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1
Introduction

1.1 The human gut microbiome

For more than a decade, studying human microbes and their collective genome
(termed as microbiome) has became an additional method to study human func-
tion beyond protein coding genes [Grice and Segre (2012); Yadav et al. (2018)].
The whole human body is inhabited by microbes with the gastro-intestinal tract
harboring the most abundant and diverse species [Ley et al. (2006); Gupta et al.
(2017)]. The bacterial community interacts with the host and contributes to pro-
cesses varying from metabolic homeostasis [Yadav et al. (2018)] to the develop-
ment of the immune system [Gensollen et al. (2016); Thursby and Juge (2017)].
Hence disruption of the microbial community is linked to development of a vari-
ety of diseases, for instance obesity and several metabolic disorders [Sonnenburg
and Bäckhed (2016)]. With the advent of high-throughput sequencing technolo-
gies, the goal of microbiome studies has shifted from mapping and cataloguing
genes related to bacteria to characterizing the microbial community in relation
to health and diseases [Rodrigues Hoffmann et al. (2016)]. However, these tech-
nologies have not been accompanied by the development of statistical tools nec-
essary to analyze the data generated. This thesis presents epidemiological work
related to human gut microbiome, accompanied by the development of statistical
methods to analyze them. The remaining of this introduction section provides
information on available features of microbiome data, microbiome related epi-
demiological studies and statistical methodologies.

1



2 Chapter 1 – Introduction

The microbial data analyzed in this thesis were obtained using high-through-
put sequencing technology. This technology worked by targeting the specific re-
gion of 16S rRNA gene that is unique to bacteria. Robinson et al. (2016) have
reviewed the whole process of sequencing the 16S rRNA gene to extract the mi-
crobial data. The process begins by Polymerase Chain Reaction (PCR) amplifi-
cation of these rRNA genes, followed by sequencing of the PCR products and
alignment to a reference database, for instance the Ribosomal Database Project
(RDP) [Cole et al. (2014)]. The sequence reads are then clustered into operational
taxonomical units (OTU) which is usually based on 97% similarity (a proxy of
species) [Mysara et al. (2017)]. The procedure then continues with the taxonomy
annotation in which the dataset can be viewed in the format shown in Table 1.1
where rows represent samples and columns represent taxa. The total reads for
each sample are usually different due to technical difficulties in loading the same
molar amount to an instrument [Gloor et al. (2017)]. Usually a normalization or
rarefaction is done to obtain the same number of total reads [Weiss et al. (2017)].

Samples

Taxon
111 222 . . . JJJ Total reads

111 c11 c12 . . . c1J c1`

222 c21 c22 . . . c2J c2`

...
...

...
. . .

...
...

NNN cN1 cN2 . . . cNJ cN`

Table 1.1: The format of the taxonomical count of microbiome data.

As a result of high-throughput sequencing, several important features of the
microbiome data can be highlighted. First of all, it is a compositional data [Weiss
et al. (2017)]; it consists of multiple proportions of various organisms that sums
up to a constant [Gloor et al. (2017)]. The total reads per sample are up to the
number of molar concentration loaded into the instrument. Thus, it is not possi-
ble to assume independence between different taxa as decreasing number of one
bacterial taxa increases the other, or vice versa. Secondly, microbiome data vary
highly due to unknown reasons [Turnbaugh et al. (2007)]. This could be due to
sampling or individual heterogeneity, which needs to be taken into account in the
statistical model. Finally, a variation in microbial taxa could occur as a result of
measurement error [Li (2015)].

1.2 Soil-transmitted helminthiasis and immunity

According to the World Health Organization, approximately 1.5 billion of people
are infected with soil-transmitted helminths worldwide [Collender et al. (2015)],
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majority species of Ascaris lumbricoides, Necator americanus, Ancylostoma duode-
nale and Trichuris trichiura. Infected individuals live mostly in low and middle
income countries. Due to poor level of hygiene and sanitation, these parasites
enter through the skin or through orofecal route and reach the gastro-intestinal
tract, which then cause malnutrition, growth stunting and physical impairment
[Crompton and Nesheim (2002); Hall et al. (2008); Albonico et al. (2008)]. Aside
from this negative impact, there seems also a positive impact; helminths are as-
sociated with lower incidence of metabolic disorders [Wiria et al. (2012)]. This
may be related to the ability of helminths to modulate the host’s immune system
[Wiria et al. (2012); McSorley and Maizels (2012); Gazzinelli-Guimaraes and Nut-
man (2018)] or due to their parasitism, consuming energy from their host [Wiria
et al. (2012)].

Given the fact that helminths reside in the same niche, it has been hypothe-
sized that gut microbiota and the helminth parasites may interact and thus mod-
ulate the immune system (reviewed in Leung et al. (2018)). This three-way re-
lationship has been largely analyzed in laboratory animal models, and less in
humans [Wegener Parfrey et al. (2017); Reynolds et al. (2015)].

1.3 The randomized controlled trial in a repeated mea-
surement setting

The randomized controlled trial design is ideal to analyze the causal effect of
treatment on outcomes of interest [Hernán and Robins (2006a); Hernan and Robins
(2018)]. The dataset used in this thesis was obtained from a household-based
cluster-randomized, double-blind, placebo-controlled trial conducted in an area
endemic for helminth infections in Indonesia with the main purpose of analyz-
ing the association between immunological responses and helminth infections
[Wiria et al. (2010)]. Briefly, irrespective of their infection status, subjects were
randomized into treatment or placebo arm. An anthelminthic treatment was ad-
ministered every three months for a total period of 21 months. The stool sam-
ples were collected at two different time-points, namely before and 21 months
after the first treatment to identify helminth infection status and collect microbial
data. The outcomes modelled in this thesis are the microbiome composition and
immune responses. Using this randomized treatment design, the causal effect
of anthelminthic treatment on helminth infections, microbiome composition and
immune responses is assessed.

In addition, the longitudinal design enables one to study the dynamic asso-
ciation between helminth infections and outcomes of interests over time. At 21
months after the first treatment, irrespective of the treatment allocation, subjects
may either get a new infection, remain infected, or may be helminth-uninfected.
Specifically, this design enables one to take into account gut microbiome changes
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over time due to changing lifestyles. The challenge in the statistical analyses of
data from a repeated measurements design is the fact that observations from the
same individuals are correlated. For valid inference these correlations have to be
addressed. The following sections introduce statistical methodologies for corre-
lated data.

1.4 Methodology of compositional data

The sequencing process of 16S rRNA to obtain the microbiome data has been
described earlier and the format of the dataset used in the analysis has been tab-
ulated in Table 1.1. Each sample has counts of sequence reads that are clustered
in multiple categories with arbitrary total reads imposed by the instrument. As it
has been described above, the important feature of this data is the compositional
structure, in which counts for each category cannot be considered as an indepen-
dent realization. Thus, it is important to analyze this data using a multivariate
approach.

Typically, analyses in microbiome studies aim to characterize the relationship
between the microbiome composition and biological, clinical or environmental
features [Xia and Sun (2017)]. For this purpose, either a nonparametric or para-
metric approach can be used. For instance, nonparametric ecological distances or
dissimilarity measures, such as alpha and beta diversity measures are commonly
used for comparisons between groups. By doing so, no parameters are estimated.
Note that while no specific distribution needs to be assumed for the outcome vari-
able, the hypothesis testing may still have assumptions which might be violated.
For instance, the assumption that observations are obtained from the distribution
that has the same shape and are independent [Lumley et al. (2002)]. In addition,
for small sample sizes, the statistical power might be limited to detect differences.
The parametric approach may provide a solution for these issues. In this thesis,
the parametric approach is deployed because: the interest is in modelling com-
plex relationships in a relatively small study.

When considering the microbiome data in Table 1.1, each cell’s entry ci j repre-
sents the count for subject i belonging to taxa j. Count data are typically modelled
using the Poisson distribution. When considering multivariate count data with
a fixed total count, the multinomial distribution is used. These parametric dis-
tributions have a restricted assumption, namely the variances of the responses
are specified by the means. This appears not to hold for microbiome data. As
it has been pointed out in Section 1.1, microbiome data vary highly due to pres-
ence of many zeros, outliers or heterogeneity caused by sampling mechanisms
and differences between individuals. An extra variation is thus observed, which
is known as overdispersion.

To account for overdispersion in modelling multivariate count data, a com-
pound distribution is used, i.e., when observations are drawn from multinomial
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or Poisson distribution, its mean parameters are assumed to be random variable
following a specific distribution. Two often used distributions are the conjugate
distribution (Gamma for Poisson and Dirichlet for multinomial) and the normal
distribution. The advantage of using the conjugate distribution is that the mar-
ginal distribution has a closed form formula which consequently reduces com-
putational time and directly take the measurement error into account [Li (2015)].
However, the drawback of this model is the restriction of the number of parame-
ters to model the covariance structure [Li (2015)]. As an alternative, multivariate
normally distributed random effects can be used [Hartzel et al. (2016); Hedeker
(2003)]. The trade off between these options is in the computational burden.

Finally, as studies in this thesis were done in a repeated measurement setting,
the compositional data are observed at two time-points. Hence, a correlation
structure is imposed on the data by multiple sources, namely the correlation be-
tween different bacterial categories at the same time-point and the correlation
within the same categories at different time-points.

1.5 General mixed models

In a repeated measurement setting, one is interested in analyzing the progres-
sion of outcomes over time in relation to predictors. In the simplest case, this
outcome-predictor relationship is assumed to be linear, and linear regression can
be used. However, it should be noted that under a repeated measurement set-
ting, observations are not independent since observations from the same subjects
are likely to be more similar than observations from others. Thus the variability
in the observations could be due to variability of the observations within sub-
jects and between subjects. The formulation of this linear regression needs to be
extended to account for this extra variation.

Starting from linear model context, it is assumed that for subject i, a ni num-
bers of observations are collected YYY i “ tYi1, . . . ,Yiniu. The observations from sub-
ject i, YYY i are modelled as individual response trajectory µµµ i and an independent
residual term eeei.

YYY i “ µµµ i ` eeei (1.1)

with eeei is a random variable assumed to follow the multivariate normal distrib-
ution with zero mean and variance of Σe “ σ2

e Ini (denoted as eeei „ MVNp000,Σeq).
The profile response µµµ i is then linked to the design matrix XXXi via the following
equation

µµµ i “ XXXiβββ ` AAAibbbi, (1.2)

in which XXXi is the design matrix for the fixed effect part (population) and AAAi is the
design matrix for the random effect part (subject-specific trajectory). The para-
meter βββ represents the population part and bi „ N

�

0,σ2
b

(

are the subject-specific
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effect. This is known as a linear mixed model which consists of a fixed population
parameter β and a subject-specific effect bi [Laird and Ware (1982)]. The estimate
of the regression parameters βββ and subject-specific variability σ2

b are obtained by
maximizing the full likelihood which has a closed form formula.

The above formulation of the model is for the continuous outcome, where
the response conditional on the covariates follows the normal distribution. For
other outcomes, the generalized linear model needs to be extended to account for
subject-specific effects [Molenberghs and Verbeke (2005)]. The expected value of
the responses µµµ i in equation (1.1) is linked with the predictor via the so-called
link function g. For instance, in the case of a count response, the function of its
expected value µi becomes

gpµiq “ logpµiq “ XXXiβββ i

in which βββ i is defined as in equation (1.1) and the logarithm function is used as a
link function. For the multinomial distribution often used for microbiome data,
the logit link function is used.

1.6 Outline of the thesis

This thesis is a collection of five articles which are published or submitted for
publication. It is organized in two major parts. Each of this part consists of an epi-
demiological and a methodological paper to aid in understanding the underlying
biological mechanisms which motivate development of the statistical method in
the topic related to microbiome and immunity in relation to helminth infections.
The last chapter discusses all results of these two parts.

The focus in Part I is modelling the association between helminth infections
and the gut microbiome composition in a randomized-controlled trial setting. In
Chapter 2, an advanced statistical method was utilized to analyze this associa-
tion while addressing the multivariate structure of the compositional data. The
correlation between bacterial taxa is accounted for by introducing a conjugate dis-
tributed random effect. This method does not account for the correlation between
observations. As the data were repeatedly measured, the correlation of the obser-
vation between different time points was left unaccounted for in the statistical
model.

In Chapter 3, a statistical framework to analyze microbiome data was devel-
oped to account for the additional correlation due to repeated measurements.
We extended the Dirichlet - multinomial regression model used in Chapter 2 to
include an extra normally distributed random effect. Several covariance struc-
tures for the normally distributed random effects were considered. The conjugate
distributed random effect serves as an estimate for the correlation between cate-
gories. In addition, a loglinear model approach is introduced to aid interpretation
of the regression estimates.
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It has been described earlier in this chapter that there is a hypothesized three-
way relationship between helminth infection, gut microbiome and human im-
mune response. Thus, the aim of Part II of this thesis is to analyze these complex
relationships. In Chapter 4, the linear mixed model with subject-specific random
effect is utilized to study the role of gut microbiome on human immune response
in the presence or absence of helminth infections. Stimulated cytokine responses
were considered as a marker of immune response while bacterial proportion and
helminth infection were included as covariates. Since helminth infection might
be a confounder for both microbiome and cytokine responses, it was included as
covariate in the model, however the relationship between helminth infection and
microbiome composition was not modelled. In addition, the presence of mea-
surement error in the microbiome data was not taken into account in the model.

In Chapter 5 of this thesis, the challenges in modelling the relationships be-
tween helminth infection, gut microbiome and immune response were addressed
by using a joint model. The correlation between observation of the same sub-
ject as well as the measurement error present in the microbiome sequencing data
were taken into account. A flexible covariance structure was used for this pur-
pose, namely by including multivariate normally distributed random effects in
the model. The proposed mixed regression model is able to model the associa-
tion between helminth infection on both outcomes and the association between
the different outcomes, while accounting for the correlation over time-points and
between bacterial categories. Finally, Chapter 6 discusses the relationship be-
tween helminth infections, gut microbiome and cytokine responses by using the
directed acyclic graph. Using results from our and other published studies, the
potential biases of estimated associations are identified and discussed. Possible
solutions are presented.





Part I

Gut microbiome composition
and

helminth infections





2
Dynamic changes in human-gut

microbiome in relation to a
placebo-controlled anthelminthic trial

in Indonesia

Abstract

Background. Microbiome studies suggest the presence of an interaction between
the human gut microbiome and soil-transmitted helminth. Upon deworming, a
complex interaction between the anthelminthic drug, helminths and microbiome
composition might occur. To dissect this, we analyse the changes that take place
in the gut bacteria profiles in samples from a double blind placebo controlled trial
conducted in an area endemic for soil transmitted helminths in Indonesia.

This chapter has been published as: Ivonne Martin, Yenny Djuardi, Erliyani Sartono, Bruce A.
Rosa, Taniawati Supali, Makedonka Mitreva, Jeanine J. Houwing-Duistermaat, Maria Yazdanbakhsh
(2018). Dynamic changes in human-gut microbiome in relation to a placebo-controlled anthelminthic
trial in Indonesia. PLoS Neglected Tropical Diseases 12 (8):e0006620.

11



12 Chapter 2 – Gut microbiome dynamics in a randomized controlled trial

Methods Either placebo or albendazole were given every three months for a
period of one and a half years. Helminth infection was assessed before and
at 3 months after the last treatment round. In 150 subjects, the bacteria were
profiled using the 454 pyrosequencing. Statistical analysis was performed cross-
sectionally at pre-treatment to assess the effect of infection, and at post-treatment
to determine the effect of infection and treatment on microbiome composition
using the Dirichlet-multinomial regression model.

Results At a phylum level, at pre-treatment, no difference was seen in micro-
biome composition in terms of relative abundance between helminth-infected
and uninfected subjects and at post-treatment, no differences were found in mi-
crobiome composition between albendazole and placebo group. However, in
subjects who remained infected, there was a significant difference in the micro-
biome composition of those who had received albendazole and placebo.

This difference was largely attributed to alteration of Bacteroidetes. Alben-
dazole was more effective against Ascaris lumbricoides and hookworms but not
against Trichuris trichiura, thus in those who remained infected after receiving
albendazole, the helminth composition was dominated by T. trichiura.

Discussion We found that overall, albendazole does not affect the microbiome
composition. However, there is an interaction between treatment and helminths
as in subjects who received albendazole and remained infected there was a sig-
nificant alteration in Bacteroidetes. This helminth-albendazole interaction needs
to be studied further to fully grasp the complexity of the effect of deworming on
the microbiome.

Trial registration ISRCTN Registy, ISRCTN83830814.

2.1 Introduction

Shortly after birth, the human body is colonized by a community of bacteria
[Zaiss and Harris (2016),Macpherson and Harris (2004)] with relatively simple
composition which increase in number and complexity with age [Ursell et al.
(2012)]. The densest colonization with commensal microbes of the human body
is found in the intestine [Savage (1977)] which has a beneficial impact on gastro-
intestinal function and host health by providing support for host metabolism,
protection against pathogenic microbes, integrity of intestinal mucosa, and mod-
ulation of the immune system [Macpherson and Harris (2004), Ursell et al. (2012),
Eckburg et al. (2005)]. Furthermore, it has been shown that intestinal microbiota
is associated with dietary habits [Turnbaugh et al. (2009), Conlon and Bird (2014)],
physiological factors such as age, gender and BMI [Haro et al. (2016), Yatsunenko
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et al. (2012)] as well as diseases, such as inflammatory bowel disease and obesity
[Zaiss and Harris (2016), Eckburg et al. (2005), Turnbaugh et al. (2006)].

Apart from intestinal microbiota, certain pathogens such as soil-transmitted
helminths (STH) may coexist in the human intestine. It is estimated that STH,
largely represented by Ascaris lumbricoides, hookworm such as Necator americanus
and Ancylostoma duodenale, and whipworm Trichuris trichiura, infect 2 billion peo-
ple in the majority of developing countries and mostly children [Zaiss and Harris
(2016), Hotez et al. (2008)]. These infections have been reported to cause im-
pairments in physical, intellectual, and cognitive development [Bethony et al.
(2006)]. At the same time, these parasitic worms have a long co-evolutionary in-
teraction with their host. The result of this co-evolutionary trajectory, seems to be
that helminths lead to immune regulatory responses that allow their long term
survival within their host [McSorley and Maizels (2012), Wammes et al. (2016)].
Since intestinal microbiota and helminths share the same niche in their host, it is
hypothesized that the presence or absence of intestinal helminths may affect their
interaction with each other within the host. In an interesting study, evidence was
provided for the beneficial effects of the microbiome on successful completion of
whipworm life cycle [White et al. (2018)]. Currently, there is also much interest
to determine whether helminth infections affect the gut microbiome and whether
the effects of worms on human health is mediated via alteration in the micro-
biome composition. It is becoming increasingly clear that the gut microbiota has
important link to the immune system and several disease outcomes. With the
mass drug administration programs underway to eliminate intestinal helminths
in many endemic regions, it is essential to fully understand the consequences of
deworming on community health by characterizing the effect on the gut micro-
bial composition.

Recently, several studies investigated the relationship between the intestinal
microbiome and intestinal helminth infections. In swines, a statistically signif-
icant association between Trichuris infection and the gut microbiome composi-
tion was shown [Li et al. (2012), Holm et al. (2015)], evident from the altered
abundance of the genus Paraprevotella and phylum Deferribacteres in the in-
fected pigs. The chronic infection of Trichuris muis in C57BL/6 wild-type mice
increased the relative abundance of Lactobacilli [Holm et al. (2015)], while giving
T. trichiura ova to macaques with chronic diarrhea increased the phylum Tener-
icutes and resulted in clinical improvement [Broadhurst et al. (2012). Therefore,
in animal models, Trichuris infection seems to be associated with alternation in
the gut microbiome. However, in humans, findings are not consistent. In an
observational study in Ecuador, comparing the gut microbiome of infected and
uninfected school children, no significant differences at various taxonomical lev-
els were found [Cooper et al. (2013)]. On the contrary, two other observational
studies in rural villages of Malaysia [Lee et al. (2014)] and Zimbabwe [Kay et al.
(2015)] found a significant increase in diversity and abundance of certain bacteria
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taxa in infected compared to uninfected subjects. An increase in Paraprevotellaceae
was seen in the Malaysian study, which seemed to be associated with Trichuris
infection while an increase in Prevotella was reported in the study in Zimbabwe
that was attributed to S. haematobium infection. Furthermore, in an interventional
study carried out in another rural village in Malaysia [Ramanan et al. (2016)], a
significant change in order Bacteroidales and Clostridiales was observed after de-
worming while deworming of S. haematobium in an interventional study in Zim-
babwe [Kay et al. (2015)] did not seem to alter the microbiome.

The study designs which were used to investigate the human-gut microbiome
in relation to helminth infections were either observational [Cooper et al. (2013),
Lee et al. (2014), and Kay et al. (2015)] or interventional without a control group
[Cooper et al. (2013), Lee et al. (2014), Kay et al. (2015), and Ramanan et al. (2016)]
hampering the estimation of the true relationship between helminth infection and
the microbiome composition. Motivated by the findings from previous studies of
helminths on microbiome, we used samples from a larger randomized placebo-
controlled trial of albendazole treatment in a population living in an area endemic
for soil-transmitted helminth infections [Wiria et al. (2010)] to further character-
ize the effect of helminth infection and treatment at before and 21 months after
treatment. The study design allowed the investigation of the effect of helminths
on the fecal microbial community through comparing helminth infected and un-
infected at baseline and subsequently assessing the effect of treatment with al-
bendazole. We also explored the effect of the interaction between treatment and
infection status on the faecal microbiome. In addition, we used the opportunity
to assess whether albendazole has a direct effect on the microbiome by analyzing
those who received albendazole and were uninfected throughout the study. The
placebo group enables the estimation of the effect of deworming on the micro-
biome composition in the absence of anthelminthic treatment which itself could
affect the microbiome.

The analyses carried out in this study aim to characterize the joint effects of
several predictors, such as helminth infection and treatment on each bacterial
category. For comparing the gut microbiome of premature infants with differ-
ent severities of necrotizing enterocolitis, a Dirichlet – multinomial model was
used [Barron et al. (2017)]. Here, we consider the same approach for modelling
and hypothesis testing for the association between treatment and helminth infec-
tion on microbial composition at the phylum level. Our approach addresses the
possible correlation between bacteria categories, the compositional feature of the
microbiome data [Chen and Li (2013)], and the multiple testing issue.



2.2 Methods 15

Figure 2.1: The profile of the microbiome study. The chart shows the number of subjecs infected with
at least one of the prevalent soil transmitted helminths (Helminth (+)) or free of helminth infection
(Helminth (-)) that belonged to either the placebo or albendazole treatment group, at pre-treatment
and 21 months after treatment.

2.2 Methods

2.2.1 Ethics statement

This study was nested within the ImmunoSPIN study, a double blind placebo-
controlled trial conducted in Flores Island, Indonesia [Wiria et al. (2010)]. The
ImmunoSPIN study has been approved by the Ethical Committee of Faculty of
Medicine, Universitas Indonesia, ref:194/PT02.FK/Etik/2006 and has been filed
by ethics committee of the Leiden University Medical Center. The clinical trial
was registered with number: ISRCTN83830814 in which the protocol for the trial
and supporting CONSORT checklist are available elsewhere [Wiria et al. (2013)].
The subjects gave their informed consent either by written signature or thumb
print. Parental consent was obtained for children below 15 years old.

2.2.2 Sample populations and detection of soil-transmitted hel-
minth (STH) infection.

Households were randomized to receive either a single dose of 400 mg albenda-
zole or placebo once every 3 months for 2 years. To assess the effect of treatment
on the prevalence of soil transmitted helminth infection, yearly stool samples
were collected on a voluntary basis. T. trichiura infection was detected by mi-
croscopy and a multiplex real time PCR was used for detection of hookworm (A.
duodenale, N. americanus), A. lumbricoides and Strongyloides stercoralis DNA. For the
current study, paired DNA samples before and at 21 months after treatment from
150 inhabitants in Nangapanda were selected based on the treatment allocation
and infection status as well as the availability of complete stool data at pre and
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post-treatment (Figure 2.1). The procedure for sample collection and processing
is already described elsewhere [Wiria et al. (2010)].

Briefly, prior to DNA isolations, approximately 100 mg unpreserved faeces
(kept at -20°C) were suspended in 200µl PBS containing 2% polyvinylpolypyroli-
done (PVPP;Sigma, Steinheim, Germany). Suspensions were heated at 100oC for
10 min and were treated subsequently with sodium dodecylsulphate-proteinase
K at 55°C for 2 h. DNA was isolated using QIAamp DNeasy Tissue Kit spin
columns (QIAgen, Venlo, The Netherlands). The whole procedure of DNA isola-
tions and setup of PCR plates were performed using a custom-made automatic
liquid handling station (Hamilton, Bonaduz, Switzerland). As published already,
sequences of the A. lumbricoides and N. americanus-specific primers and probes as
well as the A. duodenale specific XS-probes were used to accommodate the spe-
cific fluorophor combinations of the CFX real-time PCR system (Table S1[Wiria
et al. (2010), Verweij et al. (2007)] . The real-time PCRs were optimized first as
monoplex assays with 10-fold dilution series of A. duodenale, N. americanus and
A. lumbricoides DNA, respectively. The monoplex realtime PCRs were thereafter
compared with the multiplex PCR with the PhHV internal control. The cycle
threshold (Ct) values obtained from testing the dilution series of each pathogen
in both the individual assay and the multiplex assay were similar, and the same
analytical sensitivity was achieved. Amplification reactions were performed in
white PCR plates in a volume of 25µl with PCR buffer. Amplification consisted
of 15 min at 95°C followed by 50 cycles of 15 s at 95°C, 30 s at 60°C, and 30 s at
72°C. Amplification, detection, and analysis were performed with the CFX real-
time detection system (Bio-Rad laboratories). The PCR output from this system
consists of a cycle threshold (Ct) value, representing the amplification cycle in
which the level of fluorescent signal exceeds the background fluorescence and re-
flecting the parasite-specific DNA load in the sample tested. In this manuscript,
we set the ct value 30 as a threshold for the infection status i.e. subjects with PCR
lower than 30 was identified as clearly infected and PCR above 30 as uninfected
or very low infection. The analyses were carried with regard to the infection sta-
tus and we do not consider the analysis in the level of infection.

2.2.3 Sequencing of 16S rRNA gene

Genomic DNA samples were isolated from 100 mg of fresh stool, which were
also used for detection of helminth infection by real time PCR. The DNA am-
plification and pyrosequencing followed the protocols developed by the Human
Microbiome Project (HMP) [Group HDGW (Group HDGW)] at the McDonnell
Genome Institute, Washington University School of Medicine in St. Louis. Briefly,
The V1-V3 hypervariable region of the 16S rRNA gene was amplified by PCR
and the PCR products were purified and sequenced on the Genome Sequencer
Titanium FLX (Roche Diagnostics, Indianapolis, Indiana), generating on average
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6,000 reads per sample. The filtering and analytical processing of 16S rRNA data
for this cohort has been previously described in details [Rosa et al. (2018)]. The
assembled contigs count data as a result of RDP classification was organized in
matrix format with taxa in columns and subjects in row. The entries in the ta-
ble represent the number of reads for each phyla for each subject. Rarefaction to
2000 reads was performed using an R package (vegan) [Oksanen et al. (2017)].
We obtained the count data of 609 bacterial genera and 18 bacteria phyla. In the
analysis at phylum level, we retained the 5 most prevalent phyla (Actinobacteria,
Bacteroidetes, Firmicutes, Proteobacteria, and Unclassified Bacteria) and pooled
the remaining phyla into a pooled category such that there are only 6 phyla cate-
gories. The Unclassified bacteria represents the category where all the sequences
cannot be assigned into a phylum. We conducted further analyses by decompos-
ing the statistically significant phylum (Bacteroidetes) into the two most preva-
lent genera (Bacteroides and Prevotella) and the remaining genera into a pooled
Bacteroidetes category and combining the Proteobacteria, Unclassified Bacteria
and Pooled in a Pooled Phyla category. In total we have six categories since we
also selected Actinobacteria and Firmicutes at phylum level.

2.2.4 Statistical methods

The within sample diversity (Shannon and richness diversity) indices as well as
the between sample diversity (Bray-Curtis distance) were computed at baseline
and follow-up using the dataset at genera level. Clustering of samples and bacte-
ria was studied by plotting a heat map of bacteria genera which were present in
at least one sample and which had an average relative abundance of more than
1%. This cutoff was chosen to exclude rare genera. Unless stated otherwise, the
rest of the analyses were done at the phylum level. A Pearson’s chi-squared test
statistic was used to test for differences of infection prevalence between the two
treatment groups at pre and at post-treatment. Although the study design allows
for the pairwise analysis, unfortunately no method is available for multivariate
categorical count data. For this reason, we used the Dirichlet-multinomial re-
gression where the characterization of infection and treatment are similar to the
interpretation in loglinear model. Each count outcome within a category was
assumed to follow the negative binomial distribution. This distribution is the re-
sult of a Poisson distribution for counts with the additional assumption that the
underlying parameter is a random variable which follows the conjugate distri-
bution (Gamma). By assuming that the underlying parameter was random, the
presence of overdispersion due to multiple counts observed within a sample was
modelled. To incorporate the fact that the total count is fixed per sample, we con-
ditioned the probability of the multivariate count outcome on the total count per
sample. This model is equivalent to the approach of Guimarães and Lindrooth
(2007), i.e. the Dirichlet-multinomial regression model. The model parameters
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are log of odds ratios which compare the prevalence rate of each bacteria phyla
associated with the covariates with the reference category. In all analyses, Firmi-
cutes was used as reference since it has the highest abundance among the phyla.
The covariates were infection status and treatment allocation which are both bi-
nary variables.

The likelihood ratio statistic was used to test the null hypothesis of no effect of
the covariate on the microbiome composition. The test statistic follows asymptot-
ically a χ2 distribution with J degrees of freedom, representing the J ´ 1 bacterial
comparison with the reference and one overdispersion parameter. As the Dirich-
let – multinomial regression is available for cross-sectional setting, we modelled
the association between microbiome composition and covariates including treat-
ment at 21 months after treatment. First, we modelled the association between
treatment and microbiome composition by including all study participants. Next,
we selected subjects who were infected with at least one single helminth at base-
line and included a categorical variable representing the four combinations of
treatment allocation and infection status at post-treatment in the model. The R
package MGLM [Zhang and Zhou (2017)] was used for analyses. The results
were reported in terms of odds ratios, 95% confidence intervals and p-values.

To confirm our finding with this method, we used the univariate pairwise
analysis for single bacterial categories of interest in albendazole arm. For this
purpose, the inverted beta binomial test was applied to test the null hypothe-
sis that the relative abundance of certain bacteria category at pre-treatment is
similar to the relative abundance at post-treatment. Note that the inverted beta-
binomial regression model is only defined for two categories and is equivalent to
the Dirichlet multinomial. The R package ibb [Pham and Jimenez (2012), Pham
(2013)] was used for this test. All computations were conducted in R version 3.1.0
[R Core Team (R Core Team)].

2.3 Results

2.3.1 Characteristics of the study subjects

At baseline, 94 out of 150 (62.7%) individuals were infected with one or more
helminth species, and hookworm was the most dominant species (52.1%) fol-
lowed by T. trichiura (44.7%) and A. lumbricoides (37.2%). The baseline character-
istics such as age, gender, and helminth prevalence were similar between the two
treatment arms although the prevalence of N. americanus was slightly higher in
albendazole group, but not statistically significant (Table 2.1). The additional rel-
evant characteristics of the participants are listed in Table S2. With regard to the
microbiome composition, the proportions of each bacterial phyla were also simi-
lar between two treatment arms with the highest abundance at the phylum level
being Firmicutes followed by Actinobacteria, Proteobacteria and Bacteroidetes.
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Characteristics

pre-treatment post-treatment

albendazole arm placebo arm albendazole arm placebo arm

(N = 69) (N = 81) (N = 69) (N = 81)

Age,mean(SD) 27.38 (16.5) 27.85 (16.9)

(in years)

Sex, female, n(%) 39 (56.5) 45 (55.6) 39 (56.5) 45 (55.6)

Helminth Infections, n(%)

Single infection

A. lumbricoides 17 (24.6) 18 (22.2) 1 (1.4) 7 (8.6)

Hookworm 26 (37.7) 23 (28.4) 3 (4.3) 11 (13.6)

N. americanus 25 (36.2) 23 (28.4) 3 (4.3) 10 (12.3)

A. duodenale 2 (2.9) 2 (2.5) 0 (0) 1 (1.2)

T. trichiura 20 (28.9) 22 (27.2) 9 (13.0) 9 (11.1)

Multiple infection‚q

A. lumbricoides 17 (24.7) 18 (22.2) 3 (4.3) 23 (28.4)

Hookworm 26 (37.7) 23 (28.4) 3 (4.3) 20 (24.7)

T. trichiura 20 (28.9) 22 (27.1) 11 (15.9) 23 (28.4)

Any helminth 47 (68.12) 47 (58.0) 15 (21.7) 44 (54.3)

Proportion (in %) of the 6 most abundant bacteria

phyla, mean(SD)

Actinobacteria 12.5 (8.9) 11.0 (7.9) 13,2 (8.4) 11.8 (8.5)

Bacteroidetes 7.4 (11.3) 6.4 (11.0) 5.7 (9.5) 6.2 (12.5)

Firmicutes 66.8 (13.5) 70.0 (13.7) 66.0 (13.8) 68.1 (14.2)

Proteobacteria 9.8 (7.9) 9.2 (8.4) 11.7 (11.0) 10.1 (8.6)

Unclassified*) 2 (2.22) 2.7 (3.2) 2.1 (1.6) 2.6 (2.7)

Pooled#) 1.5 (3. 7) 0.7 (1.2) 1.3 (2.2) 1.2 (2.4)

Table 2.1: Characteristics of the study subjects at baseline and at 21 months after the initial treat-
ment.
‚q Species is indicated that is in combination with one or more of the other helminth species.
*)Unclassified represents sequences that cannot be assigned to a phyla.
#)Pooled category consists of the remaining 13 phyla having average relative abundance among sam-
ples less than 1%.

At 21 months after treatment, the prevalence of STH infection was 21.7% in the
albendazole arm and 54.3% in placebo arm (p-value < 0.001). Albendazole had
the greatest effect on hookworm (24.7% (placebo) vs 4.3% (albendazole)) followed
by A. lumbricoides (28.4% (placebo) vs 4.3% (albendazole)) and lastly T. trichiura
(28.4% (placebo) vs 15.9% (albendazole)). These percentages are similar to what
was seen in the whole ImmunoSPIN trial [Wiria et al. (2010)]. These data show
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Figure 2.2: The prevalence of helminth coinfections in two randomization arms for subjects who
were infected at pre-treatment and remained infected at post-treatment. For each helminth species
depicted in the plot, square represents the percentage of subjects infected with A. lumbricoides (with or
without other helminth species), circle represents hookworm (with or without other helminths) and
triangle represents T. trichiura (with or without other helminths).

that while infections with A. lumbricoides and with hookworms decrease at post-
treatment, the infections with T. trichiura was not affected much by albendazole
and therefore the proportion of individuals infected with T. trichiura increased
when considering those that remained infected at post-treatment (Figure 2.2). In
the placebo group, there was no such difference in the composition of helminth
species at post-treatment. It was noted that 12 (2 from albendazole and 10 from
placebo) out of 56 uninfected subjects at baseline (21.4%) gained helminth infec-
tion over the study time period.

2.3.2 Effects of helminths and treatment on microbiome diver-
sity

Using bacterial data at the genus level (a total of 609 genera), we calculated the
within sample diversity (richness and Shannon index) and between sample diver-
sity (Bray-Curtis dissimilarity). We observed a similar within-sample diversity at
pre and post-treatment as evident from the Shannon diversity index (2.99 vs 2.96)
and the richness index (66.17 vs 62.16). The Bray-Curtis dissimilarity measures
the percentage of similarities between two samples in a community and the val-
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ues range from 0 (completely similar) to 1 (completely dissimilar). As reported
earlier [Rosa et al. (2018)], the Bray-Curtis dissimilarities calculated from 150 sub-
jects at pre-treatment was 0.61 and the same average was obtained when calcu-
lating the Bray-Curtis dissimilarities at post-treatment, indicating that in average
there was 61% dissimilatory percentages between each pairs of samples. When
stratifying all samples based on infection status at pre-treatment and on random-
ization arm at post-treatment, again we observed similar beta-diversities, indi-
cating that neither infection nor treatment induced a shift in diversity. When ana-
lyzing the genera in relation to infection status rather than treatment, the average
Shannon diversity index as well as the average richness was similar between the
infected and the uninfected group at pre-treatment and post-treatment (Figure
S1).

Figure 2.3: Heatmaps showing the relative abundance of the 29 most abundant genera of each sam-
ple at pre-treatment (A) and post-treatment (B). Each column in the heatmap represents a specific
sample and each row represents a genera. Colors represent the scaled relative abundance of genera
with green and red representing low and high abundance, respectively. Samples and genera were
clustered hierarchically (using the Ward method [Murtagh and Legendre (2014)]) based on Euclidean
distance of the relative abundance profiles and were depicted on the top and left dendrogram, respec-
tively. The infection status, treatment allocation, Shannon and richness indices for all samples were
annotated above the heatmap. Circles in Shannon and richness represents the diversity indices for
each sample. There is no clustering of samples or genera based on infection or treatment status.

The average relative abundances of all bacterial genera at both time-points
were below 10%, with the highest being in the phylum Firmicutes, specifically
the genus Catenibacterium (6.7% at pre-treatment) and the unclassified genus be-
longing to the family Ruminococcaceae (5.6% at post-treatment). The relative abun-
dance at the genus level as well as the dominant genera vary between populations
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as observed in studies where samples in rural Ecuador [Cooper et al. (2013)] or
Malaysia were compared with the US [Lee et al. (2014)] or in studies where sam-
ples of healthy European and American adults were analysed [Arumugam et al.
(2011)]. To illustrate the bacterial genera profile in relation to infection and treat-
ment status, we selected the 29 genera (at pre and post-treatment) with an aver-
age of relative abundance across all samples larger than 1%. Genera from phy-
lum Firmicutes are the most dominant (21 of 29 genera belongs to Firmicutes).
As shown in heatmaps based on composition of the most prevalent genera, no
significant clustering could be seen, neither at the level of bacteria nor at the level
of individuals (Figure 2.3A and B) in relation to helminth infection or treatment,
which indicates that neither helminths nor treatment affected the predominant
genera in the gut.

2.3.3 The association of infection and treatment with the micro-
biome composition at the phylum level

Using the Dirichlet-multinomial regression model, we observed that there was
no difference on the microbiome composition at the phylum level when subjects
with any helminth infection were compared with uninfected ones either at pre
(Figure 2.4A) or at post treatment (Figure 2.4B) time points. The same was the
case when infection with a specific helminth species was considered (Figure2.4A
and B).

The Dirichlet-multiomial regression model was also used to discern the effect
of helminths and treatment on the microbiome data at post treatment. Six bacter-
ial categories were considered in the analyses with Firmicutes used as a reference.
The effect of treatment on microbiome composition in all individuals irrespective
of whether they were infected or not at post-treatment was not significant. No
differences were observed between placebo and albendazole at post-treatment
(p-value = 0.305, Table 2.2A, likelihood ratio test). We further selected subjects
who were infected at baseline (N=94) and characterized their microbiome com-
position at post-treatment with regard to their infection status and treatment arm,
namely: subjects who lost their infection either in the albendazole (group 1, N=
34) or placebo arm (group 2, N = 13), and subjects who remained infected in either
the albendazole (group 3,N = 13) or placebo arm (group 4, N= 34). We compared
the microbiome composition of the first three groups to the group of remained in-
fected in the placebo arm (group 4) as the latter group were neither influenced by
treatment nor the changing of infection status. When subjects who were infected
at pre-treatment and lost their infection in the albendazole arm were compared to
subjects who remained-infected in placebo group, no differences were observed
(p-value of 0.371, Table 2.2B), indicating that removing helminths with albenda-
zole did not change the microbiome profile at a phylum level. Furthermore, in
subjects who lost their infection in the placebo arm, there was a trend for de-



2.3 Results 23

Figure 2.4: The microbiome composition at pre-treatment (A) and post-treatment (B) stratified by
helminth infection. The stacked bar plots represent the relative abundance for each of the most abun-
dant phyla where the Unclassified represents the category of sequences that could not be assigned to
a phyla, and the pooled category consists of the remaining 13 phyla with average relative abundance
less than 1%. The numbers inside the stacked bar plots show the relative abundance of the specific
taxa. The microbiome compositions were depicted for group of helminth-uninfected (Uninfected),
any helminth infected (Any), single helminth infection (A. lumbricoides (Al), hookworm (Hw) or T.
trichiura (Tt)), double infection (Al – Hw, Al - Tt and Hw - Tt) or triple infections (Al – Hw - Tt).
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Figure 2.5: Direct treatment effect on microbiome composition. Details for the stacked barplots were
as given in Figure 2.4. The microbiome composition is shown at pre and post-treatment for subjects
who were uninfected at pre-treatment and remained uninfected at post-treatment in albendazole and
placebo arm.

crease in Bacteroidetes and pooled category (OR 0.49, 95% CI:(0.27,0.91) and OR
0.47, 95% CI:(0.23,0.96), respectively, Table 2.2B), moreover, the whole composi-
tion in this group did not differ significantly from that in the group of remained
infected in the placebo arm (p-value of 0.069). These two comparisons suggest
that removing helminths regardless of treatment did not alter the microbiome
composition when analysed at a phylum level. Interestingly, the comparison of
microbiome composition between subjects who remained infected in the albenda-
zole group was significantly different from the microbial composition in subjects
who remained infected in the placebo group (p-value of 0.004,Table 2.2B). This
difference was driven by the increasing odds of having Actinobacteria (OR 1.57,
95% CI of (1.05, 2.35)) and the decreasing odds of having Bacteroidetes (OR 0.35,
95% CI: (0.18,0.70)). To further analyse the direct treatment effect without the in-
fluence of helminth infection, we selected subjects who were uninfected at base-
line and remained-uninfected at post-treatment (N = 44). For these subjects, we
compared the microbial composition at post-treatment of subjects who received
albendazole versus those who received placebo. No difference was observed (the
estimate odds ratios range from 0.88, 95% CI: (0.56, 1.39) to 1.42, 95% CI: (0.88,
2.29), p-value = 0.666, illustrated in Figure 2.5), indicating that albendazole alone
does not seem to affect the microbiome composition in uninfected subjects when
compared at a phylum level.

As neither treatment alone nor the infection affected the microbial composi-
tion, we further hypothesized that the significant difference in microbiome com-
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position in subjects who remained infected and received albendazole compared
to the group that remained infected in the placebo arm was caused by the al-
teration of the abundance of Actinobacteria and Bacteroidetes during the treat-
ment period. To test this hypothesis, we used the inverted beta-binomial test
to compare the relative abundance of Actinobacteria and Bacteroidetes in sub-
jects who remained infected in albendazole group at pre-treatment to the rela-
tive abundances of these bacterial phyla at post-treatment. While the relative
abundance of Actinobacteria did not change significantly between pre and post-
treatment (p-value of 0.155, inverted beta binomial test), the relative abundance
of Bacteroidetes was estimated to be 1.88 fold higher at pre-treatment compared
to post-treatment (p-value of 0.012, inverted beta binomial test). This result indi-
cates that there is a complex interaction between helminths and treatment, which
induces a change in bacterial composition during the treatment period. Using
the same analysis, the direct effect of albendazole was assessed by comparing
subjects who were uninfected but received albendazole at pre treatment and re-
mained uninfected at post treatment. Although some differences were seen in
the microbiome composition between pre and post-treatment, specifically in the
phyla Actinobacteria, Bacteroidetes and Proteobacteria, these differences were
not statistically significant (p-values of 0.149, 0.267 and 0.064, respectively). This
is in line with the finding when we used the Dirichlet-multinomial regression
model where no direct effect of albendazole on the microbiome composition was
found. In addition, similar microbiome composition was seen in subjects free of
helminth infection at baseline who received placebo and remained uninfected at
post-treatment, which suggests that the microbiome was stable over time.

2.3.4 The association of Bacteroidetes genera with infection and
treatment

In the Dirichlet – multinomial regression analysis carried out at the phylum level,
Bacteroidetes was the phyla that showed significant differences in subjects who
remained infected in the albendazole arm compared to those who remained in-
fected in the placebo arm. We dissected this further to assess which Bacteroidetes
genera accounted for this difference using the Dirichlet-multinomial regression
model on 6 bacterial categories which were obtained as follows. The phylum
Bacteroidetes was divided into three categories, namely the Bacteroides, Prevotella
and pooled Bacteroidetes. The first two genera were chosen as they were the
two most abundant in the phylum Bacteroidetes. In the analyses, as 6 categories
are needed, we included another three phyla, i.e., Actinobacteria, Firmicutes and
pooled remaining phyla (pooled Phyla). As for the modelling at the phylum level,
Firmicutes was used as a reference. Similar to the analyses at the phylum level,
we characterized the association of infection and treatment on these 6 bacterial
categories that comprised the genera belonging to Bacteroidetes.
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When considering the whole study subjects irrespective of infection status,
there was no difference between albendazole and placebo (Table 2.3A). When
94 infected subjects at pre-treatment were selected and 6 bacterial categories as
above were analysed with regard to infection and treatment, we observed a de-
crease in odds of having Prevotella in subjects who lost their helminth infection in
placebo group (OR 0.44, 95% CI: (0.21,0.90)) compared to subjects who remained
infected in placebo group although this fell short of statistically significant (p-
value of 0.086, Table 2.3B). Furthermore, in line with the finding at the phylum
level, we also observed a significant difference in microbial composition of sub-
jects who remained infected with albendazole compared to the microbial compo-
sition of subjects who remained infected in the placebo group (p-value of 0.016).
This alteration was mainly due to the increase in odds of having Actinobacteria
(OR 1.54, 95% CI: (1.00, 2.35)) and a decrease in odds of having Prevotella (OR 0.44,
95% CI: (0.21, 0.94)), suggesting that the decrease in Bacteroidetes at the phylum
level observed in Table 2.2B was driven by Prevotella.

2.4 Discussion

There are two unique aspects to the current study on the effect of helminths
on the gut microbiome in subjects living in rural areas of Indonesia, namely
the combination of the study design and the statistical approach. The statistical
parametric or nonparametric approaches are typically used to test the hypoth-
esis whether the microbiome compositions are significantly different between
groups [Cooper et al. (2013), Lee et al. (2014), Kay et al. (2015), and Ramanan
et al. (2016)]. While the nonparametric approach suffers from lack of statistical
power when the sample size is small [Whitley and Ball (2002)], available para-
metric approaches consider the abundance of each bacterial categories separately,
hence requiring multiple testing corrections. The previous studies in Zimbabwe,
Malaysia and Ecuador relating microbiome and helminths compared the differ-
ence of abundance of certain bacteria category between groups by using the stan-
dard or paired t-test and addressed multiple testing by Bonferonni corrections or
False Discovery Rate [Cooper et al. (2013), Lee et al. (2014), and Kay et al. (2015)].
The clustering of bacteria has been investigated before using descriptive non-
parametric approaches such as PCA or NMDS. When we applied these method
to our genera data, no clustering was observed; neither by infection status nor by
randomization arm. This might be an indication that PCA or NMDS were unable
to capture the correlation between genera. We further analysed the multivariate
data composed of 6 phyla (Firmicutes, Actinobacteria, Bacteroidetes, Proteobac-
teria, Unclassified bacteria and pooled category) simultaneously in relation to
helminth infection status and treatment using a parametric approach. This mul-
tivariate approach takes into account the nature of metagenomics data, such as
the abundance of all phyla forming the compositional structure and that these



2.4 Discussion 29

abundances are known to vary highly between subjects [Li (2015)]. Our methods
is able to quantify the relationship between the whole bacteria community with
regard to the presence/absence of helminths or antihelminthic treatment while
taking into account the correlational structure between bacterial categories im-
posed by the compositional nature. As bacterial categories are correlated, the de-
crease of one category should cause the increase of other categories and vice versa
[Conlon and Bird (2014), Wu et al. (2011)]. Several microbiome studies have re-
ported the change of the ratio Firmicutes to Bacteroidetes [de Filippo et al. (2010),
Koliada et al. (2017)]. Thus, inference with regard to the decrease or increase of
certain bacteria only makes sense when all bacterial categories are considered.

The reparameterization of Dirichlet – multinomial in the data analyses pro-
vided an interpretation in terms of odds ratios on how bacterial categories were
affected by the helminth infection or treatment allocation. To obtain odds ratios,
a reference category needs to be selected. In this study, we used Firmicutes as
a reference due to its high abundance among bacterial categories as well as its
presence in all samples. The high abundance of Firmicutes remained relatively
stable, which had the advantage of allowing us to reveal subtle differences in
other bacterial categories.

One potential limitation of our multivariate method is that the number of bac-
terial categories to be modelled was limited. As a consequence, taxa had to be
pooled. Such a procedure assumes that the effect of the underlying taxa are cap-
tured in one single parameter. On the other hand, pooling can be viewed as a
practical way to deal with sequencing error by providing a more robust model
[Chen and Li (2013)]. Instead of pooling, one might use a shrinkage method as
proposed by Chen and Li (2013) to deal with multiple rare taxa. As an alternative
to biostatistical regression methods, machine learning methods are typically used
for analysis of microbiome data. However, such methods require larger samples
to allow the split into a training and a validation set. Our dataset is too small for
such a method. Moreover, this method ignores the correlation structure, such as
overdispersion.

It should be noted that the coverage depth in our study is relatively low (in av-
erage of 6000 reads per sample) as a result of using pyrosequencing platform (454)
compared to more recent deep sequencing technologies (Illumina). We noted that
two microbiome studies have reported similar average reads per samples as in
our study [Cooper et al. (2013), Lin et al. (2013)]. As a consequence, rare taxa or
taxa with low abundance might not be detected [Torbati et al. (2016)], and it is also
possible that the similar diversity that we observed could be caused by the use
of this platform. However, a direct comparison between Illumina MiSeq and the
454 platform has revealed that the limitation of the 454 is at the genus and family
level, while at the higher taxonomic level (such as order, class and phylum level),
the 454 platform is able to detect the same number of bacterial categories as the
Illumina platform [Rosa et al. (2018)]. This could be considered as an advantage
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of this approach allowing the analysis at the phylum level. Another unique as-
pect regarding our study was that a placebo-controlled anthelminthic trial design
was used, while other studies were either observational or used an intervention
without a placebo group. A control group that did not get the anthelminthic
treatment (received placebo) has the advantage of controlling for confounders
and estimating a direct treatment effect [Fisher (1925), Hall (2007)]. There were
no significant differences in the microbiome composition, analyzed at the phy-
lum level, of subjects with and without helminth infection at baseline, nor at
the 21 months time point. One possibility is the low resolution of the bacterial
data at phylum level. It is also possible that the similarity in microbiome com-
position between infected and uninfected subjects is due to infection history [Lee
et al. (2014)]. Surprisingly, we observed a significant difference in the microbiome
composition between placebo and albendazole-treated subjects at post-treatment
in those who remained infected (Table 2.2B). This difference seemed to be rep-
resented by an increase in relative abundance of Actinobacteria and a decrease
in relative abundance of Bacteroidetes. This difference in the relative abundance
of Bacteroidetes was confirmed by comparing paired samples at pre and post-
treatment in the albendazole group who were infected at baseline and remained
infected at post-treatment. No significant difference in microbiome composition
was found when comparing the albendazole and placebo arms in subjects who
remained uninfected, or when comparing pre and post-treatment in those who
received albendazole but remained uninfected. These data indicate that first of
all, microbiome composition is stable over time and second, albendazole has no
direct effect on microbiome composition. Together, our results suggest that the
interplay between anthelminthic treatment and helminths in the gut has a com-
plex effect on the microbiome composition. We observed that deworming is more
effective against certain helminth species but not others. Indeed, T. trichiura infec-
tion was dominant after treatment in our study. This means that infected subjects
who had received placebo harboured different helminth species than those who
had received albendazole. However, at pre-treatment, there was no difference
between the microbiome associated specifically with T. trichiura, A. lumbricoides
or hookworm and therefore the effect of albendazole on the microbiome at post-
treatment in infected subjects can not only be due to the dominance of T. trichiura
but possibly the result of a combination of Trichuris and albendazole on the micro-
biome composition. It should be noted that in a recent study taking a different ap-
proach from us by using machine learning techniques, considering all taxonomic
levels, and large sample size from not only Indonesia but also Liberia, differences
in certain taxa were found to be worm-specific [Rosa et al. (2018)]. Therefore, to
confirm whether T. trichiura has a different effect on microbiome composition af-
ter albendazole treatment compared to other helminth species, further and larger
studies are needed. With regard to the treatment effect, a study in Malaysia re-
ported the increasing abundance of Bacteroidales (an order of Bacteroidetes) and
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the decreasing abundance of Clostridiales (an order of Firmicutes) after treatment
[Ramanan et al. (2016)]. This result might be confounded as there was no control
group to assess the treatment effect. Another interventional study was carried
out in Zimbabwe, but it did not provide information on the effect of treatment in
those who remained infected since the microbiome composition was only mea-
sured in subjects who completely cleared their helminths.

A longitudinal setting in microbiome studies has the advantage of analysing
the microbiome composition at different time points in the same population.
However, the studies using longitudinal approach differed in the length of follow-
up time. The studies in Malaysia [Ramanan et al. (2016)] had a follow-up time of
21 days, the study in Zimbabwe [Kay et al. (2015)] examined the microbiome
composition at 12 weeks after treatment while our study had the longest follow-
up time of 21 months (with treatment given every three months). Thus, so far the
previous studies have examined the effect of short term removal of helminths on
microbiota [Ramanan et al. (2016)], while in our study, we used a longer follow-
up time to ensure succesful and long lasting deworming of the subjects. Differ-
ences in study design and techniques used for collection and analysis of samples
hamper comparison across studies.

The regression model used in this study is only applicable in a cross-sectional
manner and assumes a simple correlation structure between bacterial categories.
Such a method could be extended to more complex correlation structures. One
is the correlation between bacterial categories or between the microbiome com-
position of the same subject measured at different time points. A statistical test
for paired two categorical counts is available, however to model the change in
microbiome composition over time we would need to extend our model. To con-
clude, the microbiome composition is likely to change due to interactions be-
tween helminth and anthelminthic treatment, but a direct impact of treatment
on microbiome composition has not been observed. Larger studies are needed
to dissect these effects of treatment and also to take into account the history of
helminth infection. Furthermore, new statistical methods that allow longitudinal
analysis of changes in the microbiome composition need to be developed.

2.5 Supplementary Materials
Supplementary materials are available online at the PLoS Neglected Tropical Dis-
eases website.

Figure S1 Bacterial diversity in relation with helminth at pre and post-

treatment.
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Table S1 List of primers and probe sequences used in detecting the

helminth species.

Table S2 The characteristics of participants of current study and total pop-

ulation in Nangapanda. The number of subject (n) of the total

participants who were surveyed (N).



3
The mixed model for the analysis of a

repeated-measurement multivariate
count data

Abstract

Clustered overdispersed multivariate count data are challenging to model due
to the presence of correlation within and between samples. Typically, the first
source of correlation needs to be addressed but its quantification is of less inter-
est. Here we focus on the correlation between time-points. In addition, the effects
of covariates on the multivariate counts distribution need to be assessed. To ful-
fill these requirements, a regression model based on the Dirichlet-multinomial
distribution for association between covariates and the categorical counts is ex-
tended by using random effects to deal with the additional clustering. This model
is the Dirichlet - multinomial mixed regression model. Alternatively, a negative
binomial regression mixed model can be deployed where the corresponding like-
lihood is conditioned on the total count. It appears that these two approaches

This chapter has been published as: Ivonne Martin, Hae-Won Uh, Taniawati Supali, Makedonka
Mitreva, Jeanine J. Houwing-Duistermaat (2019). The mixed model for the analysis of a repeated
measurement multivariate count data. Statistics in Medicine, 38(12): 2248 - 2268.
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are equivalent when the total count is fixed and independent of the random ef-
fects. We consider both subject-specific and categorical-specific random effects.
However, the latter has a larger computational burden when the number of cat-
egories increases. Our work is motivated by microbiome datasets obtained by
sequencing of the amplicon of the bacterial 16S rRNA gene. These data have a
compositional structure and are typically overdispersed. The microbiome dataset
is from an epidemiological study carried out in a helminth-endemic area in In-
donesia. The conclusions are: time has no statistically significant effect on mi-
crobiome composition, the correlation between subjects is statistically significant,
and treatment has a significant effect on the microbiome composition only in in-
fected subjects who remained infected.

3.1 Introduction

Microbiome data are overdispersed multivariate counts; for each sample, counts
across multiple taxa are observed. If one is interested in the change of the micro-
biome composition over time, subjects are measured longitudinally [Ramanan
et al. (2016)]. Such data are subject to two sources of correlation, namely the cor-
relation between the counts of a sample and between multiple samples across
time of a subject. For this type of data, the available statistical models are still
limited.

The microbiome dataset considered in this paper is obtained by sequencing
the amplicon of the bacterial 16S rRNA gene, where the sequencing procedure
follows the HMP standardized protocol [HMP (2012)]. Chimeric sequences were
filtered out and the resulting sequences are either categorized based on similarity
into Operational Taxonomical Units (OTUs) followed by annotation, or directly
annotated using relevant databases (e.g. Ribosomal Database Project, Greenge-
nes or Silva). The counts for a specific category represent the abundances of the
bacteria at a biological taxonomy level. Datasets generated through this sequenc-
ing process comprise features that have not been adequately accounted for by
currently available statistical methods [Li (2015)]. Firstly, the dataset might be
represented by a matrix of taxonomical counts with a compositional structure,
which imposes a correlation between taxa [Gloor et al. (2017)]. Secondly, overdis-
persion might exist due to unobserved heterogeneity in the sampling procedure,
the presence of taxa with rare abundance (zero-inflation), and pooling of cate-
gories. Another source might be differences in total sequence reads per sample,
which might be caused by technical difficulties or by sampling or individual vari-
ability. This is commonly addressed by dividing the bacteria for each categories
with the total count of the smallest reads (normalization), which results in a con-
stant total bacterial count for all samples. Alternatively, an offset can be used in
the model.

Our work is motivated by the microbiome measurements from an epidemio-
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logical study carried out in a helminth endemic rural area in Indonesia [Martin
et al. (2018)]. The primary research question of this study is to analyze the joint
effect of helminth infections and albendazole treatment on the microbial com-
position comprising multiple bacterial taxa. It has been hypothesized that the
presence of helminths is linked with the microbial dysbiosis. However, recent
findings report inconsistencies, probably due to limitation in the study design
[Ramanan et al. (2016); Cooper et al. (2013); Lee et al. (2014)]. For our study,
the stool samples were collected and measured on a subset of subjects partici-
pating in a randomized placebo-controlled trial. Thus, we included the micro-
biome data from infected subjects who received placebo, which makes our study
unique. The bacterial count and the helminth infection status were assessed in
samples before and 21 months after the first treatment. Details of the study can
be found elsewhere [Wiria et al. (2010)]. In a previous paper [Martin et al. (2018)],
we identified an effect of treatment on the microbiome composition in subjects
who were infected at baseline and at follow up. This relationship was studied in
the post treatment samples, whereas the microbiome composition at baseline was
not used. Here, we model all the available data simultaneously and hence need
to address the correlation structure.

The objective of this paper is to develop a parametric model for the analysis of
the overdispersed multivariate count data in the repeated measurement setting.
To date, several statistical parametric methods for analysis of microbiome data
are available, which take into account the features of the data such as overdis-
persion and the presence of rare taxa. One approach is to consider a univariate
taxa of interest and model the association of this taxa with biological covariates.
Several regression models for this simplified problem exist. Zero-inflated models
or hurdle models have been proposed to deal with rare taxa [Xu et al. (2015)].
These models are also available for longitudinal studies. This approach how-
ever ignores the multivariate structure of the data. A second approach which
considers the compositional feature of the microbiome data, models the multi-
variate count outcome across taxa by a multinomial distribution. To deal with
overdispersion, the underlying parameters are assumed to follow the conjugate
distribution [Chen and Li (2013)]. This formulation has an advantage that the
marginal distribution has a closed form formula.

The correlation due to repeated measurements within the same person is of-
ten modelled by including a normally distributed random effect in the linear pre-
dictor, i.e., generalized linear mixed model. The overdispersion is typically ac-
counted for by the conjugate distribution Chen and Li (2013); Zhang and Zhou
(2017); Guimarães and Lindrooth (2007). Molenberghs et al. (2007, 2010) and
Booth et al. (2003) introduced a combined model, where the conjugate distrib-
ution for the overdispersion is used and the correlation over time is modelled by
normally distributed random effects, i.e., generalized linear mixed model. The
authors only consider single categorical count data; hence these models cannot
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be directly applied to our data, where we have to acknowledge the compositional
feature. Therefore, in spirit of the combined model, we propose an extension of
the Dirichlet - multiomial regression model with random effects to incorporate
the correlation due to repeated measurements. We will use the reparameteri-
zation of the Guimarães and Lindrooth (2007), in which the overdispersion is a
function of the covariates and the random effects.

This manuscript is organized as follows. In Section 3.2, we briefly describe the
formulation of the loglinear model in the setting of multivariate count data and
derive the likelihood of the multinomial distribution obtained by conditioning
on the total count. We show the derivation of this method in the case where the
count is overdispersed. The model is then extended to include the correlation
due to repeated measurements over time. In Section 3.3, simulation studies are
described to investigate the performance of the proposed methods and the results
of the analyses of the motivating dataset are presented in Section 3.4. In Section
3.5, we conclude and discuss the proposed method.

3.2 Methods

A novel mixed model is considered for the relationship between counts of six
phyla categories and the binary variables of infection status and treatment allo-
cation before and after the first treatment round. Due to the normalization, the
total count per sample is fixed at 2000 at each time point. Before introducing
our new model, we will review various models for categorical count data in the
cross-sectional setting: namely for independent count data (the loglinear and the
multinomial logistic regression model), and for count data subject to overdisper-
sion (the negative binomial and the Dirichlet-multinomial model) [Agresti (2013);
Tutz (2012)].

We first introduce the following notations. Let Cptq
i “

!

Cptq
i1 , . . . ,Cptq

iJ

)

be the J

dimensional vector of the multivariate microbial count with Cptq
i j the abundance

of bacteria taxa j p j “ 1, . . . ,J) for subject ipi “ 1, . . . ,Nq at time point t. The total
count for each subject i at time-point t is fixed and denoted as Cptq

i` “
řJ

j“1 Cptq
i j .

Let P be the number of categorical covariates and Xptq
i be the P dimensional vec-

tor of covariate values for subject i at time point t. When modelling microbiome
data as described above, either the sequence count itself can be considered, or
the normalized count related to the total sequence read, i.e. compositional data.
Multiple counts distributed over categories are usually represented by a contin-
gency table. We briefly review models for the cross-sectional setting and therefore
suppress the superscript t in the model formulation in Subsection 3.2.1.
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3.2.1 Cross-sectional setting

The loglinear model for two categorical variables

The loglinear model is commonly used to model the association between multi-
variate categorical count data and predictors of categorical or continuous value.
In the case where all variables are categorical, the data can be represented by a
contingency table. Consider two categorical variables E and F , with J and K lev-
els, respectively. The count outcome c jk is associated with the jth level of predic-
tor E and kth level of predictor F , which could be described in a J ˆK contingency
table (Table 3.1) as follows.

F

j

k
111 . . . KKK

E

111 c11 . . . c1K

222 c21 . . . c2K

...
...

...
...

JJJ cJ1 . . . cJK

Marginal c`1 . . . c`K

Table 3.1: The J ˆ K Contingency Table

Each cell’s count outcome c jk is assumed to follow a Poisson distribution with
a mean µ jk. Here, the saturated loglinear model for such contingency table is
given by

log
`

µ jk
˘

“ λ0 ` λ E
j ` λ F

k ` λ EF
jk , (3.1)

where λ0, λ0 ` λ E
j , λ0 ` λ F

k , and λ0 ` λ F
k ` λ E

j ` λ EF
jk represent the overall mean,

the marginal mean of categorical variable E at the jth level, the marginal mean of
variable F at the kth level, and the mean when variables E and F taking the value
j and k, respectively. Because there are J ˆ K cells, the J ` K ` JK ` 1 parameters
of the saturated loglinear model (3.1) are not uniquely identifiable and thus con-
straints are needed to ensure the model identifiability. Two sets of constraints are
commonly used, namely the baseline and the symmetrical constraint given by

λ E
1 “ λ F

1 “ λ EF
j1 “ λ EF

1k “ 0

and
J

ÿ

j“1

λ E
j “

K
ÿ

k“1

λ F
k “

J
ÿ

j“1

λ EF
j1 “

K
ÿ

k“1

λ EF
1k “ 0, for all j,k,
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respectively. In this manuscript, we use the baseline constraint.
Note that in model (3.1) the response (bacterial categories) E, and predictor

F , are exchangeable. The loglinear model (3.1) could be written in the regression
format for the bacterial outcome as follows.

log
`

µ jk
˘

“ ξ0 j ` ξ1 jkrF “ ks, j “ 1, . . . ,J, k “ 1, . . . ,K,

with r.s the indicator function. To show the equivalence between two models,
note the following j runs over the category and k runs over the predictor lev-
els. For a subject with their predictor in category k “ 1, the regression model
tξ01,ξ02, . . .ξ0Ju with ξ0 j for j “ 2, . . . ,J corresponds to λ0 ` λ E

j . For subjects with
their predictor in other categories k, the regression model tξ01 `ξ11k,ξ02 `ξ12k, . . . ,
ξ0J ` ξ1Jku where ξ1 jk for j “ 2, . . .J corresponds to λ F

k ` λ EF
jk . Thus, in the context

of regression, the λ EF
jk represents the effect of the categorical variable F on out-

come category j relative to the reference category.
To estimate the parameters, we assume that each cell’s entry represents a re-

alization from the Poisson distribution. The maximum likelihood estimate of λλλ
or of ξξξ can be obtained by maximizing the following likelihood function. Specif-
ically, for subject i, it is given by

Li pλλλ q “
ź

j

fPois
`

λλλ ;ci jk
˘

“
ź

j

exp
`

´µ jk
˘

µci jk
jk

ci jk!
, (3.2)

where person i belongs to category k and has counts in each bacteria category
j. The model could be straightforwardly generalized to incorporate more cate-
gorical covariates which results into more than two-way contingency table. For
instance, when incorporating the infection and treatment status we will have a
three way contingency table. As before, the categorical variable E corresponds to
the bacteria category, variable F to the treatment randomization arm and G to the
infection status. The corresponding loglinear model can be written as follows

log
`

µ jkl
˘

“ λ0 ` λ E
j ` λ F

k ` λ EF
jk ` λ G

l ` λ EG
jl ` λ FG

kl ` λ EFG
jkl , j “ 2, . . . ,J; k “ l “ 2

or in the regression format as

“ ξ0 j ` ξ1 jTreatment ` ξ2 jInfection ` ξ3 jTreatment ˆ Infection, j “ 1, . . . ,J.
(3.3)

Here the baseline constraint is applied on the first equation, while for the sec-
ond equation this is not needed since there are only J ˆ P parameters. This last
equation represents the loglinear model written in terms of regression coefficients
ξξξ and covariate values, where Treatment and Infection are binary variables. To
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assess the statistical significance of the pth covariate pp “ 1, . . . ,Pq on the multi-
variate count distribution, the null hypothesis ξξξ p “ 000 should be tested. We will
use the standard Likelihood Ratio Test which follows a χ2 distribution with J
degrees of freedom.

Multinomial logistic regression

In our data example, the total bacterial count is fixed to a constant for all samples.
Under this constraint of a fixed total count, it is sufficient to model the counts for
J ´1 categories and pJ ´1qˆP parameters are uniquely identified. Guimarães and
Lindrooth (2007) showed that the distribution of the multivariate counts under
the constraint that the total is a constant could be derived from the distribution of
the unconstrained multivariate counts above by using the conditional log likeli-
hood given the total count. When the counts in each category are independently
Poisson distributed with mean µ jkl , the total count c`kl follows a Poisson distri-
bution with mean

řJ
j“1 µ jkl “ µ`kl . The distribution of the multivariate counts

conditional on the total for each subject i is therefore given by

Prpccci “ tc1kl , . . . ,cJklu|c`klq “ Prpc1kl , . . . ,cJkl ,c`klq
Prpc`klq

“

J
ś

j“1
fPois

`

c jkl ; µ jkl
˘

fPois pc`kl ; µ`klq
“ c`kl!

J
ź

j“1

ˆ

1
c jkl!

˙ˆ

µ jkl

µ`kl

˙c jkl

„ Multinomialpc`kl ;π1kl , . . . ,πJklq ,

where π jkl “
µ jkl

µ`kl
. (3.4)

Thus, under the baseline constraint and the constraint that the total count is
fixed, the distribution of the multivariate count is equivalent to the multinomial

distribution with parameter π j “
µ j

µ`
. This model is the multinomial logistic re-

gression model. Note that the parameters λλλ of the loglinear model (3.1) cancel
out. In the multinomial logistic regression model, the parameters of the reference
category are typically assumed to be equal to zero, although other constraints can
be used as well.

Overdispersed count data

When the count data are overdispersed, the variance of the cell count is no longer
equal to its expected value and the Poisson distribution cannot be used. A com-
mon approach to deal with overdispersion is to assume that the conditional mean
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of the count outcome is a random variable following the conjugate distribution.
Consider a count at category j and let exppηi jq be the random effect for overdis-
persion following the Gamma distribution (conjugate for Poisson) with parame-
ter θ . Guimarães and Lindrooth (2007) formulated the model for an overdis-
persed count outcome as follows:

Ci j|exppηi jq „ Poisprµi jq , j “ 1, . . . ,J

rµi j “ exppηi jq µi j, where exppηi jq „ Γ
`

shape “ θ ´1µi j,rate “ θ ´1µi j
˘

rµi j “ exppηi jq µi j „ Γ
`

shape “ θ ´1µi j,rate “ θ ´1˘

.

Here, µi j corresponds to the mean of the count in the non-overdispersed model.
Now the marginal distribution for the count at category j in person i, Ci j can be
obtained by integrating out the random effect exppηi jq as

PrpCi jq “
ż 8

0
PrpCi j|exppηi jqqgpexppηi jqqd exppηi jq

“
Γ

`

θ ´1µi j `Ci j
˘

Ci j!Γpθ ´1µi jq

ˆ

1
θ ´1 ` 1

˙Ci j
ˆ

θ ´1

θ ´1 ` 1

˙θ ´1µi j

.

This corresponds to a negative binomial distribution with parameters
ˆ

θ ´1µi j,
θ ´1

1 ` θ ´1

˙

.
By the properties of the negative binomial random variable, the total count for
subject i also follows the negative binomial distribution

Ci` „ NB
ˆ

θ ´1µi`,
θ ´1

1 ` θ ´1

˙

.

The likelihood for subject i in this setting is given by

Li pθ ,λλλ q “
ź

j

fNB pλλλ ,θ ;Ci jq

“
ź

j

Γ
`

θ ´1µi j `Ci j
˘

Ci j!Γpθ ´1µi jq

ˆ

1
θ ´1 ` 1

˙Ci j
ˆ

θ ´1

θ ´1 ` 1

˙θ ´1µi j

. (3.5)

Note that in this setting, the parameter θ which models the overdispersion
and the intercept λ0 are both not identifiable. An often used solution is to ab-
sorb the overdispersion parameter into the grand mean λ0, i.e. θ ´1 exppλ0q “ δ ´1

0
Guimarães and Lindrooth (2007).

Overdispersed multinomial

We briefly review the overdispersed count data introduced by Guimarães and
Lindrooth (2007) as follows. To guarantee that the parameters of the count for
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each category follows a Gamma distribution with the same rate parameter, the
overdispersion parameter exppηi jq needs to be a function of the linear predictor
µi j. For such a distribution, Theorem 1 of Mosimann (1962) can be applied. This
theorem states that if CCCi “ tCi1,Ci2, . . . ,CiJu are independently Gamma distributed
random variables with parameters prµi1, rµi2, . . . , rµiJq with the same scale parameter

θ ´1, then the random variables ΠΠΠi “ tΠi1,Πi2, . . . ,ΠiJu with Πi j “
Ci j

řJ
j“1 Ci j

have a

multivariate beta distribution (Dirichlet distribution) with parameters trµi1, rµi2, . . . , rµiJu
rµiJu. Note that the Dirichlet distribution is the conjugate for the multinomial dis-
tribution. Hence, the marginal distribution for the random variable ΠΠΠi is obtained
by integrating out the Dirichlet random effects. Now, the corresponding Dirichlet
- multinomial distribution is given by

PrpΠΠΠiq “ Γprµi`qCi`!
Γprµi` `Ci`q

J
ź

j“1

Γprµi j `Ci jq
Γprµi jqCi j!

. (3.6)

Alternatively, we consider the conditional likelihood of the multivariate neg-
ative binomial given the total count. The contribution for the ith subject is given
by

Li pλλλ ,θq “ PrpCCCi|Ci`q “
śJ

j“1 fNB pCi j; rµi jq
fNB pCi`; rµi`q

“
Γ

`

θ ´1µi`
˘

Ci`!
Γpθ ´1µi` `Ci`q

J
ź

j“1

Γ
`

θ ´1µi j `Ci j
˘

Γpθ ´1µi jqCi j!
. (3.7)

By rµi j “ θ ´1µi j, it follows that the likelihood (3.7) is equivalent to the the
Dirichlet-multinomial distribution (3.6). Here, the parameter θ is unidentifiable.
Similar to (3.5), we apply the parameterization in Guimarães and Lindrooth (2007)
where the overdispersion is absorbed in the grand mean λ0 such that θ ´1 exppλ0q “
δ ´1

0 in the reference category. In contrast to the non-overdispersed multinomial
model, the intercepts of the overdispersed multinomial model do not cancel out.

3.2.2 Repeated measurement of overdispersed count

In addition to the overdispersion due to the presence of multiple bacteria within
one sample, there is also correlation between measurements of the same person
at the two time-points, i.e. at the pre- and post-treatment. To deal with this cor-
relation, we propose to include a random effect ui in the linear predictor of the
model and assume that conditional on this random effect the observations of the
two time points are independent. We further assume that the random effect ui
follows a normal distribution with zero mean and variance σ2

u . The idea of us-
ing different distributions for the random effects representing overdispersion and
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correlation was introduced by Molenberghs et al. (2007, 2010) and Booth et al.
(2003). Molenberghs and Booth modelled the mean of an outcome as a multipli-
cation of overdispersion and the linear predictor. However, to guarantee that the
Theorem 1 of Mossimann holds, i.e. that the proportion of each bacterial category
has Dirichlet-multinomial distribution, we need to model the overdispersion as a
function of the linear predictor.

In the rest of this section, we describe three different mixed models for multi-
variate count data with overdispersion in the repeated measurement setting us-
ing random effects: conditional on the random effect ui, the counts follow the
multivariate negative binomial distribution; the counts follow the conditional
multivariate negative binomial distribution given the total count; the propor-
tions (cell’s count divided by total count) follow the Dirichlet-multinomial dis-
tribution. In all models, we will add the random effect ui to the linear predictor.
These models are therefore extensions of the models for overdispersed multivari-
ate count given in Subsection 3.2.1. Specifically for the first model, we assume
that conditional on the random effects exp

´

ηptq
i j

¯

and ui, the count Cptq
i j follows a

Poisson distribution with mean equal to

E
”

Cptq
i j |exp

´

ηptq
i j

¯

,ui

ı

“ exp
´

ηptq
i j

¯

exp
´

rµptq
i j

¯

,

where rµptq
i j “ XXXiξξξ j ` ui, j “ 1, . . . ,J.

exp
´

ηptq
i j

¯

„ Γ
´

shape = θ ´1 exp
´

rµptq
i j

¯

,rate = θ ´1 exp
´

XXXiξξξ j ` ui

¯¯

(3.8)

Thus, given the random effect ui, the two vectors of counts Cptq
i for t “ 1 and t “ 2

are independently distributed and follow the negative binomial distribution. The
corresponding likelihood can be written as follows

LUNBM
`

ξξξ ,θ ,σ2
u

˘

“
ź

i

Pr
´

CCCptq
i

¯

“
ź

i

ż

ui

Pr
´

Cptq
i1 , . . . ,Cptq

iJ ,ui

¯

d ui

“
ź

i

ż

ui

2
ź

t“1

J
ź

j“1

Pr
´

Cptq
i j |ui

¯

Prpuiq d ui (3.9)

and we denote the regression model under this likelihood to be the unconstrained
negative-binomial mixed model (UNBM).

For the second approach, we consider the counts follow the conditional mul-
tivariate distribution given the total count. When each categorical count condi-
tional on the total count follows the negative binomial with the same rate pa-
rameter, the total count Cptq

i` |ui follows the negative binomial distribution with
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parameters
ˆ

řJ
j“1 exp

´

ηptq
i j

¯

exp
´

rµptq
i j

¯

,
θ ´1

1 ` θ ´1

˙

. Thus, the corresponding con-

ditional likelihood is given by

LCNBM
`

ξξξ ,θ ,σ2
u

˘

“
ź

i

Pr
´

CCCp1q
i ,CCCp2q

i |Cp1q
i` ,Cp2q

i`

¯

“
ź

i

ş

ui
Pr

´

CCCp1q
i ,CCCp2q

i ,Cp1q
i` ,Cp2q

i` |ui

¯

Prpuiqd ui

ş

ui
Pr

´

Cp1q
i` ,Cp2q

i` ,ui

¯

d ui

“
ź

i

ş

ui

ś2
t“1

ś2
j“1 Pr

´

Cptq
i j |ui

¯

Prpuiqd ui

ş

ui

ś2
t“1 Pr

´

Cptq
i` |ui

¯

Prpuiqd ui

. (3.10)

The model corresponding to this likelihood is denoted as the conditional negative-
binomial mixed model (CNBM). However, when the total counts depends on ui
the total count should be a random variable. This is not the case in our dataset.
Therefore, we propose the third method with the assumption that the total count
is independent of ui.

In the third approach, we model the multivariate counts in terms of the rela-
tive abundance. We assume that the vector of proportions Πptq

i conditional on the
random effect ui follows the Dirichlet multinomial distribution, i.e.

#

Cptq
i1

Cptq
i`

, . . . ,
Cptq

i1

Cptq
i`

+

|
!

αptq
i1 , . . . ,αptq

i j

)

,ui „ Mult
´

π̃ptq
i1 , . . . , π̃ptq

iJ

¯

!

π̃ptq
i1 , . . . , π̃ptq

iJ

)

„ Dir
´

αptq
i1 , . . . ,αptq

iJ

¯

αptq
i j “ θ ´1µptq

i j (3.11)

where the µptq
i j is the linear predictor as in the loglinear model for the Poisson

count. With this parameterization, the expected multinomial parameter becomes

rπptq
i j “

exp
´

ηptq
i j

¯

exp
´

rµptq
i j

¯

řJ
j“1 exp

´

ηptq
i j

¯

exp
´

rµptq
i j

¯ .

The likelihood for each subject i is then formulated as follows
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LDMM
`

ξξξ ,θ ,σ2
u

˘

“ Pr

˜

CCCp1q
i

Cp1q
i`

,
CCCp2q

i

Cp2q
i`

¸

“
ż

ui

Pr

˜

CCCp1q
i

Cp1q
i`

,
CCCp2q

i

Cp2q
i`

|ui

¸

Prpuiqd ui

“
ż

ui

2
ź

t“1

Γ
´

θ ´1µptq
i`

¯

Cptq
i` !

Γ
´

θ ´1µptq
i` `Cptq

i`

¯

J
ź

j“1

Γ
´

θ ´1µptq
i j Cptq

i j

¯

Γ
´

θ ´1µptq
i j

¯

Cptq
i j !

Prpuiqd ui. (3.12)

The corresponding regression model under this likelihood is denoted as the Dirich-
let - multinomial mixed model (DMM). It is shown in the Appendix A, that in the
case where the total count does not depend on the random effect ui, the likeli-
hoods (3.10) and (3.12) are equivalent.

The variance of the random effect u (σ2
u ) represents the correlation between the

samples of the same subject across time. However, this value is hard to interpret
and the marginal correlation between categorical count outcomes might be more
interesting. This correlation is given by

Corr
´

Ci j
ptq,Cpt˚q

i j˚

¯

“
σ

Ci j
ptq,Cpt˚q

i j˚
c

σ2
Cptq

i j

¨ σ2

Cptp˚qq
i j˚

.

The marginal correlation can be computed from Monte Carlo estimates of the first
and second moments.

The program language R is used for all the computations except for data ap-
plication with categorical-specific random effects. When maximizing the likeli-
hoods the integrals are approximated by the adaptive Gauss-Hermite quadrature
method [Liu and Pierce (1994)], and we used the functions available in the ecoreg
package [Jackson et al. (2008)] to compute the integral. R implementations are
available in github (https://github.com/IvonneMartin/CombinedMultinomial)

3.2.3 The categorical-specific random effect

In the above parameterization, we assume that the subject-specific effect ui is uni-
variate and is the same for all bacteria categories and time-points. Alternatively, a
J dimensional vector of random effects can be used. Equation (3.8) now becomes

rµptq
i j “ XXXiξξξ j ` ui j, j “ 1, . . . ,J.

ui j „ MVNp000,∆JˆJq (3.13)
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Here, each bacterial category has its own realization of the random effect and
the random effects solely model correlation between the categories over time.
The vector uuui of length J follows a multivariate normal distribution with a J by
J diagonal variance matrix ∆ with σ2

j as diagonal elements. In addition to the
general model (3.13), we consider a model with common variance σ2

j “ σ2
u , for

all j to reduce the parameter space. Since the overdispersion already takes care
of the correlation among the categories, this model might be better interpretable.
However, a drawback of this model is that computation of the likelihood function
involves an intractable J dimensional integral.

3.3 Simulation study

3.3.1 Simulation setting

Three sets of simulation studies were conducted to evaluate the performance of
the proposed methods. With regard to estimation of the fixed effect parameters
and variance components, we first investigated the performance of the DMM
models for a subject- and categorical-specific random effects. We reported the
bias and MSE as well as the sensitivity and specificity for these parameters. The
sensitivity and the specificity of the likelihood ratio test statistics were computed
for the following pairs of hypotheses (for fixed and variance of random effect,
respectively).

H0 : ξξξ p “ 000 vs H1 : at least one of ξξξ p ‰ 0,

H0 : σ2
u “ 0 vs H1 : σ2

u ą 0.

In the second set, we want to estimate the marginal correlation given the dis-
tribution of the random effect. The purpose of this study is to verify whether the
marginal intraclass correlation observed in our motivating dataset can be repre-
sented by our models (UNBM and DMM). For this purpose, we vary the standard
deviation of the random effect and we used 10,000 Monte-Carlo simulation for es-
timating the marginal intraclass correlation.

In the third set, we aimed to study the robustness of the parameter estimates
by fitting the DMM models when the true model is UNBM. For this purpose, we
generated datasets with three categories from the UNBM model.

Dataset generation

To reduce the computational burden, datasets with only three categories at two
different time-points t were considered. The total count per sample S was 25, 50 or
2000, and the number of samples N was 150 or 500. Two sets of parameters were
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used, namely λλλ was fixed at
�

λ F
2 ,λ E

2 ,λ E
3 ,λ EF

22 ,λ EF
32

(

“ t0.5,´1,0.1,0.8,´2u as well
as the parameters from the dataset (results are given in Supporting Information
Table S1). To increase the power, the parameter values of the first set are relatively
larger. Note that the parameter λ0 is fixed at zero to guarantee identifiability of
the overdispersion parameter. The overdispersion parameter was fixed at θ “ 0.1.
For the standard deviation of the random effects, we considered values σu of 0.5,
0.8 and 1.

Specifically, for the Dirichlet-multinomial mixed (DMM) model with a uni-
variate random effect, multivariate counts were generated as follows.

1. For each subject i, i “ 1, . . . ,N, we randomly generate binary covariates Xt
i

for each time point t and a random effect ui „ N
`

0,σ2
u

˘

.

2. The mean for each category j is computed as µ̃ptq
i j “ θ ´1 exppλλλ ` uiq where

the λλλ correspond to ξ .

3. A multivariate count with mean µ̃ptq
i j is generated.

For the DMM model with multivariate random effect, a similar procedure
was used except that the random effects in step (1) are now generated from the
multivariate normal distribution with a diagonal covariance matrix Σ. We con-
sidered three sets of values for the standard deviations of random effects, namely
σσσ u “

`

σu1 ,σu2 ,σu3

˘

is (0.5,0.6,0.5), (0.8,0.9,0.8) or (1,0.9,1).
For the second set of simulation, 6 bacterial categories are used and para-

meters for the simulation are obtained from the dataset. Finally for the uncon-
strained negative binomial mixed (UNBM) model, the second step was replaced
by computation of the expected count outcome for each category j of rµi j “ θ ´1 exp
plogpSq ` λλλ ` uiq. Here the offset logpSq is incorporated to take into account the to-
tal bacteria count S. For each scenario mentioned above, 1000 replicates were
generated. The models were fitted to each of the replicates.

3.3.2 Simulation results

Evaluation of DMM model

The performance of the method in estimating the parameters is described in Fig-
ure 3.1. Overall, the bias and MSE appears to be improved when either the to-
tal bacterial count (from S “ 25 to S “ 50 and the sample size was N “ 500), or
the sample size was increased (from N “ 150 to N “ 500 and the total count was
S “ 2000). For small value of σu, both the bias and the MSE of this estimate are rel-
atively large. Similar results are obtained for the model with categorical-specific
random effects (Figure S1). The sensitivity of the likelihood ratio test for the fixed
effects parameters that are obtained from the dataset are very low for all scenar-
ios except when the total sample size is large (Table S2A). For testing the zero
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variance component, the likelihood ratio test has a high sensitivity and specifity
when the sample size and variance component are large (Table S2B).
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Figure 3.1: Bias and MSE of datasets generated from the DMM model with subject-specific random
effect.
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Since the model with the categorical-specific random effect is time consuming
to fit, we also investigate the robustness of assuming a subject-specific random
effect while the datasets were generated by using a vector of random effects fol-
lowing the multivariate normal distribution. The results are given in Table 3.2.
It appears that for a random effect with smaller standard deviation (logpσuq of -
1.309), the biases of the estimates of fixed effect parameters and of logpσuq are rela-
tively small, while for a random effect with larger standard deviation logpσuq “ 0
(σu of 1) the biases are relatively large.

In Table S3, the marginal correlations are given for the subject-specific random
effects. It appears that the correlation between categories are all negative and
the correlation between samples across time are very small. These results are not
affected by the standard deviation of the random effect for our considered values.
Table S4 lists the marginal correlations using categorical-specific random effects
where each category-specific random effect has the same standard deviations σu.
We notice that a part of the correlations between categories is now positive and
the correlation between the same categories across time are larger. Moreover,
these correlations tend to increase with a larger variance of the random effects.

Simulations under the UNBM model

The marginal correlations for the UNBM with a subject-specific random effect are
listed in Table S5. It appears that the correlations between categories are positive
as well as negative. The correlations of the same category between time points
are all positive and increase with σu. A similar result is observed for the UNBM
model with categorical-specific random effects (Table S6) although here the cor-
relation varies more across categories.

Next, we investigated the robustness of the models. Datasets were generated
using the multivariate negative binomial mixed model without conditioning on
the total count (UNBM model). The results of fitting the unconditional multi-
variate negative binomial mixed model (UNBM), the multivariate negative bino-
mial mixed model conditional on the total (CNBM) and the Dirichlet-multinomial
mixed model (DMM) are given in Figure 3.2 for the fixed effect parameters and
Figure 3.3 for the variance component.

In general, the fixed effect parameters obtained from these three different
models are unbiased except the estimates of the intercepts (λ F

2 ) for the CNBM
model and the DMM model. Since the model used for analysis and generating
the data are the same, the estimates of the fixed effect parameters in Figure 3.2 are
unbiased and the variance of the estimator decreases when the total count was in-
creased (from S “ 25 to S “ 50) or the sample size is increased (from N “ 150 to
N “ 500). When using the conditional distribution given the total, the estimates of
the fixed effect parameters in Figure 3.2 are biased when the total bacterial count
is small (S “ 25 and S “ 50). When the total count is relatively large (S “ 2000), the
estimates of the fixed effects (including the intercept λ F

2 ) are less biased. When
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Figure 3.2: Estimates of the fixed effect and overdispersion parameters obtained from three different
models (UNBM, CNBM and DMM) when datasets were generated using UNBM model. (first part)

estimating the fixed effect parameters using the DMM model, the estimate of the
fixed effects are unbiased except for the intercept term λ F

2 and increasing the sam-
ple size does not improve the estimation.

The estimates of the random effect parameters in the UNBM model are unbi-
ased and by increasing the total bacterial count or the sample size improves the
precision. In the CNBM model, when the total bacterial count is small (S “ 25
and S “ 50), we observe that the standard deviation of ui is overestimated and
that the bias in the estimate of the overdispersion parameter is small. When the
total count is large S “ 2000, the estimate of the standard deviation of ui appears
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Figure 3.2: Estimates of the fixed effect and overdispersion parameters obtained from three different
models (UNBM, CNBM and DMM) when datasets were generated using UNBM model. (cont.)

to be less biased while the overdispersion parameters is underestimated. When
fitting the DMM model to the data, the estimates of the random effect parameters
are biased in all scenarios.

3.4 Data Application

We used the DMM models to analyze the effect of helminth infections and treat-
ment on microbiome composition. For this purpose, we first consider the fixed
effect structure and fitted several DMM models to our dataset assuming (com-
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Figure 3.3: Estimates for the variance components obtained from three different models (UNBM,
CNBM and DMM) when datasets were generated using UNBM model.

mon) random effect for each category. Next, we will investigate the best random
effect structure and we will verify whether the parameter estimates of the fixed
effects are affected by the random effect structure.

The microbiome dataset considered here was measured in a subset of a ran-
domized clinical trial performed in a helminth-endemic area in Nangapanda sub-
district, Indonesia, described elsewhere [Wiria et al. (2010)] and is publicly avail-
able at Nematode.net (http://nematode.net/Data/Indonesia_16S/S1_Table.xlsx).
In brief, households were randomized to receive either a single dose of 400 mg
albendazole or placebo, once every three months for a period of one and a half
years. To assess the effect of treatment on the prevalence of soil transmitted
helminth infections, yearly stool samples were collected on a voluntary basis.
T. trichiura infection was detected by microscopy and a multiplex real time PCR
was used to detect the DNA of hookworm (Ancylostoma duodenale or Necator amer-
icanus) and Ascaris lumbricoides. A subject was regarded as infected if it was in-
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fected with at least one helminth species.
For the current study, paired DNA samples before and at 21 months after the

first treatment round from 150 inhabitants in Nangapanda were selected based
on the treatment allocation and infection status, as well as the availability of com-
plete stool data at pre- and post-treatment. The procedure for sample collection
and processing was already described in Wiria et al. (2010). The 16s rRNA gene
from the stool samples were processed through the 454 pyrosequencing tech-
nique, and the classification of the sequence resulted in counts of 18 bacterial
phyla. For the current analyses, we retained the 5 most prevalent phyla and
pooled the remaining into one category, resulting in six phyla categories: Acti-
nobacteria, Bacteroidetes, Firmicutes, Proteobacteria, unclassified, and pooled cate-
gory.

The description of relative abundance of each bacterial phyla at each time
points are given in Table S7. Firmicutes has the highest relative abundance at each
time points (around 68%), followed by Actinobacteria (around 12%), Proteobacteria
(around 10%), Bacteroidetes (around 6 %) and Unclassified and pooled category
(each around 1%). The dispersions are estimated by the ratio between the vari-
ance and mean. All bacteria counts show dispersion larger than 1 indicating the
presence of overdispersion. Since zero-inflation might lead to overdispersion, we
investigated the number of the samples with zero counts for the six categories
at the two time points. Only for the following three categories, a small num-
ber of samples with zero counts was observed: Bacteroidetes (5 samples at post-
treatment), Unclassified bacteria (1 at pre-treatment and post-treatment), and the
pooled category (15 at pre-treatment and 6 at post-treatment). The corresponding
histograms can be found in Figure S2. From this, we conclude that zero-inflation
is not present, hence the overdispersion is probably caused by other sources. We
will therefore account for overdispersion by additional random effects.

Table 3.3 gives the observed correlations between categories and of categories
between time points. The order j for Cptq

j are Firmicutes, Actinobacteria, Bacteroidetes,
Proteobacteria, Unclassified and pooled category. The observed correlations be-
tween Firmicutes and the three most abundant bacteria (Actinobacteria, Proteobac-
teria and Bacteroidetes) are relatively high and negative (around -0.50), indicating
an increase of Firmicutes corresponds to the decrease of these bacterial categories.
These correlations are relatively similar for both time points, except for the corre-
lation between Firmicutes and Actinobacteria which becomes smaller at the second
time point (-0.27). The correlations between Firmicutes and Unclassified, and the
pooled category, are relatively small. The intraclass correlations of bacterial cate-
gories between the two time points are always positive. Firmicutes and Actinobac-
teria show the highest correlation between two time points (0.14 and 0.17).

The baseline characteristics of the study participants were given in Table 3.4.
In each of the randomization arms, there are four possible combinations of infec-
tion status at pre- and post-treatment. Namely, uninfected subjects who either
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Cp1q
1 Cp1q

2 Cp1q
3 Cp1q

4 Cp1q
5 Cp1q

6 Cp2q
1 Cp2q

2 Cp2q
3 Cp2q

4 Cp2q
5 Cp2q

6

Cp1q
1 1 -0.46 -0.43 -0.48 -0.12 -0.23

Cp1q
2 ¨ 1 -0.29 0.13 0.02 0

Cp1q
3 ¨ ¨ 1 -0.27 -0.19 0

Cp1q
4 ¨ ¨ ¨ 1 0.1 0.06

Cp1q
5 ¨ ¨ ¨ ¨ 1 0.01

Cp1q
6 ¨ ¨ ¨ ¨ ¨ 1

Cp2q
1 0.14 -0.11 -0.05 -0.01 0 -0.13 1 -0.27 -0.53 -0.57 0.04 -0.14

Cp2q
2 -0.14 0.17 0.04 0.03 -0.01 -0.05 ¨ 1 -0.27 -0.15 -0.05 0.01

Cp2q
3 0.04 0.05 0.01 -0.07 -0.08 -0.1 ¨ ¨ 1 -0.07 -0.22 -0.11

Cp2q
4 -0.11 -0.02 0.01 0.07 0.05 0.3 ¨ ¨ ¨ 1 0.02 0.09

Cp2q
5 0.06 -0.25 0.09 0.01 0.05 0.01 ¨ ¨ ¨ ¨ 1 -0.05

Cp2q
6 -0.07 0.08 -0.06 -0.01 0.23 0.17 ¨ ¨ ¨ ¨ ¨ 1

Cptq
j represents the bacterial phyla j, j “ 1, . . . ,6 at time point t. The order of j are Firmicutes, Actinobacteria,

Bacteroidetes, Proteobacteria, Unclassified and pooled category.

Table 3.3: The observed marginal correlation of the motivating dataset.

Participants
(N = 150)

helminth (+) 
(N=94)

placebo
(N = 47)

albendazole
(N = 47)

placebo
(N = 34)

albendazole
(N = 22)

• Helminth(+) 
(N=34)

• Helminth(-)
(N=13)

pre-treatment

post-treatment

• Helminth(+) 
(N=13)

• Helminth(-)
(N=34)

helminth (-)
(N=56)

• Helminth(+) 
(N=10)

• Helminth(-)
(N=24)

• Helminth(+) 
(N=2)

• Helminth(-)
(N=20)

Allocation

4 4

33

2 2

1 1

Figure 3.4: The profile of the microbiome study. The chart shows the number of subjecs infected with
at least one of the prevalent soil transmitted helminths (Helminth (+)) or free of helminth infections
(Helminth (-)) that belonged to either the placebo or albendazole treatment group, at pre-treatment
and 21 months after the first treatment round. The circled number represents the condition explained
in Section 3.4.

remained uninfected (condition 1) at post-treatment or became infected at post-
treatment (condition 2) and infected subjects who either became uninfected at
post-treatment (condition 3) or remained infected at post-treatment (condition 4).
The number of samples in each conditions at pre- and post-treatment are given
in Figure 3.4. It has been shown previously that treatment had an effect on the
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Characteristics
albendazole arm placebo arm

(N = 69) (N = 81)

Age (in years) ,mean(SD) 27.38 (16.5) 27.85 (16.91)

Sex, female, n(%) 39 (56.5) 45 (55.6)

Helminth Infections, n(%)

A. lumbricoides 17 (24.6) 18 (22.2)

Hookworm 26 (37.7) 23 (28.4)

N. americanus 25 (36.2) 23 (28.4)

A. duodenale 2 (2.9) 2 (2.5)

T. trichiura 20 (28.9) 22 (27.2)

Any helminth 47 (68.12) 47 (58.0)

Proportion (in %) of the 6 most abundant bacteria phyla, mean (SD)

Actinobacteria 12.5 (8.9) 11.0 (7.9)

Bacteroidetes 7.4 (11.3) 6.4 (11.0)

Firmicutes 66.8 (13.5) 70.0 (13.7)

Proteobacteria 9.8 (7.9) 9.2 (8.4)

Unclassified*) 2 (2.22) 2.7 (3.2)

Pooled#) 1.5 (3. 7) 0.7 (1.2)

Table 3.4: Characteristics at baseline for study participants.
*)Unclassified represents sequences that cannot be assigned to a phyla.
#)Pooled category consists of the remaining 13 phyla having average relative abundance among sam-
ples less than 1%.

composition at post-treatment in infected subjects who remained infected (con-
dition 4)[Martin et al. (2018)]. Here, we want to reanalyze this dataset by using
a joint model for the microbiome data at pre- and post-treatment to assess the
treatment effect in the infected subjects who remained infected. Additionally, we
want to estimate the time effect, while adjusting for other variables such as infec-
tion status and treatment allocation. The following loglinear model is considered.
Let D,E,F,G,H represent the categorical variables: bacterial taxa, infection (INF),
treatment (TRT), baseline infection status (BHelm), and time (t) with J,K,L,M,N
levels for each variable. For bacterial phyla, the Firmicutes was considered as a
reference category. Now the following model was fitted to the data
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Alternatively the model could be written in terms of regression coefficients as
follows.

log
´

µptq
i j

¯

“ ξ0 j ` ξ1 jINF ` ξ2 jt ` ξ3 jTRT ˆ t ` ξ4 jBHelm ˆ t`

ξ5 jBHelm ˆ TRT ˆ t ` ξ6 jINF ˆ BHelm ˆ TRT ˆ t ` ui

where ξ0 j “ log
´

δ ´1
0

¯

` λ D
j , ξ1 j “ λ F

l ` λ DF
jl , and so forth. In this model, there

are 6 ˆ 7 estimable covariate effects on each bacterial phyla. In condition 4, the
difference in the microbiome composition between the albendazole and placebo
arm is represented by ξ3 j `ξ5 j `ξ6 j, while in condition 3, the difference in the mi-
crobiome composition between two arms by ξ3 j `ξ5 j. In the subjects who are un-
infected at baseline the treatment effect is represented by ξ3 j, irrespective of their
infection status at post-treatment. The change of microbiome composition, when
subjects were uninfected at baseline, remained uninfected at post-treatment, and
received placebo, is modelled by ξ2 j. Two interaction terms with BHelm were
included in this model (3.14) (i.e. the coefficient ξ4 j and ξ5 j) to model the effect of
having infection at pre-treatment and still being infected at follow up, irrespective
of treatment by albendazole. The coefficient ξ4 j represents the effect of having in-
fection at pre-treatment in the placebo group. We first included a subject-specific
random effect ui in the model. Statistical significance for each covariate was as-
sessed by the likelihood ratio test with 6 degrees of freedom and the significance
of the random effect was assessed using the likelihood ratio test with mixture of
χ2

r0,1s distribution.
The parameter estimates from the loglinear model with subject-specific ran-

dom effects (3.14) are given in Table S8. The between subject variation over time
is estimated by the standard deviation σu of 0.269 (s.e. of 0.053). The variance
of this random effect is significantly different from zero (p-value ă 0.001, LRT
with mixture of χ2

r0,1s distribution), indicating that the microbiome counts of a
person over time are correlated. The regression coefficients for the covariates
BHelmˆt (ξ4 j) and BHelmˆTRTˆt (ξ5 j) appear not to be significantly associated
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with the microbiome (p´values ą 0.05), indicating that having infection at pre-
treatment does not influence the microbiome composition. These two covariates
were present at the second time point for subjects in condition 3 and 4. Being the
terms ξ4 j ` ξ5 j almost zero for all categories, the change of microbiome in these
conditions appears to be not affected by these two covariates.

To obtain a model with less parameters, we first eliminated the covariate
BHelmˆTRTˆt. The covariate BHelmˆt was also not significant in this reduced
model (p´value of 0.795). Hence, we reduced the model (3.14) further by elimi-
nating this covariate. In this updated model, BHelmˆTRTˆt was still not signifi-
cant (p´value of 0.843). Finally, we fitted the following model

log
´

µptq
i j

¯

“ ξ0 j ` ξ1 jINF ` ξ2 jt ` ξ3 jTRT ˆ t ` ξ4 jINF ˆ BHelm ˆ TRT ˆ t ` ui.

(3.15)

In this final model for fixed effects assuming a subject-specific random effect
(3.15), 6 ˆ 4 parameters represent the covariate effects on the microbiome com-
position. The treatment effect is modelled by ξ3 j for all conditions except for con-
dition 4. The difference in the microbiome composition in condition 4 between
the albendazole and placebo arm is represented by ξ3 j ` ξ4 j. The estimated log
odds ratio for each bacterial category compared to Firmicutes is given in Table
S9. Also for this model the standard deviation of random subject-specific effect
ui is significantly greater than zero (p´value ă 0.001). Albendazole has no direct
effect in subjects who remained uninfected as the odds ratios for each bacterial
category are approximately 1. On the other hand, when subjects remained in-
fected, the odds of Actinobacteria to Firmicutes at the second time point compared
to the first time point increases about 55% while the odds ratio for Bacteroidetes to
Firmicutes decreases about 62%.

Next we considered a 6 dimensional random effects structure for this data.
We fitted DMM model (3.15). The results are listed in Tables 3.5 and S10. Over-
all, the estimates of the fixed effects and overdispersion are very similar for these
random effect structures. This is in line with the result of the simulation study.
However, when we fitted the DMM model with categorical-specific random ef-
fects, we observed the following; while the estimated variance component over
time for the first three categories are relatively large (σ 2

u1
= 0.369 to σ2

u3
= 0.536),

for the last three categories (Proteobacteria, Unclassified and Pooled) are small and
hence the random effects for these categories can be omitted.

Finally, we investigated whether the correlations induced by the model corre-
spond to the observed correlations; the marginal correlation induced by the DMM
model with a subject-specific random effect (Table S11A),a categorical specific
random effect with common variance (Table 3.6) and with categorical-dependent
variance for the random effects (Table S11B). For all DMM models, the pairwise
correlations at each time points between Firmicutes and the other three preva-
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Categories INF t TRTˆt BhelmˆINFˆTRTˆt

Actinobacteria -0.006 (-0.218, 0.207) 0.050 (-0.155, 0.256) 0.046 (-0.235, 0.326) 0.326 (-0.042, 0.694)

Bacteroidetes 0.220 (-0.056, 0.496) -0.119 (-0.395, 0.157) -0.012 (-0.381, 0.356) -0.916 (-1.573, -0.259)

Protobacteria 0.171 (-0.054, 0.396) 0.056 (-0.161, 0.273) 0.035 (-0.256, 0.326) 0.026 (-0.376, 0.427)

Unclassified -0.024 (-0.304, 0.257) 0.129 (-0.149, 0.407) -0.099 (-0.476, 0.277) -0.159 (-0.727, 0.410)

Pooled 0.166 (-0.158, 0.490) 0.195 (-0.124, 0.515) -0.030 (-0.449, 0.388) -0.180 (-0814, 0.454)

Loglik -8285.5 pθ (s.e) 0.08 (0.01)

σ̂u (s.e) 0.22 (0.03)

*Fitted with SAS procedure NLMIXED with 3 quadrature points of Adaptive Gauss-Hermite approximation.

Table 3.5: The log odds ratio (95% CI) when dataset were fitted with DMM with categorical-specific
random effect having common variance.*

lent bacterial phyla are relatively high and similar to the observed marginal cor-
relations (Table 3.6, Table S11A-B). With regard to the correlation of categories
between the two time points, the DMM model with categorical-specific random
effects with common variance showed a similar correlation structure to the ob-
served one (Table 3.6). For the DMM model with categorical-specific random
effect, the correlation between the same category over time seems to be too high
compared to the dataset (Table S11B). Therefore, we concluded that the DMM
model with a categorical specific random effect having common variance across
categories is the model which describes our data best.

Cp1q
1 Cp1q

2 Cp1q
3 Cp1q

4 Cp1q
5 Cp1q

6 Cp2q
1 Cp2q

2 Cp2q
3 Cp2q

4 Cp2q
5 Cp2q

6

Cp1q
1 1 -0.55 -0.35 -0.51 -0.3 -0.22

Cp1q
2 ¨ 1 -0.06 -0.09 -0.05 -0.03

Cp1q
3 ¨ ¨ 1 -0.04 -0.03 -0.02

Cp1q
4 ¨ ¨ ¨ 1 -0.05 -0.03

Cp1q
5 ¨ ¨ ¨ ¨ 1 -0.02

Cp1q
6 ¨ ¨ ¨ ¨ ¨ 1

Cp2q
1 0.19 -0.12 -0.06 -0.1 -0.05 -0.04 1 -0.57 -0.3 -0.51 -0.3 -0.23

Cp2q
2 -0.12 0.13 0.03 0.03 0.02 0.02 ¨ 1 -0.07 -0.08 -0.06 -0.04

Cp2q
3 -0.05 0.02 0.05 0.02 0.01 0.01 ¨ ¨ 1 -0.05 -0.02 -0.01

Cp2q
4 -0.1 0.02 0.02 0.12 0.02 0.01 ¨ ¨ ¨ 1 -0.05 -0.03

Cp2q
5 -0.05 0.02 0.01 0.02 0.05 0.01 ¨ ¨ ¨ ¨ 1 -0.02

Cp2q
6 -0.04 0.02 0.01 0.01 0.01 0.03 ¨ ¨ ¨ ¨ ¨ 1

Table 3.6: The estimated marginal correlation of the dataset obtained by DMM model with categorical-
specific random effect having common variance across categories.
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3.5 Discussion

We proposed a novel parametric multivariate method to model microbiome data
from an epidemiological study using a repeated measurements design. Current
parametric models that account simultaneously for overdispersion and repeated
measurements use a combination of a conjugate and a normal distribution. This
method was introduced by Booth et al. (2003) for count data. Molenberghs et al.
(2010) reviewed the combined model for the binary [Molenberghs et al. (2012)]
and time-to-event data [Efendi et al. (2014)]. The multinomially-distributed data
were however not considered in these papers. The rationale of this combined
model is the simplification to the parent distribution when overdispersion is ab-
sent and furthermore, the conditional distribution given the normally distrib-
uted random effect has a closed-form formula which reduces computational time.
Thus, this model has an advantage over the generalized linear mixed models
where multivariate normal distributions were used to model correlation due to
overdispersion and repeated measurements. Our proposed model is also an ex-
tension of the econometrics model for the analysis of choice probabilities in the
cross-sectional setting [Guimarães and Lindrooth (2007)]. We considered three
models for the analysis of repeatedly measured microbiome data, namely mod-
els corresponding to the unconditional distribution and to conditional distribu-
tion given the total count of a sample. For the latter distribution, we considered
the situations where the total counts either vary or are fixed. We showed that for
the last situation, i.e. total count is fixed, the likelihood is equivalent to the likeli-
hood of the multinomial logistic model. Since in our dataset the total number of
counts per sample is constant we prefer to use the DMM model.

In a simulation study, we showed that the DMM model provides unbiased
estimates for the fixed and random effects independent of the used random effect
structure to model the correlation between subjects across time. The sensitivity of
the likelihood ratio test for the fixed and random effect components are relatively
high when the sample size is large as in the case of our data application. We also
showed that the models provided similar estimates for the fixed and random ef-
fects when datasets were generated from DMM model with different random ef-
fect structure. Two structures of the random effects were considered in the DMM
model; one is the simplest subject-specific random effect where the variation of
each categorical count outcomes is the same, and the second is to assume a diag-
onal covariance structure with the same variance for each category. With regard
to the marginal correlation for each category between time points, we observed
that different correlations can be obtained by changing the random effect struc-
ture. The simple random effect structure provides small correlations while for the
model with categorical-specific random effect, the correlations are larger and in-
crease with the size of variance component. Hence, if the interest is solely on the
fixed effects and random effect estimates, the simple model with subject-specific
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random effect can be used. On the other hand, when the correlation structure be-
tween the same category across time is of interest, a more complex DMM model
with categorical-specific random effects should be used.

For our data application, we were interested in the parameters modelling the
variability between subjects and the effect of covariates on microbiome composi-
tion therefore we used a subject - specific random effect. Following the general-
ized linear mixed model framework, the random effect uuui is linked to the expected
outcome and measures the variation of the count outcome for certain category be-
tween subjects. The variability of the categorical count between subjects is then
captured by a single estimate of the standard deviation of the random effect and
its significance reveals that the variability between subjects should be taken into
account in the model. The estimate of the standard deviation in our data analysis
is 0.269 (s.e. of 0.053, p-value ă 0.001) which is relatively small hence our as-
sumption of a subject-specific random effect is justified. The standard deviation
although small is significant hence our extensive model is necessary for this data.
With regard to the fixed effects, their estimates describe the contribution of the
covariate to the odds ratio of two bacterial categories. One advantage from our
model is to model the change of microbiome in different strata over time. For in-
stance, we showed in the motivating dataset that the change of microbiome over
time in subject who remained uninfected in the placebo arm could be inferred
from the estimate of the time coefficients. Using the same model, we could also
infer the change of microbiome when subjects remained unifected in the albenda-
zole arm as well as the change of microbiome when subjects remained infected.
In the previous analyses, we selected subjects who were infected at pre-treatment
and fit the Dirichlet-multinomial regression at post-treatment to observe the ef-
fect of having long term infection and treatment on microbiome composition.
The statistical test using that model showed that subjects who remained infected
and received albendazole harbored significantly different microbiome composi-
tion compared to subjects who remained infected and received placebo. This
result is confirmed by the analysis in this manuscript.

On the other hand, for the data application, when the interest is on the mar-
ginal correlation, the random effect structure has to be correctly modelled. For
our dataset, we considered three structures, namely subject-specific random ef-
fects, categorical-specific random effects with common variance and with categori-
cal-dependent variances. The second correlation structure represents our data
best, suggesting that the first structure is too restricted and in the third structure,
there were too many parameters for which there is not sufficient information in
our data to estimate all of them.

Several challenges in modelling the microbiome data using this method exist.
Firstly, in our data application, we were able to fit a categorical-specific random
effects structure however the computational burden was large. More research
is needed to obtain computational efficient methods. The second challenge is
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related to the number of categorical count outcome involved in the study. Typ-
ically, categories with rare count (bacteria only presence in the small number of
samples) are pooled. One might argue that this rare count might be due to sys-
tematic error rather than sequencing error and thus pooling could be viewed as
losing the information. Future research should address the issue of the number of
categories included in the analyses and consequently a development of compu-
tationally efficient method is needed to take into account the category-dependent
random effect.

Several alternatives for our approach can be considered. Although modelling
overdispersion with the conjugate distribution has computational advantages, it
might be too simple since all correlation is modeled by one additional parame-
ter. Extensions to more complex correlation structures would be of interest. Sec-
ondly, the choice of six categories is arbitrary. More categories can be analyzed if
the dimension of the parameter space is reduced, for example using penalization
[Chen and Li (2013); Xia et al. (2013)]. Thirdly, the interpretation of the fixed effect
parameters are all conditional on the random effects. In practice, one might be
interested in marginal parameters [Heagerty (1999); Tsonaka et al. (2015)]. To this
end, marginalized models for multivariate counts need to be developed. Finally,
it is of interest to analyze the microbiome data jointly with other outcomes such
as diseases or immunological markers. For example, we would like to model
the effect of helminths and treatment on microbiome composition and cytokines.
This is a topic of an ongoing research.

3.6 Supporting Information

Additional supporting information may be found online in the Supporting Infor-
mation section at the end of the article.

Table S1 Bias and MSE of datasets generated from DMM model with

subject-specific random effect when parameters are obtained

from the true dataset.

Figure S1 Bias and MSE of datasets generated from the DMM model

with categorical-specific random effect having categorydepen-

dent variances.

Table S2 The sensitivity and specificity of the hypothesis testing for (A)

covariate effect and (B) variability of random effect.



62 Chapter 3 – Mixed models for multivariate count data

Table S3 The estimated marginal correlations based on the DMM model

with subject-specific random effect across different standard de-

viation of random effects using Monte-Carlo.

Table S4 The estimated marginal correlations based on the DMM model

with categorical-specific random effects with common variance

across categories using Monte-Carlo.

Table S5 The estimated marginal correlations based on the UNBM model

with subject-specific random effect across different standard de-

viation of random effects using Monte-Carlo.

Table S6 The estimated marginal correlation based on the UNBM model

with categorical-specific random effect having common variance

across categories using Monte-Carlo.

Table S7 The description of bacterial count data at each time-points.

Figure S2 The distribution of bacterial phyla when zero count presents.

Table S8 The starting model. The estimate (95% CI) of the log odds ratio

for each covariates in the microbiome dataset.

Table S9 Final Model. The estimate of the log odds ratio (95% CI) for each

covariates in the microbiome dataset.

Table S10 The log odds ratio (95% CI) when dataset were fitted with

DMM with categorical-specific random effect having category-

dependent variance across categories.

Table S11 The estimated marginal correlation of the dataset obtained by

DMM models.
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A Derivation of the joint multivariate distribution

A.1 Joint multivariate distribution for proportions

Conditioned on the random effect uuui, the relative abundances are independent.
Thus, the joint distribution for the multivariate relative abundance for subject i
could be formulated as follows.
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with µptq
i¨ is the loglinear mean.

A.2 Joint multivariate distribution under condition on total count.

We will show that the distribution given in equation (3.9) and (3.10) are in general
not equivalent. The distribution in the equation (3.10) and (3.12) are not equiva-
lent except for the situation where the total count is fixed.

We denote the CCCptq
i as the multivariate count outcome at time t for subject i

and the total count to be Cptq
i` . Thus the multivariate count outcome for subject i

conditional on their total is as follows.
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Thus, the joint probability of multivariate count outcome given in equation (3.17)
can be written as follows.
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Since Pr(ui) is not equal to the term in bracket in equation (3.18) then equation
(3.9) and (3.10) are not equivalent. However, when the total count is fixed, the
following equation holds: Pr
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“ Prpuiq. Now, using the last equation in
(3.18), the joint distribution becomes
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Since the count at each category Cptq
i j |ui „ NB

ˆ

θ ´1µptq
i j ,

θ ´1

1 ` θ ´1

˙

where log
´

µptq
i j

¯

= XXXiξξξ j ` ui, we obtain similar formulation as the conditional likelihood at the
cross-sectional setting. Thus, in the case where the total count is fixed, the for-
mulation is equivalent to the distribution of the multivariate relative abundance
(3.16).
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The effect of gut microbiome

composition on human immune
responses - interference of helminth

infections

Abstract

Background. Soil transmitted helminths have been shown to have immune reg-
ulatory capacity, which they use to enhance their long term survival within their
host. As these parasites reside in the gastro-intestinal tract, they might modulate
the immune system through altering the gut bacterial composition. Although the
relationships between helminth infections or the microbiome with the immune
system have been studied separately, their combined interactions are largely un-
known. In this study we aim to analyze the relationship between bacterial com-
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munities with cytokine response in the presence or absence of helminth infec-
tions.

Results. For 66 subjects from a randomized placebo-controlled trial, stool and
blood samples were available at both baseline and 21 months after starting three-
monthly albendazole treatment. The stool samples were used to identify the
helminth infection status and fecal microbiota composition, while whole blood
samples were cultured to obtain cytokine responses to innate and adaptive stim-
uli. When subjects were free of helminth infection (helminth-negative), increasing
proportions of Bacteroidetes was associated with lower levels of IL-10 response to
LPS (estimate (95% confidence interval (CI)) -1.96 (-3.05, -0.87) ). This association
was significantly diminished when subjects were helminth-infected (helminth
positive) (p-value for the difference between helminth-negative versus helminth-
positive was 0.002). Higher diversity was associated with greater IFN-γ responses
to PHA in helminth-negative (0.95 (0.15, 1.75); versus helminth-positive -0.07 (-
0.88, 0.73), p-value = 0.056) subjects. Albendazole treatment showed no direct
effect in the association between bacterial proportion and cytokine responses, al-
though the Bacteroidetes’ effect on IL-10 responses to LPS was lower in the albenda-
zole-treated group (-1.74 (-4.08, 0.59) versus placebo (-0.11 (-0.84, 0.62); p-value =
0.193).

Conclusion. The differences that we observed in groups of helminth-positive
versus helminth-negative supports the hypothesis that helminth are able to mod-
ulate the immune system and specifically may alter the relationship between bac-
terial communities and cytokine response.

Trial registration: ISRCTN, ISRCTN83830814. Registered 27 February 2008 -
Retrospectively registered, http://www.isrctn.com/ISRCTN83830814

4.1 Introduction

Diseases of modernity, such as allergy, autoinflammatory and metabolic diseases
are increasingly observed in industrialized countries. It has been speculated that
this growing rate was caused by changes in lifestyle, diet and environmental
factors, such as pollutant exposure or hygiene. Hygiene improvement has dra-
matically decreased the prevalence of certain infectious agents such as parasitic
helminths while these may have protective effects against autoinflammatory dis-
eases [Wammes et al. (2016)]. Studies analysing the capacity of helminths to mod-
ulate the immune system have been carried out in recent decades. However, it
has become clear that this is an interplay with several other factors, such as diet,
environment and also other gut inhabitants, such as the microbiota.
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Early studies showed that gut microbiota are involved in developmental as-
pects of the immune system and that disturbance can lead to autoinflammatory
disorders [Round and Mazmanian (2009)]. Already in 1963 it was reported that
the immune system of germ-free mice failed to respond to molecular patterns of
pathogenic and beneficial microorganisms, causing morphological tissue defects
in the intestinal wall [Abrams et al. (1963)]. In healthy humans, the role of gut
microbiota and immune response was studied more recently. It was found that
certain bacteria are beneficial for development and function of the immune sys-
tem and simultaneously the immune system can influence the composition or
function of gut microbiota, all relating to inflammatory disorders (reviewed in
Belkaid and Hand (2014)).

The presence of parasitic helminths in the gastro-intestinal tract may exert
a direct influence on host’s gut microbiome as they share the same niche. Al-
though in animal models helminths were shown to increase microbial abundance
and diversity [Reynolds et al. (2015)], the findings in human studies are not con-
sistent. Several studies analysing the effect of helminth on gut microbiota have
indicated higher diversity of gut microbiota in helminth-positive subjects com-
pared to helminth-negative subjects [Lee et al. (2014), Ramanan et al. (2016)]. A
study in Ecuador showed that this difference in diversity might be related to spe-
cific helminth species, since they did not find any alterations in Trichuris trichiura-
infected children [Cooper et al. (2013)]. This might be influenced by different
factors among which are different bacterial profiling techniques or confounders
such as ethnicity, anthelminthic treatment and environmental differences.

As it has been shown that changes in both gut microbiota and helminth in-
fection status might affect the host’s immune response, it is suspected that the
presence of helminth might directly or indirectly affect the immune system by
altering the gut microbial community [Zaiss et al. (2015)]. For instance, transfer
of the microbiota of Heligmosomoides polygyrus bakeri-infected mice to uninfected
mice induced similar protection against allergic airway inflammation as observed
with helminth infection [Wilson et al. (2005)]. In humans, studies on the triangu-
lar relation between helminth with microbiome and immune system are still in in-
fancy. To our knowledge, the number of longitudinal studies analysing the asso-
ciation between gut microbiota and immune responses in helminth-endemic ar-
eas is still limited. To understand the interaction of the gut microbial community
and helminths and their common effect on immune responses, we used data from
a household cluster-randomized, double blind, placebo-controlled trial of alben-
dazole treatment in a helminth-endemic area. In this study, it has been shown
that deworming reduced helminth prevalence and consequently increased sev-
eral whole blood cytokine responses [Wammes et al. (2016)]. Helminth infection
and anthelminthic treatment separately did not change the gut microbiota [Mar-
tin et al. (2018)]. However, when subjects remained infected while treated with
albendazole, a decrease of Bacteroidetes : Firmicutes ratio and an increase of Acti-
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nobacteria : Firmicutes ratio were observed, leading to the hypothesis that there
is a cross-talk between microbiome composition and immune response which
is disrupted by the presence of helminths and that removing helminth by an-
thelminthic might affect this communication. Our aim was to characterize the
association between bacterial relative abundance with the whole blood cytokine
responses and the effect of helminth infections and deworming on this interac-
tion.

4.2 Methods

4.2.1 Participants

Stool samples from 150 subjects from immunoSPIN study [Wiria et al. (2010)]
were analyzed for the fecal microbiome. From these, 66 subjects were included
in this study based on the complete stool data and available cytokine measure-
ments before and 21 months after the first treatment. Four different helminth
species were found namely Ascaris lumbricoides, hookworms (Necator americanus
and Ancylostoma duodenale) and Trichuris trichiura. Details on sample collection
and measuring the infection status using PCR are described elsewhere [Wiria
et al. (2010)]. Trichuris trichiura infection was assessed only by microscopy, since
at that time there was no real-time PCR data available for this species. For this
manuscript, we defined a helminth-infected subject as participant with a positive
real-time PCR (cycle of threshold (Ct) value ď 30) and/or positive microscopy for
one or more species of helminths, as described previously [Martin et al. (2018)].
Subjects with a positive real-time PCR with a Ct above 30 were regarded as unin-
fected.

In addition, from the 66 subjects, 20 subjects of 18 years old or older at pre-
treatment who were helminth-negative were selected from Nangapanda (Ende)
area, as well as 16 subjects who had migrated to Jakarta more than 10 years before
and 14 people from the USA (healthy adults from the Human Microbiome Project
(HMP) to illustrate the microbiome profile from subjects residing in different ge-
ographical environments.

4.2.2 Microbiome composition

The amplification and pyrosequencing of the 16S rRNA gene followed the pro-
tocols developed by the Human Microbiome Project (HMP) [HMP (2012)] at the
McDonnell Genome Institute, Washington University School of Medicine in St.
Louis and have been described previously elsewhere [Martin et al. (2018), Rosa
et al. (2018)]. Briefly, the V1 – V3 hypervariable region was PCR – amplified
and the PCR products were sequenced on the Genome Sequencer Titanium FLX
(Roche Diagnostics, Indianapolis, Indiana), generating on average 6,000 reads per
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sample. Details of the filtering and analytical processing of 16S rRNA data for this
cohort has been previously described in Rosa et al. (2018). The assembled contigs
count data as a result of RDP classification was organized in matrix format with
taxa in columns and subjects in row. The entries in the table represent the number
of reads for each taxa for each subject. Our work is focused at a phylum level of
gut bacterial. Five bacterial phyla have average relative abundances larger than
1%, namely Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria and an unclas-
sified category, which consists of sequences which could not be categorized into
a phylum. The remaining bacterial phyla which had lower relative abundance
were pooled together into a pooled category. In the analysis, we retained the
count for the three most abundant bacterial phylum proportions, namely Acti-
nobacteria, Bacteroidetes and Firmicutes. The proportion for each phylum was ob-
tained by dividing each sequence count by the total sequence per person at each
time point. Along with bacterial proportions, we computed at a phylum level the
bacterial diversity within samples (Shannon index) and between samples (Bray-
Curtis dissimilarity) using R package vegan [Oksanen et al. (2017)]. The Shannon
index represents not only the presence of taxa but also the abundance of corre-
sponding taxa. The higher diversity index means that there was not a single taxa
dominating the community and the total bacterial abundance is spread out over
all taxa. The Bray-Curtis dissimilarity measures the percentage of similarity be-
tween one sample from the other with values range from 0 (completely similar)
to 1 (completely dissimilar).

4.2.3 Whole blood cytokine responses

The method to obtain and assess the cytokines responses were described else-
where [Wiria et al. (2010)]. In brief, heparinized blood was diluted 1:4 and cul-
tured in 96-well plates. Plates were incubated for 24 (innate responses) or 72
(adaptive responses) hours, after which supernatants were harvested and stored
in freezers. Cytokine levels were measured by Luminex bead technology in sam-
ples obtained at before and 21 months after start of treatment. The analyses car-
ried in this manuscript are limited to innate responses (interleukin (IL)-10 and
tumor necrosis factor-alpha (TNF-α)) to lipopolysaccharide (LPS) from E. coli
and adaptive responses (interferon-gamma (IFN-γ) and IL-5) to Ascaris antigen
(AscAg) and general T cell stimulator phytohemagglutinin (PHA). The AscAg
was a homogenate of adult worm A. lumbricoides obtained from infected human
[Wammes et al. (2014)].

4.2.4 Statistical Methods

The microbiome composition for each group of the different demographical ar-
eas was assumed to follow a Dirichlet – multinomial distribution with 6 cate-
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gories which represents the 6 most abundant phyla (Actinobacteria, Bacteroidetes,
Firmicutes, Proteobacteria, unclassified bacteria and pooled). The difference in the
microbiome composition between groups was tested using the likelihood ratio
test statistic with 6 degrees of freedom.

All parameters of interest were described as means or frequency (˘ standard
deviation). Prevalence rates were calculated and compared using the Pearson chi-
square test, while the Student t-test was used to compare continuous variables.

To study the relationship between cytokines and microbiome over the two
time points, a linear mixed effect regression model was fitted with helminth sta-
tus and treatment as covariates. All models have been adjusted with age and sex,
however, since both covariates were not significantly associated with the cytokine
responses in any model, they are not included in the final analysis. The correla-
tion between observations from the same subjects was modelled by including a
subject-specific random effect. The microbiome was included in the model ei-
ther as a bacterial proportion or by the Shannon diversity index. The cytokine
responses were log10-transformed (log10(concentration + 1)) to obtain normally
distributed variables. First, we analyzed the main effect of bacterial proportion
and diversity on cytokine responses. Second, to allow for different effect sizes
of bacterial proportion or diversity on cytokine responses in helminth-positive
versus -negative subjects, an interaction term between bacterial categories and
infection was included in the model. The p-value for this interaction term in-
dicated the statistical evidence for different effect sizes in helminth-positive or
–negative groups.

To allow the estimation of the treatment effect on the relationship between
bacterial proportion and cytokine responses, the randomized controlled trial de-
sign was used. Since the sample size is too small, we only stratified based on
randomization arm. Hence, the effect of treatment cannot be distinguished from
the effect of helminth infection. Therefore, we explored the relationship between
cytokines and microbiome after anthelminthic treatment. A linear mixed effect
model was fitted with bacterial proportion or diversity, and treatment as covari-
ates. This model was able to characterize three different associations, namely
the association between bacterial proportion or diversity on cytokines at pre-
treatment, the difference of the association at pre-treatment and at post-treatment
in the placebo group (time effect), as well as the difference of the association at
post-treatment between albendazole and placebo group.

For each outcome separately, these models were fitted on subjects who at least
had an observation at pre-treatment. The lme4 package in statistical software R
was used for model fitting. The significance of the covariate effect was obtained
from the likelihood ratio test. Bonferroni correction was used to adjust for mul-
tiple testing. The statistical analyses were performed in R [R Core Team (R Core
Team)] with mainly lme4 and lmerTest packages [Bates et al. (2015), Kuznetsova
et al. (2017)]. The full record was created using the knitr package in R [Xie (2018)]
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and is available online at https://github.com/Helminths_GutMicrobes_Cytoki-
ne/Ch4_PhDThesis_StatisticalAnalysisinR.pdf.

4.3 Results

4.3.1 Geographical differences in microbiome composition in a
rural to urban gradient

From a subpopulation participating in the ImmunoSPIN study in Flores island,
Indonesia, 66 individuals were selected for analysis. To illustrate the difference
in gut-bacterial community between different geographical areas, we first com-
pared the microbial composition from a sub-selection of helminth-negative sub-
jects who were 18 years or older from Ende (n=20) with subjects from the same
area who had moved to Jakarta (n=16) and healthy adults from the USA (n=14)
which were considered as residents of rural, urban area of Indonesia, and West-
ern urban area, respectively. The age ranges were from 18 to 62 years old (Jakarta
samples) and 18 to 40 years old according to HMP protocol (USA samples) [HMP
(2012)]. The proportions of the five main bacterial phyla and a pooled category
of remaining bacteria are depicted in Figure 4.1. Bacteroidetes was dominating
in the more urban areas (mean ± SD 53.23 ˘ 2.38% in US to 4% ˘ 0.22% in Ende)
while Firmicutes were the most prominent in the rural area (72.45% ˘ 1.16% in
Ende to 32.11 ˘ 2.08% in US) (Figure 4.1A). The microbiome compositions among
these three geographical areas were significantly different (p-value < 0.001). Fur-
thermore, the distribution of alpha and beta diversity (Shannon index and Bray
Curtis dissimilarity) in samples from three different geographical areas were rel-
atively similar (Shannon diversity index: mean ˘ SD 0.85 ˘ 0.21 in Ende, 0.91 ˘
0.14 in Jakarta and 0.78 ˘ 0.16 in US (Figure 4.1B); Bray-Curtis dissimilarity in-
dex mean ˘ SD 0.21 ˘ 0.09 in Ende, 0.15 ˘ 0.08 in Jakarta and 0.31 ˘ 0.20 in US;
Figure 4.1C).

4.3.2 The effect of bacterial proportions and diversity on in vitro
cytokine responses

We observed a difference in microbial profiles in rural compared to urban ar-
eas. Since it is hypothesized that gut bacteria are associated with certain cytokine
responses and thereby possibly immune disorders, we went on to explore this
relationship by using data from the ImmunoSPIN trial. For 66 subjects, cytokine
responses were measured at pre-treatment and 21 months after the start of an-
thelmintic treatment. At baseline, 40 out of 66 (60.6%) individuals in Ende were
infected with one or more helminth species, and hookworm was the most domi-
nant species (31.8%) followed by A. lumbricoides (25.7%) and T. trichiura (22.7%).
The baseline characteristics such as age, gender, BMI and helminth prevalence
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Figure 4.1: The microbiome composition and diversity for subjects in three different geographi-
cal areas. Composition and diversity of the fecal microbiota was assessed for subjects from different
geographical areas: Ende (n=20), Jakarta (n=16) and USA (n=14). In panel (A) the microbiome com-
position is depicted in percentages of the six categories, where unclassified bacteria represents the
category of sequences that could not be assigned to a phyla, and the pooled category consists of the
remaining 13 phyla with average relative abundance less than 1%. Panel B and C show the aver-
age ± SD of the Shannon diversity index and the Bray-Curtis dissimilarity index, respectively, in the
different areas.

were similar between the two treatment arms (Table 4.1). Three-monthly al-
bendazole treatment for 21 months reduced the infection prevalence from 65.4%
to 19.2% versus a slight increased of helminth infections from 57.5% to 65% in
placebo group (Table S4.5.1).

We analyzed proportions of three bacterial phyla (Actinobacteria, Bacteroidetes
and Firmicutes) as these were most abundant in our study population. As we
analyzed two cytokines for each antigens, we applied conventional Bonferroni
correction and used a cut-off level for significance (α) of 0.025. When fitting
the linear mixed model, no direct effect was observed of bacterial proportions
or Shannon diversity on whole blood cytokine responses (Table 4.2).

4.3.3 Interference by helminth infection in the effect of bacterial
proportions and diversity on in vitro cytokine responses

To elucidate the possible role of helminth infections in the interplay of bacte-
ria and immune responses, we conducted analyses in helminth-positive and -
negative groups. For this purpose, we used observations at both pre-treatment
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Characteristics albendazole placebo

N Result N Result

Gender, female (N (%) 26 12 (46.1) 40 22 (55.0)

Age (mean (SD)) 26 27.3 (16.1) 40 26.7 (15.7)

Children (<= 18 years old; N (%)) 10 (38.4) 17 (42.5.0)

Adults (>18 years old; N (%)) 16 (61.5) 23 (57.5)

zBMI (mean (SD)) 10 -0.52 (0.98) 17 -0.83 (0.64)

BMI (mean (SD)) 16 23.39 (3.44) 23 23.49 (4.89)

Parasite infection (N (%))

A. lumbricoidesa 26 9 (34.6) 40 8 (20.0)

Hookworm 26 11 (42.3) 40 10 (25.0)

N. americanusa 26 10 (38.5) 40 10 (25.0)

A. duodenalea 26 2 (7.7) 40 2 (5.0)

T. trichiurab 26 5 (19.2) 40 10 (25.0)

Any helminth 26 17 (65.4) 40 23 (57.5)

Abundance of bacterial phyla (mean % (SD))

Actinobacteria

26

8.2 (5.3)

40

8.6 (6.9)

Bacteroidetes 7.6 (10.1) 6.7 (11.5)

Firmicutes 66.4 (11.8) 65.0 (13.5)

Proteobacteria 7.3 (5.6) 7.4 (4.6)

unclassified bacteria#) 1.3 (0.7) 2.1 (2.4)

pooled*) 9.2 (6.0) 10.1 (5.8)

Diversity Index, median (IQR)

Shannon index
26

0.85 (0.71, 0.99)
40

0.84 (0.73, 1.00)

Bray-Curtis 0.19 (0.12, 0.26) 0.19 (0.13, 0.28)

Cytokine responses (pg/mL, median, IQR)

LPS
IL-10 25 242.00 (132.00, 400.00) 40 213.50 (142.00, 380.20)

TNF-α 25 664.00 (294.00,1029.00) 40 550.50 (343.00, 840.00)

AscAg
IL-5 22 32.55 (9.55, 58.42) 37 18.90 (12.00, 62.00)

IFN-γ 23 28.50 (12.10, 111.80) 37 17.40 (7.74, 60.90)

PHA
IL-5 23 490.00 (276.00, 747.50) 37 515.00 (333.00, 870.00)

IFN-γ 23 2449.00 (354.00, 5424.00) 37 2299.00 (997.00, 3829.00)

Table 4.1: Characteristics of the participants at baseline. a diagnosed by real-time PCR; bdiagnosed
by microscopy; unclassified bacteria represents the category of sequences that could not be assigned
to a phyla, and the; *pooled category consists of the remaining 13 phyla with average relative abun-
dance less than 1%.
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Estimated effect (95 % CI)

Actinobacteria Bacteroidetes Firmicutes Shannon

LPS
IL-10 0.20 (-0.58, 0.98) -0.39 (-0.90, 0.12) 0.24 (-0.23, 0.71) -0.22 (-0.51, 0.07)

TNF-α 0.55 (-0.35, 1.44) -0.06 (-0.66, 0.54) -0.14 (-0.70, 0.41) 0.03 (-0.31, 0.37)

AscAg
IL-5 -1.02 (-2.78, 0.74) 0.09 (-1.10, 1.28) 0.39 (-0.74, 1.52) -0.48 (-1.16, 0.20)

IFN-γ -1.03 (-2.45, 0.39) 0.15 (-0.80, 1.10) -0.20 (-1.13, 0.74) 0.14 (-0.44, 0.71)

PHA
IL-5 -0.04 (-1.55, 1.46) 0.32 (-0.67, 1.32) -0.85 (-1.82, 0.11) 0.61 (0.02, 1.20)

IFN-γ -0.57 (-2.12, 0.98) -0.26 (-1.28, 0.75) -0.03 (-1.05, 0.99) 0.45 (-0.18, 1.08)

Table 4.2: The association between bacterial proportion and diversity on cytokine responses.

and post-treatment. Regardless of randomization arm, we fitted the linear mixed
model on each cytokine responses as outcomes. The predictors were bacterial
proportions and its interaction with helminth infection. A similar analysis was
performed to estimate the association between bacterial diversity and cytokine
responses. Table 4.3 illustrates the associations between bacterial proportions
or diversity and cytokine responses when subjects were helminth-positive or -
negative.

In the innate immune response to LPS, the Bacteroidetes proportion showed
a significant negative association with IL-10 levels in helminth-negative subjects
(estimated effect (95% confidence interval (CI)): -1.96 (-3.05, -0.87), p-value = 0.001;
Table 4.3). This association was significantly different from that of helminth-
negative subjects (p-value for the difference = 0.002, Figure 2A) in which the as-
sociation was absent (-0.03 (-0.59, 0.53), Table 4.3). The bacterial diversity had
no significant association with IL-10 response to LPS (Table 3, Figure 2B). With
regard to the helminth-specific cytokine responses, none of IFN-γ and IL-5 re-
sponses to AscAg were significantly associated with bacterial proportions or di-
versity (Table 4.3). In the adaptive responses (PHA), none of the cytokine re-
sponses were significantly associated with the bacterial proportion in uninfected
subjects (Table 3). Although not significant, we noticed lower levels of IFN-γ to
PHA with higher Firmicutes proportions (-1.57 (-3.08, -0.05), p-value = 0.045; Table
4.3). This association between Firmicutes proportion with IFN-γ to PHA in unin-
fected subjects was however significantly different from that in subjects who were
infected (p-value for the difference = 0.009, Figure 2C). At the same time, there
was a significantly increasing concentration of IFN-γ to PHA among those who
were uninfected when bacterial diversity was higher (0.95 (0.15, 1.75), p-value
0.022; Table 3), although this association was not significantly different from the
helminth-positive group (-0.07 (-0.88, 0.73), p-value for the difference = 0.056; Ta-
ble 3, Figure 2D). A similar negative association of Firmicutes was observed in
IL-5 responses to PHA in uninfected subjects (-1.52 (-3.02, -0.02), p-value = 0.05;
Table 4.3). Conversely increasing bacterial diversity led to slightly higher levels
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Figure 4.2: The association between bacterial proportion and diversity on certain cytokines in
helminth-negative and -positive subjects. The effect of bacterial proportions on cytokine responses
was analyzed for helminth-negative (helminth(-)) and helminth-positive (helminth(+)) groups by a
linear mixed model. Estimated effects ˘ 95% CI are shown for the effect of Bacteroidetes proportion
on IL-10 responses to LPS (A), diversity on IL-10 to LPS (B) and for the effect of Firmicutes (C) and di-
versity (D) on IFN-γ responses to PHA. For assessing statistical significance conventional Bonferroni
correction was applied; *p-value ď 0.025, **p-value ď 0.01.

of IL-5 to PHA in the uninfected subjects (0.85 (0.07, 1.63), p-value = 0.034; Ta-
ble 3). Both observations were not significantly different from the effects in those
who were helminth-positive.
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Figure 4.3: The association between bacterial proportion and diversity on certain cytokines at pre-
treatment and post-treatment in two randomization arms. After deworming, comparisons were
made for all subjects pre-treatment versus post-treatment (placebo group) and post-treatment placebo
versus albendazole groups. Estimated effects of a linear mixed model ˘ 95% CI are depicted. In panel
A, the effect of Bacteroidetes proportion on IL-10 responses to LPS is shown for the different groups.
Panel B and C depict the effect of Actinobacteria on TNF-α levels to LPS and on IL-5 responses to
AscAg, respectively. The effect of Firmicutes on PHA-induced IL-5 is shown in panel D. *p-value ď
0.025, **p-value ď 0.01.



4.3 Results 81
Es

ti
m

at
ed

ef
fe

ct
(9

5
%

C
I)

A
ct

in
ob

ac
te

ri
a

Ba
ct

er
oi

de
te

s
Fi

rm
ic

ut
es

Sh
an

no
n

In
fe

ct
io

n
st

at
us

LP
S

IL
-1

0
0.

25
(-

0.
90

,1
.4

1)
-0

.0
3

(-
0.

59
,0

.5
3)

*
0.

14
(-

0.
45

,0
.7

3)
-0

.2
0

(-
0.

58
,0

.1
9)

he
lm

in
th

(+
)

0.
28

(-
0.

77
,1

.3
4)

-1
.9

6
(-

3.
05

,-
0.

87
)

0.
42

(-
0.

31
,1

.1
4)

-0
.2

5
(-

0.
65

,0
.1

5)
he

lm
in

th
(-

)

T
N

F-
α

0.
68

(-
0.

64
,2

.0
0)

-0
.1

8
(-

0.
86

,0
.5

0)
-0

.0
4

(-
0.

73
,0

.6
5)

-0
.0

9
(-

0.
54

,0
.3

6)
he

lm
in

th
(+

)

0.
50

(-
0.

72
,1

.7
1)

0.
35

(-
0.

97
,1

.6
7)

-0
.2

9
(-

1.
14

,0
.5

5)
0.

16
(-

0.
31

,0
.6

3)
he

lm
in

th
(-

)

A
sc

A
g

IL
-5

-1
.6

9
(-

4.
34

,0
.9

7)
-0

.0
4

(-
1.

41
,1

.3
2)

0.
60

(-
0.

81
,2

.0
0)

-0
.7

6
(-

1.
70

,0
.1

7)
he

lm
in

th
(+

)

-0
.4

6
(-

2.
78

,1
.8

6)
0.

38
(-

2.
08

,2
.8

4)
0.

10
(-

1.
69

,1
.8

9)
-0

.2
1

(-
1.

12
,0

.7
1)

he
lm

in
th

(-
)

IF
N

-γ
-1

.4
8

(-
3.

58
,0

.6
3)

-0
.0

3
(-

1.
12

,1
.0

5)
0.

35
(-

0.
78

,1
.4

8)
-0

.4
3

(-
1.

18
,0

.3
3)

he
lm

in
th

(+
)

-0
.7

1
(-

2.
58

,1
.1

6)
0.

78
(-

1.
15

,2
.7

0)
-1

.1
1

(-
2.

56
,0

.3
3)

0.
67

(-
0.

07
,1

.4
1)

he
lm

in
th

(-
)

PH
A

IL
-5

-1
.6

8
(-

3.
87

,0
.5

2)
0.

33
(-

0.
81

,1
.4

6)
-0

.4
5

(-
1.

62
,0

.7
3)

0.
34

(-
0.

45
,1

.1
3)

he
lm

in
th

(+
)

1.
36

(-
0.

58
,3

.3
1)

0.
18

(-
1.

83
,2

.2
0)

-1
.5

2
(-

3.
02

,-
0.

02
)

0.
85

(0
.0

7,
1.

63
)

he
lm

in
th

(-
)

IF
N

-γ
-1

.9
2

(-
4.

14
,0

.3
1)

-0
.7

1
(-

1.
85

,0
.4

3)
0.

91
(-

0.
28

,2
.0

9)
*

-0
.0

7
(-

0.
88

,0
.7

3)
he

lm
in

th
(+

)

0.
54

(-
1.

48
,2

.5
5)

1.
20

(-
0.

85
,3

.2
5)

-1
.5

7
(-

3.
08

,-
0.

05
)

0.
95

(0
.1

5,
1.

75
)

he
lm

in
th

(-
)

Ta
bl

e
4.

3:
T

he
as

so
ci

at
io

n
be

tw
ee

n
ba

ct
er

ia
l

pr
op

or
ti

on
an

d
di

ve
rs

it
y

on
cy

to
ki

ne
of

he
lm

in
th

-i
nf

ec
te

d
an

d
-u

ni
nf

ec
te

d
su

bj
ec

ts
re

ga
rd

le
ss

of
tr

ea
tm

en
t

al
lo

ca
ti

on
.

Bo
ld

pr
in

te
d

nu
m

be
rs

re
pr

es
en

t
si

gn
ifi

ca
nt

as
so

ci
at

io
n

be
tw

ee
n

co
rr

es
po

nd
in

g
ba

ct
er

ia
l

pr
op

or
ti

on
or

di
ve

rs
it

y
an

d
cy

to
ki

ne
(p

-v
al

ue
ď

0.
02

5)
.*

Si
gn

ifi
ca

nt
di

ff
er

en
ce

in
H

el
m

in
th

(-
)v

er
su

s
H

el
m

in
th

(+
)(

p-
va

lu
e

ď
0.

02
5)

.



82 Chapter 4 – The effect of gut-microbiome on immune response

Es
ti

m
at

ed
ef

fe
ct

(9
5

%
C

I)

A
ct

in
ob

ac
te

ri
a

Ba
ct

er
oi

de
te

s
Fi

rm
ic

ut
es

Sh
an

no
n

gr
ou

p

LP
S

IL
-1

0

-0
.3

6
(-

1.
60

,0
.8

7)
-0

.4
7

(-
1.

23
,0

.2
9)

0.
44

(-
0.

28
,1

.1
6)

-0
.3

2
(-

0.
72

,0
.0

8)
pr

e

0.
61

(-
0.

74
,1

.9
6)

-0
.1

1
(-

0.
84

,0
.6

2)
0.

06
(-

0.
63

,0
.7

5)
-0

.1
4

(-
0.

57
,0

.3
0)

po
st

-p
la

0.
09

(-
1.

40
,1

.5
8)

-1
.7

4
(-

4.
08

,0
.5

9)
0.

27
(-

0.
82

,1
.3

5)
-0

.2
0

(-
0.

91
,0

.5
0)

po
st

-a
lb

TN
F-

α

-1
.5

5
(-

2.
87

,-
0.

22
)*

0.
10

(-
0.

80
,1

.0
0)

0.
44

(-
0.

39
,1

.2
7)

-0
.4

1
(-

0.
87

,0
.0

5)
pr

e

2.
02

(0
.5

7,
3.

47
)*

*
-0

.2
4

(-
1.

11
,0

.6
2)

-0
.3

5
(-

1.
14

,0
.4

5)
0.

27
(-

0.
22

,0
.7

6)
po

st
-p

la

1.
89

(0
.2

9,
3.

49
)

1.
15

(-
1.

61
,3

.9
1)

-0
.9

8
(-

2.
22

,0
.2

7)
0.

75
(-

0.
06

,1
.5

5)
po

st
-a

lb

A
sc

A
g

IL
-5

-3
.6

5
(-

6.
34

,-
0.

97
)*

-0
.2

3
(-

2.
10

,1
.6

4)
1.

52
(-

0.
19

,3
.2

4)
-0

.8
9

(-
1.

83
,0

.0
5)

pr
e

2.
90

(-
0.

03
,5

.8
4)

**
-0

.0
6

(-
1.

69
,1

.5
8)

-0
.7

6
(-

2.
29

,0
.7

8)
0.

17
(-

0.
81

,1
.1

6)
po

st
-p

la

-1
.4

2
(-

4.
58

,1
.7

3)
2.

26
(-

2.
89

,7
.4

1)
1.

84
(-

1.
18

,4
.8

6)
-1

.4
8

(-
3.

24
,0

.2
8)

po
st

-a
lb

IF
N

-γ

0.
76

(-
1.

42
,2

.9
5)

0.
13

(-
1.

37
,1

.6
3)

-0
.8

4
(-

2.
24

,0
.5

6)
0.

49
(-

0.
29

,1
.2

7)
pr

e

-1
.6

1
(-

4.
00

,0
.7

7)
0.

11
(-

1.
22

,1
.4

3)
-0

.2
1

(-
1.

46
,1

.0
4)

0.
06

(-
0.

75
,0

.8
7)

po
st

-p
la

-2
.9

5
(-

5.
52

,-
0.

38
)

0.
73

(-
3.

46
,4

.9
1)

1.
92

(-
0.

54
,4

.3
8)

-0
.9

4
(-

2.
40

,0
.5

1)
po

st
-a

lb

PH
A

IL
-5

0.
67

(-
1.

66
,3

.0
0)

-0
.2

0
(-

1.
74

,1
.3

5)
-0

.8
0

(-
2.

27
,0

.6
6)

0.
59

(-
0.

22
,1

.4
0)

pr
e

1.
66

(-
0.

90
,4

.2
1)

0.
32

(-
1.

04
,1

.6
9)

-1
.5

2
(-

2.
83

,-
0.

22
)

1.
03

(0
.1

8,
1.

87
)

po
st

-p
la

-2
.5

4
(-

5.
29

,0
.2

0)
3.

16
(-

1.
14

,7
.4

7)
1.

84
(-

0.
73

,4
.4

1)
**

*
-0

.7
9

(-
2.

30
,0

.7
2)

po
st

-a
lb

IF
N

-γ

0.
32

(-
2.

09
,2

.7
2)

0.
41

(-
1.

18
,1

.9
9)

-0
.7

2
(-

2.
25

,0
.8

2)
0.

63
(-

0.
23

,1
.4

8)
pr

e

0.
90

(-
1.

72
,3

.5
3)

-1
.0

3
(-

2.
42

,0
.3

6)
-0

.0
6

(-
1.

42
,1

.3
1)

0.
64

(-
0.

23
,1

.5
2)

po
st

-p
la

-3
.5

4
(-

6.
36

,-
0.

71
)

2.
60

(-
1.

80
,7

.0
0)

2.
19

(-
0.

50
,4

.8
8)

-0
.9

5
(-

2.
53

,0
.6

4)
po

st
-a

lb

Ta
bl

e
4.

4:
T

he
as

so
ci

at
io

n
be

tw
ee

n
ba

ct
er

ia
lp

ro
po

rt
io

n
an

d
di

ve
rs

it
y

on
cy

to
ki

ne
re

sp
on

se
s

ir
re

sp
ec

ti
ve

of
in

fe
ct

io
n

st
at

us
at

pr
e-

an
d

po
st

-
tr

ea
tm

en
t

in
tw

o
ra

nd
om

iz
at

io
n

ar
m

s.
pr

e
=

pr
e-

tr
ea

tm
en

t
(r

eg
ar

dl
es

s
of

he
lm

in
th

in
fe

ct
io

n
st

at
us

);
po

st
-p

la
=

po
st

-t
re

at
m

en
t

pl
ac

eb
o

ar
m

;
po

st
-a

lb
=

po
st

-t
re

at
m

en
t

al
be

nd
az

ol
e

ar
m

.
*p

-v
al

ue
ď

0.
02

5,
**

p-
va

lu
e

ď
0.

02
5

in
pr

e
ve

rs
us

po
st

-p
la

,
**

*p
-v

al
ue

ď
0.

02
5

in
po

st
-a

lb
ve

rs
us

po
st

-p
la

.



4.3 Results 83

4.3.4 The effect of albendazole on the relationship between in
vitro cytokine responses and bacterial proportion and di-
versity

We further investigated whether deworming affects the relationship between bac-
terial proportions or diversity and cytokine responses. For this purpose, we fitted
the linear mixed model on all subjects (n = 66) to characterize the association be-
tween bacterial proportions and cytokine responses at two time points and in the
two randomization arms. These analyses were irrespective of the infection status.
A similar model was applied for the diversity index.

Table 4.4 lists the associations between the proportions of three major bacterial
phyla and diversity with cytokine responses, before and after anthelminthic treat-
ment. With regard to the relationship between Bacteroidetes and IL-10 response to
LPS, no significant differences were observed between pre- versus post-treatment
or between treatment groups (Table 4.4). While the estimated association between
Bacteroidetes proportion and IL-10 to LPS at pre-treatment (estimate (95% CI): -
0.47 (-1.23, 0.29)) and post-treatment in placebo group (-0.11 (-0.84, 0.62)) were
close to zero, the association at post-treatment in albendazole group was clearly
lower (-1.74 (-4.08, 0.59); p-value for the difference between placebo and albenda-
zole was 0.193, Table 4.4 Figure 4.3A). The association between IFN-γ in response
to PHA and bacterial diversity was also not significant at post-treatment either in
placebo or in albendazole group (Table 4.4).

The association between higher Actinobacteria proportion with decreasing re-
sponse of TNF-α to LPS was borderline significant at pre-treatment (estimate
(95% CI): -1.55 (-2.87, -0.22), p-value = 0.024; Table 4.4). This association was sig-
nificantly different to the effect of Actinobacteria at post-treatment when subject re-
ceived placebo (2.02 (0.57, 3.47); p-value < 0.001; Figure 4.3B), however no differ-
ence was observed when comparing placebo and albendazole group (1.89 (0.29,
3.49), p-value for the difference = 0.907; Figure 4.3B). A similar result was ob-
tained from the association between Actinobacteria with IL-5 responses to AscAg.
At pre-treatment, the increasing Actinobacteria proportions were significantly as-
sociated with less IL-5 production in response to AscAg (-3.65: (-6.34, -0.97), p-
value = 0.009; Table 4.4). This association was significantly different to the effect
of Actinobacteria at post-treatment in placebo group (2.90 (-0.03, 5.84), p-value =
0.002; Figure 4.3C). Although the estimated association in albendazole group was
lower (-1.42 (-4.58, 1.73), this was not significantly different between the treatment
groups (p-value = 0.052; Figure 4.3C).

On the other hand, while the association between Firmicutes and IL-5 response
to PHA at pre-treatment was not significantly different compared to the associa-
tion at post-treatment in placebo group, there was a significant difference of this
association between albendazole and placebo group at post-treatment (estimate
(95% CI) for placebo -1.52 (-2.83, -0.22) versus albendazole 1.84 (-0.73, 4.41), p-
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value = 0.024; Table 4.4, Figure 4.3D).

4.4 Discussion

This study aimed to analyze the effect of helminth infections on the relationship
between gut microbiota and the immune system. Examination of the microbiome
composition in rural and urban area of Indonesia as well as USA showed that
there were clear gradients in Bacteroidetes to Firmicutes proportion. This was one
of the reason we focused on the three bacterial phyla in this study besides the
result of the previous study on these subjects which reveals the associations be-
tween helminth infection and the odds of Bacteroidetes to Firmicutes as well as
Actinobacteria to Firmicutes. When focusing on samples from Ende, we found
a negative association between proportions of Bacteroidetes and IL-10 response
to LPS in helminth-negative subjects and the presence of helminths was shown
to dampen this effect. Anthelminthic treatment partly recovered this effect, al-
though not statistically significant. To our knowledge, this is the first time that the
association between gut microbiome, presence of parasitic helminths and whole
blood cytokine responses was analyzed in a longitudinal study using a random-
ized placebo-controlled anthelminthic trial.

IL-10 was already marked as a key anti-inflammatory cytokine involved in in-
duction of immune suppression by helminths [Yazdanbakhsh et al. (2002)]. Our
observation that helminths counteract the suppressed IL-10 response to LPS in
subjects with higher Bacteroidetes proportions supports the so called “old friends
hypothesis” [Rook (2009)], stating that certain infectious agents such as helminths
may have protective effects against immune dysfunction and inflammatory dis-
eases, possibly through IL-10. This is strengthened by our observed gradient of
the relative abundance of Bacteroidetes from rural to urban areas, where immune-
related diseases are more prevalent [Bach (2002)]. In contrast, a recent meta-
analysis indicated that inflammatory bowel disease (IBD) patients displayed lower
proportions of Bacteroidetes [Zhou and Zhi (2016)], however this was only found
when measuring by real-time quantitative PCR (not by conventional culture)
and mainly in Asian studies. Furthermore, a member of the Bacteroidetes fam-
ily, gut inhabitant Bacteroides fragilis, was shown to protect mice from experimen-
tal colitis, mediated by polysaccharide A (PSA) possibly through IL-10 induction
[Mazmanian et al. (2008)]. However, although B. fragilis is the most well-known
pathogen of the Bacteroidetes, it is the least common species in the Bacteroidetes
phylum in the human gut [Wexler (2007)]. It could therefore be that other fac-
tors or species play a dominant role in the general effect of Bacteroidetes on IL-10
responses. Further studies are therefore needed to assess the translation of our
findings to a clinical setting, for example prevalence or activity of IBD or other
auto-immune diseases. Moreover, since we have measured systemic whole blood
cytokine responses, we are not sure whether this is representative for the gut re-
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sponses.
A trend of negative association between Firmicutes and concentration of IFN-γ

to PHA was seen in helminth-negative subjects only. In subjects with helminth,
this association was positive, although this difference fell short of statistical sig-
nificance. Parallel to this trend, the bacterial diversity was positively associated
with IFN-γ responses to PHA in subjects who did not carry helminths, and in
helminth-positive subjects this association was dampened. Since a similar oppo-
site trend was observed in the relationship between Firmicutes compared to bacte-
rial diversity on IL-5 responses to PHA, we may conclude that not the proportion
of Firmicutes, but the total bacterial diversity drove this association. Firmicutes
was the most abundant phyla in this population and the increasing proportion
of Firmicutes will obviously reduce diversity. This indicates that analyzing sin-
gle bacterial phyla without considering the remaining phyla may lead to biased
results as microbiome data is compositional and thus correlated between phyla.

Although deworming removed most helminths, treatment did not signifi-
cantly alter the effects of bacterial proportions on cytokine responses. Regard-
ing the Bacteroidetes effect on LPS to IL-10, we did observe a lower effect in the
albendazole group compared to placebo. Although not significant, this might
point towards the idea that anthelminthic treatment could restore the -possibly
detrimental- interaction of bacteria with immune responses. Surprisingly, we
found differences in immune modulation by Actinobacteria in the pre- versus post-
treatment group. Although there was a significant association of time (in subjects
receiving placebo), these associations were not significantly different in the al-
bendazole group. The effect of time could be explained by other factors such as
diet and possibly improved hygiene, resulting from increased awareness during
the presence of our medical team in the study area. In the analysis of treatment’s
effect on the association between bacterial proportion and diversity, there was a
significant difference between the association of Firmicutes on the IL-5 response
to PHA in albendazole group compared to placebo group. In subjects receiving
albendazole, Firmicutes proportions were positively associated with IL-5 levels,
while we observed a negative (non-significant) effect in helminth-negative indi-
viduals over time. This result seems contradictory, but might be related to the fact
that small numbers were analyzed and not everyone in the albendazole group
lost their helminth infection. The analysis on subjects who were infected at base-
line and cleared their infection would possibly reveal more clearly how the rela-
tionship between bacterial communities and immunity are affected by treatment.
This analysis lacks statistical power in our study as the sample size was small (n
= 12 out of 17 subjects who were successfully dewormed). Future research which
involves larger sample sizes needs to be conducted. Another relevant thought in
this and similar research settings is that although albendazole removes helminths
effectively, the immunomodulatory effects of helminths on cytokine responses
are long-lasting and cannot be easily corrected by short-term treatment. It was
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previously reported by Endara et al. (2010) that the length of periodic treatment
is important for altering immune responses, i.e. that studies with a longer period
of treatment (up to 30 months) are more likely to show effects of deworming.

As significant associations between bacterial communities and cytokine re-
sponses were only observed when subjects were helminth-negative, clearly other
factors than helminth and treatment are also involved in the alteration of the mi-
crobiome community and their interaction with the immune system. For exam-
ple, our study data lack information on diet. Dietary intake was clearly shown
to affect bacterial communities in the gastro-intestinal tract [Wu et al. (2011)].
This might also be related to changes in social economic status leading towards
a more high-fat diet when moving from rural to urbanized areas. Recent articles
reported inconsistencies with regard to the direction of Bacteroidetes to Firmicutes
ratio in rural to urban comparisons of microbiome profiles from different geo-
graphical areas. Studies comparing children from Bangladesh to USA children
showed direction of increasing Bacteroidetes : Firmicutes in USA, as observed in
our data [Lin et al. (2013)], while studies in elderly Korean and children in Burk-
ina Faso showed opposing results, i.e. decreasing Bacteroidetes : Firmicutes ratios
from rural to urban [Park et al. (2015), de Filippo et al. (2017)]. This could be
caused by different genera under Bacteroidetes or Firmicutes phyla which might
be affected by certain type of diet. Therefore, it will be beneficial for the future
studies to also include dietary factors from the study participants.

A further limitation is related to the statistical tools available in analyzing
this relationship. Here, we characterized the association of three single bacterial
proportions on cytokine response in the helminth-positive and -negative group.
Using this approach, we first ignore the effect of compositional structure in the
microbiome data, namely when computing the p-value we assumed that these
bacterial categories are independent while they are correlated. Secondly, the cur-
rent statistical model ignores the fact that microbiome is a variable measured with
errors at a different scale than the cytokine responses [Teixeira-Pinto et al. (2009)].
In addition, we might as well ignore the possible unobserved confounders. It
is therefore important for the future studies in this field to develop a statistical
method to characterise the effects of helminth infection on both outcomes simul-
taneously by accounting these unobserved errors with a joint model.

To conclude, our findings supports the hypothesis for a role of helminths in
modulating the immune response, which might be related to bacterial proportion
and diversity. Deworming did not show a particular effect on the observed asso-
ciations. It is therefore important to repeat such studies with a larger sample size
as well as using more advanced statistical models to further analyze this relation-
ship by considering the complex structure of microbiome data and other possible
confounders.
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4.5 Supplementary Materials

Characteristics
albendazole placebo

N Result N Result

Parasite infection (%)

A. lumbricoides 26 3 (11.5) 40 17 (42.5)

Hookworm 26 0 (0) 40 11 (27.5)

N. americanus 26 0 (0) 40 11 (27.5)

A. duodenale 26 0 (0) 40 2 (5.0)

T. trichiura 26 4 (15.4) 40 13 (32.5)

Any helminths 26 5 (19.2) 40 26 (65.0)

Proportion (in %) of the 6 most

abundant bacteria phyla, mean(SD)

Actinobacteria

26

14.1 (8.9)

40

9.2 (7.4)

Bacteroidetes 3.6 (5.8) 7.7 (14.1)

Firmicutes 60.1 (13.7) 59.2 (16.7)

Proteobacteria 9.0 (6.5) 8.7 (6.8)

Unclassified 1.8 (1.1) 2.6 (2.8)

Pooled 11.5 (6.7) 12.5 (7.4)

Diversity Index, median(IQR)

Shannon index
26

0.90 (0.85, 1.08)
40

0.97 (0.79, 1.05)

Bray-Curtis 0.19 (0.14, 0.26) 0.24 (0.17, 0.36)

Table S4.5.1: The characteristics of the participants at 21 months after treatment
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The joint mixture model for the effect

of multivariate count on the
continuous outcome subject to

measurement error

Abstract

In modelling the association between exposure and multiple outcomes from a
hierarchical setting, one needs to take into account the correlation structure be-
tween these observations. When outcomes are a mixture of continuous and dis-
crete types, modelling becomes complex because joint multivariate distribution
cannot be formulated. Specifically, here the outcomes are of a continuous type
and multivariate counts with a fixed total. In addition, the multivariate data
are overdispersed and measured with errors. For this purpose, we developed
a joint regression model in which the multivariate count data are assumed to be
multinomially distributed given the random effects. A set of random effects are
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subject to measurement error.

89



90 Chapter 5 – The joint mixture model to account for measurement error

incorporated to account for the measurement errors in the multivariate counts as
well as for the correlation between two different types of outcomes and are as-
sumed to follow multivariate normal distribution. The model was also extended
to account for a repeated - measurement setting, where additional latent variables
are needed. Different covariance structures were explored. The performance of
the proposed method was assessed via simulation studies which show that the
joint model outperformed the model that ignores the measurement errors (the so-
called naive model) in estimating the effect size of the covariate of interest. Data
from a repeated measurement study of gut microbiome and cytokine responses
carried out in helminth-endemic areas were analyzed.

5.1 Introduction

Biomedical studies often collect multiple outcomes from the same subject to re-
veal complex underlying biological mechanisms. One of the interests might be
to model the association between a specific outcome with regard to the presence
or absence of a disease or treatment. A straightforward method is to analyze the
association for each outcome separately. However, such an approach might re-
duce the statistical power since observations from the same subject are potentially
highly-correlated. In addition, one might be interested in the association between
predictor and both outcomes. Here the randomness of both outcome variables
needs to be modelled since ignoring these randomness yields biased estimates.
A joint regression model is the approach for this purpose and also increases the
statistical power to estimate effects of covariates on outcomes by incorporating
the correlation between observations from the same subject via random effects.
This approach is however challenging when the observations are from different
types, for instance a mixture between continuous and discrete outcomes. The
reason is that a multivariate distribution of these outcomes cannot be formulated
[McCulloch (2008); Geys et al. (2008)]. In addition, biomedical studies have often
a cluster or a longitudinal design which induces a correlation between observa-
tions from the same unit.

Our study is motivated by the repeated measurements of gut microbial com-
munity and whole blood cytokine responses on subjects in helminth-endemic
area in Indonesia. The gut microbiome compositions are obtained from sequenc-
ing of 16S rRNA gene. The processsed data consists of counts of taxonomical
data with a unit constraint for all taxonomical abundance with additional hetero-
geneity in the data due to measurement error or variability in sampling or indi-
vidual. The observation on whole blood cytokine response are continuous data
representing the response of this cytokine to certain antigen. Separate studies
have shown that the interaction between treatment and helminth infection alter
the microbiome composition (Chapter 4) as well as the whole blood cytokine re-
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sponses [Wammes et al. (2016)]. A straighforward method was used to model
the cytokine responses as an outcome with infection, treatment and microbiome
composition expressed as a relative abundance for each bacteria taxa as covariate.
It was shown that the proportion of Bacteroidetes has a significant association with
the interleukin-10 (IL-10) response to lipopolysaccharide (LPS) in an uninfected
subjects and when the subjects were helminth infected, the association between
Bacteroidetes and IL-10 response to LPS are significantly different. This result sug-
gests a role of helminth in changing the association between microbiome compo-
sition and cytokine responses, however, the model assumes that the microbiome
composition are fixed and hence does not account for the randomness due to
measurement error. Microbiome data obtained through sequencing of 16S rRNA
gene is observed with errors [Schloss et al. (2011)], adding an extra variation in
the resulting data [Rosenthal et al. (2014)]. Furthermore, the joint effect of in-
fection status on both outcomes cannot be assessed in this simple model. Thus,
our objectives in this paper are to characterize the association between covariates
of interest and two outcomes and to quantify the correlation between these two
outcomes.

Several works on development of statistical model in the joint model between
continuous and discrete type outcomes in the biomedical research have been pub-
lished, namely between continous and count data [Kassahun et al. (2013); Yang
and Kang (2010)], between continuous and time to event (reviewed in Neuhaus
et al. (2009)), and continuous type with binary data [Iddi and Molenberghs (2012);
Catalano and Ryan (1992); Catalano et al. (1993)] but less on multinomial type
data. Here, we are dealing with the mixture of continuous and multivariate dis-
crete outcome with a constraint that the total count is fixed. Review on formulat-
ing the joint model is discussed in Verbeke et al. (2014). Typically, when the objec-
tive is on modelling the association between covariates and multiple predictors
and quantification of the correlation between outcomes, shared random effect is
used to account for the correlation between multiple outcomes from the same
subject [Geys et al. (2008)]. When dataset has a complex correlation structure
as in our study, the model needs to be extended. In our motivating data, three
types of correlation structures need to be accounted for, namely the correlation
between multiple categories at the same time, the correlation between multiple
observation at each type of outcome over time and the correlation between two
types of outcome. First of all, we consider the mixed model for each outcomes
separately and for each type of outcome, a random effect for outcome-specific is
introduced. Several distributions for a random effect to model the overdisper-
sion in the multinomial data has been discussed in literature [Li (2015)]. Here, we
proposed to use a normally distributed random effect to allow for a more flexible
covariance structure. Secondly, as two outcomes were observed from the same
subjects, we incorporated a random shared effect to account for the correlation
between two types of outcomes. Estimation and inference were done using the
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maximum likelihood approach [Gueorguieva (2016)]. The marginal model was
obtained by integrating over the random effect distribution using Gauss-Hermite
quadrature.

The rest of the manuscript is organized as follows. In Section 5.2, we described
the proposed joint method in modelling the association of binary covariate with
mixture types of outcomes. We carried out the investigation of the performance
of the proposed method in comparison with the naive method in Section 5.3. The
proposed method is then applied to the motivating dataset in Section 5.4 and we
conclude and discuss the proposed method in Section 5.5.

5.2 Statistical methods

Suppose for subject i, i “ 1, . . . ,N, two types of outcomes were collected at time
points t, t “ 1, . . . ,N, namely a continuous type of outcome Y ptq

i , and a J dimen-

sional vector of multivariate counts CCCptq
i “

!

Cptq
i1 , . . . ,Cptq

iJ

)

, with a fixed total count

Cptq
i` . In addition, let XXX ptq

i be the covariate values for subject i at time point t. Our
aim is to model the relationship between these two outcomes while taking into
account the effects of covariates on the outcomes and the presence of measure-
ment error in the multivariate counts. We start with the cross-sectional setting
and then extend the model to the longitudinal setting. Note that the superscript t
in the cross-sectional setting will be eliminated.

In the cross-sectional setting, a simple linear regression model can be used to

assess the relationship between the continuous outcome Yi and the variable
Ci j

Ci`
“

πi j, i.e. the proportion of counts in category j while adjusting for the covariate XXX .
Specifically,

Yi “ XXXiξξξ ` γ jπi j ` εi. (5.1)

Note that interaction terms between the covariates XXXi and the proportion πi j can
also be included. This model however ignores that the multivariate count data
are subject to measurement error. Further, it is also often of interest to estimate
the effect of the covariate XXXi on both outcomes. A joint model for the continu-
ous outcome and for the multivariate count outcome addresses these two issues
while potentially increasing the power to detect association between XXX and the
two outcomes. The correlation between these two outcomes can be modelled by
random shared effects. We first describe the regression model for the multivariate
count data and then describe the joint model.
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5.2.1 The multinomial logistics mixed model

Let the random effect uuuC
i represents the measurement error which is present in the

count data. Following the generalized linear framework, the multivariate count
outcome conditioned on uuuC

i is assumed to follow a multinomial distribution with
parameter πππ i “ tπi1, . . . ,πiJu [Hartzel et al. (2016); Hedeker (2003)]. One could
specify the random effect uuuC

i to follow the conjugate distribution as introduced
by Chen and Li (2013). Although this approach yields a closed form formula
for the marginal distribution, the correlation structure between the categories is
modelled by only one parameter. In order to make the model more flexible, we
assumed that the vector uuui follows a multivariate normal distribution. Note that
the measurement error for counts in different categories observed for the same
person might be correlated. Let ρ be the correlation between uC

i j and uC
ik. The

corresponding regression model is defined as follows.

logit
ˆ

πi j

πi1

˙

“ XXXiξξξ
C ` uC

i j, j “ 2, . . . ,J. (5.2)

with the first category as a reference. Here, uuuC
i “

�

uC
i2, . . . ,u

C
iJ

(

are the random
effects for each logit, which follow a multivariate normal distribution with zero
mean and a symmetric covariance matrix ΣC which is defined as follows.

Σ “

¨

˚

˚

˚

˚

˝

σ2
uC2

¨ ¨ ¨
ρσuC2

σuC3
σ2

uC3
¨ ¨

...
...

. . .
...

ρσuC2
σuCJ

ρσuC3
σuCJ

. . . σ2
uCJ

˛

‹

‹

‹

‹

‚

.

The marginal distribution for CCCi is

PrpCCCi “ tCi1, . . . ,CiJuq “
ż

Pr
`

Ci1, . . . ,CiJ |UUUC
i

˘

Pr
`

UUUC
i

˘

dUUUC
i

“
ż

Ci`!
J

ź

j“1

ˆ

1
Ci j!

˙

pπi jqCi j Pr
`

UUUC
i

˘

dUUUC
i (5.3)

In our data example, since we assume only three bacterial categories, we have
the following formulation:

log
ˆ

πi2

πi1

˙

“ XXXiξξξ
C
2 ` uC

i2

log
ˆ

πi3

πi1

˙

“ XXXiξξξ
C
3 ` uC

i3
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and the random effect uuuC
i “

�

uC
i2,u

C
i3

(

„ MVNpΣq where
˜

σ2
uC2

ρσuC2
σuC3

ρσuC2
σuC3

σ2
uC3

¸

5.2.2 The joint model in the cross-sectional setting

To model the association between the two types of outcomes in the cross-sectional
setting, we introduce a vector of normally distributed shared random effects uuuS.
These random effects represent all unobserved factors having an effect on both
outcomes. Note that for the count data, the overdispersion feature may include
a measurement error which is modelled by the random effects uuuC

i “
�

uC
i2, . . . ,u

C
iJ

(

.
Now the joint model for both outcomes in the cross-sectional setting is as follows.

log
ˆ

π2

π1

˙

“ XXXiξξξ
C
2 ` uC

i2 ` uS
i2

log
ˆ

π3

π1

˙

“ XXXiξξξ
C
3 ` uC

i3 ` uS
i3

Yi “ XXXiξξξ
pY q ` uS

i2 ` uS
i3 ` εi. (5.4)

We define uuu˚
i “ uuuC

i ` uuuS
i . Therefore, uuu˚

i follows the multivariate normal distrib-
ution

uuu˚
i “

¨

˝

uC
i2 ` uS

i2
uC

i3 ` uS
i3

uS
i2 ` uS

i3 ` ε1

˛

‚„ MVNp0003,Σq ,

Σ “

¨

˚

˝

σ2
uC2

` σ2
uS2

ρσuC2
σuC3

σ2
uS2

ρσuC2
σuC3

σ2
uC3

` σ2
uS3

σ2
us3

σ2
uS2

σ2
uS3

σ2
us2

` σ2
us3

` σ2
ε1

˛

‹

‚

. (5.5)

As there might be not sufficient information to estimate all parameters, we
could assume that the variance for both shared effects are the same, i.e. σ 2

uS2
“ σ2

uS3
or that also the shared random effect themselves are equal, i.e. for both logits we
have uS

i . This latter model can be formulated as follows

log
ˆ

π2

π1

˙

“ XXXiξξξ
C
2 ` uC

i2 ` uS
i

log
ˆ

π3

π1

˙

“ XXXiξξξ
C
3 ` uC

i3 ` uS
i

Yi “ XXXiξξξ
Y ` uS

i ` εi (5.6)
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and the covariance structure for the random effect Σ2:

Σ “

¨

˚

˝

σ2
uC2

` σ2
uS

ρσuC2
σuC3

` σ2
uS

σ2
uS

ρσuC2
σuC3

` σ2
uS

σ2
uC3

` σ2
uS

σ2
uS

σ2
uS

σ2
uS

σ2
uS

` σ2
ε1

˛

‹

‚

(5.7)

More information about the variances of the random effects is available in a
longitudinal study design.

5.2.3 The joint model for mixture of outcomes in a longitudinal
setting

In modelling the association between covariates and both outcomes simultane-
ously in a repeated measurements setting, we need to account for the additional
correlation structure in the data. For each type of outcomes, observations from
the same subject at different time points will be correlated. A linear mixed effect
model with one subject-specific random effect uY is used for continuous outcome
[Laird and Ware (1982)]. The correlation between two different type of outcomes
will be incorporated using the random shared effect UUU pSq

i . Thus, for each subject i
we may formulate the following model.

log
ˆ

π21

π11

˙

“ XXXiξξξ
C
2 ` uC

i2 ` uS
i2

log
ˆ

π31

π11

˙

“ XXXiξξξ
C
3 ` uC

i3 ` uS
i3

Yi1 “ XXXiξξξ
Y ` uS

i2 ` uS
i3 ` uy ` ε1

log
ˆ

π22

π12

˙

“ XXXiξξξ
C
2 ` uC

i2 ` uS
i2

log
ˆ

π32

π12

˙

“ XXXiξξξ
C
3 ` uC

i3 ` uS
i3

Yi2 “ XXXiξξξ
Y ` uS

i2 ` uS
i3 ` uy ` ε2 (5.8)

Thus, the vector of random effect uuu˚
i can be defined as follows.

uuu˚
i “

¨

˚

˚

˝

uC
i2 ` uS

i2
uC

i3 ` uS
i3

uS
i2 ` uS

i3 ` uy ` e1
uS

i2 ` uS
i3 ` uy ` e2

˛

‹

‹

‚

„ MVNp0004,Σq ,
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Σ “

¨

˚

˚

˚

˝

σ2
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` σ2
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‚

(5.9)

Note that just as in the cross sectional setting we can assume that we have just
one shared effect per subject, i.e. uS

i2 “ uS
i3 “ uS

i .
The marginal distribution for multiple longitudinal outcomes is now the joint

distribution of these outcomes. We assume that conditionally on UUUS
i , the out-

comes Yi and CCCi are independent.

PrpCCCi,YYY iq “
ż

Pr
´

CCCi,YYY i|UUUS
i

¯

Pr
´

UUUS
i

¯

dUUUS
i
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´

YYY i|UUUS
i

¯
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´
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¯
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„
ż
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i ,UUU
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i

¯
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Pr
´

UUUS
i

¯

dUUUS
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Estimates of all parameters are obtained by maximizing the likelihood of the
joint distribution (5.10). Since this likelihood does not have a closed form for-
mula, numerical approximations, such as Gauss-Hermite quadrature need to be
utilized.

The variance of the shared effect uS represents the correlation between two
types of outcome. This value is hard to interpret and the marginal correlation
between two different types of outcomes might be more interesting. This correla-
tion is given by

CorrpCi j,Yiq “
σCi j ,Yi

b

σ2
Ci j

σ2
Yi

.

The marginal correlation can be computed from Monte-Carlo estimates of the first
and second moments.

5.3 Simulation studies

A simulation study was conducted to investigate the performance of the pro-
posed methods. We considered both the cross-sectional and the longitudinal
study design. With regard to the random effects structure, we considered mod-
els with one univariate shared random effect (equation (5.6)) and models with
multivariate random effects in equations (5.4) and (5.8). We considered various
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values for the standard deviations of these random effects. Our aims were firstly
to investigate the performance of the proposed method in estimating the fixed
effects parameters and the variances of the random effects. We also studied the
robustness when using the simpler univariate shared effects structure while the
multivariate random effect structure is the correct one. Performance was depicted
by box plots of the distribution of the parameter estimates across the replicates.
Secondly, we compared the performance of our advanced method to the naive
method in equation (5.1) in estimating the effects of covariates on the continuous
outcomes. Finally, we assessed the efficiency of testing for the presence of a rela-
tionship between the multivariate count outcome and the continuous one. This
was done by assessing the significance of the shared effect in the joint model by
using a likelihood ratio test and of the proportion of bacteria in the naive method
by using a t-test.

The integral over the normally distributed random effects was numerically
approximated using the Gauss-Hermite quadrature. The simulation study was
performed in R statistical software. The SAS software with proc NLMIXED was
used for the data application.

5.3.1 Simulation setting

We first generated datasets following the joint model with fixed effect parameters
as follows: ξξξ “

�

ξY
0 ,ξ

Y
1 ,ξ

C
02,ξ

C
12,ξ

C
03,ξ

C
13

(

“ t´2.3,0.1,´3.5,0.8,´1.3,´0.15u. These
parameters represent the intercepts and covariate effects for continuous outcome
(ξY

0 ,ξ
Y
1 ) and for each category logits (ξC

02,ξ
C
12,ξ

C
03,ξ

C
13). We also fixed the following

random effect standard deviations:
!

σuC2
,σuC3

,σε

)

“ t1,0.7,0.1u and the correla-
tion between the random effects for measurement errors ρ “ ´0.2. The values
of these parameters are chosen to represent the estimated parameters from the
dataset. We considered two sets of standard deviations for the shared random
effect, namely

!

σuS2
,σuS3

)

“ tp0.5,0.6q ,p1,0.8qu. For the model with a univari-
ate random effect the standard deviation of the shared effect uS could take the
value 0.5 or 1. Finally we considered N “ 100 subjects and a total count for the
multivariate outcome are the same Ci` “ 2000.

Datasets were generated using the following procedure.

1. Based on the fixed effects parameters and the standard deviations of the
random effects, we generated a multivariate normal random effect uuu˚

i with
covariance matrix Σ which is defined in equation (5.5).

2. Using the parameterization of conditional mean given in (5.4), we gener-
ated the normally distributed and the multinomial count outcomes for a
subject.
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Figure 5.1: Simulation results: the point estimate of covariate of interest from joint model and naive
model at the cross-sectional setting. The datasets were generated using a joint model in a cross-
sectional setting with logit-dependent random shared effects. The horizontal lines represent the true
value.

A similar procedure was used to generate a dataset following a joint model in
the longitudinal setting. The used fixed effects parameters are the same as in the
case of cross-sectional setting. The standard deviations of the random effects were
fixed as follows

!

σuC2
,σuC3

,σuY ,σε

)

“ t1,0.8,0.9,0.7u and a correlation coefficient
between the measurement errors of ρ “ 0.1 was used. The parameters for the
distribution of the shared random effects were the same as in the cross-sectional
setting. For each scenarios mentioned above, 1000 replicates were used.

5.3.2 Simulation results

For the cross-sectional model and logit-dependent shared random effects, the re-
sults are given in Figure 5.1 and Figure 5.2A. The estimators of all parameters are
unbiased. However there are quite some outliers for the estimates of the standard
deviations of the random shared effects (Figure 5.2B) especially for small values
of standard deviations of the random effects. The same conclusions hold for the
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Figure 5.2: Simulation results from a joint model at the cross-sectional setting with logit-dependent
random shared effect (A) the point estimates of covariate of interest as well as random effect at differ-
ent values of shared effect standard deviations, and (B) standard deviations of shared effects. The box-
plots in grey represents the distribution when the effect size of covariate of interest is higher (ξY

1 “ 1).
The horizontal lines represent the true value.
low represents the combination of σσσS “ t0.5;0.6u.
high represents the combination of σσσS “ t1;0.8u (first part; continued on next page)

longitudinal design (Figures 5.3 and 5.4). With regards to the joint models with
a univariate shared effect (Figure S5.6.1), we noticed that although the obtained
distributions for the standard deviations of the random effects do not show out-
liers, the estimates are biased. The estimators for the fixed effect parameters were
unbiased (Figure S5.6.2).

We analyzed the robustness of the parameter estimators for the situation where
datasets are generated from the joint model with two-dimensional shared ran-
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Figure 5.2: (cont.) Simulation results from a joint model at the cross-sectional setting with logit-
dependent random shared effect (A) the point estimates of covariate of interest as well as random
effect at different values of shared effect standard deviations, and (B) standard deviations of shared
effects. The boxplots in grey represents the distribution when the effect size of covariate of interest is
higher (ξY

1 “ 1). The horizontal lines represent the true value.
low represents the combination of σσσS “ t0.5;0.6u.
high represents the combination of σσσS “ t1;0.8u

dom effects while a simpler joint model with a univariate random shared effect
was used for analysis. While the estimated fixed effects parameters were not
affected, the estimated covariance was (Figure 5.5A). In addition, Figure 5.5B il-
lustrates the distribution of the estimated variability of a random shared effect for
the situation where the dataset was generated following the joint model with two
dimensional random shared effect while a joint model with a univariate random
effect was fitted. This showed the effect of uncorrectly reducing the number of
parameters in modelling the variability of multiple categories. When the shared
effects for both categories had about the same variability (σuS2

“ 0.5,σuS3
“ 0.6),
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Figure 5.3: Simulation results: The point estimates of the covariate of interest from joint model and
naive approach in longitudinal setting.

the estimated standard deviation for the shared effect using a univariate random
effect was closer to the true value.

Finally we compared the true marginal correlation of the multivariate out-
comes data with the covariance structure corresponding to the joint model with
various covariance structure and of the simpler model with univariate shared
effects. The covariances corresponding to the models were estimated using the
Monte-Carlo method. Table 5.1 gives the estimates of the marginal correlation
for the two models. It appears that the absolute correlations between the multi-
variate outcomes and the continuous were overestimated when using the simpler
model, namely for the first category -0.503 instead of -0.475, for the second cate-
gory 0.161 instead of 0.10 and for the third category 0.426 instead of 0.417 (Table
5.1A). Similar case was also observed in the case of higher standard deviations of
random shared effect (Table 5.1B).

For the longitudinal setting and logit-dependent shared random effects, the
results are depicted in Figure 5.3. When using the joint model with logit-depen-
dent random shared effect to generate the data, the naive method showed a bias.
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Figure 5.4: Simulation results: the point estimates of (A) categorical covariate effects as well as ran-
dom effects (excluding the shared effects) for different standard deviations of shared effects, and (B)
standard deviations of the shared effect at different effect size from joint model in longitudinal setting
with logit-dependent random effect. Details of low and high are similar as Figure 5.2. (first part;
continued on next page)

Furthermore, the naive method gave a larger standard deviation of the estimates
compared to the true joint model as in the cross-sectional setting. In Figure 5.6
the distributions of the estimated σuY is given for the joint model and the naive
model. It appeared that the estimator based on the naive method was biased.

Finally, we evaluated the power to detect a relationship between the two out-
comes by comparing the rejection rate of the null hypothesis of a zero standard
deviation of the shared random effect in the joint model with the rejection rate
of the null hypothesis of a zero effect of the proportion of categorical outcomes
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Figure 5.4: (cont.) Simulation results: the point estimates of (A) categorical covariate effects as well as
random effects (excluding the shared effects) for different standard deviations of shared effects, and
(B) standard deviations of the shared effect at different effect size from joint model in longitudinal
setting with logit-dependent random effect. Details of low and high are similar as Figure 5.2.

on the continuous outcome in the naive approach. The results are given in (Ta-
ble 5.2). It appears that for the cross-sectional setting the joint model only had
power when the standard deviation was large and for the univariate shared ef-
fects (85%), while the naive methods showed sufficient power for all models. For
the longitudinal setting the joint model outperformed the naive method with a
power of 86% for small standard deviations of the shared effects compared to
77% and of 100% for large standard deviations of the shared effects compared to
97%.
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Figure 5.5: The robustness of (A) fixed effect and standard deviation of the random effect parameters
and (B) standard deviations of shared effects in joint model in cross-sectional setting. Datasets were
generated using the joint model with logit-dependent shared effect. The estimates were obtained from
fitting these datasets with joint model logit-dependent shared effect (JM2) and univariate random
effect (JM1). The horizontal lines represent the true value. (first part; continue on next page)

5.4 Data analysis

The dataset considered here was measured in a subset of randomized controlled
trial in a helminth-endemic area in Indonesia to assess the influence of helminth
infection on inflammatory diseases Wiria et al. (2010). Households were ran-
domized for a 400 mg albendazole or placebo for a period of one and half year.
Yearly stool samples were collected on a voluntary basis, to detect the presence of
helminth infections as well as obtaining genomic material of gut microbial com-
munity. Blood samples were drawn for immunological examinations.

Trichuris trichiura infection was detected only by microscopy, while the DNA
of hookworms (Ancylostoma duodenale and Necator americanus) and Ascaris lum-
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Figure 5.5: (cont.) The robustness of (A) fixed effect and standard deviation of the random effect
parameters and (B) standard deviations of shared effects in joint model in cross-sectional setting.
Datasets were generated using the joint model with logit-dependent shared effects. The estimates
were obtained from fitting these datasets with joint model logit-dependent shared effect (JM2) and
univariate random effect (JM1). The horizontal lines represent the true value.

σuS2
“ 0.5, σuS3

“ 0.6 σuS “ 0.5

C1 C2 C3 Y C1 C2 C3 Y

C1 1 -0.425 -0.712 -0.475 1 -0.498 -0.702 -0.503

C2 ¨ 1 -0.334 0.1 ¨ 1 -0.267 0.161

C3 ¨ ¨ 1 0.417 ¨ ¨ 1 0.426

Y ¨ ¨ ¨ 1 ¨ ¨ ¨ 1

σuS2
“ 1,σuS3

“ 0.8 σuS “ 1

C1 C2 C3 Y C1 C2 C3 Y

C1 1 -0.463 -0.690 -0.563 1 -0.497 -0.812 -0.776

C2 ¨ 1 -0.321 0.267 ¨ 1 -0.103 0.298

C3 ¨ ¨ 1 0.383 ¨ ¨ 1 0.688

Y ¨ ¨ ¨ 1 ¨ ¨ ¨ 1

Table 5.1: The estimated marginal correlations from the joint model in a cross-sectional setting from
different covariance structures.

bricoides were observed via multiplex real-time PCR. A subject was regarded as
helminth-infected if it was infected with at least one helminth species. The py-
rosequencing process of 16S rRNA gene to obtain the bacterial data has been de-
scribed in Martin et al. (2018). Here, we focus on two specific phyla, namely
Bacteroidetes and Firmicutes and pooled the remaining phyla into pooled category.
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Figure 5.6: The estimates for random effect’s variability of continuous outcome from joint model and
naive approach in longitudinal setting. The horizontal lines represents the true value. Details about
low and high are the same as in Figure 5.2

Shared effect

Cross-sectional Longitudinal

JM
Naïve

JM
Naïve

π2 π3 π2 π3

low 0.2 75.5 99.2 86.3 19 76.6

high 84.7 97.7 100 100 83 96.6

Table 5.2: Statistical Power. The rejection rate of shared effect in joint model and proportion of bac-
teria in naive approach. The computation was done for the fixed effect ξY

1 “ 0.1. The joint model
in cross-sectional setting uses the univariate random shared effect and the logit-dependent shared
effect for longitudinal case. Low represents the shared effect of σS “ 0.5 or σσσS “ t0.5,0.6u and high
represents σS “ 1 or σσσS “ t1,0.8u

The blood cultures were stimulated to assess the innate and adaptive immune re-
sponses, characterized by cytokine responses. In Chapter 4, among all analyzed
cytokine responses, only the innate interleukin(IL)-10 response to lipopolysac-
charide (LPS) that was significantly associated with Bacteroidetes proportion. In
this analysis we aim to reanalyze these outcomes simultaneously in relation with
helminth-infections. Thus, we focus on the continuous type observation IL-10 re-
sponse to LPS. Our data consists of 62 subjects who have complete measurements
on microbiome composition and cytokine responses at before and 21 months after
the first treatment (Table 5.3).

To assess the relationship between the IL-10 response and the microbiome
compositions, we first applied the naive approach in a cross-sectional setting
by analyzing only the observations at the first time point. Specifically, a linear
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Characteristics
albendazole placebo

(N = 23) (N = 39)

Gender, female (n (%)) 12 (52.17) 22 (56.41)

Age (mean(SD)) 27.03 (15.80) 26.53 (15.86)

Helminth infections (N(%))

A. lumbricoides 9 (39.13) 8 (20.51)

Hookworm 10 (43.48) 10 (25.64)

N. americanus 9 (39.13) 10 (25.64)

A. duodenale 2 (8.69) 2 (5.13)

T. trichiura 5 (21.74) 10 (25.64)

Any helminths 16 (69.57)

23 (58.97)

Abundance of bacterial phyla, mean % (SD)

Firmicutes 73.21 (10.76) 71.54 (12.94)

Actinobacteria 9.73 (5.84) 9.40 (7.75)

Bacteroidetes 6.70 (9.97) 7.27 (12.19)

pooled 10.35 (7.29) 11.79 (8.10)

Cytokine responses (median, IQR)

LPS IL-10 250 (137.5, 400.5) 221 (137, 381.5)

Table 5.3: The characteristics of participants at pre-treatment.

model with the IL-10 response to LPS as a continuous outcome and bacterial
proportion, infection status and their interaction as covariates. The results are
given in Table 5.4A. It appears that infection has no significant effect on IL-10 to
LPS (estimated effect of 0.202 (s.e. of 1.121), p-value of 0.858). The Bacteroidetes
proportion showed a trend of association with the IL-10 response to LPS anti-
gen (estimated effect of -1.812 (s.e of 1.024), p-value of 0.082). For subjects who
are helminth-infected, this association seems to disappear while for subjects who
are helminth-uninfected, the relationship is stronger (Chapter 4). When using
all data in the longitudinal setting, the estimated parameters are given in Table
5.4B. The association between helminth infections and IL-10 response remains
not significant, but the association between Bacteroidetes proportion and IL-10
to LPS are significantly different depending on infection status. When subjects
were helminth-uninfected, the cytokine responses and Bacteroidetes proportion
are negatively associated while this association disappears when subjects where
helminth-infected. This suggests that microbiome composition is likely to corre-
late with cytokine response.

Next, we fitted the joint models to these data. These models take into account
the measurement error of the microbiome proportions and analyze the joint ef-
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(A) Cross-sectional (B) Longitudinal

Estimate (s.e) p-values Estimate (s.e) p-values Group name Variance

(Intercept) 2.588 (0.757) 0.001 2.337 ( 0.450) ă 0.001 individual 0.022

inf 0.202 (1.121) 0.858 -0.796 (0.626) 0.206 Residuals 0.109

p.Actinobacteria -0.301 (1.224) 0.806 -0.442 (0.749) 0.556

p.Bacteroidetes -1.812 (1.024) 0.082 -2.139 (0.733) 0.004

p.Firmicutes -0.284 (0.874) 0.746 0.022 (0.514) 0.967

inf:p.Actinobacteria -1.399 (1.928) 0.471 1.306 (1.093) 0.235

inf:p.Bacteroidetes 1.392 (1.377) 0.316 2.831 (0.902) 0.002

inf:p.Firmicutes -0.001 (1.265) 1.000 0.849 (0.713) 0.237

Table 5.4: Data analysis: The estimates of the fixed effect and random effect parameters from the naive
approach for the cross-sectional and the longitudinal setting.

fect of infection on microbiome composition and cytokine response simultane-
ously. We used model (5.4) with as covariate XXXi the infection status and as ran-
dom effect uuu˚

i “
�

uC2 ` uS2 ,uC3 ` uS3 ,uS2 ` uS3 ` uY
(

following a multivariate nor-
mal distribution with mean of zero and covariance matrix Σ, where Σ is defined
in equation (5.5). The estimated parameters of the fixed effects and standard de-
viations of the random effects (and their corresponding standard error and sig-
nificance) are given in Table 5.5A. Infection has no significant association with
neither microbiome composition nor the cytokine responses. In contrast to the
naive approach, we observed that the two outcomes are not correlated, i.e. the
estimates of the variances of the random shared effects σuS2

and σuS3
are almost

zero (σuS2
2 “ 0.002,(s.e of 0.010), p-value of 0.796; σuS3

2 “ 0.006, (s.e. of 0.015),
p-value of 0.628).

We further analyzed the dataset with the simplified joint model where the
shared random effects in the logits are the same (uS) as in equation (5.6) and (5.7).
Table 5.5B lists the estimated parameters for the fixed effects and variances of
the random effects. The estimated parameters for the fixed effect were similar to
the joint model with two shared random effects. Again the estimated standard
deviation of the univariate random shared effect appears to be small, namely
σuS

2 “ 0.002 (s.e of 0.007). When assessing the marginal correlation between mul-
tivariate counts and continuous outcome, we observed that the marginal correla-
tion based on the fitted joint models do not fit the data properly (Table 5.6). The
second bacteria category is negatively correlated with the continuous outcome
(cor(C1,Y1) = -0.089, Table 5.6A), while the estimated correlation using the joint
model with univariate and logit dependent random effect is positive (Table 5.6B
and C).

Next, we investigated the correlation between two outcomes when subjects
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(A) The Joint Model with logit dependent shared effects

Fixed Effects Estimate (95% CI) p-value Random Effects Estimate (s.e) p-value

Intercepts

ξ0
Y 2.25 (2.11, 2.39) <.0001 σuC2

2 2.372 (0.427) <.0001

ξ02
C -3.71 (-4.33, -3.09) <.0001 σuC3

2 0.463 (0.084) <.0001

ξ03
C -1.32 (-1.59, -1.04) <.0001 σuS2

2 0.002 ( 0.010) 0.796

Infection σuS3
2 0.006 (0.015) 0.628

ξ1
Y 0.15 (-0.03, 0.32) 0.103 σε

2 0.110 (0.026) 0.000

ξ12
C 0.61 (-0.18, 1.41) 0.129 ρ -0.271 (0.118) 0.027

ξ13
C -0.11 (-0.47, 0.24) 0.513

(B) The Joint model with univariate shared effect.

Fixed Effects Estimate (95% CI) p-value Random Effects Estimate (s.e) p-value

Intercepts

ξ0
Y 2.25 (2.11, 2.39) <.0001 σuC2

2 2.371 (0.427) <.0001

ξ02
C -3.70 (-4.32, -3.08) <.0001 σuC3

2 0.466 (0.083) <.0001

ξ03
C -1.32 (-1.59, -1.04) <.0001 σuS

2 0.002 ( 0.007) 0.796

Infection

ξ1
Y 0.15 (-0.03, 0.32) 0.103 σε

2 0.117 (0.022) 0.000

ξ12
C 0.61 (-0.18, 1.41) 0.129 ρ -0.276 (0.117) 0.027

ξ13
C -0.11 (-0.47, 0.24) 0.513

Table 5.5: Data analysis: The parameter estimates from the joint model with two-dimensional random
shared effects (A) and a univariate random effect (B) in the cross-sectional setting. Fitted with SAS
PROC NLMIXED with 10 quadratures.

were helminth-uninfected. For this purpose, we selected helminth-uninfected
subjects at pre-treatment (N = 23) and fitted the joint model with only intercepts
and random shared effects. We used the model with two shared random effects
with the assumption that both shared effects have the same variance (σuS2

2 “
σuS3

2 “ σuS
2). The results are given in Table 5.7. The variance of this shared effect

is again very small (σuS
2 “ 0.003, (s.e. of 0.012)) suggesting that there was not

enough evidence to conclude that both outcomes were correlated even in subjects
who were helminth-uninfected.

The observed marginal correlation of the 23 helminth-uninfected subjects are
given in Table S5.6.1 as well as the estimated marginal correlation obtained from
the joint model. It appears that the correlation between the second category and
the continuous outcome of the model disagrees with the observed marginal cor-
relations, i.e. for the first category -0.092 for the model and 0.056 observed and
for the second category 0.018 for the model and -0.355 observed.



110 Chapter 5 – The joint mixture model to account for measurement error

(A) The observed marginal correlation

C1 C2 C3 Y1

C1 1.000 -0.545 -0.530 0.075

C2 -0.545 1.000 -0.422 -0.089

C3 -0.530 -0.422 1.000 0.009

Y1 0.075 -0.089 0.009 1.000

(B) The Joint Model with logit dependent shared effect

C1 1.000 -0.515 -0.589 -0.032

C2 -0.515 1.000 -0.389 0.028

C3 -0.589 -0.389 1.000 0.008

Y1 -0.032 0.028 0.008 1.000

(C) The Joint Model with univariate shared effect

C1 1.000 -0.518 -0.586 -0.018

C2 -0.518 1.000 -0.389 0.031

C3 -0.586 -0.389 1.000 -0.010

Y1 -0.018 0.031 -0.010 1.000

Table 5.6: The marginal correlation between multivariate count and continuous outcome. Observed
and based on the joint models in the cross-sectional setting.

Parameters Estimate (95% CI) p-value

ξ0
Y 2.26 (2.08, 2.44) <.0001

ξ02
C -3.77(-4.42, -3.12) <.0001

ξ03
C -1.30 (-1.65,-0.95) <.0001

Random Effect Estimate (s.e) p-value

σuC2
2 2.173 (0.666) 0.004

σuC3
2 0.638 (0.191) 0.003

σuS
2 0.003 (0.012) 0.819

σε
2 0.166(0.055) 0.006

ρ -0.392 (0.180) 0.042

Table 5.7: The estimated parameters using joint model in selected helminth-uninfected subjects at
pre-treatment (N = 23)
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When analyzing the joint model in the longitudinal setting with logit-dependent
random effect, we noticed that infection status was significantly associated with
the increasing odds of Bacteroidetes to Firmicutes (ξC

12 “ 0.79, (s.e. of 0.03) ,Table
5.9) although the estimated variances of shared effect between discrete and con-
tinuous outcomes remained small. We notice however, that the magnitude of the
correlation is slightly increased in the longitudinal setting. To investigate the esti-
mated variance of shared effect in subjects who remained uninfected, we selected
16 subjects who were helminth-uninfected at pre-treatment and remained unin-
fected at 21 months after the first treatment. The estimated parameters are listed
in Table S5.6.2. We observed that the estimated variance of the shared effect was
getting larger in the subjects who were uninfected and measured longitudinally.

(A)The observed marginal correlation

C1 C2 C3 Y1

C1 1.000 -0.264 -0.741 0.056

C2 -0.264 1.000 -0.451 -0.355

C3 -0.741 -0.451 1.000 0.195

Y1 0.056 -0.355 0.195 1.000

(B)The Joint model with logit dependent shared effect.

C1 1.000 -0.175 -0.849 -0.092

C2 -0.175 1.000 -0.371 0.018

C3 -0.849 -0.371 1.000 0.077

Y1 -0.092 0.018 0.077 1.000

Table 5.8: Data analysis: The observed and the estimated marginal correlation from joint model in the
cross-sectional setting. The joint model was fitted on datasets consists of only helminth-uninfected
subjects at pre-treatment (N =23).

Finally, we fitted a joint model for the cytokines and only two bacterial cate-
gories, namely the Bacteroidetes and pooled category consisted of the remaining
taxa. The estimated covariate effects as well as the standard deviation of the
random effect were given in Table S5.6.3. Again, we observed that there is no
correlation between the two outcomes.

The estimates of the parameters of interest from the joint model in the longi-
tudinal setting are listed in Table 5.9. It is shown that helminth infection is only
associated with the microbiome composition and not the cytokine response.

5.5 Discussion

We proposed a joint model to analyze simultaneously the effect of a specific co-
variate on multiple outcomes collected from the same subject and to model the
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Fixed effects Estimate (95% CI) p-values Random effects Estimate (s.e) p-values

Intercepts

ξY
0 2.19 (2.08,2.30) <.0001 σuC2

2 1.877 (0.348) <.0001

ξC
02 -3.46 (-3.81, -3.11) <.0001 σuC3

2 0.308 (0.059) <.0001

ξC
03 -0.96 (-1.10, -0.82) <.0001 σuS2

2 -0.016 (0.050) 0.754

Infection σuS3
2 -0.0002 (0.021) 0.99

ξY
1 0.09 (-0.05, 0.23) 0.209 σuY

2 0.035 (0.059) 0.559

ξC
12 0.79 (0.73, 0.86) <.0001 σε

2 0.128 (0.023) <.0001

ξC
13 -0.33 (-0.37, -0.30) <.0001 ρ 0.074 (0.127) 0.562

Table 5.9: Data analysis: the estimated parameters of joint model in the longitudinal setting. Fitted
with SAS with 10 quadrature points.

relationship between the outcomes. Specifically our work was motivated by data
on the association between helminth infection status as covariate and microbiome
composition and cytokine responses as outcomes while taking into account the
correlation structure in the data as well as the presence of measurement errors
in the microbiome data. We used a linear mixed effect model for the continu-
ous outcome and a multinomial logistics mixed model approach introduced by
Hartzel et al. (2016) for the microbiome data. To model extra variation due to
measurement error or unobserved heterogeneity in the multinomial type data,
a conjugate or normally distributed random effect can be used. However, there
has been a discussion with regard to the choice of the random effect distribution
in multinomial type data. While the conjugate random effect has an advantage
of having a closed form formula for the marginal distribution, the correlation
between categories is described with a single parameter representing overdisper-
sion Li (2015). On the other hand, the multinomial logistics mixed model with
normally distributed logit-dependent random effect provides more flexibilities
in modelling measurement error present in microbiome data. To model the cor-
relation between multiple outcomes from the same subject, different covariance
structure for the random shared effect were considered, namely random shared
effect for each categorical logit and the continuous outcome and a single random
shared effect for each categorical logit and the continuous outcome.

We compared our model with a naive approach which includes bacterial pro-
portions as a covariate in a linear model ignoring the measurement error in the
microbiome data. Our simulation study in the cross-sectional setting showed that
the joint model with either with logit-dependent or univariate random shared ef-
fect gives the unbiased estimate of the parameter modelling the effect of covari-
ates on the continuous outcomes as well as smaller standard deviation compared
to the estimate obtained using the naive model. Overall, the fixed effect parame-
ters and the variability of the random effect were better estimated in the model
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with logit-dependent random shared effect.
In the longitudinal setting, we noticed that the estimator of the parameter

modelling the effect of the covariate on the continuous outcome in the naive ap-
proach was biased in all cases of simulation setting. This was probably caused
by the additional correlation structure in the repeated measurement of the cy-
tokine responses. Finally when testing for the presence of a relation between the
outcomes, the joint model had more power than the naive approach in the lon-
gitudinal setting. However this was not the case for the cross-sectional setting,
probably due to lack of information to estimate all the variance components in
this design. Overall the joint model is preferred over the naive method in the
longitudinal setting.

In our data application of the proposed joint model in the cross-sectional set-
ting, helminth infection was not significantly associated with both cytokine re-
sponse and microbiome composition. In the absence of helminth infection, the
estimated average value of cytokine response was positive, while there was a
decreasing ratio of Bacteroidetes to Firmicutes and pooled category to Firmicutes,
indicating there was an inverse relationship between cytokine response and gut
microbiome composition when subjects were helminth-uninfected. In the pro-
posed joint model in the longitudinal setting, we observed a significant associa-
tion between helminth infection on microbiome composition but not in cytokine
response. With regard to the estimated fixed effect, our proposed method is in
line with the inference in the naive approach where in helminth-infected subjects,
the Bacteroidetes proportion was negatively associated with cytokine response.
With regard to the estimated correlation between discrete and continuous out-
comes, we also observed small correlation (estimated variance of shared effect
was σ2

uS2
0.002 (s.e of 010) and σuS3

2 of 0.006 (s.e. of 0.015)) while the measure-
ment errors were relatively large and significant for both the bacterial count out-
comes. With regard to the marginal correlation within the multivariate count our
model gives similar correlations as observed. However the correlation between
the two outcomes was not well represented by our model.

Our results of the data analysis indicated the importance of our proposed
method over the naive method. First of all, the naive method considered the
effect of single bacterial phyla, which ignores the correlation structure between
multiple phyla imposed by the compositional structure of microbiome data. Sec-
ondly, the measurement errors in the microbiome data were ignored in the naive
method. In our dataset, the variances of the measurement error for the ratio of
Bacteroidetes and Firmicutes were relatively high. When this is not modelled prop-
erly, it may result in biased estimates as shown by our simulations. On the other
hand the observed marginal correlation appeared not to be well modelled by our
joint approach. It might be that the proposed normal distribution used for the
random structure did not fit the data well. The advantage of the normal distrib-
ution is that complex structures can be easily modelled. Future work will be to
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develop goodness of fit measures for our models.
We proposed here the joint model between multivariate count of three cat-

egories and continuous outcome. In general, the model could be extended to
higher dimensional of multivariate outcome although the computational burden
increases. Future research will be needed to develop statistical method which
reduce the computational burden.

To conclude, although the joint model are challenging to fit when the out-
comes are from different types, they might give more insight on three way rela-
tionships between a covariate and two outcomes. The joint model proposed here
is an alternative for model with conjugate distribution which gives more flexi-
bility in modelling the covariance structure, especially in the presence of mea-
surement errors. However the marginal correlation between the two different
outcomes is not well represented by this model.
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(A)The observed marginal correlation

C1 C2 C3 Y1

C1 1.000 -0.264 -0.741 0.056

C2 -0.264 1.000 -0.451 -0.355

C3 -0.741 -0.451 1.000 0.195

Y1 0.056 -0.355 0.195 1.000

(B)The Joint model with logit dependent shared effect.

C1 1.000 -0.175 -0.849 -0.092

C2 -0.175 1.000 -0.371 0.018

C3 -0.849 -0.371 1.000 0.077

Y1 -0.092 0.018 0.077 1.000

Table S5.6.1: The observed and the estimated marginal correlation from joint model in the cross-
sectional setting. The joint model was fitted on datasets consists of only helminth-uninfected subjects
at pre-treatment (N =23).

Fixed Effects Estimate (95%CI) p-value

Intercepts

ξY
1 2.12 (1.93, 2.31) <.0001

ξC
02 -3.02 (-3.65, -2.38) <.0001

ξC
03 -1.01 (-1.26, -0.77) <.0001

Random effects Estimate (s.e) p-value

σuC2
2 1.499 (0.544) 0.016

σuC3
2 0.204 (0.082) 0.028

σuS2
2 -0.140 (0.107) 0.216

σuS3
2 -0.0004 (0.039) 0.992

σuY
2 0.156 (0.143) 0.294

σε
2 0.208 (0.052) 0.002

ρ 0.314 (0.207) 0.207

Table S5.6.2: Data analysis: the joint model in the longitudinal setting in subjects who were helminth-
uninfected at pre-treatment and remained uninfected at 21 months after the first treatment (N=16).
The model fitting used SAS with 10 quadrature points.
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Parameter Estimate (95%CI) p-value

Infection

Bacteroidetes -1.04 (-1.11,-0.97) <.0001

IL10-LPS 0.06 (-0.08, 0.20) 0.402

Time

Bacteroidetes -0.21 (-0.25, -0.18) <.0001

IL10-LPS -0.21 (-0.32, -0.09) 0.001

logpσε q -1.12 (-1.30, -1.12) <.0001

Random Effects

σ 2
uC

1.882 (1.183, 2.582) <.0001

σ 2
uS

0.016 (-0.085, 0.118) 0.754

σ 2
uY

0.040 (-0.044, 0.124) 0.343

Table S5.6.3: Data analysis: the joint model with two bacterial categories



6
General Discussion

In this thesis, several analyses of the gut microbiome composition in relation
to health outcomes have been carried out. Randomized studies presented in
this thesis utilized the observations of gut microbiome composition, cytokine re-
sponses and helminth infections at two different time-points, namely before and
21 months after the first treatment. The first part of the thesis deals with the
analysis of gut microbiome and helminthiasis, while the second part deals with
the three-way relationship between helminth infection, gut microbiome, and im-
mune responses. The main purpose of this chapter is to assess how much evi-
dence there is for the associations that are observed in this thesis to be causal. In
line with this purpose, it is observed that many microbiome studies have been di-
rected towards causality such as in the work of microbiota and metabolic diseases
[Zhao (2013); Zhang and Zhao (2016)]. In analyzing the causal effect of certain
exposure, it is important to minimize all possible biases, and to account for po-
tential unobserved confounders or measurement errors. This chapter serves as a
key to understanding whether the identified effect may be causal. The remaining
of this chapter is organized as follows; the findings in epidemiological works as
well as in the development of statistical methods are summarized, several basic
terminologies of causal effect are briefly described, followed by a discussion of
the findings. Finally, the conclusion is derived and directions for future research
are listed.

119
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6.1 Summary of the findings

In Chapter 2, treatment was significantly associated with microbiome composi-
tion only in subjects who had helminth infections and remained infected at 21
months after the first treatment. This significant association is also confirmed
using a newly developed statistical method outlined in Chapter 3. In addition,
the stability of gut microbiome composition over time is also confirmed by an-
alyzing the microbiome composition of subjects who remained uninfected and
did not receive albendazole at two time-points. When analysing the relationship
between gut microbiome composition and immune responses, the microbiome
composition is significantly associated with an immune response when subjects
were helminth-uninfected but this association was not observed when subjects
were helminth-infected (Chapter 4). When analyzing the association between
helminth infection and both microbiome composition and immune responses
jointly (Chapter 5), only gut microbiome composition is significantly associated
with helminth infections.

In relation to statistical methodologies, this thesis contributes to the devel-
opment of appropriate statistical models which address the features of compo-
sitional data and the collection design. The features of microbiome data are ad-
dressed, namely the compositional artifact, the presence of extra variation (overdis-
persion) due to unobserved causes and measurement errors. The compositional
feature is addressed by multivariate approach, i.e. jointly modelling all bacterial
taxa. This is done to avoid multiple testing correction when analyzing each bacte-
ria taxa separately. The overdispersion is taken into account by introducing ran-
dom effect in the model. When considering a distribution for the random effect
of overdispersion, one could opt for a conjugate [Chen and Li (2013); Guimarães
and Lindrooth (2007)] as it is done in Chapter 3 or normal distribution [Hartzel
et al. (2016); Hedeker (2003)] as it is done in Chapter 5. The measurement er-
ror is accounted for in the model by introducing additional normally distributed
random effect. Finally, it has been shown in Chapter 5 that modelling the as-
sociation between helminth infection and different type of outcomes jointly in a
hierarchical setting provides unbiased estimates. Another advantage from this
joint modelling is enhancing the statistical power as multiple correction is not
needed.

6.2 Basic terminologies of causal inference

Before conferring causal relationship in this thesis, basic terminologies of causal
inference [Hernan and Robins (2018)] are briefly reviewed. In principle, a predic-
tor has a causal effect on an outcome if the presence or absence of this predictor
yields different responses [Rubin (1974)]. In a randomized controlled trial setting,
as is the case in the study described in this thesis, the significant association be-
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tween treatment and outcome is indeed causal since the counterfactual response
can be quantified through a control group. When the randomized study is not
possible, researchers rely on observational studies. The causal effect in observa-
tional design still can be estimated by utilizing an instrumental variable, i.e. a
variable that has an effect on an outcome only via a predictor [Burgess and Small
(2016)]. In fact, the method of instrumental variable is also useful for inferring
total effect of predictor on outcome even in the presence of confounder [Hernán
and Robins (2006b)]. To understand these terminologies as well as to identify
the causal effect of variables involved in these analyses, directed acyclic graphs
(DAGs) are used to visualize the relationship between variables of interests in
this thesis. In these DAGs, vertices represent variables and arrows represent the
direction from a cause to an effect.

In making inferences about causation from association study, one needs to
be aware of the presence of confounders, colliders and measurement errors as
these will strengthen or weaken the observed associations [Pourhoseingholi et al.
(2012)]. A confounding bias is caused by the presence of a confounder, i.e. a vari-
able that affects both predictor and outcome simultaneously. In the presence of a
confounder, the association between predictor and outcome is no longer caused
only by the predictor. This bias can be eliminated by conditioning (stratification
or regression adjustment) on the confounder. Conversely, the presence of col-
lider, i.e. variable that is affected by both predictor and outcome, will block an
association between them. One needs to cautiously assess this relationship as
conditioning on the collider will introduce bias [Hernan and Robins (2018)], i.e.
observing a significant association while it actually does not exist. Finally, errors
in measuring the variables need to be taken into account in the model.

6.3 Synthesis of findings

Suppose the associations observed in this thesis are indeed causal, then the rela-
tionship between anthelminthic treatment, helminth infections, gut microbiome
and immune responses characterized by stimulated cytokine responses is illus-
trated in Figure 6.1. Note that it is assumed that treatment affect gut microbiome
composition and cytokine are completely mediated via infection.

Here, it is considered that treatment as a covariate and the other variables
(helminth infection, gut-microbiome and cytokine response) as outcomes. Since
anthelminthic treatment was randomized, the causal effect of treatment on these
three variables separately can be assessed, since association in randomized de-
sign is indeed causal. Let us focus on the relationship between infection and gut
microbiome. As infection is not randomized, the causal effect of infection on gut
microbiome cannot be assessed. However, treatment can be used as a proxy for
this causal relationship under certain assumptions. Suppose that treatment has
no effect on gut microbiome and treatment is only associated with gut micro-



122 Chapter 6 – General Discussion

Infection

Gut
microbiome

Cytokine 
responses

Treatment

Figure 6.1: The hypothesized relationship based on the findings of our analyses.

biome via helminth infection, then treatment is an instrumental variable for the
relationship between infection and gut microbiome. Thus, the causal effect of in-
fection can be assessed via this instrumental variable [Burgess and Small (2016)].
In a similar way, it can be hypothesized that treatment is an instrumental variable
in assessing the effect of helminth infection on cytokine response. However this
is not true since a previous study by Wammes et al. (2016) showed that treatment
was significantly associated with cytokine responses.

The assumption of treatment as an instrumental variable in the relationship
between helminth infections and gut microbiome is hard to infer. The mechanism
of albendazole on gut microbiome directly has not been fully analyzed [Leung
et al. (2018)]. In our study, the relatively small sample size results in a lack of sta-
tistical power to identify a direct effect of albendazole on gut microbiome. Thus,
at this moment treatment is not considered as an instrumental variable for this
relationship.

Since we do not have an instrumental variable, we need to consider possible
confounders for the relationship. In animal studies where mostly experimental
in which helminth-free animals were introduced to the helminth parasite and
other factors that could affect their gut microbiome were controlled (reviewed in
Reynolds et al. (2015)). Animal models ensure that any changes in gut micro-
biome due to helminth exposure can be clearly quantified (reviewed in Zaiss and
Harris (2016)). These studies conclude that helminth infections has a causal ef-
fect on gut microbiome. However for human studies, the sample size is either
to0 small (this thesis) or the design is interventional or observational. Any alter-
ations that were observed in gut microbiome composition might be confounded
by other factors.

When considering the confounders that affect the gut microbiome composi-
tion in humans, dietary consumption and hygiene are major candidates [Gilbert
et al. (2018)]. Dietary intake may also affect weight gain, and thus in Figure 6.2,
the relationship with these additional variables (weight gain and hygiene) are
added. As illustrated in Figure 6.2, hygiene affects both helminth infection and
gut microbiome, thus it is a confounder for both helminth infection and gut mi-
crobiome. It is necessary to adjust for hygiene when quantifying the effect of
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helminth infection on gut microbiome. However, in general, confounders may be
difficult to measure or it may be unobserved. This will add an extra randomness
in the exposure for each subjects. For this purpose, the inclusion of random effect
subject-specific in the statistical model in a longitudinal setting takes care of this
extra variation due to unobserved confounder.

In addition to confounders, there are several factors that could affect both
helminth infections and microbiome composition. As can be seen in Figure 6.2,
helminth infection is known to cause reduction of food intake and thus affect
the body mass index (BMI) [Crompton and Nesheim (2002)]. Here, BMI plays a
role as a mediator for the relationship between helminth infection and gut micro-
biome. Assessing both direct and indirect effects of helminth infection on micro-
biome composition is needed to identify the role of mediator and understand the
underlying biology. Usually this indirect effect through a mediator is analyzed
within the framework of linear structural equation models (LSEMs) [MacKinnon
et al. (2007)].

Infection

Cytokine 
responsesTreatment

Hygiene

Weight 
gain

Infection*

Gut
Microbiome*

BMI Gut
Microbiome

Cytokine 
responses*

Figure 6.2: The DAG representing the relationship of all variables when measurement errors were
included. The grey variables represent the observed variables with errors and blue line represents the
possible causal direction.

In Chapter 2 and 3, treatment appeared to be significantly associated with gut
microbiome only in subjects who had helminth infections. A current review de-
scribes the potential influence of gut microbiome on the presence of helminths in
human intestinal tract by altering the immune system although the exact mech-
anism is still unknown [Rapin and Harris (2018)]. If this is indeed the case, as
both gut microbiome and treatment influence helminth infections, thus infection
becomes a collider. The association path between treatment and gut microbiome
is blocked. This association is not causal as treatment is associated with gut mi-
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crobiome given the subjects is helminth-infected. This could be the reason the
effect of treatment is not observed in subjects who were helminth-uninfected.

Another concern in this randomized study is a possibility that the longer the
time frame of the study, the more individual and contextual changes could occur
[Wunsch et al. (2010)]. It has been reported that administration of albendazole in
schoolchildren in Kenya [Stephenson et al. (1993)], Indonesia [Hadju et al. (1998)],
and Uganda [Alderman et al. (2006)] for a period of more than 4 months increases
the appetite and eventually weight gain. These may lead to lack of compliance.
More importantly study in Ghana [Humphries et al. (2017)] reported the efficacy
of albendazole treatment on removing helminth was strongly improved by nutri-
tion factor. This shows that the effect of treatment in removing helminth may be
mediated via the weight gain. As a consequence, in the long run, the assumption
of randomized treatment is no longer held.

6.4 Measurement errors

Biomedical data are measured with errors. Firstly, helminth infection status was
measured by PCR or microscopy. Microscopic examination as a conventional
method to identify helminth infections potentially gives unreliable results espe-
cially in the case of light infection [Llewellyn et al. (2016); Khurana and Sethi
(2017)]. On the other hand, researchers often classifying infection status based
on PCR which is a reliable measurement, have to use a threshold as is the case
in this thesis which can bring about error. Secondly, microbiome data was ob-
tained through sequencing process which is not free of noise [Goodrich et al.
(2014)]. The procedure undergoes the clustering process until the taxonomical
count data is obtained [Robinson et al. (2016)]. Thirdly, the data generated from
assays that measure cytokine levels may be censored by detection limit and as a
result data might be skewed. To deal with this caveat, transformation of the data
using logarithm transformation was done so that the transformed data conform
with normal distribution. However, such a transformation might not reduce the
variability in the data.

In practice, researchers only observe variables which are measured with er-
rors, as depicted by the relationship in grey in Figure 6.2. These measurement
errors could occur in any study design [Hernan and Robins (2018)] and when it
is left unaccounted for in the analyses, it weakens or strengthens the association
between outcome and predictor. In Chapter 4 of this thesis, the relationship be-
tween helminth infection, gut microbiome and cytokine responses were analyzed
by ignoring the measurement error. It is shown in the simulation study in Chap-
ter 5 that ignoring the measurement error might give biased regression estimates.

Considering the above discussions with regard to the observed significant as-
sociations and their possible confounders. Firstly we believe that the effect of
treatment on helminth infections is causal as treatment is randomized and the
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effect of the long time frame via gain in weight is likely to be small. Secondly, we
believe that the effect of helminth infection on microbiome composition and on
cytokine responses are causal, because we assume that the random effects used
in modelling the repeated measurements takes care of most of the confounders
(Figure 6.3). The relationship between gut microbiome and cytokine responses
is not discussed here since it is shown in Chapter 5 that these outcomes are not
correlated.

Infection

Gut
microbiome

Cytokine 
responses

Treatment

U

Figure 6.3: The concluded causal effect. The variable U represents latent variable to account for un-
observed confounders.

6.5 Future directions

To conclude, this general discussion highlights the critical considerations when
moving from association to causation in microbiome studies. Researchers should
specify the relationship of the studied variables, identify potential biases and use
proper statistical methods that account for these challenges. The study design
used in this thesis is key for causal inferences and the statistical methods de-
veloped in this thesis illustrates a solution to obtain unbiased estimates of the
relationship between variables.

The findings that gut microbiome is related to obesity and several metabolic
diseases have shown that the relationship might be causal. With regard to this
direction, it is important to understand the biological mechanism that underly-
ing the relationship between infection, gut microbiome, and cytokine response.
It has been shown in the above DAGs that gut microbiome could be a potential
mediator for the relationship between infection and cytokine responses. To this
end, work on mediation analysis is limited on single variable and not in the com-
positional variable and the statistical analysis framework for this purpose is still
limited. This could be another direction for future research.

The framework developed in Chapter 5 can be extended to include multi-
ple omics type data to unravel the complex mechanism of gut microbiota. Re-
cent findings show that gut microbiota produces metabolites that regulate the
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immune-homeostasis [Thorburn et al. (2014)]. Thus, to understand the relation-
ship between gut microbiome and immune system, more research with regard to
this metabolite is needed.

In relation to the development of appropriate statistical model which account
for the unobserved confounders, two distributional assumptions were made in
this thesis, namely the conjugate and normal distribution. However, there is still
lack of method to assess models’ goodness of fit. A statistical method needs to be
developed for that purpose. Further research is needed in this direction.

In the joint model in Chapter 5, the random effect describing the measurement
error is assumed to be the same for two time-points due to computational burden.
This assumption may not be true. More research is needed to analyzed different
random effect structure to model the measurement error.
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Summary

Rapid urbanization is almost always accompanied by a transition from infectious
diseases to noncommunicable inflammatory disorders as a dominant cause of
morbidity. This is likely due to changing lifestyle and environmental factors. To
understand a precise mechanism of this transition, a population study was done
in Nangapanda, Ende district in Indonesia. This area was chosen as chronic par-
asitic worm infections were endemic and lifestyle changes occurred at a rapid
pace. Despite its detrimental effect on human health, parasitic helminth infec-
tions are associated with a strong modulation of immune responses which ex-
plains a low prevalence of inflammatory disorders in areas endemic for para-
sitic worms. To investigate the complex biological mechanism underlying this
association, clinical and biomedical data were collected from subjects using a
household-based cluster-randomized, double-blind, placebo-controlled trial. Spe-
cifically, studies in this thesis focus on analyzing the relationships between hel-
minth infections, gut microbiome composition, and immune responses. Consid-
ering the complexities of the data gathered in this study, the available methods
appeared to be limited, hence the development of statistical methodology is an-
other focus of this thesis.

Chapter 1 provides a general introduction to the thesis with regard to the col-
lected data, the research questions and the available statistical methods for the
analysis purpose. The pyrosequencing procedure to obtain microbiome profiles
for each sample is briefly described. Such a process imposes a compositional
structure on the microbiome data which needs to be accounted for in the mod-
eling. In addition, multiple observations from the same subject were collected,
which yields a correlation structure between measurements. Statistical tools used
to analyze microbiome data are reviewed and challenges for proper modeling of
this type of data in a repeated measurement design are discussed.

Chapter 2 describes the application of a recently developed statistical method
to model the microbiome data collected for this study. This model assumes that
microbiome data are realizations of a multinomial distribution. In order to ac-
count for the presence of extra variation, the parameters of this multinomial dis-
tribution are assumed to be random effects following a conjugate distribution.
However, the method is only valid for independent multinomial observations
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and thus the correlated structure in our data due to repeated measurements is
left unaccounted for in the modeling. Therefore, the analyses were carried out at
each time point separately. The effect of helminth infection on the gut microbiome
composition is analyzed using the data at pre-treatment while the effect of an-
thelminthic treatment on microbiome composition is assessed at post-treatment.
To investigate whether the treatment has a different effect on subjects who were
helminth-infected compared to helminth-uninfected, an interaction term between
infection status and treatment is included in the model. It appears that only in
subjects who received anthelminthic treatment and remained infected at both
pre- and post-treatment, the ratio of Bacteroidetes to Firmicutes and the ratio
of Actinobacteria to Firmicutes significantly differed compared to other groups.
The method here is limited to the analysis of data from one time point, hence the
alteration of microbiome composition over time cannot be analyzed. Chapter 3
attempts to develop a model to address this.

In Chapter 3, a statistical method for modeling repeatedly measured micro-
biome data is developed which addresses the correlation structure between a sub-
ject’s multiple observations. This is done by introducing a normally distributed
random effect. Three different covariance structures for the normally distributed
random effects are considered. Firstly, we assume a univariate subject-specific
random effect where the random effect for each bacterial category at different
time points is the same. Secondly, each category has a different random effect
with category-specific variance. Finally, it is assumed that the multivariate ran-
dom effects have a common variance for all categories. A simulation study was
conducted to investigate the performance of the proposed method in estimat-
ing the fixed effects and standard deviations of the random effects. It appeared
that the estimates of the fixed effects are not affected by the choice of the covari-
ance structure of the normally distributed random effect. For our application,
the conclusion based on the analysis in Chapter 2 with regard to the fixed effect
is confirmed, i.e. subjects who were infected at baseline and remained infected
at post-treatment showed also an alteration in their Bacteroidetes to Firmicutes
ratio in our extended model. To assess model fit, we computed the marginal cor-
relations between and within categories over time. It appears that the marginal
correlation in the data is well captured using the model with a multivariate ran-
dom effect having a common variance for all categories.

In the next two chapters, the interplay between helminth infection, the gut
microbiome composition, and immune responses which were characterized by
the whole blood cytokine responses to antigens is studied. It is known that the
removal of helminth infection by anthelminthic treatment restores immune re-
sponsiveness. It is also hypothesized that certain gut bacteria influences immune
responses. Our aim in Chapter 4 is to gain insights into the mechanism under-
lying this interplay using the observations at both time points. A linear mixed
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model is applied to the data with a cytokine response to specific antigen as an
outcome variable. For this model, the predictors are bacterial proportion or di-
versity and their interaction term with helminth infection status. We restricted
our analysis to three bacterial categories, namely Actinobacteria, Bacteroidetes
and Firmicutes as these bacterial phyla were associated with helminth infection
in the analysis of Chapter 2 and 3.

In this study, we observed that a gain in the proportion of Bacteroidetes is sig-
nificantly associated with a decrease in concentration of IL-10 to LPS in helminth-
uninfected subjects. This association is dampened in helminth-infected subjects.
This finding confirms the hypothesized relationship that the removal of helminth
infections restores immune responsiveness and that gut bacteria influences im-
mune responses. Several limitations of this analysis can be noted: each bacterial
proportion is assumed to be independent and its association with cytokine re-
sponses is analyzed separately. Thus, the compositional feature of microbiome
data is ignored. In addition, the measurement error of the microbiome data is left
unaccounted for in this model which potentially leads to biased estimators of the
regression parameters. Furthermore, the association between helminth infection
and bacterial proportion is not quantified in this model. Therefore, a statistical
method developed in Chapter 5 which attempts to address these limitations.

In Chapter 5, our aim is to build a statistical model for the association between
helminth infections and both microbiome and cytokine responses simultaneously
by considering all sources of variability in the data. First of all, cytokine responses
as continuous outcomes and gut microbiome as multivariate count outcomes ob-
served from the same individuals are correlated. Secondly, the correlation be-
tween the same type of observations at different time points is expected. Finally,
specific to microbiome data, there is an additional variability due to overdisper-
sion and measurement error. The cytokine response and the microbiome com-
position are assumed to follow a normal and a multinomial distribution, respec-
tively. A set of latent variables which is assumed to follow a multivariate normal
distribution is incorporated to account for the additional variabilities in the data.
The measurement error is modeled with multidimensional normally distributed
random effect, i.e., each category has a different random effect which is assumed
to be correlated. This is done to allow for more flexibility in modeling the ex-
tra variation in each category. The joint probability distribution is formulated
and parameters are estimated by maximizing the joint likelihood with numerical
quadratures. A simulation study is carried out to investigate the performance of
the estimator for the fixed effects as well as random effect parameters in com-
parison with the method introduced in Chapter 4 (the naive method). The joint
model outperforms the naive method. In the data application, it is shown that the
correlation between microbiome composition and cytokine responses are small.
When analyzing the marginal correlation using the proposed method, it appears
that the marginal correlation does not fit to the observed one.
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Chapter 6 summarizes and describes the results of the analyses performed
and the statistical methods used in Chapter 2 to 5. The aim of this chapter is to
evaluate the evidence for causality of the identified associations among helminth
infection, the gut microbiome composition, and cytokine responses using data
from the randomized controlled trial. We found that treatment has an effect
on both the gut microbiome composition and cytokine responses via removing
helminth infection and that the gut microbiome has a direct effect on cytokine
responses. The directed acyclic graphs (DAGs) are used to visualize the direction
of the causal effect and several potential sources of biases are included in this
DAGs, namely unobserved confounders and measurement errors. The statistical
methods developed in this thesis account for the additional variation due to un-
observed confounders and measurement errors via the inclusion of the random
effect. Specific to microbiome data, there are two possibilities of distributional
assumption for a random effect, namely using the conjugate and normally dis-
tributed. In this thesis, we have explored these assumptions. It appears that
models with random effects having a conjugate distribution fit the microbiome
data well when considering how well its marginal correlation capture the ob-
served correlation. Using the findings from the literature as well as from our
analyses, we conclude that treatment has a causal effect on helminth infection
and that helminth infection has direct effects on both the gut microbiome and the
cytokine responses. It appears that the correlation between the gut microbiome
and cytokine responses is small, hence the evaluation of their effect is not carried
out.

Finally, data from randomized controlled trials, as is the case in this thesis are
beneficial to examine causal relationships between variables involved. Further-
more, observations which are repeatedly measured provide information on how
a specific outcome evolves over time. Unfortunately, the studies in this thesis use
data from small subsamples from the larger trial which possibly decreases the
statistical power to detect effects. One solution to address this limitation is by
integrating different sources of observation, as we did in Chapter 5.



Samenvatting

Snelle verstedelijking gaat bijna altijd gepaard met een overgang van infectie-
ziekten naar niet-overdraagbare ontstekingsziekten als dominante oorzaak van
morbiditeit. Dit is zeer waarschijnlijk toe te wijzen aan veranderingen in leefstijl
en omgevingsfactoren. Om het precieze mechanisme van deze transitie beter te
begrijpen is er een populatiestudie uitgevoerd op Flores, een eiland in Indone-
sië. Dit gebied was geschikt voor deze studie omdat een groot aantal mensen is
besmet met parasitaire wormen en er snelle veranderingen in leefstijl plaatsvin-
den. Hoewel worminfecties een negatieve invloed kunnen hebben op de men-
selijke gezondheid, wordt de aanwezigheid van wormen ook geassocieerd met
een sterke regulatie van de afweerreactie en dit verklaart de lage prevalentie van
ontstekingsziekten in gebieden waar veel mensen besmet zijn met wormen. In
een gerandomiseerde, dubbelblind-uitgevoerde studie is er klinische en biome-
dische data verzameld om het complexe biologische mechanisme te onderzoe-
ken dat aan deze associatie ten grondslag ligt. Tijdens deze studie werd de ene
helft van de onderzoeksgroep behandeld tegen worminfecties, de andere helft
kreeg een placebo. In dit proefschrift wordt de relatie tussen worminfecties, de
samenstelling van het darmmicrobioom en de afweerreactie beschreven. Omdat
de beschikbare analysemethoden niet geschikt bleken voor de complexiteit van
de verzamelde data in deze populatiestudie, is een ander aandachtspunt in dit
proefschrift de ontwikkeling van statistische methodologie.

Hoofdstuk 1 beschrijft een algemene introductie van het proefschrift met be-
trekking tot de verzamelde data, de onderzoeksvragen en de statistische metho-
den die beschikbaar zijn om deze data te analyseren en de vragen te beantwoor-
den. Er wordt ook kort beschreven hoe de microbioomprofielen zijn verkregen.
De methoden onderliggend aan deze profielen leggen een compositioneel struc-
tuur op de microbioomdata op, waar rekening mee moet worden gehouden in
het modelleren. Daarnaast zijn er meerdere datapunten van dezelfde persoon en
dit leidt tot correlatie tussen de metingen. Tot slot wordt er een overzicht gege-
ven van de statistische hulpmiddelen die worden gebruikt om microbioomdata te
analyseren, gevolgd door een discussie van de uitdagingen die komen kijken bij
het correct modelleren van dit type data in een onderzoeksopzet met herhaalde
metingen.
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Hoofdstuk 2 beschrijft de toepassing van een recent ontwikkelde statistische
methode om de microbioomdata, verzameld in de populatiestudie, te modelle-
ren. Een aanname van dit model is dat de microbioomdata voortkomen uit een
multinomiale verdeling. Om rekening te houden met de aanwezigheid van extra
variatie, wordt de aanname gedaan dat de parameters van de multinomiale ver-
deling random effecten zijn die volgen uit een geconjugeerde verdeling. Echter,
dit model is alleen geldig voor onafhankelijke waarnemingen van een multinomi-
ale verdeling. Hierdoor kan er geen rekening worden gehouden met de correla-
tiestructuur in onze data door de herhaalde metingen. Om die reden zijn de ana-
lyses voor elk tijdspunt apart uitgevoerd. Terwijl de data verkregen voorafgaand
aan de behandeling is gebruikt om het effect van worminfecties op de samenstel-
ling van het darmmicrobioom te analyseren, is de na afloop van de behandeling
verkregen data gebruikt om het effect van de anti-wormen behandeling op de
samenstelling van het darmmicrobioom te bestuderen. Om te onderzoeken of
de behandeling een verschillend effect heeft op personen die voor aanvang van
de behandeling met wormen besmet waren, ten opzichte van personen die niet
besmet waren, is er een interactieterm tussen de status van infectie en de behan-
deling toegevoegd aan het model. Het bleek dat alleen in de groep die behandeld
was met anti-wormenmedicatie en die zowel voor aanvang van de behandeling,
als na afloop van de behandeling besmet was met wormen, er een significant ver-
schil was in de verhouding van Bacteroidetes ten opzichte van Firmicutes en de
verhouding van Actinobacteria ten opzichte van Firmicutes in vergelijking met
de andere groepen. De methode die hier is toegepast heeft de beperking dat er
maar één tijdspunt kan worden geanalyseerd, en daarom kan de verandering van
de samenstelling van het microbioom niet over het verloop van een bepaalde pe-
riode worden bestudeerd. Hoofdstuk 3 beschrijft de ontwikkeling van een model
dat zich hierop richt.

In hoofdstuk 3 wordt de ontwikkeling van een statistische methode beschre-
ven die herhaalde metingen van de samenstelling van het microbioom model-
leert, waarbij rekening wordt gehouden met de correlatiestructuur tussen de her-
haalde metingen van een persoon. Dit is gedaan door een normaal verdeeld
random effect te introduceren. Er worden drie verschillende covariantiestruc-
turen voor de normaal verdeelde random effecten overwogen. Ten eerste stellen
we een univariate en persoons-specifieke random effect vast, waar het random ef-
fect voor elke categorie van bacteriën per verschillend tijdspunt hetzelfde is. Ten
tweede, elke categorie heeft een verschillend random effect met een categorie-
specifieke variantie. Als laatste wordt aangenomen dat er een multivariate random
effect is met een gemeenschappelijke variantie voor alle categorieën. Aan de hand
van een simulatiestudie is onderzocht in hoeverre deze voorgestelde methode in
staat is om een schatting te maken van de fixed effects en de standaard devia-
ties van de random effects. Hieruit bleek dat de schattingen van de fixed effects
niet worden beïnvloed door de keuze van de covariantiestructuur van de nor-
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maal verdeelde random effecten. Met betrekking tot de dataset, de conclusie
uit hoofdstuk 2 is bevestigd door het uitgebreidere model. Dat wil zeggen dat
de groep die zowel voor aanvang van de behandeling, als na afloop van de be-
handeling besmet was met wormen, een verandering vertoonden in de verhou-
ding Bacteroidetes ten opzichte van Firmicutes. Om de betrouwbaarheid van het
model te beoordelen, hebben we de marginale correlaties uitgerekend tussen en
binnen de categorieën over tijd. Hieruit blijkt dat de marginale correlaties goed
worden geschat met behulp van het multivariate random effect, gebaseerd op de
gemeenschappelijke variantie voor alle categorieën.

In de volgende hoofdstukken wordt de wisselwerking tussen worminfecties,
de samenstelling van het darmmicrobioom en de afweerreactie, gekenmerkt door
cytokinerespons in het bloed op antigenen, beschreven. Eerder onderzoek heeft
aangetoond dat anti-wormenbehandeling leidt tot herstel van de verzwakte af-
weerreactie, geassocieerd met worminfecties. Er wordt tevens gedacht dat be-
paalde darmbacteriën de afweerreactie beïnvloeden. Het doel van hoofdstuk 4
is om inzicht te verkrijgen in de mechanismen die een rol spelen bij deze wissel-
werking waarbij de metingen van beide tijdspunten worden gebruikt. Een linear
mixed model is toegepast op de data, met de cytokineproductie in reactie op be-
paalde antigenen als uitkomstvariabele. Voor dit model zijn het bacteriële aan-
deel of de diversiteit en hun interactieterm met parasitaire wormen gebruikt als
verklarende variabelen. We hebben onze analyse beperkt tot drie categorieën van
bacteriën, namelijk Actinobacteria, Bacteriodetes en Firmicutes, omdat deze bac-
teriële groepen geassocieerd waren met worminfecties in de analyses in Hoofd-
stuk 2 en 3.

In deze studie hebben we aangetoond dat er een significante associatie is tus-
sen de toename in het aandeel van Bacteriodetes en de afname in de concentratie
van IL-10 in reactie op LPS in personen die niet besmet zijn met wormen. De
associatie is minder sterk in personen die besmet zijn met wormen. Hoewel deze
resultaten de hypothese bevestigen dat het verwijderen van worminfecties leidt
tot een sterkere afweerreactie en dat darmbacteriën de afweerreactie beïnvloe-
den, zijn er ook een aantal beperkingen in de analyse te benoemen. Er wordt
aangenomen dat elke bacterieel aandeel onafhankelijk is, en de associatie met de
productie van cytokines wordt apart geanalyseerd. Hieruit volgt dat het kenmerk
van de samenstelling van het microbioom wordt genegeerd. In aanvulling hierop
wordt er ook geen rekening gehouden met de meetfout binnen de microbioom-
data bij dit model. Wat weer kan leiden tot onder- of overschatten van de regres-
sieparameters. Bovendien wordt de associatie tussen worminfecties en bacteriële
aandelen niet gekwantificeerd in dit model. Om die reden is er in Hoofdstuk 5
een statistische methode ontwikkeld die probeert deze beperkingen te overwin-
nen.
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In Hoofdstuk 5 is ons doel om een statistisch model te bouwen voor de associ-
atie tussen helminthinfecties enerzijds en zowel microbioom als cytokinerespons
simultaan anderzijds, door alle bronnen van variatie in de data mee te nemen. Al-
lereerst zijn de cytokinereponsen als continue uitkomsten en de multivariate tel-
uitkomst van het darmmicrobioom gecorreleerd binnen een individu. Ten tweede
worden er correlaties tussen dezelfde type observaties op verschillende tijdstip-
pen verwacht. Ten slotte is er, specifiek voor microbioomdata, extra variabiliteit
door overdispersie en meetfouten. We nemen aan dat de cytokineresponsen en
de microbioomcomposities respectievelijk een normale en een multinomiale ver-
deling volgen. Een verzameling latente variabelen, waarvan aangenomen wordt
dat ze een multivariate normale verdeling volgen, is in het model opgenomenom
rekening te houden met additionele variatie in de data. De meetfout is gemodel-
leerd met een multidimensionaal normaal verdeeld random effect, m.a.w. elke
categorie heeft zijn eigen random effect waarvan aangenomen wordt dat ze zijn
gecorreleerd. Dit wordt gedaan voor meer flexibiliteit in het modelleren van de
extra variatie in elke categorie. De gezamenlijke kansverdeling is geformuleerd
en parameters zijn geschat door het maximaliseren van de gezamenlijke waar-
schijnlijkheidsfunctie met numeriek bepaalde kwadraturen. Een simulatiestudie
is uitgevoerd om de prestatie van de schatters te onderzoeken voor zowel de
fixed als de random effecten, in vergelijking met de methode geïntroduceerd in
Hoofdstuk 4 (de naïeve methode). Het gezamenlijke model presteert beter dan
de naïeve model. In de datatoepassing laten we zien dat de correlatie tussen de
microbioomcompositie en de cytokineresponsen klein is. Wanneer we de mar-
ginale correlaties behorende bij het voorgestelde model uitrekenen, blijken deze
niet in overeenstemming te zijn met de geobserveerde correlaties.

Hoofdstuk 6 beschrijft en vat de resultaten van de analyses die zijn uitgevoerd
en de methoden gebruikt in Hoofdstuk 2 tot en met 5 samen. Het doel van dit
hoofdstuk is om de bewijzen voor causaliteit van de geïdentificeerde associaties
te evalueren tussen helminthinfecties, darmmicrobioomcompositie en cytokine-
responsen, gebruikmakende van de data uit het gerandomiseerde gecontroleerde
onderzoek. We hebben gevonden dat de behandeling een effect heeft op zowel
de darmmicrobioomcompositie als cytokineresponsen via het verwijderen van de
helminthinfectie, en dat de darmmicrobioom een directe effect heeft op cytokine-
responsen. De gerichte acyclische grafen (DAGs) zijn gebruikt om de richting van
het causale effect te visualiseren, en meerdere potentiële bronnen van verteke-
ning zijn meegenomen in deze DAGs, namelijk niet-geobserveerde confounders
en meetfouten. De statistische methoden ontwikkeld in dit proefschrift nemen
de extra variatie veroorzaakt door niet-geobserveerde confounders en meetfou-
ten mee via de inclusie van random effecten. Specifiek voor microbioomdata zijn
er twee voor de hand liggende mogelijkheden voor verdelingsaannames op de
randomeffecten, namelijk een geconjugeerde en een normale verdeling. In dit
proefschrift hebben wij deze aannames verkend. Het blijkt dat modellen met
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random effecten die een geconjugeerde verdeling hebben goed bij de microbi-
oomdata passen, als je beschouwt hoe goed de marginale correlaties van het mo-
del de geobserveerde correlaties reflecteren. Gebaseerd op resultaten uit de li-
teratuur en onze analyses, kunnen we concluderen dat behandeling een causaal
effect heeft op helminthinfectie en dat een helminthinfectie directe effecten heeft
op zowel de darmmicrobioom als de cytokineresponsen. Het blijkt dat de corre-
latie tussen darmmicrobioom en cytokineresponsen klein is, daarom is hun effect
niet verder geëvalueerd.

Ten slotte, data uit gerandomiseerde gecontroleerde onderzoeken, zoals in dit
proefschrift, zijn nuttig om causale verbanden tussen betrokken variabelen te on-
derzoeken. Verder leveren observaties die meermaals zijn gemeten informatie
over hoe een specifieke uitkomst zich ontwikkelt over tijd. Helaas gebruiken de
studies in dit proefschrift data over kleine deelsteekproeven uit een groter onder-
zoek, wat mogelijk leidt tot een verlaagd statistisch onderscheidend vermogen
om effecten te detecteren. Een oplossing om deze limitatie te beperken is om
verschillende bronnen met observaties te integreren.
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