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3
The mixed model for the analysis of a

repeated-measurement multivariate
count data

Abstract

Clustered overdispersed multivariate count data are challenging to model due
to the presence of correlation within and between samples. Typically, the first
source of correlation needs to be addressed but its quantification is of less inter-
est. Here we focus on the correlation between time-points. In addition, the effects
of covariates on the multivariate counts distribution need to be assessed. To ful-
fill these requirements, a regression model based on the Dirichlet-multinomial
distribution for association between covariates and the categorical counts is ex-
tended by using random effects to deal with the additional clustering. This model
is the Dirichlet - multinomial mixed regression model. Alternatively, a negative
binomial regression mixed model can be deployed where the corresponding like-
lihood is conditioned on the total count. It appears that these two approaches

This chapter has been published as: Ivonne Martin, Hae-Won Uh, Taniawati Supali, Makedonka
Mitreva, Jeanine J. Houwing-Duistermaat (2019). The mixed model for the analysis of a repeated
measurement multivariate count data. Statistics in Medicine, 38(12): 2248 - 2268.
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34 Chapter 3 – Mixed models for multivariate count data

are equivalent when the total count is fixed and independent of the random ef-
fects. We consider both subject-specific and categorical-specific random effects.
However, the latter has a larger computational burden when the number of cat-
egories increases. Our work is motivated by microbiome datasets obtained by
sequencing of the amplicon of the bacterial 16S rRNA gene. These data have a
compositional structure and are typically overdispersed. The microbiome dataset
is from an epidemiological study carried out in a helminth-endemic area in In-
donesia. The conclusions are: time has no statistically significant effect on mi-
crobiome composition, the correlation between subjects is statistically significant,
and treatment has a significant effect on the microbiome composition only in in-
fected subjects who remained infected.

3.1 Introduction

Microbiome data are overdispersed multivariate counts; for each sample, counts
across multiple taxa are observed. If one is interested in the change of the micro-
biome composition over time, subjects are measured longitudinally [Ramanan
et al. (2016)]. Such data are subject to two sources of correlation, namely the cor-
relation between the counts of a sample and between multiple samples across
time of a subject. For this type of data, the available statistical models are still
limited.

The microbiome dataset considered in this paper is obtained by sequencing
the amplicon of the bacterial 16S rRNA gene, where the sequencing procedure
follows the HMP standardized protocol [HMP (2012)]. Chimeric sequences were
filtered out and the resulting sequences are either categorized based on similarity
into Operational Taxonomical Units (OTUs) followed by annotation, or directly
annotated using relevant databases (e.g. Ribosomal Database Project, Greenge-
nes or Silva). The counts for a specific category represent the abundances of the
bacteria at a biological taxonomy level. Datasets generated through this sequenc-
ing process comprise features that have not been adequately accounted for by
currently available statistical methods [Li (2015)]. Firstly, the dataset might be
represented by a matrix of taxonomical counts with a compositional structure,
which imposes a correlation between taxa [Gloor et al. (2017)]. Secondly, overdis-
persion might exist due to unobserved heterogeneity in the sampling procedure,
the presence of taxa with rare abundance (zero-inflation), and pooling of cate-
gories. Another source might be differences in total sequence reads per sample,
which might be caused by technical difficulties or by sampling or individual vari-
ability. This is commonly addressed by dividing the bacteria for each categories
with the total count of the smallest reads (normalization), which results in a con-
stant total bacterial count for all samples. Alternatively, an offset can be used in
the model.

Our work is motivated by the microbiome measurements from an epidemio-
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logical study carried out in a helminth endemic rural area in Indonesia [Martin
et al. (2018)]. The primary research question of this study is to analyze the joint
effect of helminth infections and albendazole treatment on the microbial com-
position comprising multiple bacterial taxa. It has been hypothesized that the
presence of helminths is linked with the microbial dysbiosis. However, recent
findings report inconsistencies, probably due to limitation in the study design
[Ramanan et al. (2016); Cooper et al. (2013); Lee et al. (2014)]. For our study,
the stool samples were collected and measured on a subset of subjects partici-
pating in a randomized placebo-controlled trial. Thus, we included the micro-
biome data from infected subjects who received placebo, which makes our study
unique. The bacterial count and the helminth infection status were assessed in
samples before and 21 months after the first treatment. Details of the study can
be found elsewhere [Wiria et al. (2010)]. In a previous paper [Martin et al. (2018)],
we identified an effect of treatment on the microbiome composition in subjects
who were infected at baseline and at follow up. This relationship was studied in
the post treatment samples, whereas the microbiome composition at baseline was
not used. Here, we model all the available data simultaneously and hence need
to address the correlation structure.

The objective of this paper is to develop a parametric model for the analysis of
the overdispersed multivariate count data in the repeated measurement setting.
To date, several statistical parametric methods for analysis of microbiome data
are available, which take into account the features of the data such as overdis-
persion and the presence of rare taxa. One approach is to consider a univariate
taxa of interest and model the association of this taxa with biological covariates.
Several regression models for this simplified problem exist. Zero-inflated models
or hurdle models have been proposed to deal with rare taxa [Xu et al. (2015)].
These models are also available for longitudinal studies. This approach how-
ever ignores the multivariate structure of the data. A second approach which
considers the compositional feature of the microbiome data, models the multi-
variate count outcome across taxa by a multinomial distribution. To deal with
overdispersion, the underlying parameters are assumed to follow the conjugate
distribution [Chen and Li (2013)]. This formulation has an advantage that the
marginal distribution has a closed form formula.

The correlation due to repeated measurements within the same person is of-
ten modelled by including a normally distributed random effect in the linear pre-
dictor, i.e., generalized linear mixed model. The overdispersion is typically ac-
counted for by the conjugate distribution Chen and Li (2013); Zhang and Zhou
(2017); Guimarães and Lindrooth (2007). Molenberghs et al. (2007, 2010) and
Booth et al. (2003) introduced a combined model, where the conjugate distrib-
ution for the overdispersion is used and the correlation over time is modelled by
normally distributed random effects, i.e., generalized linear mixed model. The
authors only consider single categorical count data; hence these models cannot
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be directly applied to our data, where we have to acknowledge the compositional
feature. Therefore, in spirit of the combined model, we propose an extension of
the Dirichlet - multiomial regression model with random effects to incorporate
the correlation due to repeated measurements. We will use the reparameteri-
zation of the Guimarães and Lindrooth (2007), in which the overdispersion is a
function of the covariates and the random effects.

This manuscript is organized as follows. In Section 3.2, we briefly describe the
formulation of the loglinear model in the setting of multivariate count data and
derive the likelihood of the multinomial distribution obtained by conditioning
on the total count. We show the derivation of this method in the case where the
count is overdispersed. The model is then extended to include the correlation
due to repeated measurements over time. In Section 3.3, simulation studies are
described to investigate the performance of the proposed methods and the results
of the analyses of the motivating dataset are presented in Section 3.4. In Section
3.5, we conclude and discuss the proposed method.

3.2 Methods

A novel mixed model is considered for the relationship between counts of six
phyla categories and the binary variables of infection status and treatment allo-
cation before and after the first treatment round. Due to the normalization, the
total count per sample is fixed at 2000 at each time point. Before introducing
our new model, we will review various models for categorical count data in the
cross-sectional setting: namely for independent count data (the loglinear and the
multinomial logistic regression model), and for count data subject to overdisper-
sion (the negative binomial and the Dirichlet-multinomial model) [Agresti (2013);
Tutz (2012)].

We first introduce the following notations. Let Cptq
i “

!

Cptq
i1 , . . . ,Cptq

iJ

)

be the J

dimensional vector of the multivariate microbial count with Cptq
i j the abundance

of bacteria taxa j p j “ 1, . . . ,J) for subject ipi “ 1, . . . ,Nq at time point t. The total
count for each subject i at time-point t is fixed and denoted as Cptq

i` “
řJ

j“1 Cptq
i j .

Let P be the number of categorical covariates and Xptq
i be the P dimensional vec-

tor of covariate values for subject i at time point t. When modelling microbiome
data as described above, either the sequence count itself can be considered, or
the normalized count related to the total sequence read, i.e. compositional data.
Multiple counts distributed over categories are usually represented by a contin-
gency table. We briefly review models for the cross-sectional setting and therefore
suppress the superscript t in the model formulation in Subsection 3.2.1.
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3.2.1 Cross-sectional setting

The loglinear model for two categorical variables

The loglinear model is commonly used to model the association between multi-
variate categorical count data and predictors of categorical or continuous value.
In the case where all variables are categorical, the data can be represented by a
contingency table. Consider two categorical variables E and F , with J and K lev-
els, respectively. The count outcome c jk is associated with the jth level of predic-
tor E and kth level of predictor F , which could be described in a J ˆK contingency
table (Table 3.1) as follows.

F

j

k
111 . . . KKK

E

111 c11 . . . c1K

222 c21 . . . c2K

...
...

...
...

JJJ cJ1 . . . cJK

Marginal c`1 . . . c`K

Table 3.1: The J ˆ K Contingency Table

Each cell’s count outcome c jk is assumed to follow a Poisson distribution with
a mean µ jk. Here, the saturated loglinear model for such contingency table is
given by

log
`

µ jk
˘

“ λ0 ` λ E
j ` λ F

k ` λ EF
jk , (3.1)

where λ0, λ0 ` λ E
j , λ0 ` λ F

k , and λ0 ` λ F
k ` λ E

j ` λ EF
jk represent the overall mean,

the marginal mean of categorical variable E at the jth level, the marginal mean of
variable F at the kth level, and the mean when variables E and F taking the value
j and k, respectively. Because there are J ˆ K cells, the J ` K ` JK ` 1 parameters
of the saturated loglinear model (3.1) are not uniquely identifiable and thus con-
straints are needed to ensure the model identifiability. Two sets of constraints are
commonly used, namely the baseline and the symmetrical constraint given by

λ E
1 “ λ F

1 “ λ EF
j1 “ λ EF

1k “ 0

and
J

ÿ

j“1

λ E
j “

K
ÿ

k“1

λ F
k “

J
ÿ

j“1

λ EF
j1 “

K
ÿ

k“1

λ EF
1k “ 0, for all j,k,
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respectively. In this manuscript, we use the baseline constraint.
Note that in model (3.1) the response (bacterial categories) E, and predictor

F , are exchangeable. The loglinear model (3.1) could be written in the regression
format for the bacterial outcome as follows.

log
`

µ jk
˘

“ ξ0 j ` ξ1 jkrF “ ks, j “ 1, . . . ,J, k “ 1, . . . ,K,

with r.s the indicator function. To show the equivalence between two models,
note the following j runs over the category and k runs over the predictor lev-
els. For a subject with their predictor in category k “ 1, the regression model
tξ01,ξ02, . . .ξ0Ju with ξ0 j for j “ 2, . . . ,J corresponds to λ0 ` λ E

j . For subjects with
their predictor in other categories k, the regression model tξ01 `ξ11k,ξ02 `ξ12k, . . . ,
ξ0J ` ξ1Jku where ξ1 jk for j “ 2, . . .J corresponds to λ F

k ` λ EF
jk . Thus, in the context

of regression, the λ EF
jk represents the effect of the categorical variable F on out-

come category j relative to the reference category.
To estimate the parameters, we assume that each cell’s entry represents a re-

alization from the Poisson distribution. The maximum likelihood estimate of λλλ
or of ξξξ can be obtained by maximizing the following likelihood function. Specif-
ically, for subject i, it is given by

Li pλλλ q “
ź

j

fPois
`

λλλ ;ci jk
˘

“
ź

j

exp
`

´µ jk
˘

µci jk
jk

ci jk!
, (3.2)

where person i belongs to category k and has counts in each bacteria category
j. The model could be straightforwardly generalized to incorporate more cate-
gorical covariates which results into more than two-way contingency table. For
instance, when incorporating the infection and treatment status we will have a
three way contingency table. As before, the categorical variable E corresponds to
the bacteria category, variable F to the treatment randomization arm and G to the
infection status. The corresponding loglinear model can be written as follows

log
`

µ jkl
˘

“ λ0 ` λ E
j ` λ F

k ` λ EF
jk ` λ G

l ` λ EG
jl ` λ FG

kl ` λ EFG
jkl , j “ 2, . . . ,J; k “ l “ 2

or in the regression format as

“ ξ0 j ` ξ1 jTreatment ` ξ2 jInfection ` ξ3 jTreatment ˆ Infection, j “ 1, . . . ,J.
(3.3)

Here the baseline constraint is applied on the first equation, while for the sec-
ond equation this is not needed since there are only J ˆ P parameters. This last
equation represents the loglinear model written in terms of regression coefficients
ξξξ and covariate values, where Treatment and Infection are binary variables. To
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assess the statistical significance of the pth covariate pp “ 1, . . . ,Pq on the multi-
variate count distribution, the null hypothesis ξξξ p “ 000 should be tested. We will
use the standard Likelihood Ratio Test which follows a χ2 distribution with J
degrees of freedom.

Multinomial logistic regression

In our data example, the total bacterial count is fixed to a constant for all samples.
Under this constraint of a fixed total count, it is sufficient to model the counts for
J ´1 categories and pJ ´1qˆP parameters are uniquely identified. Guimarães and
Lindrooth (2007) showed that the distribution of the multivariate counts under
the constraint that the total is a constant could be derived from the distribution of
the unconstrained multivariate counts above by using the conditional log likeli-
hood given the total count. When the counts in each category are independently
Poisson distributed with mean µ jkl , the total count c`kl follows a Poisson distri-
bution with mean

řJ
j“1 µ jkl “ µ`kl . The distribution of the multivariate counts

conditional on the total for each subject i is therefore given by

Prpccci “ tc1kl , . . . ,cJklu|c`klq “ Prpc1kl , . . . ,cJkl ,c`klq
Prpc`klq

“

J
ś

j“1
fPois

`

c jkl ; µ jkl
˘

fPois pc`kl ; µ`klq
“ c`kl!

J
ź

j“1

ˆ

1
c jkl!

˙ˆ

µ jkl

µ`kl

˙c jkl

„ Multinomialpc`kl ;π1kl , . . . ,πJklq ,

where π jkl “
µ jkl

µ`kl
. (3.4)

Thus, under the baseline constraint and the constraint that the total count is
fixed, the distribution of the multivariate count is equivalent to the multinomial

distribution with parameter π j “
µ j

µ`
. This model is the multinomial logistic re-

gression model. Note that the parameters λλλ of the loglinear model (3.1) cancel
out. In the multinomial logistic regression model, the parameters of the reference
category are typically assumed to be equal to zero, although other constraints can
be used as well.

Overdispersed count data

When the count data are overdispersed, the variance of the cell count is no longer
equal to its expected value and the Poisson distribution cannot be used. A com-
mon approach to deal with overdispersion is to assume that the conditional mean
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of the count outcome is a random variable following the conjugate distribution.
Consider a count at category j and let exppηi jq be the random effect for overdis-
persion following the Gamma distribution (conjugate for Poisson) with parame-
ter θ . Guimarães and Lindrooth (2007) formulated the model for an overdis-
persed count outcome as follows:

Ci j|exppηi jq „ Poisprµi jq , j “ 1, . . . ,J

rµi j “ exppηi jq µi j, where exppηi jq „ Γ
`

shape “ θ ´1µi j,rate “ θ ´1µi j
˘

rµi j “ exppηi jq µi j „ Γ
`

shape “ θ ´1µi j,rate “ θ ´1˘

.

Here, µi j corresponds to the mean of the count in the non-overdispersed model.
Now the marginal distribution for the count at category j in person i, Ci j can be
obtained by integrating out the random effect exppηi jq as

PrpCi jq “
ż 8

0
PrpCi j|exppηi jqqgpexppηi jqqd exppηi jq

“
Γ

`

θ ´1µi j `Ci j
˘

Ci j!Γpθ ´1µi jq

ˆ

1
θ ´1 ` 1

˙Ci j
ˆ

θ ´1

θ ´1 ` 1

˙θ ´1µi j

.

This corresponds to a negative binomial distribution with parameters
ˆ

θ ´1µi j,
θ ´1

1 ` θ ´1

˙

.
By the properties of the negative binomial random variable, the total count for
subject i also follows the negative binomial distribution

Ci` „ NB
ˆ

θ ´1µi`,
θ ´1

1 ` θ ´1

˙

.

The likelihood for subject i in this setting is given by

Li pθ ,λλλ q “
ź

j

fNB pλλλ ,θ ;Ci jq

“
ź

j

Γ
`

θ ´1µi j `Ci j
˘

Ci j!Γpθ ´1µi jq

ˆ

1
θ ´1 ` 1

˙Ci j
ˆ

θ ´1

θ ´1 ` 1

˙θ ´1µi j

. (3.5)

Note that in this setting, the parameter θ which models the overdispersion
and the intercept λ0 are both not identifiable. An often used solution is to ab-
sorb the overdispersion parameter into the grand mean λ0, i.e. θ ´1 exppλ0q “ δ ´1

0
Guimarães and Lindrooth (2007).

Overdispersed multinomial

We briefly review the overdispersed count data introduced by Guimarães and
Lindrooth (2007) as follows. To guarantee that the parameters of the count for
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each category follows a Gamma distribution with the same rate parameter, the
overdispersion parameter exppηi jq needs to be a function of the linear predictor
µi j. For such a distribution, Theorem 1 of Mosimann (1962) can be applied. This
theorem states that if CCCi “ tCi1,Ci2, . . . ,CiJu are independently Gamma distributed
random variables with parameters prµi1, rµi2, . . . , rµiJq with the same scale parameter

θ ´1, then the random variables ΠΠΠi “ tΠi1,Πi2, . . . ,ΠiJu with Πi j “
Ci j

řJ
j“1 Ci j

have a

multivariate beta distribution (Dirichlet distribution) with parameters trµi1, rµi2, . . . , rµiJu
rµiJu. Note that the Dirichlet distribution is the conjugate for the multinomial dis-
tribution. Hence, the marginal distribution for the random variable ΠΠΠi is obtained
by integrating out the Dirichlet random effects. Now, the corresponding Dirichlet
- multinomial distribution is given by

PrpΠΠΠiq “ Γprµi`qCi`!
Γprµi` `Ci`q

J
ź

j“1

Γprµi j `Ci jq
Γprµi jqCi j!

. (3.6)

Alternatively, we consider the conditional likelihood of the multivariate neg-
ative binomial given the total count. The contribution for the ith subject is given
by

Li pλλλ ,θq “ PrpCCCi|Ci`q “
śJ

j“1 fNB pCi j; rµi jq
fNB pCi`; rµi`q

“
Γ

`

θ ´1µi`
˘

Ci`!
Γpθ ´1µi` `Ci`q

J
ź

j“1

Γ
`

θ ´1µi j `Ci j
˘

Γpθ ´1µi jqCi j!
. (3.7)

By rµi j “ θ ´1µi j, it follows that the likelihood (3.7) is equivalent to the the
Dirichlet-multinomial distribution (3.6). Here, the parameter θ is unidentifiable.
Similar to (3.5), we apply the parameterization in Guimarães and Lindrooth (2007)
where the overdispersion is absorbed in the grand mean λ0 such that θ ´1 exppλ0q “
δ ´1

0 in the reference category. In contrast to the non-overdispersed multinomial
model, the intercepts of the overdispersed multinomial model do not cancel out.

3.2.2 Repeated measurement of overdispersed count

In addition to the overdispersion due to the presence of multiple bacteria within
one sample, there is also correlation between measurements of the same person
at the two time-points, i.e. at the pre- and post-treatment. To deal with this cor-
relation, we propose to include a random effect ui in the linear predictor of the
model and assume that conditional on this random effect the observations of the
two time points are independent. We further assume that the random effect ui
follows a normal distribution with zero mean and variance σ2

u . The idea of us-
ing different distributions for the random effects representing overdispersion and
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correlation was introduced by Molenberghs et al. (2007, 2010) and Booth et al.
(2003). Molenberghs and Booth modelled the mean of an outcome as a multipli-
cation of overdispersion and the linear predictor. However, to guarantee that the
Theorem 1 of Mossimann holds, i.e. that the proportion of each bacterial category
has Dirichlet-multinomial distribution, we need to model the overdispersion as a
function of the linear predictor.

In the rest of this section, we describe three different mixed models for multi-
variate count data with overdispersion in the repeated measurement setting us-
ing random effects: conditional on the random effect ui, the counts follow the
multivariate negative binomial distribution; the counts follow the conditional
multivariate negative binomial distribution given the total count; the propor-
tions (cell’s count divided by total count) follow the Dirichlet-multinomial dis-
tribution. In all models, we will add the random effect ui to the linear predictor.
These models are therefore extensions of the models for overdispersed multivari-
ate count given in Subsection 3.2.1. Specifically for the first model, we assume
that conditional on the random effects exp

´

ηptq
i j

¯

and ui, the count Cptq
i j follows a

Poisson distribution with mean equal to

E
”

Cptq
i j |exp

´

ηptq
i j

¯

,ui

ı

“ exp
´

ηptq
i j

¯

exp
´

rµptq
i j

¯

,

where rµptq
i j “ XXXiξξξ j ` ui, j “ 1, . . . ,J.

exp
´

ηptq
i j

¯

„ Γ
´

shape = θ ´1 exp
´

rµptq
i j

¯

,rate = θ ´1 exp
´

XXXiξξξ j ` ui

¯¯

(3.8)

Thus, given the random effect ui, the two vectors of counts Cptq
i for t “ 1 and t “ 2

are independently distributed and follow the negative binomial distribution. The
corresponding likelihood can be written as follows

LUNBM
`

ξξξ ,θ ,σ2
u

˘

“
ź

i

Pr
´

CCCptq
i

¯

“
ź

i

ż

ui

Pr
´

Cptq
i1 , . . . ,Cptq

iJ ,ui

¯

d ui

“
ź

i

ż

ui

2
ź

t“1

J
ź

j“1

Pr
´

Cptq
i j |ui

¯

Prpuiq d ui (3.9)

and we denote the regression model under this likelihood to be the unconstrained
negative-binomial mixed model (UNBM).

For the second approach, we consider the counts follow the conditional mul-
tivariate distribution given the total count. When each categorical count condi-
tional on the total count follows the negative binomial with the same rate pa-
rameter, the total count Cptq

i` |ui follows the negative binomial distribution with
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parameters
ˆ

řJ
j“1 exp

´

ηptq
i j

¯

exp
´

rµptq
i j

¯

,
θ ´1

1 ` θ ´1

˙

. Thus, the corresponding con-

ditional likelihood is given by

LCNBM
`

ξξξ ,θ ,σ2
u

˘

“
ź

i

Pr
´

CCCp1q
i ,CCCp2q

i |Cp1q
i` ,Cp2q

i`

¯

“
ź

i

ş

ui
Pr

´

CCCp1q
i ,CCCp2q

i ,Cp1q
i` ,Cp2q

i` |ui

¯

Prpuiqd ui

ş

ui
Pr

´

Cp1q
i` ,Cp2q

i` ,ui

¯

d ui

“
ź

i

ş

ui

ś2
t“1

ś2
j“1 Pr

´

Cptq
i j |ui

¯

Prpuiqd ui

ş

ui

ś2
t“1 Pr

´

Cptq
i` |ui

¯

Prpuiqd ui

. (3.10)

The model corresponding to this likelihood is denoted as the conditional negative-
binomial mixed model (CNBM). However, when the total counts depends on ui
the total count should be a random variable. This is not the case in our dataset.
Therefore, we propose the third method with the assumption that the total count
is independent of ui.

In the third approach, we model the multivariate counts in terms of the rela-
tive abundance. We assume that the vector of proportions Πptq

i conditional on the
random effect ui follows the Dirichlet multinomial distribution, i.e.

#

Cptq
i1

Cptq
i`

, . . . ,
Cptq

i1

Cptq
i`

+

|
!

αptq
i1 , . . . ,αptq

i j

)

,ui „ Mult
´

π̃ptq
i1 , . . . , π̃ptq

iJ

¯

!

π̃ptq
i1 , . . . , π̃ptq

iJ

)

„ Dir
´

αptq
i1 , . . . ,αptq

iJ

¯

αptq
i j “ θ ´1µptq

i j (3.11)

where the µptq
i j is the linear predictor as in the loglinear model for the Poisson

count. With this parameterization, the expected multinomial parameter becomes

rπptq
i j “

exp
´

ηptq
i j

¯

exp
´

rµptq
i j

¯

řJ
j“1 exp

´

ηptq
i j

¯

exp
´

rµptq
i j

¯ .

The likelihood for each subject i is then formulated as follows
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LDMM
`

ξξξ ,θ ,σ2
u

˘

“ Pr

˜

CCCp1q
i

Cp1q
i`

,
CCCp2q

i

Cp2q
i`

¸

“
ż

ui

Pr

˜

CCCp1q
i

Cp1q
i`

,
CCCp2q

i

Cp2q
i`

|ui

¸
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¯
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i j Cptq
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¯

Γ
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¯

Cptq
i j !

Prpuiqd ui. (3.12)

The corresponding regression model under this likelihood is denoted as the Dirich-
let - multinomial mixed model (DMM). It is shown in the Appendix A, that in the
case where the total count does not depend on the random effect ui, the likeli-
hoods (3.10) and (3.12) are equivalent.

The variance of the random effect u (σ2
u ) represents the correlation between the

samples of the same subject across time. However, this value is hard to interpret
and the marginal correlation between categorical count outcomes might be more
interesting. This correlation is given by

Corr
´

Ci j
ptq,Cpt˚q

i j˚

¯

“
σ

Ci j
ptq,Cpt˚q

i j˚
c

σ2
Cptq

i j

¨ σ2

Cptp˚qq
i j˚

.

The marginal correlation can be computed from Monte Carlo estimates of the first
and second moments.

The program language R is used for all the computations except for data ap-
plication with categorical-specific random effects. When maximizing the likeli-
hoods the integrals are approximated by the adaptive Gauss-Hermite quadrature
method [Liu and Pierce (1994)], and we used the functions available in the ecoreg
package [Jackson et al. (2008)] to compute the integral. R implementations are
available in github (https://github.com/IvonneMartin/CombinedMultinomial)

3.2.3 The categorical-specific random effect

In the above parameterization, we assume that the subject-specific effect ui is uni-
variate and is the same for all bacteria categories and time-points. Alternatively, a
J dimensional vector of random effects can be used. Equation (3.8) now becomes

rµptq
i j “ XXXiξξξ j ` ui j, j “ 1, . . . ,J.

ui j „ MVNp000,∆JˆJq (3.13)
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Here, each bacterial category has its own realization of the random effect and
the random effects solely model correlation between the categories over time.
The vector uuui of length J follows a multivariate normal distribution with a J by
J diagonal variance matrix ∆ with σ2

j as diagonal elements. In addition to the
general model (3.13), we consider a model with common variance σ2

j “ σ2
u , for

all j to reduce the parameter space. Since the overdispersion already takes care
of the correlation among the categories, this model might be better interpretable.
However, a drawback of this model is that computation of the likelihood function
involves an intractable J dimensional integral.

3.3 Simulation study

3.3.1 Simulation setting

Three sets of simulation studies were conducted to evaluate the performance of
the proposed methods. With regard to estimation of the fixed effect parameters
and variance components, we first investigated the performance of the DMM
models for a subject- and categorical-specific random effects. We reported the
bias and MSE as well as the sensitivity and specificity for these parameters. The
sensitivity and the specificity of the likelihood ratio test statistics were computed
for the following pairs of hypotheses (for fixed and variance of random effect,
respectively).

H0 : ξξξ p “ 000 vs H1 : at least one of ξξξ p ‰ 0,

H0 : σ2
u “ 0 vs H1 : σ2

u ą 0.

In the second set, we want to estimate the marginal correlation given the dis-
tribution of the random effect. The purpose of this study is to verify whether the
marginal intraclass correlation observed in our motivating dataset can be repre-
sented by our models (UNBM and DMM). For this purpose, we vary the standard
deviation of the random effect and we used 10,000 Monte-Carlo simulation for es-
timating the marginal intraclass correlation.

In the third set, we aimed to study the robustness of the parameter estimates
by fitting the DMM models when the true model is UNBM. For this purpose, we
generated datasets with three categories from the UNBM model.

Dataset generation

To reduce the computational burden, datasets with only three categories at two
different time-points t were considered. The total count per sample S was 25, 50 or
2000, and the number of samples N was 150 or 500. Two sets of parameters were
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used, namely λλλ was fixed at
�

λ F
2 ,λ E

2 ,λ E
3 ,λ EF

22 ,λ EF
32

(

“ t0.5,´1,0.1,0.8,´2u as well
as the parameters from the dataset (results are given in Supporting Information
Table S1). To increase the power, the parameter values of the first set are relatively
larger. Note that the parameter λ0 is fixed at zero to guarantee identifiability of
the overdispersion parameter. The overdispersion parameter was fixed at θ “ 0.1.
For the standard deviation of the random effects, we considered values σu of 0.5,
0.8 and 1.

Specifically, for the Dirichlet-multinomial mixed (DMM) model with a uni-
variate random effect, multivariate counts were generated as follows.

1. For each subject i, i “ 1, . . . ,N, we randomly generate binary covariates Xt
i

for each time point t and a random effect ui „ N
`

0,σ2
u

˘

.

2. The mean for each category j is computed as µ̃ptq
i j “ θ ´1 exppλλλ ` uiq where

the λλλ correspond to ξ .

3. A multivariate count with mean µ̃ptq
i j is generated.

For the DMM model with multivariate random effect, a similar procedure
was used except that the random effects in step (1) are now generated from the
multivariate normal distribution with a diagonal covariance matrix Σ. We con-
sidered three sets of values for the standard deviations of random effects, namely
σσσ u “

`

σu1 ,σu2 ,σu3

˘

is (0.5,0.6,0.5), (0.8,0.9,0.8) or (1,0.9,1).
For the second set of simulation, 6 bacterial categories are used and para-

meters for the simulation are obtained from the dataset. Finally for the uncon-
strained negative binomial mixed (UNBM) model, the second step was replaced
by computation of the expected count outcome for each category j of rµi j “ θ ´1 exp
plogpSq ` λλλ ` uiq. Here the offset logpSq is incorporated to take into account the to-
tal bacteria count S. For each scenario mentioned above, 1000 replicates were
generated. The models were fitted to each of the replicates.

3.3.2 Simulation results

Evaluation of DMM model

The performance of the method in estimating the parameters is described in Fig-
ure 3.1. Overall, the bias and MSE appears to be improved when either the to-
tal bacterial count (from S “ 25 to S “ 50 and the sample size was N “ 500), or
the sample size was increased (from N “ 150 to N “ 500 and the total count was
S “ 2000). For small value of σu, both the bias and the MSE of this estimate are rel-
atively large. Similar results are obtained for the model with categorical-specific
random effects (Figure S1). The sensitivity of the likelihood ratio test for the fixed
effects parameters that are obtained from the dataset are very low for all scenar-
ios except when the total sample size is large (Table S2A). For testing the zero
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variance component, the likelihood ratio test has a high sensitivity and specifity
when the sample size and variance component are large (Table S2B).
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Figure 3.1: Bias and MSE of datasets generated from the DMM model with subject-specific random
effect.
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Since the model with the categorical-specific random effect is time consuming
to fit, we also investigate the robustness of assuming a subject-specific random
effect while the datasets were generated by using a vector of random effects fol-
lowing the multivariate normal distribution. The results are given in Table 3.2.
It appears that for a random effect with smaller standard deviation (logpσuq of -
1.309), the biases of the estimates of fixed effect parameters and of logpσuq are rela-
tively small, while for a random effect with larger standard deviation logpσuq “ 0
(σu of 1) the biases are relatively large.

In Table S3, the marginal correlations are given for the subject-specific random
effects. It appears that the correlation between categories are all negative and
the correlation between samples across time are very small. These results are not
affected by the standard deviation of the random effect for our considered values.
Table S4 lists the marginal correlations using categorical-specific random effects
where each category-specific random effect has the same standard deviations σu.
We notice that a part of the correlations between categories is now positive and
the correlation between the same categories across time are larger. Moreover,
these correlations tend to increase with a larger variance of the random effects.

Simulations under the UNBM model

The marginal correlations for the UNBM with a subject-specific random effect are
listed in Table S5. It appears that the correlations between categories are positive
as well as negative. The correlations of the same category between time points
are all positive and increase with σu. A similar result is observed for the UNBM
model with categorical-specific random effects (Table S6) although here the cor-
relation varies more across categories.

Next, we investigated the robustness of the models. Datasets were generated
using the multivariate negative binomial mixed model without conditioning on
the total count (UNBM model). The results of fitting the unconditional multi-
variate negative binomial mixed model (UNBM), the multivariate negative bino-
mial mixed model conditional on the total (CNBM) and the Dirichlet-multinomial
mixed model (DMM) are given in Figure 3.2 for the fixed effect parameters and
Figure 3.3 for the variance component.

In general, the fixed effect parameters obtained from these three different
models are unbiased except the estimates of the intercepts (λ F

2 ) for the CNBM
model and the DMM model. Since the model used for analysis and generating
the data are the same, the estimates of the fixed effect parameters in Figure 3.2 are
unbiased and the variance of the estimator decreases when the total count was in-
creased (from S “ 25 to S “ 50) or the sample size is increased (from N “ 150 to
N “ 500). When using the conditional distribution given the total, the estimates of
the fixed effect parameters in Figure 3.2 are biased when the total bacterial count
is small (S “ 25 and S “ 50). When the total count is relatively large (S “ 2000), the
estimates of the fixed effects (including the intercept λ F

2 ) are less biased. When
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Figure 3.2: Estimates of the fixed effect and overdispersion parameters obtained from three different
models (UNBM, CNBM and DMM) when datasets were generated using UNBM model. (first part)

estimating the fixed effect parameters using the DMM model, the estimate of the
fixed effects are unbiased except for the intercept term λ F

2 and increasing the sam-
ple size does not improve the estimation.

The estimates of the random effect parameters in the UNBM model are unbi-
ased and by increasing the total bacterial count or the sample size improves the
precision. In the CNBM model, when the total bacterial count is small (S “ 25
and S “ 50), we observe that the standard deviation of ui is overestimated and
that the bias in the estimate of the overdispersion parameter is small. When the
total count is large S “ 2000, the estimate of the standard deviation of ui appears
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Figure 3.2: Estimates of the fixed effect and overdispersion parameters obtained from three different
models (UNBM, CNBM and DMM) when datasets were generated using UNBM model. (cont.)

to be less biased while the overdispersion parameters is underestimated. When
fitting the DMM model to the data, the estimates of the random effect parameters
are biased in all scenarios.

3.4 Data Application

We used the DMM models to analyze the effect of helminth infections and treat-
ment on microbiome composition. For this purpose, we first consider the fixed
effect structure and fitted several DMM models to our dataset assuming (com-
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Figure 3.3: Estimates for the variance components obtained from three different models (UNBM,
CNBM and DMM) when datasets were generated using UNBM model.

mon) random effect for each category. Next, we will investigate the best random
effect structure and we will verify whether the parameter estimates of the fixed
effects are affected by the random effect structure.

The microbiome dataset considered here was measured in a subset of a ran-
domized clinical trial performed in a helminth-endemic area in Nangapanda sub-
district, Indonesia, described elsewhere [Wiria et al. (2010)] and is publicly avail-
able at Nematode.net (http://nematode.net/Data/Indonesia_16S/S1_Table.xlsx).
In brief, households were randomized to receive either a single dose of 400 mg
albendazole or placebo, once every three months for a period of one and a half
years. To assess the effect of treatment on the prevalence of soil transmitted
helminth infections, yearly stool samples were collected on a voluntary basis.
T. trichiura infection was detected by microscopy and a multiplex real time PCR
was used to detect the DNA of hookworm (Ancylostoma duodenale or Necator amer-
icanus) and Ascaris lumbricoides. A subject was regarded as infected if it was in-
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fected with at least one helminth species.
For the current study, paired DNA samples before and at 21 months after the

first treatment round from 150 inhabitants in Nangapanda were selected based
on the treatment allocation and infection status, as well as the availability of com-
plete stool data at pre- and post-treatment. The procedure for sample collection
and processing was already described in Wiria et al. (2010). The 16s rRNA gene
from the stool samples were processed through the 454 pyrosequencing tech-
nique, and the classification of the sequence resulted in counts of 18 bacterial
phyla. For the current analyses, we retained the 5 most prevalent phyla and
pooled the remaining into one category, resulting in six phyla categories: Acti-
nobacteria, Bacteroidetes, Firmicutes, Proteobacteria, unclassified, and pooled cate-
gory.

The description of relative abundance of each bacterial phyla at each time
points are given in Table S7. Firmicutes has the highest relative abundance at each
time points (around 68%), followed by Actinobacteria (around 12%), Proteobacteria
(around 10%), Bacteroidetes (around 6 %) and Unclassified and pooled category
(each around 1%). The dispersions are estimated by the ratio between the vari-
ance and mean. All bacteria counts show dispersion larger than 1 indicating the
presence of overdispersion. Since zero-inflation might lead to overdispersion, we
investigated the number of the samples with zero counts for the six categories
at the two time points. Only for the following three categories, a small num-
ber of samples with zero counts was observed: Bacteroidetes (5 samples at post-
treatment), Unclassified bacteria (1 at pre-treatment and post-treatment), and the
pooled category (15 at pre-treatment and 6 at post-treatment). The corresponding
histograms can be found in Figure S2. From this, we conclude that zero-inflation
is not present, hence the overdispersion is probably caused by other sources. We
will therefore account for overdispersion by additional random effects.

Table 3.3 gives the observed correlations between categories and of categories
between time points. The order j for Cptq

j are Firmicutes, Actinobacteria, Bacteroidetes,
Proteobacteria, Unclassified and pooled category. The observed correlations be-
tween Firmicutes and the three most abundant bacteria (Actinobacteria, Proteobac-
teria and Bacteroidetes) are relatively high and negative (around -0.50), indicating
an increase of Firmicutes corresponds to the decrease of these bacterial categories.
These correlations are relatively similar for both time points, except for the corre-
lation between Firmicutes and Actinobacteria which becomes smaller at the second
time point (-0.27). The correlations between Firmicutes and Unclassified, and the
pooled category, are relatively small. The intraclass correlations of bacterial cate-
gories between the two time points are always positive. Firmicutes and Actinobac-
teria show the highest correlation between two time points (0.14 and 0.17).

The baseline characteristics of the study participants were given in Table 3.4.
In each of the randomization arms, there are four possible combinations of infec-
tion status at pre- and post-treatment. Namely, uninfected subjects who either



54 Chapter 3 – Mixed models for multivariate count data

Cp1q
1 Cp1q

2 Cp1q
3 Cp1q

4 Cp1q
5 Cp1q

6 Cp2q
1 Cp2q

2 Cp2q
3 Cp2q

4 Cp2q
5 Cp2q

6

Cp1q
1 1 -0.46 -0.43 -0.48 -0.12 -0.23

Cp1q
2 ¨ 1 -0.29 0.13 0.02 0

Cp1q
3 ¨ ¨ 1 -0.27 -0.19 0

Cp1q
4 ¨ ¨ ¨ 1 0.1 0.06

Cp1q
5 ¨ ¨ ¨ ¨ 1 0.01

Cp1q
6 ¨ ¨ ¨ ¨ ¨ 1

Cp2q
1 0.14 -0.11 -0.05 -0.01 0 -0.13 1 -0.27 -0.53 -0.57 0.04 -0.14

Cp2q
2 -0.14 0.17 0.04 0.03 -0.01 -0.05 ¨ 1 -0.27 -0.15 -0.05 0.01

Cp2q
3 0.04 0.05 0.01 -0.07 -0.08 -0.1 ¨ ¨ 1 -0.07 -0.22 -0.11

Cp2q
4 -0.11 -0.02 0.01 0.07 0.05 0.3 ¨ ¨ ¨ 1 0.02 0.09

Cp2q
5 0.06 -0.25 0.09 0.01 0.05 0.01 ¨ ¨ ¨ ¨ 1 -0.05

Cp2q
6 -0.07 0.08 -0.06 -0.01 0.23 0.17 ¨ ¨ ¨ ¨ ¨ 1

Cptq
j represents the bacterial phyla j, j “ 1, . . . ,6 at time point t. The order of j are Firmicutes, Actinobacteria,

Bacteroidetes, Proteobacteria, Unclassified and pooled category.

Table 3.3: The observed marginal correlation of the motivating dataset.

Participants
(N = 150)

helminth (+) 
(N=94)

placebo
(N = 47)

albendazole
(N = 47)

placebo
(N = 34)

albendazole
(N = 22)

• Helminth(+) 
(N=34)

• Helminth(-)
(N=13)

pre-treatment

post-treatment

• Helminth(+) 
(N=13)

• Helminth(-)
(N=34)

helminth (-)
(N=56)

• Helminth(+) 
(N=10)

• Helminth(-)
(N=24)

• Helminth(+) 
(N=2)

• Helminth(-)
(N=20)

Allocation

4 4

33

2 2

1 1

Figure 3.4: The profile of the microbiome study. The chart shows the number of subjecs infected with
at least one of the prevalent soil transmitted helminths (Helminth (+)) or free of helminth infections
(Helminth (-)) that belonged to either the placebo or albendazole treatment group, at pre-treatment
and 21 months after the first treatment round. The circled number represents the condition explained
in Section 3.4.

remained uninfected (condition 1) at post-treatment or became infected at post-
treatment (condition 2) and infected subjects who either became uninfected at
post-treatment (condition 3) or remained infected at post-treatment (condition 4).
The number of samples in each conditions at pre- and post-treatment are given
in Figure 3.4. It has been shown previously that treatment had an effect on the
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Characteristics
albendazole arm placebo arm

(N = 69) (N = 81)

Age (in years) ,mean(SD) 27.38 (16.5) 27.85 (16.91)

Sex, female, n(%) 39 (56.5) 45 (55.6)

Helminth Infections, n(%)

A. lumbricoides 17 (24.6) 18 (22.2)

Hookworm 26 (37.7) 23 (28.4)

N. americanus 25 (36.2) 23 (28.4)

A. duodenale 2 (2.9) 2 (2.5)

T. trichiura 20 (28.9) 22 (27.2)

Any helminth 47 (68.12) 47 (58.0)

Proportion (in %) of the 6 most abundant bacteria phyla, mean (SD)

Actinobacteria 12.5 (8.9) 11.0 (7.9)

Bacteroidetes 7.4 (11.3) 6.4 (11.0)

Firmicutes 66.8 (13.5) 70.0 (13.7)

Proteobacteria 9.8 (7.9) 9.2 (8.4)

Unclassified*) 2 (2.22) 2.7 (3.2)

Pooled#) 1.5 (3. 7) 0.7 (1.2)

Table 3.4: Characteristics at baseline for study participants.
*)Unclassified represents sequences that cannot be assigned to a phyla.
#)Pooled category consists of the remaining 13 phyla having average relative abundance among sam-
ples less than 1%.

composition at post-treatment in infected subjects who remained infected (con-
dition 4)[Martin et al. (2018)]. Here, we want to reanalyze this dataset by using
a joint model for the microbiome data at pre- and post-treatment to assess the
treatment effect in the infected subjects who remained infected. Additionally, we
want to estimate the time effect, while adjusting for other variables such as infec-
tion status and treatment allocation. The following loglinear model is considered.
Let D,E,F,G,H represent the categorical variables: bacterial taxa, infection (INF),
treatment (TRT), baseline infection status (BHelm), and time (t) with J,K,L,M,N
levels for each variable. For bacterial phyla, the Firmicutes was considered as a
reference category. Now the following model was fitted to the data
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(3.14)

Alternatively the model could be written in terms of regression coefficients as
follows.

log
´

µptq
i j

¯

“ ξ0 j ` ξ1 jINF ` ξ2 jt ` ξ3 jTRT ˆ t ` ξ4 jBHelm ˆ t`

ξ5 jBHelm ˆ TRT ˆ t ` ξ6 jINF ˆ BHelm ˆ TRT ˆ t ` ui

where ξ0 j “ log
´

δ ´1
0

¯

` λ D
j , ξ1 j “ λ F

l ` λ DF
jl , and so forth. In this model, there

are 6 ˆ 7 estimable covariate effects on each bacterial phyla. In condition 4, the
difference in the microbiome composition between the albendazole and placebo
arm is represented by ξ3 j `ξ5 j `ξ6 j, while in condition 3, the difference in the mi-
crobiome composition between two arms by ξ3 j `ξ5 j. In the subjects who are un-
infected at baseline the treatment effect is represented by ξ3 j, irrespective of their
infection status at post-treatment. The change of microbiome composition, when
subjects were uninfected at baseline, remained uninfected at post-treatment, and
received placebo, is modelled by ξ2 j. Two interaction terms with BHelm were
included in this model (3.14) (i.e. the coefficient ξ4 j and ξ5 j) to model the effect of
having infection at pre-treatment and still being infected at follow up, irrespective
of treatment by albendazole. The coefficient ξ4 j represents the effect of having in-
fection at pre-treatment in the placebo group. We first included a subject-specific
random effect ui in the model. Statistical significance for each covariate was as-
sessed by the likelihood ratio test with 6 degrees of freedom and the significance
of the random effect was assessed using the likelihood ratio test with mixture of
χ2

r0,1s distribution.
The parameter estimates from the loglinear model with subject-specific ran-

dom effects (3.14) are given in Table S8. The between subject variation over time
is estimated by the standard deviation σu of 0.269 (s.e. of 0.053). The variance
of this random effect is significantly different from zero (p-value ă 0.001, LRT
with mixture of χ2

r0,1s distribution), indicating that the microbiome counts of a
person over time are correlated. The regression coefficients for the covariates
BHelmˆt (ξ4 j) and BHelmˆTRTˆt (ξ5 j) appear not to be significantly associated
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with the microbiome (p´values ą 0.05), indicating that having infection at pre-
treatment does not influence the microbiome composition. These two covariates
were present at the second time point for subjects in condition 3 and 4. Being the
terms ξ4 j ` ξ5 j almost zero for all categories, the change of microbiome in these
conditions appears to be not affected by these two covariates.

To obtain a model with less parameters, we first eliminated the covariate
BHelmˆTRTˆt. The covariate BHelmˆt was also not significant in this reduced
model (p´value of 0.795). Hence, we reduced the model (3.14) further by elimi-
nating this covariate. In this updated model, BHelmˆTRTˆt was still not signifi-
cant (p´value of 0.843). Finally, we fitted the following model

log
´

µptq
i j

¯

“ ξ0 j ` ξ1 jINF ` ξ2 jt ` ξ3 jTRT ˆ t ` ξ4 jINF ˆ BHelm ˆ TRT ˆ t ` ui.

(3.15)

In this final model for fixed effects assuming a subject-specific random effect
(3.15), 6 ˆ 4 parameters represent the covariate effects on the microbiome com-
position. The treatment effect is modelled by ξ3 j for all conditions except for con-
dition 4. The difference in the microbiome composition in condition 4 between
the albendazole and placebo arm is represented by ξ3 j ` ξ4 j. The estimated log
odds ratio for each bacterial category compared to Firmicutes is given in Table
S9. Also for this model the standard deviation of random subject-specific effect
ui is significantly greater than zero (p´value ă 0.001). Albendazole has no direct
effect in subjects who remained uninfected as the odds ratios for each bacterial
category are approximately 1. On the other hand, when subjects remained in-
fected, the odds of Actinobacteria to Firmicutes at the second time point compared
to the first time point increases about 55% while the odds ratio for Bacteroidetes to
Firmicutes decreases about 62%.

Next we considered a 6 dimensional random effects structure for this data.
We fitted DMM model (3.15). The results are listed in Tables 3.5 and S10. Over-
all, the estimates of the fixed effects and overdispersion are very similar for these
random effect structures. This is in line with the result of the simulation study.
However, when we fitted the DMM model with categorical-specific random ef-
fects, we observed the following; while the estimated variance component over
time for the first three categories are relatively large (σ 2

u1
= 0.369 to σ2

u3
= 0.536),

for the last three categories (Proteobacteria, Unclassified and Pooled) are small and
hence the random effects for these categories can be omitted.

Finally, we investigated whether the correlations induced by the model corre-
spond to the observed correlations; the marginal correlation induced by the DMM
model with a subject-specific random effect (Table S11A),a categorical specific
random effect with common variance (Table 3.6) and with categorical-dependent
variance for the random effects (Table S11B). For all DMM models, the pairwise
correlations at each time points between Firmicutes and the other three preva-
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Categories INF t TRTˆt BhelmˆINFˆTRTˆt

Actinobacteria -0.006 (-0.218, 0.207) 0.050 (-0.155, 0.256) 0.046 (-0.235, 0.326) 0.326 (-0.042, 0.694)

Bacteroidetes 0.220 (-0.056, 0.496) -0.119 (-0.395, 0.157) -0.012 (-0.381, 0.356) -0.916 (-1.573, -0.259)

Protobacteria 0.171 (-0.054, 0.396) 0.056 (-0.161, 0.273) 0.035 (-0.256, 0.326) 0.026 (-0.376, 0.427)

Unclassified -0.024 (-0.304, 0.257) 0.129 (-0.149, 0.407) -0.099 (-0.476, 0.277) -0.159 (-0.727, 0.410)

Pooled 0.166 (-0.158, 0.490) 0.195 (-0.124, 0.515) -0.030 (-0.449, 0.388) -0.180 (-0814, 0.454)

Loglik -8285.5 pθ (s.e) 0.08 (0.01)

σ̂u (s.e) 0.22 (0.03)

*Fitted with SAS procedure NLMIXED with 3 quadrature points of Adaptive Gauss-Hermite approximation.

Table 3.5: The log odds ratio (95% CI) when dataset were fitted with DMM with categorical-specific
random effect having common variance.*

lent bacterial phyla are relatively high and similar to the observed marginal cor-
relations (Table 3.6, Table S11A-B). With regard to the correlation of categories
between the two time points, the DMM model with categorical-specific random
effects with common variance showed a similar correlation structure to the ob-
served one (Table 3.6). For the DMM model with categorical-specific random
effect, the correlation between the same category over time seems to be too high
compared to the dataset (Table S11B). Therefore, we concluded that the DMM
model with a categorical specific random effect having common variance across
categories is the model which describes our data best.

Cp1q
1 Cp1q

2 Cp1q
3 Cp1q

4 Cp1q
5 Cp1q

6 Cp2q
1 Cp2q

2 Cp2q
3 Cp2q

4 Cp2q
5 Cp2q

6

Cp1q
1 1 -0.55 -0.35 -0.51 -0.3 -0.22

Cp1q
2 ¨ 1 -0.06 -0.09 -0.05 -0.03

Cp1q
3 ¨ ¨ 1 -0.04 -0.03 -0.02

Cp1q
4 ¨ ¨ ¨ 1 -0.05 -0.03

Cp1q
5 ¨ ¨ ¨ ¨ 1 -0.02

Cp1q
6 ¨ ¨ ¨ ¨ ¨ 1

Cp2q
1 0.19 -0.12 -0.06 -0.1 -0.05 -0.04 1 -0.57 -0.3 -0.51 -0.3 -0.23

Cp2q
2 -0.12 0.13 0.03 0.03 0.02 0.02 ¨ 1 -0.07 -0.08 -0.06 -0.04

Cp2q
3 -0.05 0.02 0.05 0.02 0.01 0.01 ¨ ¨ 1 -0.05 -0.02 -0.01

Cp2q
4 -0.1 0.02 0.02 0.12 0.02 0.01 ¨ ¨ ¨ 1 -0.05 -0.03

Cp2q
5 -0.05 0.02 0.01 0.02 0.05 0.01 ¨ ¨ ¨ ¨ 1 -0.02

Cp2q
6 -0.04 0.02 0.01 0.01 0.01 0.03 ¨ ¨ ¨ ¨ ¨ 1

Table 3.6: The estimated marginal correlation of the dataset obtained by DMM model with categorical-
specific random effect having common variance across categories.
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3.5 Discussion

We proposed a novel parametric multivariate method to model microbiome data
from an epidemiological study using a repeated measurements design. Current
parametric models that account simultaneously for overdispersion and repeated
measurements use a combination of a conjugate and a normal distribution. This
method was introduced by Booth et al. (2003) for count data. Molenberghs et al.
(2010) reviewed the combined model for the binary [Molenberghs et al. (2012)]
and time-to-event data [Efendi et al. (2014)]. The multinomially-distributed data
were however not considered in these papers. The rationale of this combined
model is the simplification to the parent distribution when overdispersion is ab-
sent and furthermore, the conditional distribution given the normally distrib-
uted random effect has a closed-form formula which reduces computational time.
Thus, this model has an advantage over the generalized linear mixed models
where multivariate normal distributions were used to model correlation due to
overdispersion and repeated measurements. Our proposed model is also an ex-
tension of the econometrics model for the analysis of choice probabilities in the
cross-sectional setting [Guimarães and Lindrooth (2007)]. We considered three
models for the analysis of repeatedly measured microbiome data, namely mod-
els corresponding to the unconditional distribution and to conditional distribu-
tion given the total count of a sample. For the latter distribution, we considered
the situations where the total counts either vary or are fixed. We showed that for
the last situation, i.e. total count is fixed, the likelihood is equivalent to the likeli-
hood of the multinomial logistic model. Since in our dataset the total number of
counts per sample is constant we prefer to use the DMM model.

In a simulation study, we showed that the DMM model provides unbiased
estimates for the fixed and random effects independent of the used random effect
structure to model the correlation between subjects across time. The sensitivity of
the likelihood ratio test for the fixed and random effect components are relatively
high when the sample size is large as in the case of our data application. We also
showed that the models provided similar estimates for the fixed and random ef-
fects when datasets were generated from DMM model with different random ef-
fect structure. Two structures of the random effects were considered in the DMM
model; one is the simplest subject-specific random effect where the variation of
each categorical count outcomes is the same, and the second is to assume a diag-
onal covariance structure with the same variance for each category. With regard
to the marginal correlation for each category between time points, we observed
that different correlations can be obtained by changing the random effect struc-
ture. The simple random effect structure provides small correlations while for the
model with categorical-specific random effect, the correlations are larger and in-
crease with the size of variance component. Hence, if the interest is solely on the
fixed effects and random effect estimates, the simple model with subject-specific
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random effect can be used. On the other hand, when the correlation structure be-
tween the same category across time is of interest, a more complex DMM model
with categorical-specific random effects should be used.

For our data application, we were interested in the parameters modelling the
variability between subjects and the effect of covariates on microbiome composi-
tion therefore we used a subject - specific random effect. Following the general-
ized linear mixed model framework, the random effect uuui is linked to the expected
outcome and measures the variation of the count outcome for certain category be-
tween subjects. The variability of the categorical count between subjects is then
captured by a single estimate of the standard deviation of the random effect and
its significance reveals that the variability between subjects should be taken into
account in the model. The estimate of the standard deviation in our data analysis
is 0.269 (s.e. of 0.053, p-value ă 0.001) which is relatively small hence our as-
sumption of a subject-specific random effect is justified. The standard deviation
although small is significant hence our extensive model is necessary for this data.
With regard to the fixed effects, their estimates describe the contribution of the
covariate to the odds ratio of two bacterial categories. One advantage from our
model is to model the change of microbiome in different strata over time. For in-
stance, we showed in the motivating dataset that the change of microbiome over
time in subject who remained uninfected in the placebo arm could be inferred
from the estimate of the time coefficients. Using the same model, we could also
infer the change of microbiome when subjects remained unifected in the albenda-
zole arm as well as the change of microbiome when subjects remained infected.
In the previous analyses, we selected subjects who were infected at pre-treatment
and fit the Dirichlet-multinomial regression at post-treatment to observe the ef-
fect of having long term infection and treatment on microbiome composition.
The statistical test using that model showed that subjects who remained infected
and received albendazole harbored significantly different microbiome composi-
tion compared to subjects who remained infected and received placebo. This
result is confirmed by the analysis in this manuscript.

On the other hand, for the data application, when the interest is on the mar-
ginal correlation, the random effect structure has to be correctly modelled. For
our dataset, we considered three structures, namely subject-specific random ef-
fects, categorical-specific random effects with common variance and with categori-
cal-dependent variances. The second correlation structure represents our data
best, suggesting that the first structure is too restricted and in the third structure,
there were too many parameters for which there is not sufficient information in
our data to estimate all of them.

Several challenges in modelling the microbiome data using this method exist.
Firstly, in our data application, we were able to fit a categorical-specific random
effects structure however the computational burden was large. More research
is needed to obtain computational efficient methods. The second challenge is
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related to the number of categorical count outcome involved in the study. Typ-
ically, categories with rare count (bacteria only presence in the small number of
samples) are pooled. One might argue that this rare count might be due to sys-
tematic error rather than sequencing error and thus pooling could be viewed as
losing the information. Future research should address the issue of the number of
categories included in the analyses and consequently a development of compu-
tationally efficient method is needed to take into account the category-dependent
random effect.

Several alternatives for our approach can be considered. Although modelling
overdispersion with the conjugate distribution has computational advantages, it
might be too simple since all correlation is modeled by one additional parame-
ter. Extensions to more complex correlation structures would be of interest. Sec-
ondly, the choice of six categories is arbitrary. More categories can be analyzed if
the dimension of the parameter space is reduced, for example using penalization
[Chen and Li (2013); Xia et al. (2013)]. Thirdly, the interpretation of the fixed effect
parameters are all conditional on the random effects. In practice, one might be
interested in marginal parameters [Heagerty (1999); Tsonaka et al. (2015)]. To this
end, marginalized models for multivariate counts need to be developed. Finally,
it is of interest to analyze the microbiome data jointly with other outcomes such
as diseases or immunological markers. For example, we would like to model
the effect of helminths and treatment on microbiome composition and cytokines.
This is a topic of an ongoing research.

3.6 Supporting Information

Additional supporting information may be found online in the Supporting Infor-
mation section at the end of the article.

Table S1 Bias and MSE of datasets generated from DMM model with

subject-specific random effect when parameters are obtained

from the true dataset.

Figure S1 Bias and MSE of datasets generated from the DMM model

with categorical-specific random effect having categorydepen-

dent variances.

Table S2 The sensitivity and specificity of the hypothesis testing for (A)

covariate effect and (B) variability of random effect.
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Table S3 The estimated marginal correlations based on the DMM model

with subject-specific random effect across different standard de-

viation of random effects using Monte-Carlo.

Table S4 The estimated marginal correlations based on the DMM model

with categorical-specific random effects with common variance

across categories using Monte-Carlo.

Table S5 The estimated marginal correlations based on the UNBM model

with subject-specific random effect across different standard de-

viation of random effects using Monte-Carlo.

Table S6 The estimated marginal correlation based on the UNBM model

with categorical-specific random effect having common variance

across categories using Monte-Carlo.

Table S7 The description of bacterial count data at each time-points.

Figure S2 The distribution of bacterial phyla when zero count presents.

Table S8 The starting model. The estimate (95% CI) of the log odds ratio

for each covariates in the microbiome dataset.

Table S9 Final Model. The estimate of the log odds ratio (95% CI) for each

covariates in the microbiome dataset.

Table S10 The log odds ratio (95% CI) when dataset were fitted with

DMM with categorical-specific random effect having category-

dependent variance across categories.

Table S11 The estimated marginal correlation of the dataset obtained by

DMM models.
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A Derivation of the joint multivariate distribution

A.1 Joint multivariate distribution for proportions

Conditioned on the random effect uuui, the relative abundances are independent.
Thus, the joint distribution for the multivariate relative abundance for subject i
could be formulated as follows.
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with µptq
i¨ is the loglinear mean.

A.2 Joint multivariate distribution under condition on total count.

We will show that the distribution given in equation (3.9) and (3.10) are in general
not equivalent. The distribution in the equation (3.10) and (3.12) are not equiva-
lent except for the situation where the total count is fixed.

We denote the CCCptq
i as the multivariate count outcome at time t for subject i

and the total count to be Cptq
i` . Thus the multivariate count outcome for subject i

conditional on their total is as follows.
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The probability Pr
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could be rewritten as follows.
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Thus, the joint probability of multivariate count outcome given in equation (3.17)
can be written as follows.
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Since Pr(ui) is not equal to the term in bracket in equation (3.18) then equation
(3.9) and (3.10) are not equivalent. However, when the total count is fixed, the
following equation holds: Pr

´

ui|Cptq
i`

¯

“ Prpuiq. Now, using the last equation in
(3.18), the joint distribution becomes
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Since the count at each category Cptq
i j |ui „ NB

ˆ

θ ´1µptq
i j ,

θ ´1

1 ` θ ´1

˙

where log
´

µptq
i j

¯

= XXXiξξξ j ` ui, we obtain similar formulation as the conditional likelihood at the
cross-sectional setting. Thus, in the case where the total count is fixed, the for-
mulation is equivalent to the distribution of the multivariate relative abundance
(3.16).




