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In this chapter we provide the background that is required for the fol-
lowing chapters. The diatomic molecule interacting with an ideal static
surface model is discussed. A brief description of density functional the-
ory (DFT) is presented followed by methods for construction of potential
energy surfaces. Methods for dynamics calculations on H2-surface systems
and for computing properties from the results of dynamics calculations are
described.

2.1 Modelling the molecule surface interaction

The interaction between a molecule and a surface is fully described by the
Schrödinger equation [1] as :

Ĥtotψ(r⃗, R⃗) = Etotψ(r⃗, R⃗), (2.1)

in which Etot is the total energy and ψ(r⃗, R⃗) is the wave function, depending
on all the electronic coordinates r⃗ and the nuclear coordinates R⃗. Ĥtot is the
Hamiltonian that describes both the electronic and nuclear motions. The
electronic Hamiltonian is composed of kinetic energy term of the electrons
(T̂e) and electrostatic potentials (V ),

Ĥe = T̂e + Vee + Vnn + Vne, (2.2)

so that the total Hamiltonian is given

Ĥtot = T̂n + Ĥe, (2.3)

where T̂n is the kinetic energy of the nuclei (with mass Mj) in atomic units,
given by

T̂n =

M∑
j=1

−1

2Mj
∇2

R⃗
. (2.4)

Note that throughout this chapter we will use atomic units. The kinetic
energy of the electrons is given by

T̂e =

N∑
i=1

−1

2
∇2

r⃗. (2.5)
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Vee is the electron-electron (repulsive) interaction potential

Vee =

N∑
i=1

N∑
k>i

1

|r⃗i − r⃗k|
, (2.6)

Vnn is the nuclear-nuclear (repulsive) interaction potential with atomic num-
bers Z

Vnn =

M∑
j=1

M∑
k>j

ZjZk

|R⃗j − R⃗k|
, (2.7)

and Vne is the nuclear-electron (attractive) interaction potential

Vne =

M∑
j=1

N∑
i=1

−Zj

|r⃗i − R⃗j |
. (2.8)

In the framework of the Born-Oppenheimer (BO) approximation [2], the
ground state potential energy surface (PES) arises from solving the elec-
tronic Schrödinger equation for the problem by the partition of the problem
into electronic and nuclear degrees of freedom (DOFs),

Ĥeψe(r⃗; R⃗) = (T̂e + Vee + Vnn + Vne)ψe(r⃗; R⃗) = Ee(R⃗)ψe(r⃗; R⃗), (2.9)

and
Ĥnψn(R⃗) = [T̂n + Ee(R⃗)]ψn(R⃗). (2.10)

This approximation allows us to write the full wave function in a separable
form :

ψ(r⃗, R⃗) = ψe(r⃗; R⃗)ψn(R⃗), (2.11)

where ψe(r⃗; R⃗) is the corresponding electronic wave function that paramet-
rically depends on all nuclear coordinates R⃗, and ψn(R⃗) is the nuclear wave
function. In Equation 2.9, Ee is the electronic energy of the system (for
the ground state, this is the lowest value) which depends on the nuclear
positions. For this thesis we neglect the surface atom DOFs and the mo-
lecule interacts with the frozen ideal surface. Ee(R⃗) will be referred to
as the potential energy surface (PES) for the ground electronic state. The
most efficient electronic structure method to solve the electronic Schödinger
equation for the molecule-surface interaction in an approximative but still
accurate way is density functional theory (DFT). It will be the subject of
the next section in this chapter.
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2.2 Density functional theory
To obtain the potential energy for a particular configuration, which needs to
be done for many configurations to map out a PES, an electronic structure
method is needed. The problem in electronic structure calculations arises
when the system is described by a high dimensional many-electron wave
function. To solve this problem, a much simpler three dimensional quantity,
i.e., the electron density n(r⃗) is used to replace the high-dimensional many-
body wave function [3]. The electron density in a system with N electrons
depends on only three DOFs and the computational cost of the method
scales asN3 instead ofNmfor the wave function based methods, withm ≥ 4.

Hohenberg and Kohn [3] showed that for any system of interacting
particles in an external potential Vext(r⃗), the electron density is uniquely
determined, in other words, the ground state wave function is a unique
functional of the density n(r⃗). Furthermore, they showed that a univer-
sal functional for the energy E[n(r⃗)] can be defined in term of the density.
The exact ground state corresponds to the global minimum value of this
functional. This makes it possible to use the variational principle to obtain
the minimum energy and the ground state electronic density. All physical
information about the system is given by Ĥe and according to the the-
orem, there is a one-to-one correspondence between Ĥe and the ground
state electronic density. Therefore, from the Hohenberg and Kohn theorem,
the energy is a functional of the electron density,

Ee[n(r⃗)] = T̂e[n(r⃗)]+Vee[n(r⃗)]+Vne[n(r⃗)] = FHK [n(r⃗)]+Vne[n(r⃗)]. (2.12)

FHK is the Hohenberg and Kohn functional which is universal and inde-
pendent of the system. Vne[n(r⃗)] is the system dependent term and is called
the external potential. We note that in practice Vnn is also added to the
electronic Hamiltonian, even though this just adds a constant to the value
of the energy for a specific configuration of the nuclei. FHK is unknown and
approximation is needed to express it. It is very useful to separate FHK in
three different contributions as

FHK = T̂e[n(r⃗)] + EH [n(r⃗)] +GXC [n(r⃗)], (2.13)

in which EH [n(r⃗)] is the Hartree interaction of the electrons, given by

EH [n(r⃗)] =
1

2

∫
n(r⃗)n(r⃗′)

|r⃗ − r⃗′|
dr⃗dr⃗′, (2.14)
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GXC [n(r⃗)] is a functional that contains quantum mechanical many-body ef-
fects and it is unknown. Here, in the Hohenberg and Kohn theorem T̂e[n(r⃗)]
is the kinetic energy of the electrons.

Kohn and Sham [4] developed a practical way to avoid problems with
calculating the kinetic energy from the electronic density. They proposed
a fictitious system consisting of non-interacting electrons in an effective ex-
ternal potential (the Kohn-Sham potential VKS). The many-electron prob-
lem can be reformulated as a set of N single-electron equations referred to
as the Kohn-Sham equations,

[
−∇2

2
+ VKS(r⃗)]ϕi(r⃗) = εiϕi(r⃗). (2.15)

ϕi is the single particle orbital or Kohn-Sham (KS) orbital obtained for
an fictitious non-interacting system and yields the electron density of the
original system

n(r⃗) =

N∑
i=1

|ϕi(r⃗)|2. (2.16)

The first term on Equation 2.15 yields the kinetic energy of the non- in-
teracting electrons, T̂S . The total kinetic energy of the system T̂e can be
separated in a non-interacting contribution T̂S and an unknown component
T̂C that contains correlation through many-body effects. This component
is also a functional of the electron density and together with GXC forms the
well-known exchange-correlation (XC) functional EXC = GXC + T̂C . This
name comes from the fact that it contains the exchange interaction due to
the Pauli exclusion principle and many-body electron-electron correlation.
This unknown XC functional is approximated in particular calculations and
its approximations will be discussed in the Section 2.2.1. The total energy
functional 2.12 can be rewritten with respect to these definitions as

Ee[n(r⃗)] = T̂s[n(r⃗)] + EH [n(r⃗)] + Vne[n(r⃗)]︸ ︷︷ ︸
known

+EXC [n(r⃗)]︸ ︷︷ ︸
unknown

. (2.17)

Minimizing this energy functional is done through the solution of the
single particle Kohn-Sham equations (Equation 2.15). The Kohn-Sham po-
tential in Equation 2.15 is given by

VKS [n(r⃗)] = Vext[n(r⃗)] + VH [(n(r⃗)] + VXC [n(r⃗)]. (2.18)
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Here, Vext is the external potential from the nuclei,

Vext =

M∑
j=1

Zj

r⃗ − R⃗j

, (2.19)

VH is the Hartree potential, given by

VH [n(r⃗)] =

∫
n(r⃗)

|r⃗ − r⃗′|
dr⃗′, (2.20)

and VXC in the exchange-correlation potential, given by

VXC [n(r⃗)] =
δEXC [n(r⃗)]

δn(r⃗′)
. (2.21)

All these functional derivatives that enter in the Kohn-Sham equation de-
pend on the density, and therefore on the KS orbitals. The Kohn-Sham
equations are solved self-consistently.

2.2.1 The exchange-correlation functional

The quality of DFT depends on the form of the unknown XC functional
EXC . The simplest approximation for the XC functional was proposed in
the paper of Kohn-Sham [4] and it is called the local density approximation
(LDA), where the XC functional is written as,

ELDA
XC [n(r⃗)] =

∫
n(r⃗)ϵLDA

XC (n(r⃗))dr⃗, (2.22)

where ϵLDA
XC is the XC energy per electron of the homogeneous electron gas

(HEG) with the electron density n(r⃗). In the LDA, the XC energy of a
system depends locally on the electron density. ϵLDA

XC is usually separated
into exchange and correlation contributions

ϵLDA
XC (n(r⃗)) = ϵHEG

X (n(r⃗)) + ϵLDA
C (n(r⃗)). (2.23)

There is an exact solution for the exchange energy in the HEG, and it is
given by

ϵHEG
X (n(r⃗)) = −3

4
(
3n(r⃗)

π
)
1
3 . (2.24)

However, the correlation energy is not known analytically and needs to be
approximated. The accurate calculation of the correlation part is possible
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based on Quantum Monte Carlo data by Ceperley and Alder [5]. Several
popular approximations for the LDA correlation functional are given in
references [6–8]. Although LDA functionals are simple, they work rather
well in simulating many bulk and surface systems. For systems which have
an electron density far away from the HEG, i.e. systems with strongly
varying densities, LDA usually does not perform very well. This is the case
for molecules and for the interaction of a molecule with a metal surface, for
which LDA does not describe barriers to dissociation accurately, so that for
various strongly activated H2-metal surface systems no or only a very small
barrier to dissociation is found [9, 10].

A more advanced level of XC functionals is formed by the generalized
gradient approximation (GGA) XC functionals [11, 12]. In the GGA, the
XC energy not only depends on the electron density, but also on the gradient
of electron density ∇n(r⃗) , i.e.:

EGGA
XC [n(r⃗)] =

∫
n(r⃗)ϵGGA

XC (n(r⃗),∇n(r⃗))dr⃗. (2.25)

Such a functional is often called a semi-local functional, because of the
added density gradient dependence. The XC energy EGGA

XC is split into an
exchange and a correlation contribution, EGGA

X and EGGA
C , respectively, as

for the LDA. The exchange part of EGGA
XC is always expressed as

EGGA
X [n(r⃗)] =

∫
n(r⃗)ϵHEG

X (n(r⃗))FX(s)dr⃗, (2.26)

where FX(s) is generally called the exchange enhancement factor, which is
commonly written as a function of the reduced density gradient s:

s =
|∇n(r⃗)|

2(3π2)
1
3n

4
3 (r⃗)

. (2.27)

s is dimensionless due to the exponent of the density in the denominator. We
note that all traditional GGA functionals exploit an equation like Equation
2.26 to express the exchange part of the XC energy, so that Peverati and
Truhlar [13] used this expression to define the GGA. However, Peverati
and Truhlar also defined a non-separable gradient approximation (NGA),
in which the electron density and its gradient is employed to represent both
exchange and correlation in a non-separable term [13, 14]. This new kind
of functional approximation includes both exchange and correlation in a
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non-separable way by a new functional type that has the form of a non-
separable gradient enhancement of HEG exchange; it also includes a more
conventional correlation term [13].

Many different GGA functional forms exist. The functional significantly
improves over LDA results in many cases, and it is relatively accurate for
a large range of systems. The most famous and most used functional in
the surface science community is the PBE [15] functional. The exchange
enhancement factor for the PBE XC functional is given by:

FX(s) = 1 + κ− κ

1 + µs2/κ
, (2.28)

where κ and µ are derived from physical constants (not semi-empirical
parameters). Another functional frequently used for gas-surface systems
is RPBE [16], in which the exchange enhancement factor is given by:

FX(s) = 1 + κ · (1− e−µs2/κ). (2.29)

Unfortunately, for molecules interacting with metals the GGA is not always
very accurate. For instance, for such systems, it is observed that often
RPBE yields too high reaction barriers, while the PBE functional is too
attractive (yields too low barriers) at the same time, but mixing these two
functionals can provide the required accuracy for the system [17]. Imple-
mentation and references for a large number of other GGA functionals can
be found in Ref. [18]. Construction of new GGA functionals is still an
active research field in the surface science community.

The next step upward from the GGA level on "Jacob’s ladder" proposed
by Perdew and Schmidt [19] is the meta-generalized gradient approxima-
tion (meta-GGA), which depends on the kinetic energy density and /or
the Laplacian of the density in addition to the gradient of the density.
This functional provides the opportunity of a better incorporation of ex-
act quantum mechanical constraints, and in many cases a somewhat higher
accuracy can be achieved compared to GGA results. Popular meta-GGA
functionals are TPSS [20] and revTPSS [21]. The additional variable in the
meta-GGA functional yields an advantage for surface science, by allowing
a better distinction between molecules and solids [21].

The next step on the ladder is the "hyper-GGA" level, in which exact
Hartree-Fock exchange is added into the GGA functional to improve it.
A well-known hybrid functional in the molecular chemistry community is
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B3LYP [19, 22, 23] which gives very good descriptions for energetic and
structural properties of isolated molecular systems. In spite of the good
performance of hybrid functionals in molecular chemistry, they are not so
common in solid state physics and surface science, especially for molecule-
metal systems. The evaluation of the exact exchange functional for metals in
which electrons are de-localized, is computationally very costly and difficult
to achieve for molecule-surface interaction where the goal is to obtain a full
PES [24–26].

An important limitation of all local or semi-local (i.e., up to meta-GGA
level) functionals is that they can not describe long range electronic correl-
ations (which give rise to long range interactions), such as van der Waals
(vdW) interaction. Various methods have been proposed to overcome this
problem, some more or some less applicable to problems involving metals
surfaces. A popular approach is adding a pairwise potential based on C6

coefficients computed from time-dependent density functional theory (TD-
DFT) in the DFT-D3 method by Grimme et al. [27]. C6 coefficients ob-
tained from the mean-field ground state electron density in other methods
have been reported by Tkatchenko and Scheffler [28]. Very significant pro-
gress was achieved by introducing the non-local correlation density func-
tional vdW-DF, which has been reported by Dion et al. [29]. Since then,
further refinements of vdW-DF functional provided very satisfying results
for many systems [30–32] and other functionals have been reported by im-
proving over the original vdW-DF functional, by either changing the ex-
change functional, the correlation functional or both. The computational
method of Román-Pérez and Soler [33] has allowed the vdW-DF [29] and
vdW-DF2 [34] correlation functional to be evaluated efficiently.

Specific reaction parameter density functional

The so-called specific reaction parameter (SRP) approach to DFT is a semi-
empirical approach to optimizing the unknown XC functional, which in its
original version was developed by Truhlar and co-workers [35] for reactions
in the condensed phase. This approach is based on fitting one or a few para-
meters in the XC functional to a set of experimental data. The functional
is optimized for describing a specific reaction, then the fitted functional
is tested against at least one other set of experimental data for the same
system. Diaz et al. [17] applied an implementation of this approach to a
gas-surface reaction by fitting a weighted average of two GGA functionals
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to one set of experimental data , which is very sensitive to minimum barrier
height, for H2 + Cu(111). It has been shown that this new semi-empirical
functional is able to reproduce a large range of experimental data for the
H2 + Cu(111) [17] system within chemical accuracy, and is transferable to
H2 interacting with another crystal face of the Cu metal, i.e., Cu(100) [36].
In this thesis, our main focus lies on this method and we apply the SRP
methodology to our selected systems. In the next chapters we discuss more
about how SRP density functionals are derived and can be transferable from
one system to another system.

2.3 Density functional theory for periodic
systems

A metal surface is infinite but periodic. When performing calculations on
a molecule interacting with a metal surface, it is necessary to take into
account the periodicity of the surface to avoid edge effects. DFT is very
suitable for representing an infinite surface. For a periodic system, the
potential of the system should represent this periodicity. In solid state
physics, the Bloch theorem [37] applies to the solution of the Schrödinger
equation of an electron in a periodic potential. This theorem says that an
eigenfunction for an electron in a periodic potential can be written as a
plane wave multiplied with a periodic function with the same periodicity as
the potential. Therefore, to build the periodicity into the DFT calculation a
periodic basis set can be used. Based on the Bloch theorem the eigen-states,
in this case the KS orbitals, can be written as

ϕi,k(r⃗) = uk(r⃗)e
ik⃗·r⃗, (2.30)

where k⃗ is a wave-vector in the first Brillouin zone and ui,k is a function
with the same periodicity (R⃗) as the potential,

ui,k(r⃗) = ui,k(r⃗ + R⃗). (2.31)

By expanding ui,k in the plane wave basis set (Fourier series), the KS or-
bitals can be written as

ϕi,k = N
∑
G

ci,k(G⃗)e
i(k⃗+G⃗)·r⃗, (2.32)
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where G⃗ is a reciprocal lattice vector, ci,k(G) is an expansion coefficient and
N is a normalization factor.

When performing the actual calculations, the number of plane waves
that represent the wave function can not be infinite. The size of the basis
set is specified by the maximum kinetic energy Ecut−off . In Equation 2.32,
the plane wave ei(k⃗+G⃗)·r⃗ is included in the basis set if:

1

2
|⃗k + G⃗|2 ≤ Ecut−off . (2.33)

To determine a suitable Ecut−off one should perform several calculations
with increasing Ecut−off to ensure that the property of interest (e.g., energy
) is converged with respect to Ecut−off . Also in the calculations, continuous
sampling of the first Brillouin zone is computationally problematic and it
has to be sampled by a discrete (and finite) number of grid points (the k-
points). A particularly useful scheme for generation of k-points grids that
will be used in this thesis, was devised by Monkhorst and Pack [38].

The plane wave basis has some advantages. First, they are orthogonal
and easy to use to control the completeness of the basis set. Also, they are
independent of the atomic positions so with plane waves, there is no basis
set superposition error. Furthermore, a computational advantage arises
from the fact that a fast algorithm exist to operate with them and convert
the wave function between real space and momentum space (fast Fourier
transforms (FFTs)). The use of plane waves as a basis set also has some
downsides. To represent core electron orbitals, which are rapidly varying
functions due to their localization close to the nucleus, and also valence
electron orbitals very close to nuclei, which can assume a highly-oscillating
behaviour, a prohibitively large number of plane wave is necessary. How-
ever, core electrons described by these wave functions do not participate
in the interaction with the other atoms, since the rearrangement of the
valence electrons is mainly responsible for bonding. Therefore, it is possible
to remove these electrons and replace them by effective potentials named
pseudopotentials. The name of pseudopotentials comes from the fact that
the strong Coulomb potential of a bare nucleus is replaced with a softer po-
tential of a pseudo-atom. The pseudo-atom includes nuclei, core electrons
and interaction among them including relativistic effects.

The pseudopotential can be constructed in such a way that the potential
and resulting pseudo-wave functions are as smooth as possible inside the
cut-off radius rc close to the nucleus and that they are almost exactly the
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same as the real potential and wave function outside the cut-off radius. In
the pseudopotential approach, the pseudo-wave functions are smoother than
the corresponding all electron wave functions which oscillate rapidly in the
core region, while they reproduce the all electron wave functions beyond a
distance from the nucleus rc. Ultrasoft pseudopotentials were introduced
by Vanderbilt (1990) [39]; these allow calculations to be performed with a
low cutoff energy. A more general approach is provided by the projector-
augmented waves (PAW) method [40, 41], which also allows for calculation
of all-electron observables and which is used in the calculations presented
in this thesis.

In plane wave DFT, there is periodicity in three dimensions in contrast
to the two dimensional periodicity of the surface. To tackle this problem, a
supercell approach [42] is used to treat molecule on surface systems, which
actually have 2D periodicity. A large vacuum space is introduced along the
dimension perpendicular to the surface so that the unit cell is partitioned
into regions of solid (slab) and vacuum [43]. The slab [44] is periodic in
the directions parallel to the surface and contains enough atomic layers in
the direction perpendicular to the surface to converge the molecule-surface
interaction energy. To minimize the artificial interaction between periodic
images (interaction between the slab an its periodic image) a thick enough
vacuum space is needed. In the construction of the supercell all these factors
should be taken into account to keep the computational cost (number of
atoms) as low as possible, while still obtaining accurate results.

2.4 Construction of potential energy surfaces

In the previous section we described the electronic structure methods that
provide the data that one needed to obtain the PES on which the nuclear
motion is propagated. A continuous PES is needed to solve the Schrödinger
equation for nuclear motion, Equation 2.10. To obtain a continuous PES,
the approach is to perform a number of DFT single point calculations for a
set of selected configurations of the system and then interpolate them using
some sort of fitting scheme. For the PES of a diatomic molecule interact-
ing with a frozen metal surface a rather efficient interpolation method is
available, which was proposed by Busnengo et al. [45, 46] and is called the
corrugation reducing procedure (CRP). The CRP method will be used as
an interpolation method through out this thesis and will be described here.
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The main problem in the interpolation of the molecule-surface potential
near to a surface is that it is highly corrugated, i.e., a large variation in the
potential exists when a small change happens in the molecular coordinates.
The idea behind the CRP method is to reduce this corrugation to a man-
ageable level. It is known that the interaction of the individual atoms with
the surface causes most of the corrugation in the potential. Therefore, the
CRP interpolation method, for example for H2 interacting with a surface,
reduces the corrugation near the surface by subtracting the H atom-surface
interactions from the total interaction to obtain a smoother function. Then
the interpolation is carried out of the smoother function and the H-surface
potential is added back to obtain the final full 6D potential. First let us
define the coordinate system of a H2 molecule on a surface. As mentioned
in Section 1.2.1, the geometry of the H2 molecule relative to the surface can
be described by the motion of (the center of mass (COM) of) the H2 mo-
lecule in three dimensions ((X,Y, Z) ≡ R), and the internal motion of the
molecule ((r, θ, ϕ) ≡ q)), i.e., the interatomic distance r, the angle between
the molecular axis and the surface normal θ, and the angle ϕ between the
projection of the molecular axis on the surface and the X axis, respectively.
In the CRP method, the six-dimensional (6D) PES is written as

V 6D(R⃗, q⃗) = I6D(R⃗, q⃗) +

2∑
i=1

V 3D
i (r⃗i), (2.34)

in which V 6D is the full 6D PES of the H2/surface system and I6D is
the so-called 6D interpolation function of the H2/surface system, which
still depends on the center of mass coordinates (R⃗) with respect to the
surface and the internal coordinates of the H2 molecule (q⃗). V 3D

i is the
three-dimensional (3D) PES of the H/surface system, with r⃗i the vector
representing the coordinates of the ith H atom with respect to the surface.
For the interpolation of the 3D H/surface system PES, the CRP is again
applied using

V 3D
i (r⃗i) = I3Di (r̄i) +

N∑
j

V 1D(Rij), (2.35)

where I3Di is the 3D interpolation function describing the H/surface system,
andN is the number of surface atoms to take into account in the summation.
The interaction of a hydrogen atom with a single surface atom is represented
by a one-dimensional (1D) function V 1D depending on the distance between
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the hydrogen atom i and surface atom j (Rij). The V 1D function reduces
the corrugation of V 3D

i .
The first step in this procedure is to calculate the DFT points for a grid

of geometries. To reduce the computational cost, it is very useful to include
the most symmetric molecular configurations. This is because a periodic
lattice is considered and additional symmetry is usually present in the form
of mirror planes and rotation axes. Furthermore, in the case of a homo-
nuclear diatomic molecule, or when the molecule is above a high symmetry
site of the surface, even more symmetry can be present. Therefore, sev-
eral symmetric X,Y positions are selected and for each of these positions
several orientations (θ, ϕ) are chosen. Finally for each set of (X,Y, θ, ϕ), a
grid of (r, Z ) values is chosen. The DFT calculations are performed for
each (X,Y, Z, r, θ, ϕ) geometry. Then the CRP approach is applied to these
DFT points. The 3D potentials of each atom of the molecule are subtracted
from the 6D molecule-surface potential points. The remaining interpola-
tion function I6D is smooth enough to use standard numerical interpolation
methods to interpolate it. In this step typically the 6D problem is decoupled
into four two-dimensional (2D) interpolation steps [47]. For each calculated
(X,Y, θ, ϕ) configuration, 2D cubic splines interpolation method is used to
interpolate the calculated (r, Z ) grid of energy points. Once the inter-
polated values of (r, Z ) grid points are obtained, the (θ, ϕ) interpolation
for each (X,Y ) combination is carried out. Usually a Fourier interpolation
method is used with basis functions (sines and cosines) incorporating the
symmetry of the system. Finally, the interpolation is performed for the
remaining (X,Y ) coordinates. In this step a symmetry adapted Fourier
expansion or 2D periodic cubic splines can be used. After interpolating
the interpolation function the 3D potentials are again added to obtain the
continuous 6D potential.

In the CRP scheme, the individual 3D atom potentials have to be cal-
culated. They are obtained in a similar way as the 6D PES. First the DFT
values are obtained for a grid of positions of the H-atom (X,Y, Z). The 3D
PES is also corrugated and its corrugation is reduced by subtraction of the
1D pair potentials. Then the 3D interpolation function can be interpolated
using 3D cubic splines. The interpolation is performed in two steps. First,
for each calculated (X,Y ) configuration, 1D cubic spline interpolation is
performed to interpolate the calculated (Z) grid of energy points. Then
a Fourier interpolation is performed in the (X,Y ) coordinates, using sym-
metry adopted sine and cosine functions. For V 1D the spline interpolation
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of the interaction of the H atom above X = 0, Y = 0 is used.

2.5 Molecular dynamics

Once the 6D PES is constructed one can perform the dynamics calcula-
tions either classically or quantum mechanically. Computing the dynamical
properties gives us the opportunity to understand and compare to the ex-
perimental measurements.

2.5.1 Quasi-classical dynamics

The classical trajectory calculations are performed by solving Newton’s
equations of motion for the 6 molecular DOFs as

Mi
d2Ri

dt2
= −∇iV

6D(Ri, Rj), i ̸= j (2.36)

where i, j are the indexes of the atoms in the diatomic molecule. To integrate
the equations of motion, different propagators exist and can be used, such
as the (velocity) Verlet propagator [48], the Beeman propagator [49] , etc.

The Quasi-classical trajectory (QCT) method usually gives more accur-
ate results for H2-surface reactions than the purely classical method be-
cause in a QCT calculation the initial vibrational zero point energy (ZPE)
is modelled using an ensemble of initial conditions for the internal mo-
tion of the molecule that forms a classical microcanonical distribution [50].
The vibrational states of the molecule are calculated using the Fourier grid
Hamiltonian (FGH) method [51]. In the QCT calculations based on the
CRP interpolated PES, Hamilton’s equations of motion are integrated with
the predictor-corrector method of Bulirsch and Stoer [52].

At the beginning of each trajectory calculation the initial conditions
have to be set, i.e., the initial positions, and velocities of the particles. In
modeling H2 dissociation on a surface, the molecule is initially positioned
far away from the surface, where the potential does not yet depend on Z.
The molecule with a particular velocity towards the surface corresponds to
the perpendicular incidence energy E⊥. The impact site on the surface is
chosen randomly and, if off-normal incidence is considered, a velocity vector
is set up according to the parallel incidence energy E∥, the polar incidence
angle θi, and the azimuthal incidence angle ϕi.
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Reaction or scattering probabilities, for each initial incidence energy and
initial rovibrational state (Ei, νi and ji) are calculated as an average over
molecular initial conditions (position of the molecular center of mass over
the surface unit cell, molecular orientations and orientation of the initial
angular momentum vector) where these initial conditions of the H2 molecule
are selected using a standard Monte Carlo method. To obtain mj resolved
reaction probabilities, the initial angular momentum L of the H2 molecule
is fixed by L =

√
j(j + 1)ℏ and its orientation is chosen randomly with

the constraint cos(θL) = mj/
√
j(j + 1), where θL is the angle between the

angular momentum vector and the surface normal.
After the propagation over a certain number of time steps, the trajector-

ies are analyzed to determine whether a specific outcome has been reached.
When the interatomic distance of the molecule reaches a particular value,
the molecule is considered to have reacted. When the distance between
the molecule and the surface becomes larger than a certain value where no
interaction is present, the molecule is considered to have scattered. The
molecule is considered to be trapped if neither outcome has occurred.

The reaction probability Pr can be obtained from

Pr =
Nr

Ntotal
, (2.37)

where Nr is the number of reacted trajectories and Ntotal is the total number
of trajectories. Certain observables such as molecular beam sticking probab-
ilities or degeneracy averaged reaction probabilities can be computed using
the QCT method.

2.5.2 Quantum dynamics

For the quantum dynamics (QD) calculations, a time-dependent wave packet
(TDWP) method [53] was used, where the time dependent Schrödinger
equation is solved to generate scattering and reaction probabilities. The
wave packet is represented in a discrete variable representation (DVR) [54]
for Z, r,X, Y and a finite basis representation (FBR) [55, 56] has been used
to describe the angular DOFs. Fast Fourier transforms [57] and discrete
associated Gauss-Legendre transforms [55, 56] were used to transform the
wave function from FBR space to DVR space, and vice versa. The wave
packet is propagated in time using the Split Operator method [58]. The
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initial wave packet, which is placed far away from the surface on a spec-
ular grid (sp), where the interaction with the surface is negligibly small,
is written as a product of a Gaussian wave packet to describe motion per-
pendicular to the surface, plane waves to describe motion parallel to the
surface, and a rovibrational wave function describing the initial state of the
molecule according to

ψ0(X,Y, Z, r, θ, ϕ) = ϕν,j(r)Yjmj (θ, ϕ)
1√
A
eik

X,Y
0 ·R

∫
dkZβ(kZ0 )

1

2π
eik

Z
0 Z .

(2.38)
Here ϕνj(r) and Yjmj (θ, ϕ) are, respectively, the vibrational and rotational
eigenfunction of the H2 molecule in the gas phase with vibrational, rota-
tional and magnetic rotational quantum number ν, j and mj . The ini-
tial parallel motion of the wave packet along X and Y is described by
1√
A
eik

X,Y
0 .R, in which A is a normalization factor (the surface area of the

unit cell), kX,Y
0 is the initial parallel momentum and R is the position vector

(X,Y ). The wave packet describing motion in the Z direction is a function
of the initial momentum kZ

0 and is Gaussian shaped and centered on Z0:

β(kZ0 ) =

(
2σ2

π

)1/4

e−σ2(k̄−kZ0 )2ei(k̄−kZ0 )Z0 . (2.39)

Here k̄ is the average momentum in Z and σ is a half width parameter.
To ensure that the wave packet moves towards the surface with a range of
translational energies, k̄ is chosen to be negative. When the wave packet
enters the region where it interacts with the surface, it is transferred from
the specular grid to the regular grid using a projection operator formalism
[59, 60]. The part of the wave packet which returns from the surface, is
analyzed using the scattering amplitude formalism [61–63] at Z∞ where the
molecule and surface (in principle) no longer interact and is integrated over
time to obtain the state-to-state scattering S-matrix elements for all open
vibration, rotation and diffraction channels. Beyond Z∞ or large r, optical
potentials [64] are used to adsorb the reacted part of the wave packet and
the reflected part of the wave packet.

Scattering probabilities as a function of energy were obtained from S-
matrix elements over the entire range of energies present in the wave packet.
The fully initial state resolved reaction probability is defined as 1 minus the
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sum of the scattering probabilities:

Pr(ν, j,mj) = 1−
∑

ν′,j′,m′
j ,n,m

Pscat(ν, j,mj −→ ν ′, j′,m′
j , n,m), (2.40)

where Pscat(ν, j,mj −→ ν ′, j′,m′
j , n,m) are the state to state scattering

probabilities. ν(ν ′), j(j′), mj(m
′
j) ss are the initial(final) vibrational, rota-

tional and magnetic rotational quantum number, respectively, and n and
m are the quantum numbers for diffraction. For more details about this
method see Ref. [65].

2.5.3 Computation of observables

Initial state resolved reaction probabilities

Initial state resolved reaction probabilities Pdeg(E; v, j) are obtained by
degeneracy averaging the fully initial state resolved reaction probabilities
Pr(E; v, j,mj) according to

Pdeg(E; v, j) =

mj=j∑
mj=0

(2− δmj0).Pr(E; v, j,mj)

2j + 1
, (2.41)

where Pr is the fully initial state–resolved reaction probability, δ is the
Kronecker delta, and ν, j and mj are the initial vibrational, rotational and
magnetic rotational quantum number of the H2 molecule, respectively.

Molecular beam sticking probabilities

In order to make a meaningful comparison of computed reaction probabil-
ities with measured sticking probability results, we have performed simula-
tions of the molecular beam conditions, used in the experiments. For this
one has to take into account two things. First, the initial state resolved
reaction probabilities should be averaged over all rovibrational states which
have a significant population in the molecular beam. Second, it is necessary
to consider the spread of incidence energies present in the molecular beam.
Therefore we need to compute the molecule’s monoenergetic reaction prob-
abilities Pmono(Ei, Tn), which depend on the collision energy Ei and on the
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nozzle temperature Tn, and thus, on the rovibrational state populations.
The monoenergetic reaction probability can be written as :

Pmono(Ei, Tn) =
∑
ν,j

FB(ν, j;Tn)Pdeg(Ei; ν, j), (2.42)

where Pdeg(Ei; ν, j) is the monoenergetic initial state-resolved reaction prob-
ability and FB(ν, j;Tn) is the Boltzmann weight of the (ν, j) state. The
factor FB(ν, j;Tn) is given by:

FB(ν, j;Tn) = (2j+1)e[−Evib(ν,j)/kBTn]× e[−Erot(ν,j)/0.8kBTn]×N(j), (2.43)

where N(j) is the normalization factor which takes into account the correct
nuclear spin statistics for hydrogen and is given by :

N(j) =
w(j)∑

ν′,j′≡j(mod 2)

(2j′ + 1)e[−Evib(ν
′,j′)/kBTn] × e[−Erot(ν′,j′)/0.8kBTn]

.

(2.44)
In Equation 2.44, the summation runs only over the values of j′ which

have the same parity as j. Furthermore, Evib and Erot are the vibrational
and rotational energy of the rovibrational state, respectively, and kB is the
Boltzmann constant. Because there are three parallel nuclear spin states
and only one anti-parallel spin state for H2, for the molecular beam at
thermal equilibrium at high temperature (room temperature or higher),
which is the usual case in the experiments, a ratio between ortho (odd
j)- and para-hydrogen of 3:1 is expected. At very low temperature, it is
expected that only the ν = 0 and j = 0 rovibrational state is occupied.
Therefore, the molecular beam in the thermal equilibrium should consist
of pure para-hydrogen at very low temperature. However, the conversion
of ortho- to para-hydrogen is very slow and does not happen on the time
scale of the experiment. The H2 is then either (vibrationally or rotationally)
cooled or heated by the nozzle, but without the possibility of a nuclear spin
flip. Therefore, the 3:1 ortho-para ratio in the N(j) factor (w(j)) is, for
practical purposes, independent of the nozzle temperature. For H2(D2),
w(j) is equal to 1/4(2/3) for even j values, and 3/4(1/3) for odd j values.

In the Equations 2.43 and 2.44, the experimental rotational distribu-
tions can be described by a rotational temperature Trot, which is assumed
to be lower than the nozzle temperature (Trot = 0.8Tn) [66, 67]. Once the
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monoenergetic reaction probabilities have been computed, one can compute
reaction probabilities convoluted over the incidence energy or velocity dis-
tribution of the experimental molecular beam, according to the expression
[68] :

Pbeam(Tn) =

∫ νi=∞
νi=0 f(νi;Tn)Pmono(Ei;Tn)dvi∫ νi=∞

νi=0 f(νi;Tn)dvi
, (2.45)

where Ei = 1/2Mv2i , vi being the velocity of the molecule, and f(νi;Tn) the
flux weighted velocity distribution for a nozzle temperature Tn given by:

f(νi;Tn)dvi = Cv3i exp[−(vi − vs)
2/α2]dvi. (2.46)

In this equation, C is a constant and Tn is the nozzle temperature used in
the corresponding molecular beam experiment. Furthermore, the parameter
vs is the stream velocity and α is the parameter that characterizes the width
of the velocity distribution. Note that the parameters C, vs and α again
parametrically depend on the nozzle temperature. The parameters can be
obtained by fitting the experimental time-of-flight (TOF) spectra, using the
Levenberg-Marquardt algorithm [69], to

G(t;Tn) = c1 + c2.v
4exp[−(v − vs/α)

2], (2.47)

where c1 and c2 are constants. In Equation 2.47, v is taken as L/t where L
is the lenghth of the flight path.

Vibrational efficacy

The vibrational efficacy is used to investigate how efficiently vibrational
energy can be used to promote reaction relative to translational energy. It
can be computed by

ην(P ) =
Eν=0,j

i (P )− Eν=1,j
i (P )

Evib(ν = 1, j)− Evib(ν = 0, j)
, (2.48)

where Evib(ν, j) is the vibrational energy corresponding to a particular state
of the gas-phase molecule and Eν,j

i (P ) is the incidence energy at which the
the initial state-resolved reaction probability becomes equal to P for H2

(D2) initially in its (ν, j) state. In evaluating Equation 2.48 j is typically
taken as 0.
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Diffraction probabilities

To study diffraction, a quantum phenomenon, quantum dynamics calcula-
tions should be performed. In the diffractive scattering process, the mo-
lecule’s translational momentum parallel to the surface can only change by
discrete amounts. In order to compare with the experimental diffraction
probabilities [70], as we will see in Chapter 6, the rovibrationally elastic
diffraction probabilities are computed by

Pnm(ν, j,mj) =

j∑
m

′′
j =−j

Pscat(ν, j,mj → ν ′ = ν, j′ = j,m
′′
j , n,m), (2.49)

where Pnm is the rovibrationally elastic probability for scattering into dif-
fraction state denoted by the n and m quantum numbers. These probabil-
ities are degeneracy averaged by

Pnm(ν, j) =

j∑
mj=0

(2− δmj0)Pnm(ν, j,mj)/(2j + 1). (2.50)
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