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Excess floppy modes and multibranched mechanisms in metamaterials with symmetries
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Floppy modes—deformations that cost zero energy—are central to the mechanics of a wide class of systems.
For disordered systems, such as random networks and particle packings, it is well-understood how the number
of floppy modes is controlled by the topology of the connections. Here we uncover that symmetric geometries,
present in, e.g., mechanical metamaterials, can feature an unlimited number of excess floppy modes that are
absent in generic geometries, and in addition can support floppy modes that are multibranched. We study the
number � of excess floppy modes by comparing generic and symmetric geometries with identical topologies,
and show that � is extensive, peaks at intermediate connection densities, and exhibits mean-field scaling. We
then develop an approximate yet accurate cluster counting algorithm that captures these findings. Finally, we
leverage our insights to design metamaterials with multiple folding mechanisms.
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Floppy modes (FMs) play a fundamental role in the me-
chanics of a wide variety of disordered physical systems, from
elastic networks [1–7] to jammed particle packings [8–10].
Floppy modes also play a role in many engineering problems,
ranging from robotics to deployable structures, where the goal
is to design structures that feature one or more mechanisms
[11]. Mechanisms are collections of rigid elements linked
by flexible hinges, designed to allow for a collective, floppy
motion of the elements. More recently, floppy modes and
mechanisms have received renewed attention in the context
of mechanical metamaterials, which are architected mate-
rials designed to exhibit anomalous mechanical properties,
including negative response parameters, shape morphing, and
self-folding [6,7,12–22]. An important design strategy for
mechanical metamaterials borrows the geometric design of
mechanisms, and replaces their hinges by flexible parts which
connect stiffer elements [22]. In all these examples, under-
standing how the geometric design controls the number and
character of the floppy modes plays a central role.

For systems consisting of objects with a total of nd degrees
of freedom, connected by hinges that provide nc constraints,
the number of nontrivial floppy modes n f and states of
self-stress nss are related by Maxwell-Calladine counting as
n f − nss = nd − nc − nrb, where nrb counts the trivial rigid
body modes (nrb = 3 in two dimensions) [23]. For generic,
disordered systems n f and nss can be determined separately
from the connection topology [1,2], but when symmetries
are present such approaches break down and counting only
yields the difference n f − nss. For example, spring lattices
which feature perfectly aligned bonds can generate excess
floppy modes (and associated states of self-stress) that disap-
pear under generic perturbations and thus escape topology-
based counting methods [1,2,24–29]. Mechanical metama-
terials often feature symmetric architectures where excess
floppy modes (EFMs) may arise, but their geometries are more
complex than spring lattices [22,30–35].

We focus on understanding the EFMs of a geometry which
underlies a range of metamaterials [14,16,17,20–22,36,37]:
rigid quadrilaterals connected by flexible hinges. We define ns

and ng as the number of nontrivial floppy modes for symmetric
systems consisting of squares, and stress-free generic systems
obtained by randomly displacing the corners of linked squares
with magnitude ε = 0.1 [38]. Each quadrilateral has three
degrees of freedom (DOF), and in a fully connected lattice
each quadrilateral has four connections in the bulk, and less
near the boundary. By counting the degrees of freedom and
constraints one finds that M × N lattices of generic quadri-
laterals are rigid (ng = 0) when M � 3 and N � 3; however,
replacing the generic quadrilaterals by equally sized squares,
such lattices always exhibit an EFM where the squares can
counter-rotate [14], i.e., ns = 1 [Fig. 1(a)]. Here we address
two key issues. First, what is the multiplicity and statistics
of EFMs in diluted lattices as considered recently [21,36,37]
[Fig. 1(b)]? Second, do EFMs in diluted lattices possess
anomalous properties, and if so, how can we leverage these
to embed new functionalities into metamaterials?

System and methods. We consider diluted N × N lattices of
quadrilaterals connected by springs of unit stiffness and zero
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FIG. 1. (a) N × N systems of generic quadrilaterals are rigid for
N � 3, but have a floppy, “hinging” mode characterized by the open-
ing angle θ ∈ [0, π ] for perfectly symmetric squares. (b) Diluted
square tiling (N = 10, ρ = 0.8).
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FIG. 2. (a) Average number of excess floppy modes as a function
of the filling fraction ρ for N as indicated. Inset: the peak value
〈�〉� ≈ βN2 with β ≈ 0.01. (b) Scaling collapse of 〈�〉/N2 for
large N . Inset: peak position ρ� as a function of 1/N shows clear
convergence of ρ� to 0.69 ± 0.01 for large N .

rest length—unless noted otherwise, we use open boundary
conditions [Fig. 1(b)]. For each filling fraction ρ, we repeat-
edly remove (1 − ρ)N2 random quadrilaterals (or links; see
below) to obtain a specific connection topology, and for each
topology we calculate ns and ng.

Random dilution. We focus on the ensemble averaged num-
ber of EFMs, 〈�〉 := 〈ns − ng〉 as a function of ρ [Fig. 2(a)]
[39]. In the dilute limit (small ρ), the system breaks up into
isolated quadrilaterals for which ns = ng and 〈�〉 = 0. In
the undiluted limit (ρ = 1) discussed above, there are zero
(ng = 0) floppy modes in the generic case and a single
(ns = 1) counter-rotating EFM in the symmetric case, so that
〈�〉 = 1. Strikingly, we find that for intermediate densities,
〈�〉 is not monotonic but exhibits a maximum 〈�〉∗ � 1,
unambiguously evidencing the emergence of multiple EFMs
in diluted, symmetric systems. To see how 〈�〉 can become
larger than 1, consider m disconnected, fully filled 3 × 3 clus-
ters: as each symmetric cluster has an internal hinging EFM
absent for generic clusters, � = m for such a hypothetical
system. While more intricate topologies arise for random
dilution, we will show that the internal hinging motion of
clusters of squares are central to EFMs.

Scaling. We find that the number of EFMs, 〈�〉, follows
mean-field scaling. First, we find that its maximum, 〈�〉∗,
grows linearly with N2, which implies that the peak density
of EFMs, β := 〈�〉∗/N2, is a constant [inset Fig. 2(a)]. Sec-
ond, we can collapse our data as 〈�〉/N2 = f (ρ), with the
peak location approaching a constant as ρ� = ρ0 + α/N with
ρ0 ≈ 0.69, α ≈ 1.00 [Fig. 2(b)]. Third, we found that the
distribution of � at fixed ρ is Gaussian (not shown). Finally,
we have also studied random bond removal, i.e., removal of
individual links, and find a very similar scaling collapse and
peak location. All this strongly suggests that EFMs occur with
a constant density and finite correlation length [40].

Clusters and counting. The number of floppy modes in
generic systems, ng, can exactly be determined by the pebble
game [1,2], and therefore to study � one can study ns and
vice versa. We now construct a counting argument for the
number of floppy modes in the symmetric systems (ns). In
this argument we interpret diluted geometries as systems of
Nc clusters and connectors. We define clusters as groups
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FIG. 3. (a) A 4-block is formed by four connected quadrilaterals,
and can be identified by filling a (red) dot on the dual grid. (b) Type-1,
type-2, and type-3 connectors. (c) Clusters are adjacent 4-blocks,
and feature straight connections between dots on the dual grid. All
quadrilaterals that belong to a single cluster share a color; quadrilat-
erals belong to zero (gray), one (color), or two clusters (bicolor).
Gray quadrilaterals that are connected via two hinges at clusters
are type-1 connectors; all other gray quadrilaterals are “remaining
quadrilaterals”, which are either isolated, connected to other gray
quadrilaterals only, or connected at only one side to a cluster.
(d) Clusters in a pruned system where all remaining quadrilaterals are
removed. (e) Cluster merging; note that merged clusters may contain
4-blocks that are not adjacent.

of adjacent 4-blocks, where 4-blocks are groups of four
quadrilaterals connected in a loop [Fig. 3(a)]. Each cluster
has a single internal hinging mode in addition to their three
rotational and translational floppy modes. Clusters can be
connected by three types of connectors [see Fig. 3(b)]: a
type-1 connection introduces one constraint and consists of
a single quadrilateral; a type-2 connection introduces two
constraints and occurs when two adjacent clusters touch; a
type-3 connection introduces three constraints and occurs
when two clusters share a quadrilateral.

Generally, a number of loosely connected remaining
quadrilaterals are neither connector nor part of any cluster
[Fig. 3(c)]. We remove these quadrilaterals and focus on
pruned systems that solely consist of clusters and connectors
[Fig. 3(d)], and refer to the quantities in the pruned systems by
accents (e.g., �′ = n′

s − n′
g)—later we will present evidence

that �′ and � are very close.
In the simplest counting arguments one ignores the states

of self-stress, leading to an estimate �0 = n′
s − n′

g. We now
consider that each cluster has three global and one internal
degree of freedom, and estimate n′

s via the difference of the
number of degrees of freedom associated with the clusters,
4Nc, and the number of constraints between clusters, 
i jCi j/2,
where the connection number Ci j := n1,i j + 2n2,i j + 3n3,i j

counts the number of constraints between clusters i and j,
and nk,i j denotes the number of type-k connectors. Noting that
we need to subtract the three rigid body motions, this yields
n′

s = 4Nc − 
Ci j/2 − 3, and �0 := 4Nc − 
Ci j/2 − 3 − n′
g.

However, we will show that �0 is quite different from �′
obtained numerically, as symmetries lead to degeneracies
between connectors.
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FIG. 4. (a) Counting predictions 〈�0〉, 〈�1〉, 〈�2〉 (orange dot-
ted, dash-dotted, dashed) and 〈�∞〉 (solid orange) compared to
the exact result 〈�′〉 (green) for N = 50. (b) Comparison of 〈�∞〉
(orange), 〈�′〉 (green), and 〈�〉 (black) for N = 50. Inset: asymptotic
scaling collapse of 〈�∞〉 for N = 10, 20, . . . , 90 (blue to red).

Degenerate constraints arise when Ci j > 4. To see how
such degeneracies arise, consider a system of two clusters.
Without connections these have a total of eight DOFs, but
even if Ci j is very large, this system must feature at least three
rotational and translational modes and one global hinging
mode, so that for Ci j > 4, constraints must be redundant
[40]. To take these degeneracies into account, we define a se-
quence of increasingly accurate predictions �0,�1, . . . ,�∞
by progressively eliminating degeneracies. To define �1, we
merge all pairs of clusters for which Ci j � 4, and then for
the resulting set of clusters and connectivities define N1

c ,C1
i j ,

and define �1 := 4N1
c − 
C1

i j/2 − 3 − n′
g. As cluster merg-

ing may yield new pairs of heavily connected clusters, we
iterate this procedure to obtain �2,�3, . . . . Eventually, no
cluster merging is possible when all Cn

i j < 4 [Fig. 3(e)], and
the final result for �n is denoted as �∞.

Results. We now compare the results 〈�n〉 obtained by our
iterative cluster counting argument to the numerical results
for 〈�′〉 and 〈�〉 (Fig. 4). We find that while 〈�0〉 captures
the peak in the number of EFMs, it fails in the high density
regimes where degeneracies are abundant. Cluster merging
significantly improves the results, and 〈�∞〉 is found to be
within a few percent of 〈�′〉 [Fig. 4(a)]. Moreover, we find
that pruning has a minor effect, as 〈�∞〉, 〈�′〉, and 〈�〉
are very close [Fig. 4(b)]. Finally, 〈�∞〉 displays a scaling
collapse closely matching that of 〈�〉 [inset Fig. 4(b)]. We
conclude that our approach of cluster merging and counting is
able to accurately capture the numerically observed data for
the number of EFMs, thus providing fresh insight into how
floppy modes and states of self-stress proliferate in complex
geometries with symmetries.

Multibranch planar folding mechanisms. Shape-morphing
metamaterials can act as deployable structures, deforming
along a well-defined path under external actuation [11,19–
22,30,41–44]. Their geometric design often follows from
a mechanism with a single floppy mode. To embed mul-
tiple shape changes in a metamaterial, rather than design-
ing structures with multiple floppy modes which lead to a
continuous family of shapes, mode competition, and frustra-
tion [21,45,46], a better route may be to consider structures
with a single floppy mode but multiple, discrete branches.

Multibranch mechanisms occur in, e.g., origami [30,35],
but we are not aware of any two-dimensional mechanisms
that allow multibranch behavior without self-intersections.
Here we show that by leveraging the symmetries in systems
of hinging squares one can design multibranched mecha-
nisms, consisting of connected clusters whose magnitude
of hinging is coupled, while the signs of the hinging mo-
tion of the clusters can only take on a limited number of
values.

To understand the design of multibranched mechanisms,
we first consider the hinging motion of a single cluster. We
define the opening angle ψ := (θ − π/2)/2, color the squares
according to their alternating rotating motion, and note that we
can distinguish four link types, associated with connections at
the north, east, south, or west tip of a dark square [Fig. 5(a)].
The crucial observation is that the distance between two links
is invariant under opening angle inversion (ψ ↔ −ψ) if and
only if both links are of equal type [Fig. 5(a)]. Specifically, if
we consider links that are vertically aligned, such as A, B, and
C in Fig. 5(a), we find that AB is symmetric in ψ , while AC is
not [Fig. 5(b)].

We obtain multibranched mechanisms by connecting clus-
ters by type-2 connectors located at hinges A and B, whose
distance is symmetric in the opening angle. We define
ψ1, ψ2, . . . such that for a global hinging mode all open-
ing angles are equal. The symmetry of AB(ψ ) then implies
that, e.g., the clusters 1 and 2 can be in a “homogeneous”
state where ψ1 = ψ2, and in a second state, where ψ1 =
−ψ2 [47]. Clusters that can be connected by two type-2
connectors can easily be constructed, and strips of m of
such coupled clusters form a compound structure with one
continuous hinging degree of freedom, and precisely 2m−1 dis-
crete branches, where {ψi} = {ψ1, (−1)s2ψ1 . . . , (−1)smψ1};
here the binary variables {s2, . . . , sm} characterize the differ-
ent branches [Fig. 5(c)].

More complex situations where the number of branches
is different from a power of two arise when clusters are
connected in more complex topologies. We designed a cluster
which features the single and double-bump edge structures
along both its vertical and horizontal edges, and connect
these into a 2 × 2 lattice [Fig. 5(d)]. As the (horizontal)
connections between clusters 1 and 2, respectively 3 and 4,
are of a different link type than the (vertical) connections
between clusters 1 and 3, respectively 2 and 4, the sign
of ψi has to be consistent along either rows or columns.
Fixing ψ1 > 0, we obtain two consistent row configurations
with {si} = {0, 0, 0, 0} and {0, 0, 1, 1}; similarly, consistent
column configurations are {si} = {0, 0, 0, 0} and {0, 1, 0, 1}.
It is easy to show that these are all allowed possibilities,
and as we double count the homogeneous configuration, this
example constitutes a three-branch mechanism. We note that
the table of allowed branches s2, s3 is equivalent to the truth
table of a NAND gate. Extending this design to m × n tilings,
we obtain 2m−1 different column arrangements, 2n−1 different
row arrangements yielding 2m−1 + 2n−1 − 1 branches. For
small m � 3 and n � 3 this already allows one to make
mechanisms with 1, 2, 3, 4, 5, 7, 8, 9, 11, and 15 branches.
This suggests that our design approach, where multiple blocks
with symmetric motions are connected together, and where
looplike compatibility conditions determine which branches
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FIG. 5. (a) A cluster with positive opening angle ψ := (θ − π/2)/2. The colored dots indicate the four types of hinges. (b) The distance AB
(full) is symmetric in ψ as A and B correspond to the same hinge type [AB = 2

√
2 cos(ψ )] while AC (dashed) is not invariant under ψ ↔ −ψ ,

as A and C correspond to different hinge types [AC = AB + 2 sin(ψ + π/4)]. (c) Clusters connected by type-2 connectors at points of the same
hinge type can either have equal or opposite ψ (red: ψ > 0; blue: ψ < 0). Fixing ψ1 > 0 to break the global inversion symmetry ψi ↔ −ψ ,
the four branches of motion are characterized by the freely assignable signs of ψ2 and ψ3. (d) Compound cluster structure consisting of four
identical unit cells that exhibits three branches of motion (see text and [40]).

can be realized, constitutes a powerful method to design
complex, multibranched mechanisms.

Outlook and discussion. We have characterized the ex-
cess floppy modes that arise in diluted lattices of square
elements, and have introduced an approximate yet accurate
methodology to identify and count such excess modes. As
our method is developed and tested for square elements, it
would be interesting to see if it is similarly successful for
other systems with symmetries, including diluted triangular
and kagome lattices. Furthermore, we used our insights to
design planar mechanisms with multiple discrete folding mo-
tions. Such mechanisms, which feature a single continuous

degree of freedom but multiple discrete branches, provide
new design avenues for (soft) robotics, deployable struc-
tures, and mechanical metamaterials [11,22,48,49], as well
as open up systematic strategies for the design of multi-
stable structures [30]. Finally, open questions include how
one designs compounds with any integer number of branches,
or with arbitrary “truth” tables for the hinging signs of the
clusters {si}.
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