 Instead of parametrizing with respect to the
α = 0 Wightman function, let us parametrize with respect to the α = 1/2
Wightman function:

Gη(ω) = eηωGη=0(ω) . (5.58)

The Bethe-Salpeter equation (5.55) for the commutator square in frequency
space for arbitrary α-deformed contour is then the same as before, but
with a modified kernel g̃lr(ω):

f̃(ω′)=(q − 1)J2

∣∣∣∣GR(ω′+iλα2
)∣∣∣∣2∫ dω2π g̃lr(ω′−ω)f̃(ω) , (5.59)

g̃lr(ω) ≡
∫
dteiωtGη(t)q−2 , Gη(t) =

∫
dωe−iωtGη(ω) . (5.60)

5 As we are using the symmetric regularization, GW (ω) = ρ(ω) e
−ω β

2

1+e−βω
is the Wight-

man function with operators separated by iβ/2.
6This can also be seen explicitly by analytically continuing Eq. (5.55) t1 → t1 +

iβ
(
α− 1

4

)
, t2 → t2 + iβ

4
, t3 → t3 + iβ

(
α− 1

2

)
, t4 → t4.
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We evaluate the modification in the kernel g̃lr(ω), compared to the original
kernel glr(ω), by using the convolution of the Wightman functions:

g̃lr(ω) =

∫
dteiωtGη(t)q−2 =

∫
dω1 . . . dωq−3G

η
(
ω1

)
Gη
(
ω2

)
. . .

×Gη
(
ω − ω1 − · · · − ωq−3

)
,

and substituting Gη(ω) = eωηGW (ω) in each term inside the integral:

g̃lr(ω)=

∫
ω1,...,ωq−3

eηω1Gη
(
ω1

)
eηω2Gη

(
ω2

)
. . . eη(ω−ω1−···−ωq−3)

×Gη
(
ω − ω1 − · · · − ωq−3

)
= eηω

∫
dteiωtGW (t)q−2 = eηωglr(ω) .

Therefore, Eq. (5.59) reduces to

f̃(ω′)=(q − 1)J2

∣∣∣∣GR(ω′+iλα2
)∣∣∣∣2∫ dω2π eη(ω′−ω)glr(ω

′−ω)f̃(ω) , (5.61)

The crucial difference with weakly coupled QFT is that, because of the
gapless nature of SYK even at finite temperature and the absence of a
pinched pole on-shell condition, the product of retarded Green’s functions
remains a smooth function and not a distribution. This allows one to re-
absorb the contour dependence with the redefinition f̃(ω′)→ ẽ−ηω

′
f(ω′).7

In the late time SYK-BSE, this acts as a similarity transformation on the
kernel, and its eigenvalues equal to its Lyapunov spectrum is therefore
contour independent. Note again that the OTOC is still contour depen-
dent, yet the Lyapunov exponent is independent of the regularization. As
mentioned before, this can be qualitatively understood from the weakly
coupled case, where in the massless case the dependence of the contour on
the Lyapunov exponent vanishes.

To check the solution obtained with the BSE, we now consider the two
regimes of the SYK model where some analytical control is possible: the
strong coupling limit βJ � 1 and the large-q limit.

7We thank Subir Sachdev and Yingfei Gu for emphasizing that this should be the
case.
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5.4 Contour dependence of the Lyapunov exponent in the SYK model

5.4.1 Study of the OTOC in SYK in the strongly
coupled limit: conformal limit analysis

In the strongly-coupled regime βJ � 1 of the SYK model, where conformal
symmetry emerges asymptotically, the OTOC may also be computed
analytically by studying the spectrum of the Casimir operator. More
specifcally, for βJ � 1 the eigenvectors of the Casimir operator, with
eigenvalue h(h− 1), are also eigenvectors of the Euclidean kernel of the
Bethe-Salpeter equation [18]. In this regime, the kernel of the Bethe-
Salpeter equation is:

Kc(τ1, τ2; τ3, τ4) ∝ sgn(τ13)sgn(τ24)

|τ13|2∆|τ24|2∆|τ34|2−4∆
, ∆ = 1/q ,

(5.62)

where the eigenvalues of Kc depend on q and h. Moreover, the allowed
values of h are constrained, because the Bethe-Salpeter equation for the
OTOC selects the eigenvalue unity of Kc. For q = 4, the leading contribu-
tion to the OTOC turns out to be h = 2 and is given by [18]:

F(θ1...θ4)

G(θ12)G(θ34)
=

6α0

π2αK
βJ

∑
|n|≥2

ein(y′−y)

n2(n2 − 1)

[
sin nx

2

tan x
2

− n cos
nx

2

][
sin nx′

2

tan x′

2

− n cos
nx′

2

]
(5.63)

x = θ12 x′ = θ34 y =
θ1 + θ2

2
y′ =

θ3 + θ4

2
, (5.64)

where θ is the rescaled Euclidean time θ = τ/β. This equation must now
be analytically continued to real time by choosing the operator insertions.
We consider the contour shown in Fig. 5.8, which allows us to consider
both the σ- and α-families simultaneously.

More specifically, we choose

θ1 = i
2πt

β
+ 2π(σ + α) , θ2 = i

2πt

β
+ 2πσ , θ3 = 2πα , θ4 = 0 .

(5.65)

In terms of x, x′, y, y′, we have:

x = x′ = 2πα , y = i
2πt

β
+ 2πσ + πα , y′ = πα. (5.66)

151



5 Regulator dependence of the OTOC and kinetic theory at rescue

Im[t]

Re[t]V

W (t1)

−iβα

W (t2)

V

−iβ

}σβ

}σβ

Figure 5.8: Extended Schwinger-Keldysh contour corresponding to the two-parameter
OTOC Tr[ραW (t1 + iσβ)V ρ1−αW (t2 + iσβ)V ].

In order compute Eq. (5.63) explicitly, we set x = x′, sum over n and then
substitute Eq. (5.66) to get:

F(t)

G(2πα)G(2πα)
∝ 1

2
− π

4

{
2π cot2(πα)

[
(α− 1)α+ σ + i

t

β

]
+ (4α− 2) cot(πα)

(5.67)

+i csc2(πα) sinh

(
2πt

β
− 2iπσ

)}
,

(5.68)

which for large t behaves as:

F(t)

G(2πα)G(2πα)
∝ −iπ

2

4
csc2(πα)e−2iπσe

2πt
β . (5.69)

We first note that F(t) is symmetric over α → 1 − α, as expected.
Second, the long-time regime is controlled by a growth rate given by 2π/β,
independent of the distance between the forward branches α. This confirms
the contour dependence of the OTOC while the Lyapunov spectrum is
nevertheless independent.

5.4.2 Study of the OTOC in SYK in the limit of large
interaction order

In the SYK model, analytical control is also possible when one increases
the order of the interaction in the Hamiltonian (5.53), which is set by q
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5.4 Contour dependence of the Lyapunov exponent in the SYK model

[18]. Here we consider the calculation of the Lyapunov exponent in SYK
in the large-q limit, and show that it is also contour independent.

We start with the two-point function in Euclidean signature in the
large-q expansion [18]:

G(τ) =
q�1

1

2
sgn(τ)

(
1 +

1

q
g(τ) +O(q−2)

)
, (5.70)

where g(τ) is obtained by inserting the above ansatz in the saddle point
equation for the two-point function. This gives the equation

∂2
θg = 2(βJ )2eg(θ) , (5.71)

where θ = τ/β ∈ [0, 1) and J 2 = q21−qJ2, and with boundary conditions
g(0) = g(1) = 0. The solution of Eq. (5.71) is

eg(0)(θ) =

[
cos πν2

cos
[
πν
(

1
2 − θ

)]]2

, βJ =
πν

cos πν2
, (5.72)

with ν ∈ [0, 1] parametrising the flow from weak βJ ∼ 0 coupling (ν ∼ 0),
to strong coupling βJ � 1 (ν ∼ 1). The analytic continuation to real time
reads

GR(t) = θ(t) [G(τ → it+ ε)−G(τ → it− ε)] = θ(t) +O(1/q),

(5.73)

G(α)(t) = G(τ → it+ αβ) , (5.74)

for α = 1/2, and G(α)(t) gives the Wightman function with operators
separated by iβ/2. Instead of working in frequency space with Eq. (5.61),
we work in the time domain and use the following simplification for large
q:

J2(q − 1)G(τ)q−2 '
q�1

J2q22−qsgn(τ)q−2eg(τ) = 2J 2eg(τ) . (5.75)

Therefore, using Eqs. (5.74) and (5.75), the kernel of the Bethe-Salpeter
equation, Eq. (5.55), for large-q is

K(α)(t1, . . . , t4) = J2(q − 1)GR(t13)GR(t24)Gα(t34)q−2 (5.76)

'
q�1

θ(t13)θ(t24)2J 2eg(τ→it34+βα)

= θ(t13)θ(t24)
2π2ν2

β2 cosh2
(
πν
β (t34 + iη)

) , η = β(α− 1/2) ,
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5 Regulator dependence of the OTOC and kinetic theory at rescue

where 0 < ν < 1 and we take 0 < α < 1/2. Finally, we use ∂tθ(t) = δ(t)
to simplify the Bethe-Salpeter equation

∂t1∂t2

[
F (t1, t2) =

∫
dt3dt4K

(α)(t1, . . . , t4)F (t3, t4)

]
,

∂t1∂t2F (t1, t2) = 2J 2eg(τ→it12+βα)F (t1, t2) . (5.77)

Making the ansatz F (t, t′) = eλL
t+t′

2 f(t− t′):[
∂2
t12 + 2J 2eg(τ→it12+βα)

]
f(t12) =

λ2
L

4
f(t12),∂2

t12 +
π2ν2

β2

2

cosh2
(
πν
β (t12 + iη)

)
 f(t12) =

λ2
L

4
f(t12),

−∂2
y −

2

cosh2
(
y + iπνβ η

)
 f(y) =−

(
λLβ

2πν

)2

f(y) .

This is the Schrödinger equation with a complex Pöschl-Teller potential,

which has a boundstate, f(y) =
√

tan(πνη/β)
4η cos(πνη/β) sech(y + iπνβ η), with real

eigenvalue E = −1. The value of the eigenenergy gives the value of the
Lyapunov exponent λL = 2πν/β, which is independent on the contour
parameter α.

The large q analysis allows us a qualitative insight into the role of
the gapless nature of SYK by taking a closer look to the SYK-BSE Eq.
(5.61). Take the kernel of the Bethe-Salpeter equation in the regime
where conformal symmetry is only weakly broken βJ � 1. In this regime,

the symmetric η = 0 Wightman function is GW (t) = b
[

π
β cosh πt

β

]2/q
,

bq =
(

1
2 − 1

q

)
tan(π/q)/(J2π) [18]. Consequently, the η = 0 kernel glr(ω)

is

glr(ω
′ − ω) =

∫
dteiωtGW (t)q−2 = bq−2

(
π

β

)2−4/q
21−4/q

Γ
(

2− 4
q

)
∣∣∣∣Γ(1− 2

q
− iβ(ω′ − ω)

2π

)∣∣∣∣2 .
Using the identity |Γ(a+ ib)|2 = Γ(a)2

∏∞
k=0

1
1+b2/(a+k)2 , one immediately

sees that this kernel is strongly peaked around the origin β(ω′ − ω)→ 0.
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5.5 The Lyapunov spectrum and the Loschmidt echo

On the other hand, changing the regularization changes the kernel by
an overall factor e(α−1/2)β(ω′−ω). Thus, as the integral in Eq. (5.61) is
dominated by ω′ ∼ ω, the dependence on the contour proportional to
eη(ω′−ω) ∼ 1 essentially drops out.

In a theory with gapped excitation, on the other hand, one can see for the
case of the matrix model by numerically inspecting the expression of the
on-shell kernel (5.93) and (5.94), that the kernels are peaked around the
value of the gap. This gives a contribution of the order eη∆gap . Physically
it may be seen as a consequence of a combination of an on-shell particle
and anti-particle process that dominates the kernel.

5.5 The Lyapunov spectrum and the
Loschmidt echo

In previous sections we have seen how the regularization dependence can
afflict the commutator-squared. This shows that without more detailed
specification one cannot directly relate this quantity to an observable
that can be measured in experiments. We have also shown that the reg-
ularization dependence is dominant in the IR rather than the UV. This
is analogous to Schwinger-Keldysh theory where contour dependence is
related to the temperature, and the latter is a well known IR regulator.
IR regularization issues are usually not solved by counterterms and renor-
malization. Instead they often encode physics on their own. This suggests
that a way to resolve the regulator dependence is to define which member
of family of “regularized” correlation functions computes a proper physical
observable. The weakly coupled QFT result, through the mapping of the
commutator-squared to a kinetic equation, indicates that the symmetrically
regularized commutator-squared is the correct one.

Fortuitously this is the one almost exclusively studied in the literature
and the one for which the MSS bound on chaos is derived. Nevertheless, one
would like to understand from first principles why the symmetrized contour
is an appropriate physical observable. The first attempt construction in
the introduction points to the thermally averaged commutator-squared
instead. In this section we show that the symmetrized commutator-squared
follows directly from an alternative measure of chaos, which is related to
standard measurements of information spreading: the Loschmidt echo.
This quantity contains not only the commutator-squared but also higher-
order out-of time correlation functions. The Loschmidt echo and related
quantities have been used in the context of quantum chaos for a long
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5 Regulator dependence of the OTOC and kinetic theory at rescue

time [253–257]. Therefore, it is not surprising that the OTOCs may be
extracted from echo spectroscopy as proposed in [258–261] and measured
experimentally in [245].

5.5.1 Loschmidt echo

The Loschmidt echo is based on a old thought experiment trying to dis-
prove the irreversibility inherent in Boltzmann’s equations by imaging a
dynamical system where at time t after t0 = 0 one reverses all velocities
and compare the resulting state at time 2t with the original state. Micro-
scopically the answer is of course identical, but supposing one makes a
tiny “erroneous” perturbation at the time when one reverses all velocities,
one immediately sees that in a chaotic non-integrable system the resulting
state will be exponentially different from the original state.

This thought experiment can be directly mapped to a quantum quench
experiment. One evolves a quantum state forward in time for a time t,
perturbs it with an instantaneous quench eiδW , evolves backward for the
same time t and projects onto the original state,

M(t) ≡ 〈ψ|eiHteiδW e−iHt|ψ〉 . (5.78)

For a generic initial state, the echo will have a universal late time expo-
nential fall off independent of the type of quench W that encodes the lack
of overlap between the initial and final state,

M(t) = 〈ψinitial|ψLoschmidt(2t)〉 ∼ e−λt. (5.79)

The Lyapunov exponent λ is then a property of the system characterized
by its Hamiltonian H alone.

The Loschmidt echo is the expectation value of a complex operator. To
avoid phases one often takes the absolute value squared, which is known
as the fidelity [262]

F (t) ≡
∣∣〈ψ|eiHteiδW e−iHt|ψ〉∣∣2 ∼ ∣∣∣∣ 1

1 + δeλt

∣∣∣∣2 t→∞∼ e−2λt . (5.80)

The intermediate step is a well-known result from Jalabert and Pastawski
[254]. A second practical step with an eye on experiment is to consider
the fidelity for an ensemble of states, rather than a single state. Choosing
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the thermal ensemble one has

F (t) ≡

∣∣∣∣∣∣ 1

Zβ

∑
ψ

e−βE[ψ]〈ψ|eiHte−iδW e−iHt|ψ〉

∣∣∣∣∣∣
2

=
∣∣Tr ρeiHte−iδW e−iHt

∣∣2
= Tr ρeiHte−iδW e−iHtρeiHteiδW e−iHt +O (1/t)

= Tr ρe−iδW (t)ρeiδW (t). (5.81)

Defining e−iHtρeiHt ≡ X and e−iδW e−iHtρeiHteiδW = Y , the fidelity F (t)
above is a specific case of the more general operator fidelity F = TrX†Y
applied to density matrices as operators.8 Three remarks are in order. (1)
In the intermediate step we used that the leading Lyapunov decay rate in

t is the same when computed via
∣∣Trρe−iδW (t)

∣∣2 or Trρe−iδW (t)ρeiδW (t).
(2) Naively, as the late time Lyapunov exponent of interest is a property
of the system and not of the initial state, the averaging should not matter.
However, it is well known from classical dynamical systems that the
late time behavior of an ensemble of classical trajectories is governed by
Policott-Ruelle decay, rather than the microscopic exponential growth.
Even though these are qualitatively related in weakly coupled theories,
they are not quantitatively the same [44]. (3) Note both the symmetrized
appearance of the density matrix, and the fact that the cumulative power
of the density matrix is 2. Computed through a path-integral this implies
that the periodicity in Euclidean time is twice the inverse temperature
β = 2/Tphys.

To connect with the commutator-squared, we expand to second order in
δ

F (t) = Trρ2 + Tr ρ(−δ2W (t)2)ρ+ Tr ρ(δW (t))ρδW (t)

= Trρ2 +
δ2

2
Tr [ρ,W (t)][ρ,W (t)] + . . . (5.83)

8The operator fidelity is a weaker version of state fidelity encoding the notion of how
close a state is to a maximally entangled one [263] or, if referring to teleportation, it
quantifies the quality of the teleportation that can be achieved with the given state
[264]. The state fidelity between two quantum states given by the density matrices
ρ0 and ρ1 equals [265, 266]:

F (ρ0, ρ1) ≡ Tr

√
ρ
1/2
1 ρ0ρ

1/2
1 . (5.82)
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with the difference that the density matrix itself takes the role of the
operator V (0). The second time dependent term, the density-matrix
commutator-squared, is a variant of the Wigner-Yanase-Dyson skew infor-
mation.

Iα(ρ,A) ≡ 1

2
Tr[i[ρ2α, A†](i[ρ2−2α, A])] , 0 ≤ α ≤ 1 , (5.84)

for the symmetric value α = 1/2 [267]. Writing out the symmetric case
for hermitian A,

I 1
2
(ρ,A) = (TrρAρA− TrρAAρ) (5.85)

and replacing the thermal density matrix ρ with a pure state density
matrix,

I 1
2
(|ψ〉〈ψ|, A) = −(〈A2〉 − 〈A〉2), (5.86)

one can recognize that the WYD skew information is an extension of the
variance for pure states to mixed states. If, by the same argument as
above, one may assume that it is dominated by some largest eigenvalue
TrρAρA ∼ (TrρA)2, it computes something akin to the (largest eigenvalue)
variance for the operator O = ρA. In that sense it is again natural that
the density matrix appears with cumulative power 2. Put differently, in
computing the WYD skew information the periodicity in Euclidean time
is twice the inverse temperature β = 2/Tphys.

However, this is not yet the commutator-squared we are interested in.
A guess might be the case where the thermal density matrix is rotated by
a small similarity transformation ρ = eiV ρ0e

−iV . This is equivalent to an
instantaneous quench by V at time t = 1. Then in the limit of small δ the
late time fidelity equals

F (t) = Tr ρeiHte−iδW e−iHtρeiHteiδW e−iHt (5.87)

= Tr ρ0e
iV (0)e−iδW (t)e−iV (0)ρ0e

iV (0)eiδW (t)e−iV (0)

= Trρ2
0 +

δ2

2
Tr[ρ0, e

iV (0)W (t)e−iV (0)][ρ0, e
iV (0)W (t)e−iV (0)] + . . .

= Trρ2
0 + δ2

(
Trρ0e

iV (0)W (t)e−iV (0)ρ0e
iV (0)W (t)e−iV (0)

−Trρ0e
iV (0)W (t)2e−iV (0)ρ0

)
.

The first and the last term can never give an OTOC; ignoring those, one
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has in the limit of small V

F (t) =TOC + δ2 (Trρ0W (t)ρ0W (t) + 2Trρ0W (t)ρ0[V,W (t)]+

+Trρ0W (t)ρ0[V, [V,W (t)]] + Trρ0[V,W (t)]ρ0[V,W (t)] + . . .) .
(5.88)

The two terms of order δ2 in the first line are also TOC. The terms on the
second line contain the symmetric commutator-squared and a second term
which is also an OTOC but on a different contour.9 As we know by now,
generically the Lyapunov behavior of this other OTOC will be different.
This is not yet the answer.

Tracing the origin of Eq. (5.88), it is easy to see how the fidelity and
the symmetrized commutator-squared are related. Eq. (5.88) follows
from taking the long time limit and then taking V and δW small in the
fundamental definition of the ensemble averaged fidelity — the first line
of Eq. (5.81). If, however, we take the limit of V and δW small, with
ρ = eiV ρ0e

−iV , the ensemble averaged fidelity equals

F (t) =
∣∣∣TreiV (0)ρ0e

−iV (0)e−iδW (t)
∣∣∣2

=

∣∣∣∣Trρ0

(
1− iδW (t)− δ2

2
W (t)2 − δ[V,W (t)] + . . .

)∣∣∣∣2
= |Trρ0|2 − δTrρ0Trρ0[V,W (t)]− δTrρ0[V,W (t)]Trρ0

+ δ2Trρ0[V,W (t)]Trρ0[V,W (t)]. (5.89)

We now use the late time approximation, where we assume that ρ0[V,W (t)]

is dominated by an eigenvalue Eig(ρ0[V,W (t)]) ∼ e 1
2 (λ+iφ)t. In that limit,

the middle two terms give a strongly oscillatory contribution, which is
hard to measure. We therefore ignore it. As to the last term in Eq.(5.89),
there the late time limit allows us to make again the approximation

F (t) = . . .+ Trρ0[V,W (t)]Trρ0[V,W (t)]

= . . .+ Trρ0[V,W (t)]ρ0[V,W (t)] +O(1/t). (5.90)

9 Note that, at higher orders in δ, the fidelity contains higher-order correlation
functions, which are still represented by a Schwinger-Keldysh contour with only two
folds but with multiple insertions of operators. These correlation functions differ
from higher-point OTOCs in Schwinger-Keldysh contours with more than two folds
[268]. The latter correspond to multiple repetitions of the Loschmidt experiment
and, consequently, the largest growth rate is simply a multiple of the Lyapunov
exponent of the 4-point function OTOC corresponding to a single repetition of the
Loschmidt experiment.
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We recognize precisely the symmetrized commutator-squared with one
already noted difference. The cumulative power of the density matrix is
2. This implies that the connection between the periodicity in Euclidean
time and the physical temperature differs with a factor two compared to
what the naive smearing procedured assumes: β = 2/Tphys. In particular
this means the proper MSS bound on chaos should read λ ≤ πTphys.

The above is a strong argument that the natural observable which
measures the symmetrized commutator-squared is the Loschmidt echo in
the limit of small quenches first and late time subsequent with the sublety
that β = 2/Tphys.

5.6 Conclusion

In this article we have explored the role of the regularization scheme of
the commutator-squared and of the OTOC. Quantum chaotic systems
may display an exponential growth parametrized by a quantum Lyapunov
exponent which is bounded by above λ ≤ 2πkBT/~ [16]. The proof of
this bound involves regularising the OTOC by thermally spreading the
operators. Purportedly, this is done to regulate short distance singularities
and any physical property of a system should be independent of the short
distance regularization scheme.

Here, we have shown that for those regularizations consisting on a
contour with a iβ/2 separation between the forward branches, shifting the
backwards branches induces a change in the decoherence factor, defined as
the prefactor of the sum of the OTOCs [247]. Therefore, the decoherence
factor cannot be a physical quantity as previously suggested. On the
other hand, the Lyapunov exponent is the same for all of these contours,
suggesting that indeed it may be measurable.

However, we have then shown that for a different choice of contours,
where the separation between the forward branches is changed, the Lya-
punov spectrum also depends on the contour chosen. While the contour
dependence of the commutator-squared has been mostly overlooked in
the literature, it is not surprising that this is the case. Similarly to the
Wightman function, the commutator-squared involves operators inserted
on forward and backward branches of the Schwinger-Keldysh contour,
and so there is no reason to expect that it should be a physical quantity.
Therefore, it is important to know how to extract physical information
from it, in the same way that the spectral density, a physical quantity,
may be obtained from the Wightman function, even though the Wightman
function itself is not physical. The one notable exception in the literature is
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[240]. There, the authors studied many body chaos in a weakly interacting
2D system of fermions with quenched disorder and computed the Lyapunov
exponent both for the unregularized η = 1/2 case and the symmetrically
regularized one, η = 0 (in our notation). They indeed found that the two
results disagree, and pointed out the regulator dependence of the OTOC.
The conclusion that they drew is that, in the model considered, the only
special feature of the symmetrically regularized OTOC is a particular
cancellations of divergencies in the computation, but the physical meaning
behind this correlator remained obscure.

Here we have performed a more thorough analysis showing the regulator
dependence of the OTOC for two paradigmatic models, a weakly coupled
φ4 matrix boson (at any N) and the SYK model. By comparing to
ordinary Schwinger-Keldysh theory, we provide a simple diagrammatic
proof regarding the reason why the choice of the contour affects the OTOC,
although the Lyapunov spectrum becomes contour independent for theories
that stay massless/gapless even at finite temperature. This is particularly
relevant for the SYK model, which has been extensively studied over the
last years. Its largest Lyaponuv exponent, which saturates the MSS bound,
is indeed contour independent.

These detailed studies allow us to recognize that the regulator depen-
dence is an IR issue, and not an alleviation of purported UV singularities.
This means one has to take more care in understanding the role of the
regulator as it may contain physical information. One crucial insight of
this chapter is to recognise the special physical meaning of the symmet-
rically regularised OTOC, by means of kinetic theory [44]. The OTOC
computed on this contour is the one which one can properly claim to
compute chaos or scrambling. That the fact that the bound on chaos holds
for this physically meaningful definition of OTOC is remarkable and open
new directions on possible still unknown dynamical constraints that the
bound can impose.

This does then raise the question which simple observable naturally
gives rise to such a symmetric insertion of a thermal density matrix. We
proposed a simple observable, related to the operator fidelity, which con-
tains information beyond the commutator-squared and can be measured
experimentally using echo spectroscopy. The corollary of using this ob-
servable to define the OTOC is that is based on a double insertion of
density matrices, i.e. the periodicity in Euclidean time is twice the inverse
temperature. From this point of view the bound on chaos should read
λ ≤ πkBTphys/~.

Overall, our results pose the question on the usefulness of the commutator-
squared to probe quantum chaos. The contour dependence of the commutator-
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squared and of the Lyapunov spectrum extracted from it casts doubts on
whether the commutator square is physical and how physical information
should be extracted from it. However, even though a natural way to define
chaotic quantum system is that in which the OTOC displays an exponen-
tial growth, this growth regime actually clashes with the other notion of a
quantum chaotic theory that it should display random matrix behaviour.
In the SYK model, even though one has exponential growth at shorter
times similar to classical weakly interacting chaos, spectral properties,
such as the spectral form factor, are similar to that of random matrix
theory for times of order of N log(N) and larger [269–271]. This suggests
that the model becomes truly quantum chaotic after this time-scale. A
gorgeous example of true quantum chaos embodied by random matrix
behaviour has been observed on the kicked Ising spin-1/2 chain for much
shorter timescales [272]. There is no exponential growth in the OTOC
in this model, which challenges the notion of how quantum chaos and
especially maximal chaos should be defined.

5.A Numerical calculation in matrix model

In this appendix we outline the simplifications used to solve numerically
the Bethe-Salpeter equation Eq. (5.43). Following [243], we define

P = |p|, K = |k|, y = |k − p| (5.91)

and express the momentum integral as follows∫
d3k = 2π

∫ ∞
0

K2dK

∫ K+P

|K−P |

ydy

KP
. (5.92)

Rewriting Eq. (5.43) in the time domain and replacing the momentum
integral, we arrive at the simplified version of the Bethe-Salpeter equation,
which we solve numerically following the strategy described in [243]:

λLf(P ) =

∞∫
0

dK

cosh(ηE+)f(K)− f(P )

3

sinh
(
βEP

2

)
sinh

(
βEK

2

)
 I+(P,K)

+

cosh(ηE−)f(K)− f(P )

3

sinh
(
βEP

2

)
sinh

(
βEK

2

)
 I−(P,K)

 ,
(5.93)
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where

I+(P,K) ≡ K

(2π)2P4EPEK

K+P∫
|K−P |

dyyR(E+, y) =

3g̃K
(2π)3βPEPEK

sinh(βE+/2)

K+P∫
|K−P |

dy log
sinhx+

+

sinhx+
−

I−(P,K) ≡ K

(2π)2P4EPEK

K+P∫
|K−P |

dyyR(E−, y) =

3g̃K
(2π)3βPEPEK

sinh(βE−/2)

K+P∫
|K−P |

dy log
1− e−2x−+

1− e2x−−

x+
± =

β

4

(
E+ ± y

√
1 +

4m2

y2 − E2
+

)
x−± =

β

4

(
E− ± y

√
1 +

4m2

y2 − E2
−

)
,

(5.94)

and we defined g̃ = g4(N2 + 5)/(4 · 144).
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[262] Tomaž Prosen, Thomas H. Seligman, and Marko Znidaric. “Theory
of Quantum Loschmidt Echoes”. In: Prog. Theor. Phys. Suppl.
150 (2003), pp. 200–228. issn: 0375-9687. doi: 10.1143/PTPS.

150.200. arXiv: 0304104 [quant-ph]. url: http://arxiv.org/
abs/quant- ph/0304104%0Ahttp://dx.doi.org/10.1143/

191

https://doi.org/10.1103/PhysRevE.65.036208
http://arxiv.org/abs/0106149v2
https://link.aps.org/doi/10.1103/PhysRevE.65.036208
https://link.aps.org/doi/10.1103/PhysRevE.65.036208
https://doi.org/10.1088/0305-4470/35/6/309
https://doi.org/10.1088/0305-4470/35/6/309
http://arxiv.org/abs/0111014v2
http://stacks.iop.org/0305-4470/35/i=6/a=309?key=crossref.2ad33b3981f849499d451d6404c402fc
http://stacks.iop.org/0305-4470/35/i=6/a=309?key=crossref.2ad33b3981f849499d451d6404c402fc
http://stacks.iop.org/0305-4470/35/i=6/a=309?key=crossref.2ad33b3981f849499d451d6404c402fc
https://doi.org/10.1103/PhysRevA.71.043803
https://doi.org/10.1103/PhysRevA.71.043803
https://doi.org/10.1103/PhysRevA.94.062329
https://doi.org/10.1103/PhysRevA.94.062329
http://arxiv.org/abs/1607.00079
https://link.aps.org/doi/10.1103/PhysRevA.94.062329
https://link.aps.org/doi/10.1103/PhysRevA.94.062329
http://arxiv.org/abs/1607.01801
http://arxiv.org/abs/1607.01801
http://arxiv.org/abs/1607.01801
https://doi.org/10.1103/PhysRevA.94.040302
http://arxiv.org/abs/1602.06271
http://arxiv.org/abs/1602.06271%0Ahttp://dx.doi.org/10.1103/PhysRevA.94.040302 https://link.aps.org/doi/10.1103/PhysRevA.94.040302
http://arxiv.org/abs/1602.06271%0Ahttp://dx.doi.org/10.1103/PhysRevA.94.040302 https://link.aps.org/doi/10.1103/PhysRevA.94.040302
http://arxiv.org/abs/1602.06271%0Ahttp://dx.doi.org/10.1103/PhysRevA.94.040302 https://link.aps.org/doi/10.1103/PhysRevA.94.040302
https://doi.org/10.1007/s10955-018-2052-7
https://doi.org/10.1007/s10955-018-2052-7
https://doi.org/10.1143/PTPS.150.200
https://doi.org/10.1143/PTPS.150.200
http://arxiv.org/abs/0304104
http://arxiv.org/abs/quant-ph/0304104%0Ahttp://dx.doi.org/10.1143/PTPS.150.200 https://academic.oup.com/ptps/article-lookup/doi/10.1143/PTPS.150.200
http://arxiv.org/abs/quant-ph/0304104%0Ahttp://dx.doi.org/10.1143/PTPS.150.200 https://academic.oup.com/ptps/article-lookup/doi/10.1143/PTPS.150.200
http://arxiv.org/abs/quant-ph/0304104%0Ahttp://dx.doi.org/10.1143/PTPS.150.200 https://academic.oup.com/ptps/article-lookup/doi/10.1143/PTPS.150.200


Bibliography

PTPS . 150 . 200https : / / academic . oup . com / ptps / article -

lookup/doi/10.1143/PTPS.150.200.

[263] Charles H Bennett et al. “Teleporting an unknown quantum state
via dual classical and Einstein-Podolsky-Rosen channels”. In: Phys.
Rev. Lett. 70.13 (1993), pp. 1895–1899. issn: 0031-9007. doi: 10.
1103/PhysRevLett.70.1895. url: https://link.aps.org/doi/
10.1103/PhysRevLett.70.1895.

[264] Charles H. Bennett et al. “Mixed-state entanglement and quantum
error correction”. In: Phys. Rev. A 54.5 (1996), pp. 3824–3851.
issn: 1050-2947. doi: 10.1103/PhysRevA.54.3824. url: https:
//link.aps.org/doi/10.1103/PhysRevA.54.3824.

[265] A. Uhlmann. “The “transition probability” in the state space of a
∗-algebra”. In: Reports Math. Phys. 9.2 (1976), pp. 273–279. issn:
00344877. doi: 10.1016/0034-4877(76)90060-4. url: http://
linkinghub.elsevier.com/retrieve/pii/0034487776900604.

[266] Richard Jozsa. “Fidelity for Mixed Quantum States”. In: J. Mod.
Opt. 41.12 (1994), p. 2315. issn: 0950-0340. doi: 10.1080/09500349414552171.
url: http://www.tandfonline.com/doi/abs/10.1080/09500349414552171.

[267] E. P. Wigner and M. M. Yanase. “Information contents of distri-
butions”. In: Proc. Natl. Acad. Sci. 49.6 (1963), pp. 910–918. issn:
0027-8424. doi: 10.1073/pnas.49.6.910. url: http://www.pnas.
org/cgi/doi/10.1073/pnas.49.6.910.

[268] Felix M. Haehl and Moshe Rozali. “Effective Field Theory for
Chaotic CFTs”. In: JHEP 10 (2018), p. 118. doi: 10 . 1007 /

JHEP10(2018)118. arXiv: 1808.02898 [hep-th].

[269] Jordan S. Cotler et al. “Black Holes and Random Matrices”. In:
(2016), pp. 1–71. arXiv: 1611.04650. url: http://arxiv.org/
abs/1611.04650.
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Samenvatting

Een van de spannende dingen van onderzoek is dat het nooit zeker is waar
en wanneer de volgende belangrijke ontdekkingen plaats zullen vinden. We
kunnen ons alleen laten leiden door onze nieuwsgierigheid en ons instinct.
Dit proefschrift vat enkele antwoorden op de vele vragen die wij ons de
afgelopen vier jaar hebben gesteld, samen. Sommige vragen kwamen tot
stand met het oog op de technologische vooruitgang van (hopelijk) de
aankomende jaren. Het begrip van hoge-temperatuur supergeleiders en
van de mysteries van sterk-gekoppelde systemen, alsmede van de rol van
kwantuminformatie, zou ons leven ingrijpend kunnen veranderen. Verder
is de motivatie puur theoretisch.

Van een chaotisch systeem is bekend dat een een kleine verandering in
de beginwaarden dramatische gevolgen kan hebben voor de evolutie van
dat systeem (het vlindereffect). Deze gevoeligheid voor de beginwaarden is
een eigenschap van het systeem op korte tijdsschalen en kleine afstanden.
Om de chaos waar te nemen, moeten we daarom inzoomen. Daartegenover
staat dat, als we eigenschappen op grote (tijd)schalen willen bestuderen
(en dus uitzoomen), het systeem hydrodynamisch kunnen beschrijven.
Dat twee eigenschappen die zich op verschillende tijdschalen afspelen aan
elkaar gerelateerd zouden kunnen zijn, is een aantrekkelijk idee, wat een
nieuwe vorm van symmetrie op zou kunnen leveren. Dit is een van de
achterliggende motivaties van dit proefschrift: is het mogelijk dat chaos,
die zich zeer vroeg in de ontwikkeling van een systeem manifesteert, invloed
heeft op het hydrodynamisch transport in het systeem? Zelfs op klassiek
niveau is dit een interessante vraag. Anderzijds is het begrijpen van chaos
in veel-deeltjes kwantumsystemen nog intrigerender. Desalniettemin is
er de afgelopen jaren op beide thema’s vooruitgang geboekt, veelal door
gebruik te maken van de AdS/CFT dualiteit.

In dit proefschrift hebben wij deze vragen vanuit twee tegenovergestelde
richtingen bestudeerd, zowel vanuit zwakgekoppelde veldentheorieën, waar-
bij een combinatie van veldtheoretische technieken gebruikt is, als vanuit
de AdS/CFT dualiteit. Daarnaast hebben wij een fermionisch en bosonisch
kwantum kritisch punt bestudeerd, dit zijn “exotische” aggregatietoes-
tanden waarin kwantuminformatie een belangrijke rol speelt.

De belangrijkste resultaten van dit proefschrift bestaan uit de formuler-
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ing van een Boltzmann-achtige vergelijking voor veel-deeltijes chaos, de
ontdekking van een nieuwe eigenschap van thermische correlatiefuncties
(pole-skipping) en de analyse van wat de juiste en zinvolle observabele is
om experimenteel kwantumchaos te bestuderen. De techniek die hiervoor
gebruikt is, is een specifieke correlatiefunctie, welke uitgebreid bestudeerd
is in dit proefschrift, de ongelijke-tijd correlatiefunctie (out-of-time ordered
correlator, OTOC).

In hoofdstuk twee schrijven we de kinetische vergelijking voor veel-
deeltijes chaos neer. Deze vergelijking, met een structuur à la Boltzmann,
brengt een precies, microscopisch begrip met zich mee van wat kwantum-
chaos in verdunde systemen is, namelijk een bruto uitwisseling van energie.
Kwalitatief kan men zich deze kinetische vergelijking zo voorstellen: denk
aan een netwerk waar elke knoop in- en uitgaande verbindingen heeft. Het
kan een energienetwerk zijn van een land waar de knopen overeenkomen
met de plekken waar energie geproduceerd of verbruikt wordt, of een
sociaal netwerk waar de knopen de gebruikers zijn en de verbindingen
willekeurige, oriënteerbare connecties (tweet/retweet, like/dislike). In dit
beeld telt de traditionele Boltzmann transportvergelijking voor transport
de tijdsevolutie van de netto toename in een knoop (respectievelijk de
energie productie ten opzichte van het verbruik, of het aantal tweets min
het aantal retweets van één enkel account). De kinetische vergelijking voor
kwantumchaos telt daarentegen het totaal van inkomende plus uitgaande
bijdragen. Dit is geen constante, en voor kwantumsystemen is het typerend
dat dit exponentieel groeit, een signaal van kwantumchaos. Er zijn limieten
aan de snelheid van deze exponentiële groei. Onze interpretatie van kwan-
tumchaos in termen van kinetische theorie geeft aan dat, voor sommige
soorten netwerken, dit optellen een heel specifiek karakter heeft, namelijk
een exponentiële groei. Hierbij is het de vraag waarom, microscopisch
gezien, deze grootheid begrensd is en of dit soort resultaten uitgebreid
kunnen worden naar generieke netwerken, weg van de kwantumsystemen.

In hoofdstuk drie proberen we de algemeenheid van deze kinetische
theorie voor chaos te begrijpen. We onderzoeken wat er gebeurt in systemen
waar kwantuminformatie en verstrengeling op lange afstanden een rol
beginnen te spelen, wat bijvoorbeeld in de buurt van een kwantumkritisch
punt gebeurt. We laten zien dat, voor twee paradigmatische theorieën, het
bosonische O(N) vector model en het Gross-Neveu model, in de buurt van
het kwantumkritisch punt, chaos nog steeds kan worden beschreven met
onze kinetische theorie. In hoofdstuk vier analyseren we sterk-gekoppelde
systemen met behulp van de holografische dualiteit. We laten zien dat
chaotische eigenschappen van zwarte gaten bestudeerd kunnen worden met
een experiment ver uit evenwicht dat overeenkomt met diffusief gedrag in

196



Samenvatting

de buurt van de horizon. Voor systemen die duaal zijn aan zwarte gaten,
laat chaos een afdruk achter in de correlatiefuncties laat in de tijd, die het
hydrodynamisch transport bepalen. Dit fenomeen is uitermate verrassend
en heeft de naam pole-skipping gekregen.

In het laatste hoofdstuk stellen we een belangrijke vraag aan de orde
met betrekking tot de OTOC. De afgelopen jaren is er veel belangstelling
geweest om protocollen te bedenken voor experimenten om de OTOC te
meten. De discussie is gebaseerd op de stelling, die vaak in de literatuur
wordt aangehaald, dat de OTOC niet gevoelig is voor de manier waarop
deze geregulariseerd wordt. Wij vechten deze stelling aan en laten zien dat
zowel in sterk- als in zwakgekoppelde theorieën, de OTOC sterk afhankelijk
is van diens regularisatie. We geven een indicatie van welke regularisatie
de “fysische” is en interpreteren dit resultaat zowel in het kader van de
kinetische theorie, die in de vorige hoofdstukken afgeleid is, als in het kader
van het Loschmidt echo experiment.
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Summary

One of the exciting things about research is that we never know in which
topic and when the next important discovery will occur. We can only follow
our curiosity and our instinct, maybe guided by the power of analogies.
This thesis summarizes a few answers to the many questions we have been
puzzled and fascinated by in the course of the last four years. Some of
these questions arose by having in mind the technological development
of the (hopefully) near future. The understanding of high-temperature
superconductors and the mysterious behaviour of strongly coupled physics,
together with the role of quantum information, might potentially have a
big impact on our lives. Another motivation is purely theoretical.

We know that, if a system is chaotic, a small change of the initial
condition can dramatically affect its time evolution (the butterfly effect).
This sensitivity to the initial condition is a property of the early time
and small scale of the system, i.e., we need to zoom in to see it. On
the other side, if we want to study the large scale properties and the
collective behaviour at late times, i.e., zooming out, we can likely apply
a hydrodynamic description. The idea that two phenomena belonging to
different time scales could be related is very charming, and can reveal the
existence of a new symmetry. This is one of the theoretical motivations of
this thesis: is it possible that chaos, which happens at a very early time,
can affect hydrodynamic transport in a system? Even at the classical level,
this question appears enigmatic. On the other side, for quantum systems,
understanding many-body chaos is even more intriguing. Nevertheless,
over the past few years some progress has been made on both topics, often
by means of the AdS/CFT duality.

In this thesis we investigated these questions from two opposite directions,
both from weakly coupled field theories, using a combination of field
theory techniques, and from strongly-coupled field theories, using the
AdS/CFT correspondence. Moreover, we studied a fermionic and bosonic
quantum critical point, which are ’exotic’ states of matter where quantum
information plays an important role.

The main results of this thesis consist of the formulation of a Boltzmann-
like equation for many-body chaos, the discovery of a new property of
thermal correlation functions (pole-skipping), and the analysis of which is
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the correct and meaningful observable to measure experimentally in order
to probe quantum chaos. The tool for this investigation is a particular
correlation function, extensively analysed in this thesis, the out-of-time
ordered correlation function (OTOC).

In chapter two, we write the kinetic equation for many-body chaos.
This equation, with a Boltzmamnn-like structure, gives a precise micro-
scopic understanding of what quantum chaos represents in diluted systems,
namely a gross energy exchange. A qualitative picture of this kinetic
equation is the following: imagine a network where each node has ingoing
and outgoing connections. It can be the power network of a country where
the nodes correspond to the sites where electricity is generated/used or
a social network where the nodes are the users and the links are any
orientable connections (tweet/retweet, like/dislike). In this framework, the
traditional Boltzmann equation for transport counts the time evolution of
the net gain of the node (respectively how much electricity is generated
with respect to the amount used, or the number of tweets minus the
number of retweets of a single account). The kinetic equation for quantum
chaos, on the other side, counts the sum of the ingoing and outgoing
contributions. This quantity is not constant in time, and for quantum
systems typically growths exponentially, a signature of quantum chaos.
The rate of exponential growth can be shown to be bounded [16]. Our
kinetic theory interpretation of quantum chaos indicates that, for some
classes of networks, this counting has a specific behaviour, exponential in
time. This raises several questions of why, microscopically, this quantity is
bounded and whether similar results can be extended to general networks,
beyond quantum systems.

In chapter three we try to understand the generality of this kinetic theory
for chaos. We check what happens for systems where quantum information
and long range entanglement begin to play a role, as for example in the
proximity of a quantum critical point. We show that, for two paradigmatic
theories, the bosonic O(N) vector model and the Gross-Neveu model, close
to the quantum critical point (QCP), chaos is still described by our kinetic
theory.

In chapter four we analyse strongly coupled systems by means of the
holographic duality. We show that the chaotic properties of black holes can
be probed with a highly out-of-equilibrium experiment that corresponds
to diffusive behaviour near the horizon. For systems dual to black holes,
chaos leaves imprints in the late-time correlation functions that determine
hydrodynamic transport. This phenomenon is highly surprising and has
been named pole-skipping [56].

In the last chapter we address an important question regarding the
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out-of-time correlation (OTOC) function. Over the last years there has
been much interest in experimental protocols to measure the OTOC. The
discussion has relied on the statement, often found in literature, that
the OTOC is insensitive to the way it is regularized. We challenge this
statement and show that both in weak and strongly coupled theories
the OTOC strongly depends on the regularization. We indicate which
regularization corresponds to the physical one and we interpret this result
both in terms of the kinetic theory derived in the previous chapters and
the Loschmidt echo experiment.
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