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General Discussion

In this thesis, several analyses of the gut microbiome composition in relation
to health outcomes have been carried out. Randomized studies presented in
this thesis utilized the observations of gut microbiome composition, cytokine re-
sponses and helminth infections at two different time-points, namely before and
21 months after the first treatment. The first part of the thesis deals with the
analysis of gut microbiome and helminthiasis, while the second part deals with
the three-way relationship between helminth infection, gut microbiome, and im-
mune responses. The main purpose of this chapter is to assess how much evi-
dence there is for the associations that are observed in this thesis to be causal. In
line with this purpose, it is observed that many microbiome studies have been di-
rected towards causality such as in the work of microbiota and metabolic diseases
[Zhao (2013); Zhang and Zhao (2016)]. In analyzing the causal effect of certain
exposure, it is important to minimize all possible biases, and to account for po-
tential unobserved confounders or measurement errors. This chapter serves as a
key to understanding whether the identified effect may be causal. The remaining
of this chapter is organized as follows; the findings in epidemiological works as
well as in the development of statistical methods are summarized, several basic
terminologies of causal effect are briefly described, followed by a discussion of
the findings. Finally, the conclusion is derived and directions for future research
are listed.
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120 Chapter 6 — General Discussion

6.1 Summary of the findings

In Chapter 2, treatment was significantly associated with microbiome composi-
tion only in subjects who had helminth infections and remained infected at 21
months after the first treatment. This significant association is also confirmed
using a newly developed statistical method outlined in Chapter 3. In addition,
the stability of gut microbiome composition over time is also confirmed by an-
alyzing the microbiome composition of subjects who remained uninfected and
did not receive albendazole at two time-points. When analysing the relationship
between gut microbiome composition and immune responses, the microbiome
composition is significantly associated with an immune response when subjects
were helminth-uninfected but this association was not observed when subjects
were helminth-infected (Chapter 4). When analyzing the association between
helminth infection and both microbiome composition and immune responses
jointly (Chapter 5), only gut microbiome composition is significantly associated
with helminth infections.

In relation to statistical methodologies, this thesis contributes to the devel-
opment of appropriate statistical models which address the features of compo-
sitional data and the collection design. The features of microbiome data are ad-
dressed, namely the compositional artifact, the presence of extra variation (overdis-
persion) due to unobserved causes and measurement errors. The compositional
feature is addressed by multivariate approach, i.e. jointly modelling all bacterial
taxa. This is done to avoid multiple testing correction when analyzing each bacte-
ria taxa separately. The overdispersion is taken into account by introducing ran-
dom effect in the model. When considering a distribution for the random effect
of overdispersion, one could opt for a conjugate [Chen and Li (2013); Guimaraes
and Lindrooth (2007)] as it is done in Chapter 3 or normal distribution [Hartzel
et al. (2016); Hedeker (2003)] as it is done in Chapter 5. The measurement er-
ror is accounted for in the model by introducing additional normally distributed
random effect. Finally, it has been shown in Chapter 5 that modelling the as-
sociation between helminth infection and different type of outcomes jointly in a
hierarchical setting provides unbiased estimates. Another advantage from this
joint modelling is enhancing the statistical power as multiple correction is not
needed.

6.2 Basic terminologies of causal inference

Before conferring causal relationship in this thesis, basic terminologies of causal
inference [Hernan and Robins (2018)] are briefly reviewed. In principle, a predic-
tor has a causal effect on an outcome if the presence or absence of this predictor
yields different responses [Rubin (1974)]. In a randomized controlled trial setting,
as is the case in the study described in this thesis, the significant association be-
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tween treatment and outcome is indeed causal since the counterfactual response
can be quantified through a control group. When the randomized study is not
possible, researchers rely on observational studies. The causal effect in observa-
tional design still can be estimated by utilizing an instrumental variable, i.e. a
variable that has an effect on an outcome only via a predictor [Burgess and Small
(2016)]. In fact, the method of instrumental variable is also useful for inferring
total effect of predictor on outcome even in the presence of confounder [Hernan
and Robins (2006b)]. To understand these terminologies as well as to identify
the causal effect of variables involved in these analyses, directed acyclic graphs
(DAGS) are used to visualize the relationship between variables of interests in
this thesis. In these DAGs, vertices represent variables and arrows represent the
direction from a cause to an effect.

In making inferences about causation from association study, one needs to
be aware of the presence of confounders, colliders and measurement errors as
these will strengthen or weaken the observed associations [Pourhoseingholi et al.
(2012)]. A confounding bias is caused by the presence of a confounder, i.e. a vari-
able that affects both predictor and outcome simultaneously. In the presence of a
confounder, the association between predictor and outcome is no longer caused
only by the predictor. This bias can be eliminated by conditioning (stratification
or regression adjustment) on the confounder. Conversely, the presence of col-
lider, i.e. variable that is affected by both predictor and outcome, will block an
association between them. One needs to cautiously assess this relationship as
conditioning on the collider will introduce bias [Hernan and Robins (2018)], i.e.
observing a significant association while it actually does not exist. Finally, errors
in measuring the variables need to be taken into account in the model.

6.3 Synthesis of findings

Suppose the associations observed in this thesis are indeed causal, then the rela-
tionship between anthelminthic treatment, helminth infections, gut microbiome
and immune responses characterized by stimulated cytokine responses is illus-
trated in Figure 6.1. Note that it is assumed that treatment affect gut microbiome
composition and cytokine are completely mediated via infection.

Here, it is considered that treatment as a covariate and the other variables
(helminth infection, gut-microbiome and cytokine response) as outcomes. Since
anthelminthic treatment was randomized, the causal effect of treatment on these
three variables separately can be assessed, since association in randomized de-
sign is indeed causal. Let us focus on the relationship between infection and gut
microbiome. As infection is not randomized, the causal effect of infection on gut
microbiome cannot be assessed. However, treatment can be used as a proxy for
this causal relationship under certain assumptions. Suppose that treatment has
no effect on gut microbiome and treatment is only associated with gut micro-
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Figure 6.1: The hypothesized relationship based on the findings of our analyses.

biome via helminth infection, then treatment is an instrumental variable for the
relationship between infection and gut microbiome. Thus, the causal effect of in-
fection can be assessed via this instrumental variable [Burgess and Small (2016)].
In a similar way, it can be hypothesized that treatment is an instrumental variable
in assessing the effect of helminth infection on cytokine response. However this
is not true since a previous study by Wammes et al. (2016) showed that treatment
was significantly associated with cytokine responses.

The assumption of treatment as an instrumental variable in the relationship
between helminth infections and gut microbiome is hard to infer. The mechanism
of albendazole on gut microbiome directly has not been fully analyzed [Leung
et al. (2018)]. In our study, the relatively small sample size results in a lack of sta-
tistical power to identify a direct effect of albendazole on gut microbiome. Thus,
at this moment treatment is not considered as an instrumental variable for this
relationship.

Since we do not have an instrumental variable, we need to consider possible
confounders for the relationship. In animal studies where mostly experimental
in which helminth-free animals were introduced to the helminth parasite and
other factors that could affect their gut microbiome were controlled (reviewed in
Reynolds et al. (2015)). Animal models ensure that any changes in gut micro-
biome due to helminth exposure can be clearly quantified (reviewed in Zaiss and
Harris (2016)). These studies conclude that helminth infections has a causal ef-
fect on gut microbiome. However for human studies, the sample size is either
to0 small (this thesis) or the design is interventional or observational. Any alter-
ations that were observed in gut microbiome composition might be confounded
by other factors.

When considering the confounders that affect the gut microbiome composi-
tion in humans, dietary consumption and hygiene are major candidates [Gilbert
et al. (2018)]. Dietary intake may also affect weight gain, and thus in Figure 6.2,
the relationship with these additional variables (weight gain and hygiene) are
added. As illustrated in Figure 6.2, hygiene affects both helminth infection and
gut microbiome, thus it is a confounder for both helminth infection and gut mi-
crobiome. It is necessary to adjust for hygiene when quantifying the effect of
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helminth infection on gut microbiome. However, in general, confounders may be
difficult to measure or it may be unobserved. This will add an extra randomness
in the exposure for each subjects. For this purpose, the inclusion of random effect
subject-specific in the statistical model in a longitudinal setting takes care of this
extra variation due to unobserved confounder.

In addition to confounders, there are several factors that could affect both
helminth infections and microbiome composition. As can be seen in Figure 6.2,
helminth infection is known to cause reduction of food intake and thus affect
the body mass index (BMI) [Crompton and Nesheim (2002)]. Here, BMI plays a
role as a mediator for the relationship between helminth infection and gut micro-
biome. Assessing both direct and indirect effects of helminth infection on micro-
biome composition is needed to identify the role of mediator and understand the
underlying biology. Usually this indirect effect through a mediator is analyzed
within the framework of linear structural equation models (LSEMs) [MacKinnon
et al. (2007)].
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Figure 6.2: The DAG representing the relationship of all variables when measurement errors were
included. The grey variables represent the observed variables with errors and blue line represents the
possible causal direction.

In Chapter 2 and 3, treatment appeared to be significantly associated with gut
microbiome only in subjects who had helminth infections. A current review de-
scribes the potential influence of gut microbiome on the presence of helminths in
human intestinal tract by altering the immune system although the exact mech-
anism is still unknown [Rapin and Harris (2018)]. If this is indeed the case, as
both gut microbiome and treatment influence helminth infections, thus infection
becomes a collider. The association path between treatment and gut microbiome
is blocked. This association is not causal as treatment is associated with gut mi-
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crobiome given the subjects is helminth-infected. This could be the reason the
effect of treatment is not observed in subjects who were helminth-uninfected.

Another concern in this randomized study is a possibility that the longer the
time frame of the study, the more individual and contextual changes could occur
[Wunsch et al. (2010)]. It has been reported that administration of albendazole in
schoolchildren in Kenya [Stephenson et al. (1993)], Indonesia [Hadju et al. (1998)],
and Uganda [Alderman et al. (2006)] for a period of more than 4 months increases
the appetite and eventually weight gain. These may lead to lack of compliance.
More importantly study in Ghana [Humphries et al. (2017)] reported the efficacy
of albendazole treatment on removing helminth was strongly improved by nutri-
tion factor. This shows that the effect of treatment in removing helminth may be
mediated via the weight gain. As a consequence, in the long run, the assumption
of randomized treatment is no longer held.

6.4 Measurement errors

Biomedical data are measured with errors. Firstly, helminth infection status was
measured by PCR or microscopy. Microscopic examination as a conventional
method to identify helminth infections potentially gives unreliable results espe-
cially in the case of light infection [Llewellyn et al. (2016); Khurana and Sethi
(2017)]. On the other hand, researchers often classifying infection status based
on PCR which is a reliable measurement, have to use a threshold as is the case
in this thesis which can bring about error. Secondly, microbiome data was ob-
tained through sequencing process which is not free of noise [Goodrich et al.
(2014)]. The procedure undergoes the clustering process until the taxonomical
count data is obtained [Robinson et al. (2016)]. Thirdly, the data generated from
assays that measure cytokine levels may be censored by detection limit and as a
result data might be skewed. To deal with this caveat, transformation of the data
using logarithm transformation was done so that the transformed data conform
with normal distribution. However, such a transformation might not reduce the
variability in the data.

In practice, researchers only observe variables which are measured with er-
rors, as depicted by the relationship in grey in Figure 6.2. These measurement
errors could occur in any study design [Hernan and Robins (2018)] and when it
is left unaccounted for in the analyses, it weakens or strengthens the association
between outcome and predictor. In Chapter 4 of this thesis, the relationship be-
tween helminth infection, gut microbiome and cytokine responses were analyzed
by ignoring the measurement error. It is shown in the simulation study in Chap-
ter 5 that ignoring the measurement error might give biased regression estimates.

Considering the above discussions with regard to the observed significant as-
sociations and their possible confounders. Firstly we believe that the effect of
treatment on helminth infections is causal as treatment is randomized and the
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effect of the long time frame via gain in weight is likely to be small. Secondly, we
believe that the effect of helminth infection on microbiome composition and on
cytokine responses are causal, because we assume that the random effects used
in modelling the repeated measurements takes care of most of the confounders
(Figure 6.3). The relationship between gut microbiome and cytokine responses
is not discussed here since it is shown in Chapter 5 that these outcomes are not
correlated.
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Figure 6.3: The concluded causal effect. The variable U represents latent variable to account for un-
observed confounders.

6.5 Future directions

To conclude, this general discussion highlights the critical considerations when
moving from association to causation in microbiome studies. Researchers should
specify the relationship of the studied variables, identify potential biases and use
proper statistical methods that account for these challenges. The study design
used in this thesis is key for causal inferences and the statistical methods de-
veloped in this thesis illustrates a solution to obtain unbiased estimates of the
relationship between variables.

The findings that gut microbiome is related to obesity and several metabolic
diseases have shown that the relationship might be causal. With regard to this
direction, it is important to understand the biological mechanism that underly-
ing the relationship between infection, gut microbiome, and cytokine response.
It has been shown in the above DAGs that gut microbiome could be a potential
mediator for the relationship between infection and cytokine responses. To this
end, work on mediation analysis is limited on single variable and not in the com-
positional variable and the statistical analysis framework for this purpose is still
limited. This could be another direction for future research.

The framework developed in Chapter 5 can be extended to include multi-
ple omics type data to unravel the complex mechanism of gut microbiota. Re-
cent findings show that gut microbiota produces metabolites that regulate the
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immune-homeostasis [Thorburn et al. (2014)]. Thus, to understand the relation-
ship between gut microbiome and immune system, more research with regard to
this metabolite is needed.

In relation to the development of appropriate statistical model which account
for the unobserved confounders, two distributional assumptions were made in
this thesis, namely the conjugate and normal distribution. However, there is still
lack of method to assess models’ goodness of fit. A statistical method needs to be
developed for that purpose. Further research is needed in this direction.

In the joint model in Chapter 5, the random effect describing the measurement
error is assumed to be the same for two time-points due to computational burden.
This assumption may not be true. More research is needed to analyzed different
random effect structure to model the measurement error.





