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The curvature dependence of the surface tension can be described by the Tolman length (first-order
correction) and the rigidity constants (second-order corrections) through the Helfrich expansion. We
present and explain the general theory for this dependence for multicomponent fluids and calculate the
Tolman length and rigidity constants for a hexane-heptane mixture by use of square gradient theory.
We show that the Tolman length of multicomponent fluids is independent of the choice of dividing
surface and present simple formulae that capture the change in the rigidity constants for different
choices of dividing surface. For multicomponent fluids, the Tolman length, the rigidity constants, and
the accuracy of the Helfrich expansion depend on the choice of path in composition and pressure space
along which droplets and bubbles are considered. For the hexane-heptane mixture, we find that the
most accurate choice of path is the direction of constant liquid-phase composition. For this path, the
Tolman length and rigidity constants are nearly linear in the mole fraction of the liquid phase, and the
Helfrich expansion represents the surface tension of hexane-heptane droplets and bubbles within 0.1%
down to radii of 3 nm. The presented framework is applicable to a wide range of fluid mixtures and
can be used to accurately represent the surface tension of nanoscopic bubbles and droplets. Published
by AIP Publishing. https://doi.org/10.1063/1.5026747

I. INTRODUCTION

A highly debated question has been how the surface ten-
sion of a one-component droplet depends on its radius R,
or equivalently its total curvature 2/R.1–8 The posthumously
published landmark paper by Tolman9 discussed the first-
order correction of the planar surface tension with respect to
curvature,

σs(R) = σ0 −
2σ0δ

R
+ O

(
1

R2

)
. (1)

Here σs(R) is the surface tension of a spherical droplet (super-
script s), σ0 = σs(∞) denotes the planar surface tension, and
δ is referred to as the Tolman length. The sign of the Tolman
length for common fluids such as water and the Lennard-Jones
(LJ) fluid has been discussed extensively in the literature.3,10–13

For the LJ fluid, there is now a consensus that the Tolman length
is negative.11,12 The sign will, however, depend on the specifics
of the system studied; for example, Tröster and Binder14 found
a positive Tolman length from simulations of a 3D triplet spin
Ising lattice model.

Going one step further and incorporating second-order
curvature corrections to the surface tension was done by
Helfrich,15 who introduced the bending rigidity k and the
Gaussian rigidity k̄ in his study of how the surface tension of
elastic membranes depends on curvature. The Helfrich expan-
sion is a second-order Taylor expansion of the surface tension

a)Electronic mail: ailo.aasen@ntnu.no

with respect to the interfacial curvatures, which for a spherical
interface is given by

σs(R) = σ0 −
2σ0δ

R
+

2k + k̄

R2
+ O

(
1

R3

)
, (2)

and for a cylindrical interface (superscript c)

σc(R) = σ0 −
σ0δ

R
+

k

2R2
+ O

(
1

R3

)
. (3)

A comparison of Eqs. (2) and (3) shows that it is sufficient
to evaluate the Helfrich expansion for a spherical and cylin-
drical geometry to uniquely determine the Tolman length and
both rigidity constants. The Tolman length and the rigidity
constants will in this work be referred to as the Helfrich
coefficients. Once the Helfrich coefficients are known, the
curvature correction for the surface tension of other sur-
face geometries, such as curved films16 or gravity-deformed
droplets,17 can be obtained to second order. The curvature
expansions are equally valid for droplets and bubbles. Since
the curvature is conventionally taken to be with respect to
the liquid phase, the curvature (and hence the radius) is pos-
itive for a droplet and negative for a bubble in the curvature
expansions.

The physical significance of the rigidity constants for
droplets has been debated.10,18 In systems with long-range
interactions, the second-derivative of σ with respect to curva-
ture may not exist, thus invalidating the expansion in Eq. (2);
however, for systems with short-range interactions they defi-
nitely exist.11 For Density Functional Theory (DFT) models,
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the surface tension as a function of curvature is accurately
represented by a second-order expansion down to nano-sized
droplets. Previous papers have demonstrated this for several
one-component fluid models.11,12 In this work, we present
evidence that this continues to hold for multicomponent
fluids.

A major reason for the interest in the curvature depen-
dence of surface tension is that it has a significant impact on
the nucleation rates predicted by Classical Nucleation The-
ory since it affects the work of formation for a critical clus-
ter.13,19–26 For pure water droplets nucleating in supersaturated
vapor, incorporating the curvature dependence of the surface
tension improves the agreement between the theory and the
experimental results;27,28 the hope is that this also holds true
for other substances and even for mixtures. Other applications
of the Helfrich expansion include elastic properties of biolog-
ical membranes,15,29 highly curved films,16 and wetting at the
nanoscale.30,31

Previous literature has dealt almost exclusively with
one-component droplets; in reality, however, most interfaces
contain several components. This paper deals with the curva-
ture dependence of the surface tension for multicomponent flu-
ids, which is conceptually more complicated. This is because
for multicomponent droplets a variation in the radius can be
achieved along several paths in thermodynamic variable space,
e.g., by varying the pressure and composition of the exte-
rior phase to different degrees. Since the surface tension will
have a different dependence on the radius for different paths,
the Tolman length and rigidity constants also acquire a path-
dependence. This stands in stark contrast to the one-component
isothermal case. The fact that thermodynamic properties
can have a path dependence is a well-known concept; for
instance, the heat capacity will differ depending on whether
the temperature is varied at constant volume or at constant
pressure.

Already in 1950, Koenig32 generalized Tolman’s work to
multicomponent systems, deriving analogous results for arbi-
trary directions through the thermodynamic variable space;
however, the scope was restricted to first-order derivatives of
the surface tension. A more thorough theoretical treatment was
given by Groenewold and Bedeaux33 in 1995. They extended
Koenig’s work to incorporate second-order effects and, in the
context of a statistical-mechanical treatment with pairwise
additive potentials, presented the general equations for cur-
vature effects on most thermodynamic properties of interest,
including the surface tension.

The first to present quantitative estimates for the Tolman
length of multicomponent droplets were Santiso and Firooz-
abadi.34 Apparently unaware of the studies by Koenig,32 and
Groenewold and Bedeaux,33 a subset of earlier results was re-
discovered for derivatives of the surface tension taken at con-
stant composition of the exterior phase. The model employed
by Santiso and Firoozabadi is a multicomponent extension35

of the Macleod36 correlation of surface tension in terms of
bulk phase densities. By assuming that the Macleod equa-
tion applies also to curved surfaces, the resulting curvature
dependence of the surface tension can be calculated solely
from bulk phase properties. A general shortcoming of bulk-
phase correlations is that they are incapable of accurately

representing surface enrichment and other surface-specific
phenomena.

In this work, we give a general derivation of the theory
for curvature-dependence of thermodynamic properties along
arbitrary paths in thermodynamic variable space. In addition,
a framework for computing Tolman lengths and rigidity con-
stants of multicomponent fluids is presented. Instead of using
bulk-property correlations, we use a more sophisticated DFT
approach of minimizing the free energy as a functional of
the density profiles. The theoretical foundation presented in
this work is model-independent, but for the computations we
shall particularize to Square Gradient Theory (SGT), which
is a semi-empirical density functional theory that often cap-
tures the underlying physics of the droplet almost as well as
more rigorous DFTs.37 In particular, SGT and a more sophis-
ticated, non-local DFT have been shown to give very similar
values for the Tolman length and rigidity constants of simple
fluids.11

The structure of the paper is as follows. In Sec. II, we
extend previous work on curvature corrections, beginning
with the general and model-independent theory in Secs. II A
and II B, and then present a framework for computing mul-
ticomponent Tolman lengths and rigidity constants by use of
SGT. In Sec. III, we describe a numerical method for solv-
ing the resulting equations. In Sec. IV, we evaluate curva-
ture corrections for the hexane-heptane mixture and describe
some scenarios where curvature corrections for multicompo-
nent droplets can be used. Finally, we offer some concluding
remarks in Sec. V.

II. THEORY

For the equilibrium curvature of a droplet to change, there
must be a change in the intensive thermodynamic variables of
the system, i.e., the temperature or chemical potentials. Curva-
ture corrections have previously been considered at isothermal
conditions,2,5,6 and for the sake of simplicity, we shall also
restrict ourselves to this situation. Letting µ = (µ1, . . ., µn)
be the vector of the chemical potentials of components 1 to
n and ρ = (ρ1, . . ., ρn) be the corresponding densities, the
Gibbs equation for the internal energy density can be written as
du = µdρ. Boldfaced symbols will represent vectors or matri-
ces, and the inner product is implied when two vector quantities
are written next to each other, i.e., µdρ = µ · dρ. For a vector,
removing the boldfont and subscripting with tot will mean a
summation over components; for example, the total density is
ρtot =

∑
i ρi.

Although we focus on curvature changes due to isothermal
variation of the chemical potentials, the theory in Secs. II A
and II B can effortlessly be extended to include also temper-
ature variations. As explained in a previous study,33 this can
be achieved by letting µ = (µ1, . . ., µn, T ) and ρ = (ρ1, . . .,
ρn, s), where s is the entropy density and T is the temper-
ature; all the derivations in Secs. II A and II B then remain
valid.

A. Definition of the problem

Starting from a Vapor–Liquid Equilibrium (VLE) state
(subscript 0) at T0 and µ0, we proceed along a path P into the



204702-3 Aasen, Blokhuis, and Wilhelmsen J. Chem. Phys. 148, 204702 (2018)

metastable region, where states are characterized by chem-
ical potentials µ , µ0. This is illustrated schematically in
Fig. 1 for a binary mixture. Each state along a particular path
P corresponds to a droplet or a bubble in equilibrium with
its surrounding phase, where chemical potentials and tem-
perature are spatially uniform. We refer to previous studies
for a discussion of thermodynamic stability, which depends
on the boundary conditions.38–40 Even though droplets and
bubbles are in equilibrium with a surrounding supersaturated
phase, the term VLE state will in the following denote a sat-
uration state; this entails that the vapor–liquid interface is
flat.

Another route to arrive at expressions for the curva-
ture coefficients is by considering the surface curvature
associated with fluctuations of an otherwise planar surface
(µ = µ0). The planar surface tension and curvature coefficients
are then derived from considering the free energy of such sur-
face waves at different lengthscales. This route, which was
previously investigated for one-component systems,41–43 will
not be further investigated here and we consider the VLE state
only.

A spherical droplet or bubble is modeled as illustrated in
Fig. 2, and we may define its radius R corresponding to a choice
of dividing surface. The droplet is contained in a spherical
volume of radius Rtot, chosen so large that the surrounding
phase has bulk behavior at the boundary. The radius can, for
example, be chosen to correspond to the total equimolar radius
Re, defined implicitly by

Ntot = V (Re)ρtot(0) + (V (Rtot) − V (Re))ρtot(Rtot) . (4)

Here ρtot(r) is the total number density at radial position r
according to the model; V (R) = 4πR3/3 is the volume up to
position R; and N tot is the total number of particles in the
container. Cylindrical geometries can be treated in a simi-
lar way. The equimolar radius is a well-defined function of
µ, and writing the state functions along a path P as a func-
tion of R, we introduce the functions µ(R), σ(R), ρliq, ρvap,

FIG. 1. Two possible paths in µ-space passing through a saturation state
(black point), where the liquid surface curvature increases in the indicated
direction. The shape of the phase envelope S is typical for VLE of two sub-
critical components. The dashed and dotted curves indicate the vapor and
liquid spinodals, respectively.

FIG. 2. A spherical droplet or bubble of radius R inside a concentric spherical
container of radius Rtot. The spherically symmetric density profiles ρ(r) are
approximately constant at the center r = 0 and at the boundary r = Rtot, but
generally have large gradients around the surface region r = R.

Pliq, etc., where superscripts liq and vap refer to the liquid
and vapor phases, respectively. For a droplet, ρliq = ρ(0) and
ρvap = ρ(Rtot). Note that properties like the curvature-
dependent surface tension, σ(R), are well-defined functions
only when both the path P and the choice for the dividing
surface are given. The phase envelope S, consisting of the
two-phase equilibrium states, is the R = ∞ isoradius contour
corresponding to the flat surface.

B. General relations from classical thermodynamics
of surfaces

We start by surveying the relevant relations from classi-
cal thermodynamics for surfaces. These are valid in all cases
where the use of classical thermodynamics is justified, which,
in particular, means that we assume the droplet/bubble to be
large enough so that properties like ρliq and Pliq at the cen-
ter have bulk phase behavior. These thermodynamic relations
cannot give quantitative results before being coupled to a spe-
cific theoretical model, such as the SGT model introduced in
Sec. II C.

1. The Gibbs adsorption equation

The surface tension is defined44 as σ = ΩE/A, where ΩE

is the excess (superscript E) grand free energy of a surface
between two homogeneous bulk phases and A is the surface
area. From this definition, one can derive the Gibbs Adsorption
Equation (GAE).45 For interface geometries where the curva-
ture can be captured by a single variable R, it can be written
as44,46

dσ = −Γdµ +

[
∂σ

∂R

]

T ,µ
dR. (5)

Here R is usually the radius of a droplet or a bubble. The
adsorption vector, Γ, contains the excess number densities per
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area, while [∂σ/∂R]T,µ is the so-called notional derivative44,47

of the surface tension with respect to radius, i.e., the derivative
of the surface tension with respect to the choice of radius when
keeping the physical system (T and µ) unchanged. In addition
to the notional derivative, one has the physical derivative of the
surface tension. The physical derivative is well-defined only
after having made a choice of dividing surface (such as the
total equimolar radius), and a choice of path P through the
thermodynamic variable space. For one-component droplets
at fixed temperature, however, only a choice of dividing sur-
face is needed since the only possible path through variable
space that corresponds to droplets follows an increase in
the pressure of the external phase. The chemical potential is
then determined by the Gibbs–Duhem relation. The physi-
cal and notional derivatives of the surface tension are related
by46,48

[
∂σ

∂R

]

T ,µ
=

dσ
dR

+ Γ
dµ
dR

, (6)

which follows directly from Eq. (5) by taking the physical
derivative. Since [∂σ/∂R]T,µ is, in general, different from zero,
it follows that for curved surfaces the surface tension depends
on the choice of dividing surface.

Another expression for the notional derivative of the sur-
face tension can be obtained from the fundamental property
that a notional change in the radius must leave the physical
system unchanged. It follows that the notional derivative of
the grand canonical potential [∂Ω/∂R]T ,µ is zero, from which
one can deduce the generalized Laplace relation46–48

[
∂σ

∂R

]

T ,µ
= ∆P −

gσ(R)
R

, (7)

where the geometry factor g equals 1 for a cylindrical bub-
ble/droplet, 2 for a spherical bubble/droplet and ∆P = Pliq

− Pvap, where the two pressures are taken in the homogeneous
bulk phases. By use of the geometry factor g, our deriva-
tions below will be valid for both spherical and cylindrical
geometries.

In addition to the total equimolar radius defined in Eq. (4),
another popular choice of dividing surface is the surface of
tension, defined by [∂σ/∂R]T,µ = 0. This is equivalent to the
definition [∂σ/∂(R−1)]T ,µ = 0, which is more convenient for
our purposes. As we will see, the theory becomes especially
simple for this choice of dividing surface.

2. Curvature expansions for a multicomponent fluid

For a given choice of path P passing through a VLE state,
and for any well-defined dividing surface, we can define the
general curvature expansions as

µ(R) = µ0 +
µ1

R
+
µ2

R2
+ · · · (8)

ρ(r; R) = ρ0(r) +
ρ1(r)

R
+
ρ2(r)

R2
+ · · · , (9)

∆P(R) = 0 +
∆P1

R
+
∆P2

R2
+ · · · , (10)

σ(R) = σ0 +
σ1

R
+
σ2

R2
+ · · · , (11)

Γ(R) = Γ0 +
Γ1

R
+
Γ2

R2
+ · · · . (12)

We emphasize that these expansions consider physical changes
of the radius R, for a fixed definition of the dividing surface.
Here ρ(r; R) is the density profile as a function of the radial
coordinate r. The quantities we have introduced on the right-
hand sides are coefficients in an expansion with respect to 1/R,
and thus these coefficients are independent of the value of R
for a given choice of dividing surface. As explained in Sec. I,
R > 0 for droplets and R < 0 for bubbles in the curvature
expansions, and thus µ1 is directed into the droplet regime (cf.
Fig. 1). Equations (8)–(12) are valid for both spherical and
cylindrical geometries, with different values of the coefficients.
The zero-subscripted quantities are properties of the VLE state,
corresponding to a flat interface. The first- and second-order
coefficients are subscripted with 1 and 2 and depend on the
path P in thermodynamic variable space along which R is
varied. Note that the vector quantity µ1 is different from the
scalar quantity µ1, the latter being the chemical potential of
component 1.

The aim of this section is to derive general rela-
tions between the coefficients on the right-hand sides of
Eqs. (8)–(12). Combining Eqs. (6) and (7), we find that
∆P = gσ(R)/R + dσ(R)/dR + Γdµ(R)/dR, and expanding in
1/R yields

∆P =
gσ0

R
+

(g − 1)σ1 − µ1Γ0

R2

+
(g − 2)σ2 − µ1Γ1 − 2µ2Γ0

R3
· · · . (13)

By applying the Gibbs–Duhem equation, dP = ρdµ, sepa-
rately to each of the two homogeneous phases, we find that
dPliq/dR = ρliqdµ/dR and dPvap/dR = ρvapdµ/dR, which upon
subtraction becomes d∆P/dR = ∆ρdµ/dR. By expanding this
last equation in 1/R and comparing the coefficients with
Eq. (13), we obtain the relations

gσ0 = µ1∆ρ0, (14)

(g − 1)σ1 − µ1Γ0 = µ2∆ρ0 + 1
2 µ1∆ρ1 , (15)

where ∆ρ1 = ρ
liq
1 − ρ

vap
1 . The directions of µ1 and µ2 vary

according to the choice of dividing surface and path P con-
sidered in the thermodynamic variable space; however, their
inner product with ∆ρ0 is fixed by Eqs. (14) and (15). In other
words, one is free to choose the directions of µ1 and µ2, but
not their norms. Referring to Fig. 1, the path Pa is a straight
(i.e., linear) path in µ-space, which implies that µ1 ∝ µ2 ∝

∆µ, where ∆µ = µ − µ0; the path Pb is curved and µ1 and
µ2 have different directions. These vectors are not fully deter-
mined before one also knows their norms, and Eqs. (14) and
(15) determine these last degrees of freedom.

The term ∆ρ1 in Eq. (15) can be re-expressed using
properties of the planar density profile, by using that
ρ

liq
1 = (ρliq

0µ)µ1, where ρ
liq
0µ is the derivative of ρliq as a

function49 of µ, evaluated at µ0. Similarly, we have that
ρ

vap
1 = (ρvap

0µ )µ1, and so

µ1∆ρ1 = µᵀ1 (∆ρ0µ)µ1, (16)

where ∆ρ0µ = ρ
liq
0µ − ρ

vap
0µ . In Table I, we show how Eqs. (14)

and (15) particularize for spherical and cylindrical geome-
tries, using both the surface of tension and an arbitrary choice
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TABLE I. General relations between curvature-correction coefficients for
cylindrical and spherical geometries. Results are shown for an arbitrary choice
of dividing surface and the surface of tension. Quantities corresponding to a
cylindrical or a spherical curvature are superscripted with, respectively, c or
s. These relations extend previous findings for the one-component case.41,50

Arbitrary dividing surface Surface of tension

Cylinder
σ0 = µc

1∆ρ0

0 = Γ0µ
c
1 + µc

2∆ρ0 + 1
2 (µc

1)ᵀ(∆ρ0µ )µc
1

σ0 = µc
1∆ρ0

σ0δ = Γ0µ
c
1

Sphere
2σ0 = µs

1∆ρ0

−2σ0δ = Γ0µ
s
1 + µs

2∆ρ0 + 1
2 (µs

1)ᵀ(∆ρ0µ )µs
1

2σ0 = µs
1∆ρ0

2σ0δ = Γ0µ
s
1

of dividing surface. The equations in Table I have been for-
mulated in terms of the Tolman length, using the relation
σ1 = −gσ0δ. Furthermore, Eq. (14) implies that∆µc

1 =
1
2∆µ

s
1;

such a simple relationship does not in general exist between
µc

2 and µs
2.

Equation (14) is not valid for paths that are tangential
to the VLE envelope in µ-space since we then have that
µ1∆ρ0 = 0, while gσ0 , 0. The reason for this is that the
curvature is constant (zero) along the VLE envelope, which
means that thermodynamic properties cannot be parametrized
with the curvature. Each point on a valid path should corre-
spond to a different value of the curvature. We shall discuss
this point further in Secs. IV B and IV C.

We will also need formulae for the curvature expan-
sion coefficients for the adsorption, Γ0 and Γ1. By defini-
tion, we have that Γ(R) = ∫ ρEdr/A(R), where A(R) is the
area of the cylindrical or spherical droplet/bubble. Using
the geometry factor g, this can be written compactly as
Γ(R) = ∫ ρE(z)(1 + z/R)gdz. Here we have made the substi-
tution z = r − R, which is conventional when dealing with
curvature corrections.50 A Taylor expansion in 1/R then yields
that

Γ0 =

∫
ρE

0 (z)dz, (17)

Γ1 =

∫ (
ρE

1 (z) + gzρE
0

)
dz, (18)

where, in general, Γ1 , ∫ ρ
E
1 (z)dz.

3. Role of the dividing surface

For an arbitrary but fixed path P through the thermody-
namic variable space, which is not parallel to the saturation
locus, we now examine how the first- and second-order coef-
ficients in Eqs. (8)–(12) depend on the choice of dividing
surface, i.e., the definition of R. Consider two different def-
initions of the dividing surface, according to which the radius
of a given droplet is, respectively, R̃ and R. Following previous
notation,46 we assume that we can write

R̃ = R + ε(R)

= R + ε0 +
ε1

R
+ · · · .

(19)

This assumption is equivalent to the requirement that the devia-
tion R̃−R is finite in the planar limit, and that it varies smoothly

with the curvature, 1/R. This can also be formulated as

1

R̃
=

1
R
−
ε0

R2
+
ε2

0 − ε1

R3
+ · · · , (20)

which is a more convenient form when evaluating curvature
expansions.

Clearly, a different definition of the dividing surface will
not change the physical properties of the system, and in par-
ticular, it will not change the chemical potential µ. This means
that we can write µ(R) = µ̃(R̃), where the left- and right-hand
sides denote the chemical potentials as functions of R and R̃,
respectively, as these vary along P. By Taylor expanding the
right-hand side of this identity in 1/R̃ and using Eq. (20) to
replace 1/R̃ with 1/R, we find that

µ̃0 = µ0 , (21)

µ̃1 = µ1 , (22)

µ̃2 = µ2 + ε0µ1 . (23)

Similarly, we have that ∆P(R) = ∆̃P(R̃) so that

∆̃P0 = ∆P0 , (24)

∆̃P1 = ∆P1 , (25)

∆̃P2 = ∆P2 + ε0∆P1 . (26)

Indeed, for any quantity h that is independent of the dividing
surface, we have that h̃0 = h0, h̃1 = h1, and h̃2 = h2 + ε0h1.
Equation (23) shows that the direction of µ2 is not fully deter-
mined by the path P, but in general also depends on the choice
of dividing surface.

Regarding the density profile, a curvature expansion of
the identity ρ(z + ε(R)) = ρ̃(z) yields that

ρ̃0(z) = ρ0(z + ε0), (27)

ρ̃1(z) = ρ1(z + ε0) + ε1ρ0z(z + ε0) , (28)

where ρ0z is the derivative of ρ0 with respect to z. It turns out
that the quantity ρ2 is not needed up to the order we consider
in this framework50 and neither is Γ2. For the adsorptions, we
insert Eqs. (27) and (28) into Eqs. (17) and (18) and obtain

Γ̃0 = Γ0 − ε0∆ρ0 , (29)

Γ̃1 = Γ1 − ε0
(
∆ρ1 + gΓ0

)
− ε1∆ρ0 +

g
2
ε2

0∆ρ0 . (30)

Especially interesting are the curvature expansion coefficients
for the surface tension,

σ̃0 = σ0 , (31)

σ̃1 = σ1 , (32)

σ̃2 = σ2 − ε0µ1Γ0 +
g
2
ε2

0σ0 . (33)

In terms of the Helfrich coefficients, Eqs. (32) and (33) lead to

δ̃ = δ, (34)

k̃ = k − 2ε0µ
c
1Γ0 + ε2

0σ0, (35)

K(2k + k̄) = 2k + k̄ − ε0µ
s
1Γ0 + ε2

0σ0. (36)

Equation (34) shows that the Tolman length is independent
of the choice of dividing surface also for multicomponent
fluids, which extends previous findings for a one-component
system.11 Equations (35) and (36) are simple transformation
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formulae for the rigidity constants of multicomponent fluids
for different choices of dividing surface. To derive the transfor-
mation formulae for the surface tension, we use the definition
of the notional derivative to write

σ(R̃) = σ(R) +
∫ R̃

R

[
dσ
dR′

]

T ,µ
dR′.

Taylor-expand the right-hand side to second order in 1/R̃, and
compare coefficients with the second-order expansion of σ̃(R̃).
This is a lengthy, but straightforward derivation that can be
found in the supplementary material.

All the transformation formulae Eqs. (21)–(36) have been
verified numerically using the SGT model, in the specific case
where R̃ is the total equimolar radius and R is the radius of
tension.

For the one-component case, it was shown in a previous
study11 that for a particular DFT model, the equimolar surface
is the choice of dividing surface that minimizes the magni-
tude of the rigidity constants. Equations (34)–(36) constitute
a generalization of this result to a multicomponent fluid, and
the derivation shows that it is not a peculiarity of the DFT
model in Ref. 11, but generally true for one-component flu-
ids. In the multicomponent case, any dividing surface that
satisfies µ1Γ0 = 0 will minimize σ2. One example of such
a radius is the (dµ/dR)-weighted equimolar radius defined by
Γ(dµ/dR) = 0, and another is the one defined by µ1Γ = 0.
Another property that these choices of radii have in common
is that a multicomponent version of Tolman’s law holds.32,46

The main drawback of any definition for the choice of divid-
ing surface that satisfies µ1Γ0 = 0 for a multicomponent
fluid, is that it will not be a state function since it depends
on the direction of µ1; thus the same physical droplet will
be assigned a different radius according to which µ1 that is
considered.

C. Computing the curvature coefficients
by use of SGT

Curvature corrections for the SGT model have been
derived in the literature for one-component fluids.50 In the
following, we derive similar corrections for a multicompo-
nent fluid interface as described by SGT. The multicompo-
nent expressions will have the same form as in the single-
component case, to which they reduce in the one-dimensional
case. In SGT, the grand free energy functional is modeled
as

Ω[ρ] =
∫ (

1
2
ρᵀr Kρr + aEOS(ρ) − µρ

)
dr, (37)

where subscript r means a derivative with respect to r. Here
K is a constant, symmetric and positive semidefinite n × n
matrix known as the influence matrix, and aEOS(ρ) is the
Helmholtz energy density of a fluid with uniform densities
ρ at the specified temperature. The function aEOS is modeled
with an Equation of State (EOS), where aEOS(ρ) = −PEOS(ρ)
+ µEOS(ρ)ρ. Since we restrict the discussion to planar,
cylindrical, and spherical geometries, only one spatial vari-
able r is needed. The Laplacian can then be written as
∇2 = d2/dr2 + (g/r)d/dr, where g is 0, 1, or 2 depending
on the geometry. The stationarity condition δΩ[ρ] = 0 is

found to be equivalent to the system of differential equations
−K∇2ρ + µEOS(ρ) − µ = 0, or

Kρrr = −
g
r

Kρr + µEOS(ρ) − µ , (38)

where subscript rr means the second-order derivative with
respect to r. Similar to the one-component case,50 we can
Taylor-expand Eq. (38) in 1/R, and by using the definitions
Eqs. (8) and (9), we find that

Kρ0zz = µEOS(ρ0) − µ0 , (39)

Kρ1zz = µEOS
ρ (ρ0)ρ1 − µ1 − gKρ0z , (40)

where z = R − r as in Sec. II B 3 and subscripts z and zz mean
first- and second-order derivatives with respect to z. Since
µc

1 =
1
2 µ

s
1, we have that ρc

1 =
1
2ρ

s
1 for SGT.

The solutions of Eq. (40) are degenerate: if ρ1 is a solution,
then ρ1 + αρ0z is as well. This reflects the fact that the first-
order curvature correction for the density, ρ1, depends on the
choice of dividing surface, where we refer to Eq. (28) and
the discussion in Sec. II B 3 for more details. For the total
equimolar surface, defined by Γ tot = 0, the constraint on ρ1 is
obtained from Eq. (18) by summing over the components∫

[ρE
1,tot(z) + gzρE

0,tot(z)]dz = 0 . (41)

Equation (41) restores uniqueness for the total equimolar sur-
face and has been stated before in the literature for the one-
component case.50 For the surface of tension, it follows from
the Appendix that the condition on ρ1 is∫

ρᵀ0zKρ1dz =
∫

[(g − 1)z2ρᵀ0zKρ0z + z2µs
1ρ0z + zµs

1ρ
E
0 ]dz.

(42)

For our purposes, there is no need to worry about the degener-
acy of ρ1, as the SGT formulae Eqs. (48)–(50) for the Helfrich
coefficients are invariant under the shift ρ1 7→ ρ1 + αρ0z.
For other applications, however, this degeneracy cannot be
ignored, for example, when considering transport of heat and
mass across curved vapor–liquid interfaces.51,52

The surface tension equals the area-specific excess grand
free energy ΩE[ρ]/A(R), which for SGT is given by

ΩE[ρ]
A(R)

=

∫ [
1
2
ρᵀz Kρz + aE(ρ) − µρE

] (
1 +

z
R

)g
dz, (43)

where aE(ρ) = aEOS(ρ) − aEOS(ρbulk) and, for a droplet,
ρbulk = H(−z)ρliq + H(z)ρvap, where H is the Heaviside func-
tion. The expression in Eq. (43) is valid for planar, cylindrical,
and spherical geometries. Using the differential equations (39)
and (40), one can evaluate the first few terms in a curvature
expansion of Eq. (43). Details on this derivation are provided
in the supplementary material. The final expression is

ΩE[ρ]
A(R)

=

∫
ρᵀ0zKρ0zdz (44)

+
1
R

∫ [
gzρᵀ0zKρ0z − µᵀ1 ρ

E
0

]
dz (45)

+
1

R2

∫ [
g(g − 1)

2
z2ρᵀ0zKρ0z −

1
2

gρᵀ0zKρ1

+
1
2

gz2µᵀ1 ρ0z −
1
2
µᵀ1 ρ

E
1 − µᵀ2 ρ

E
0

]
dz. (46)

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-019820
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-019820
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Comparing the curvature expansion in Eqs. (44)–(46) with
the Helfrich expansion for the sphere [Eq. (2)] and cylin-
der [Eq. (3)], we find the following SGT expressions for the
coefficients in the Helfrich expansion:

σ0 =

∫
ρᵀ0zKρ0zdz, (47)

δ = −
1
σ0

∫ [
zρᵀ0zKρ0z +

1
2
µs

1ρ
E
0

]
dz, (48)

k =
∫ [
−

1
2
ρᵀ0zKρs

1 +
1
2

z2µs
1ρ0z −

1
4
µs

1ρ
s,E
1 − 2µc

2ρ
E
0

]
dz,

(49)

k̄ =
∫ [

z2ρᵀ0zKρ0z + (4µc
2 − µs

2)ρE
0

]
dz, (50)

2k + k̄ =
∫ [

z2ρᵀ0zKρ0z − ρᵀ0zKρs
1 + z2µs

1ρ0z −
1
2
µs

1ρ
s,E
1

− µs
2ρ

E
0

]
dz. (51)

Here, we have eliminated ρc
1 and µc

1 by using the relations
ρc

1 =
1
2ρ

s
1 and µc

1 =
1
2 µ

s
1. One can verify that the formulae in

Eqs. (47)–(51) are consistent with the transformation formulae
in Eqs. (31)–(33), both directly by analytical integration and
numerically. This is an excellent consistency check for the SGT
formulae since any consistent model must yield expressions
for the Tolman lengths and rigidity constants that conform to
these transformation formulae.

III. NUMERICAL METHODS

To determine the Tolman length and both rigidity con-
stants along a path P in the thermodynamic variable space, we
carried out the calculations in the following order:

(i) Solve the differential equation (39) for the planar
density profile ρ0 at the saturation state.

(ii) Obtain the direction of µs
1 from the tangent of P in the

µ-space. Use Eq. (14) to determine its magnitude.
(iii) Determine the Tolman length, δ from Eq. (48).
(iv) Solve the differential equation (40) for ρs

1, i.e., the
first-order curvature correction to the density profile
for spherical droplets.

(v) Determine the directions of µs
2 and µc

2 from P, and
determine their magnitudes using Eq. (15).

(vi) Determine the rigidity constants k and k̄ from Eqs. (49)
and (50).

For a given path the first-order coefficients δ and µ1 are
independent of the choice of dividing surface, while the
second-order coefficients µ2, k, and k̄ are not.

The most popular version of SGT is the so-called
geometric mean square gradient theory (GM-SGT), where
the combining rule for the influence matrix K = [κij]ij

is given by the geometric mean of the pure component
values, κij =

√
κiiκjj. We will use GM-SGT to gener-

ate the results in Sec. IV, but in Secs. III A and III B
below, we develop the numerical solution procedure for
an arbitrary symmetric and positive semidefinite influence
matrix K.

A. Solving the full SGT model with an arbitrary
symmetric influence matrix

We first discuss the numerical solution of the full SGT
equation

K∇2ρ(r) = µEOS(ρ(r)) − µ . (52)

Since K is symmetric we can write K = PΛPᵀ, where P is
the orthogonal matrix having eigenvectors as columns and Λ
is the diagonal matrix of eigenvalues. Let now ι be the tuple
of indices corresponding to nonzero eigenvalues, and ζ be the
tuple of indices of zero eigenvalues. Introducing the variables

q(r) = Pᵀρ(r), φ(ρ(r)) = Pᵀ
(
µEOS(ρ(r)) − µ

)
,

we reformulate Eq. (52) as a coupled set of differential
equations and algebraic equations

Λι∇
2qι(r) = φι(ρ(r)), (53)

Pᵀι ρ(r) = qι(r), φζ (ρ(r)) = 0, (54)

corresponding to rank K differential equations for qι(r) and
n algebraic equations to recover ρ(r) given qι(r). Of these
algebraic equations, there are rank K linear equations and
n − rank K nonlinear equations that will have to be solved
in each grid point. We use the Neumann boundary conditions

dqι
dr

(0) = 0,
dqι
dr

(Rtot) = 0 . (55)

The first boundary condition always holds due to symmetry
and is also necessary to ensure that the Laplacian does not
diverge for the curved geometries. The second boundary con-
dition is an approximation that becomes exact in the limit
Rtot→∞; in practice, the densities approach their bulk values
exponentially fast, akin to the exact tanh solution obtained
when solving SGT using the van der Waals equation of
state.44,53 One should verify that the spherical container is cho-
sen sufficiently large so that the ∂qι/∂r vanishes well before
the container wall at r = Rtot. Equations (53)–(55) constitute a
nonlinear Boundary Value Problem (BVP).

In addition to Eqs. (53)–(55), which are true for any den-
sity profile, additional equations are needed to specify the
particular solution we are interested in; this is equivalent to
specifying µ in Eq. (52). Instead of directly specifying the
given µ, it is equivalent and more convenient to specify a path
in µ-space as well as a value for the equimolar radius Re. As
shown in previous work,40 this is most conveniently done by
also solving for the vector of cumulative number of particles,
N(r), by use of the following equation:

dN(r)
dr

= A(r)ρtot(r) , (56)

and the boundary conditions N(0) = 0 and Eq. (4), where
N(Rtot) = N tot Restricting the considered paths to straight lines
in µ-space, we have that µ(t) = µ0 + tµ1, where t is an unknown
parameter that is part of the solution. A good initial guess for
t is 1/R.

As an initial guess for the density profiles, we use for
each component a tanh function shifted and scaled so that it is
centered at the position of the radius and has the bulk liquid
and vapor densities as limiting values. We solve the algebraic
equations defined by Eq. (54) with Newton’s method. This
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entails that for each gridpoint we converge the iteration given
by DG(ρn)

(
ρn+1 − ρn

)
= G(ρn), where

G(ρ) =

[
Pᵀι ρ − qι
φζ (ρ)

]
, DG(ρ) =

[
Pᵀι

Pᵀζ µ
EOS
ρ (ρ)

]
. (57)

A good initial guess is available from the solution at the same
position in the previous pass of the BVP solver, or the initial
density profile if it is the solver’s very first pass.

To solve the resulting BVP numerically, we use the col-
location method solve bvp in the Python library SciPy,54

version 0.18.1. The underlying algorithm is essentially the
same algorithm as the widely used bvp4c integrator in
Matlab. One of its main features is automatic grid refinement,
which in practice will produce a fine mesh in the interface
region and a coarse mesh where the densities are essentially
constant.

B. Solving for the curvature corrections

Using the solution ρ0 for the planar density profile, we
solve Kρ1zz = µEOS

ρ (ρ0)ρ1 − µ1 − gKρ0z as a system of linear
differential equations for ρ1. Since solve bvp uses automatic
grid refinement, we use a cubic spline to interpolate ρ0 in any
new grid points the algorithm introduces. Defining

q1(z) = Pᵀρ1(z) ,

φ1(ρ1(z)) = Pᵀ
(
µEOS
ρ (ρ0(z))ρ1(z) − µ1 − gKρ0z(z)

)
,

the equations to solve are

Λιq1zz(z) = φ1,ι(ρ1(z)), (58)

Pᵀι ρ1(z) = q1,ι(z), φ1,ζ (ρ1(z)) = 0. (59)

To solve for the curvature corrections is easier than finding
a full SGT solution from Eqs. (53) and (54): solving for
q1,ι from Eq. (58) amounts to solving a set of linear dif-
ferential equations, in contrast to the nonlinear differential
equations that determine qι; moreover, Eq. (59) is a linear
system of algebraic equations, while Eq. (54) is nonlinear.
We find that the initial guess ρ1 = 0 suffices to converge the
equations.

To calculate δ, k, and k̄, it suffices to solve Eqs. (58)
and (59) for the spherical curvature-correction ρs

1 since the
cylindrical correction can be found from ρc

1 =
1
2ρ

s
1. To solve

for ρ1, we need the compositional Jacobian matrix of the chem-
ical potentials µEOS

ρ (ρ0). This Jacobian is usually available for
the EOS, as it is needed for efficient thermodynamic algorithms
such as flash algorithms.

For boundary conditions, we specify that the gradients
vanish at the center of the droplet and at the container wall

dq1,ι

dr
(0) = 0,

dq1,ι

dr
(Rtot) = 0 , (60)

where the first condition again follows from a symmetry argu-
ment, while the latter is an approximation that becomes exact
in the limit Rtot →∞.

C. Numerical consistency checks

It is challenging to achieve a numerically robust imple-
mentation of SGT, and developing various approaches for this

is an active research area.55–57 To ensure a correct implementa-
tion, the code has been subjected to the following consistency
checks:

• The second-order expansion fits well with the sur-
face tension values from the full SGT model for large
droplets (see Fig. 10).

• The curvature correction transformation formulae in
Sec. II B 3 hold in the case µ1 ∝ µ2 (i.e., straight
path in µ-space) for the surface of tension vs. the total
equimolar surface.

• The results remain unchanged when solving for a
droplet of a given radius and in a larger container. This
verifies that finite-size effects are negligible.

• The results remain unchanged when solving on a more
refined grid, i.e., to a higher numerical accuracy.

• The Helfrich coefficients for the mixture approach their
pure-component values as the mixture becomes very
concentrated in one of the components.

IV. RESULTS AND DISCUSSION

We discuss next the Tolman length, rigidity constants,
and the accuracy of the Helfrich expansion, using the hexane-
heptane mixture at T = 298.15 K as an example. We have
checked that the conclusions drawn in this section are not sen-
sitive to the choice of temperature by repeating the calculations
at T = 330 K and T = 375 K (not shown).

The Peng–Robinson EOS58 is used to describe the prop-
erties of the single-phase fluid (the functions with superscript
“EOS” in Sec. II). By using binary interaction parameters,
the Peng–Robinson EOS accurately represents vapor–liquid
equilibrium compositions for mixtures of hydrocarbons.59,60

The phase diagram of hexane-heptane at T = 298.15 K as cal-
culated by the Peng–Robinson EOS is displayed in Fig. 3,
where the binary interaction parameter is provided in Table II.
The figure shows that VLE can be found between the satu-
ration pressure of pure hexane (∼20 kPa) and of pure hep-
tane (∼6 kPa), with dew points represented by the red solid
curve and bubble points represented by the blue dashed
curve.

FIG. 3. Dew curve (red) and bubble curve (blue) of the hexane-heptane mix-
ture at 298.15 K in pressure-composition space, with a VLE state marked
(black points). Here x and y denote the mole fraction of heptane in the liquid
and vapor phase, respectively. In Pxy-space, a planar density profile corre-
sponds to one bubble point and one dew point; the corresponding plot in
µ-space is qualitatively similar to Fig. 1.
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TABLE II. Parameters used to generate results. Component 1 is hexane; com-
ponent 2 is heptane. κ1 and κ2 are the pure-component influence parameters;
κ12 is the cross-influence parameter, while k12 is the interaction parameter in
the EOS mixing rule.

Parameter Value

k12 �0.0011
Temperature 298.15 K
κ1 4.18 × 10�19 Jm5/mol2

κ2 5.76 × 10�19 Jm5/mol2

κ12
√
κ1κ2

The entries of the influence matrix K were fitted to the
pure-component surface tension values reported by Jasper61

at 300 K, with the resulting values shown in Table II, and the
cross-influence parameter κ12 was described by the geometric
mean rule. SGT then predicts the planar surface tension of
the hexane-heptane mixture to vary nearly linearly with the
liquid mole fraction of heptane. This is expected, as hexane
and heptane are similar fluids.

A. An explanation for the path dependence
of the coefficients in the multicomponent
Helfrich expansion

As explained previously, the Tolman length and rigidities
of a multicomponent fluid depend on the path taken through
thermodynamic variable space. This becomes especially clear
by considering Fig. 4, which presents a phase diagram in the
chemical-potential space, where all coordinates that are not on
the VLE envelope, S (thick solid line), represent either bub-
bles or droplets. The figure illustrates two paths from S to a
uniquely defined spherical droplet state characterized by µs,
where the VLE states A and B have different liquid-phase com-
positions, pressures, and surface tensions. Both paths traverse

FIG. 4. A phase diagram of the chemical potential space, where all coor-
dinates that are not on the VLE curve, S (thick solid line), represent either
spherical bubbles or droplets of different compositions and radii. The ther-
modynamic properties of a droplet at µs (blue point) can be represented by a
curvature expansion either along a path from State A (red point and solid line)
or from State B (light blue point and dotted line). Here, x is the liquid-phase
composition, which is different in the two VLE states. The path from State
A can be specified by the angle θ, measured counterclockwise relative to the
perpendicular (dashed curve) of S at µ0(xA).

continuously through droplet states and are equally valid from
a thermodynamic point of view. Given that the surface tension
of the droplet, σs, is accurately represented by the Helfrich
expansion, the following relation is true:

σ0(xA)

(
1 −

2δA

R

)
+

ks,A

R2
= σ0(xB)

(
1 −

2δB

R

)
+

ks,B

R2
, (61)

where x is the mole fraction in the liquid phase, the left-
hand-side represents the Helfrich expansion from State A and
the right-hand-side is the Helfrich expansion from State B.
Since σ0(xA) , σ0(xB), Eq. (61) shows that the Helfrich
coefficients of a multicomponent fluid depend on the VLE
state used in the Helfrich expansion. The Tolman length and
rigidities of a multicomponent fluid are thus only state func-
tions after the path along which droplets and bubbles are
considered has been specified. The rigidities also need the
choice of dividing surface to be specified in order to be state
functions.

B. Behavior of the Helfrich coefficients from a fixed
VLE state along different paths in thermodynamic
state space

The path from a VLE state along which droplets and bub-
bles are considered can for a binary mixture be characterized
by the angle θ which measures the counterclockwise angle
relative to the perpendicular of S at µ0 (see Fig. 4). For a
fixed VLE state, and a given choice of the dividing surface,
the Helfrich coefficients can thus be represented as functions
of the angle θ. We now fix the VLE state according to the
specification in Table III, choose the total equimolar dividing
surface and examine the dependence of the Tolman length and
the rigidities on θ. Figure 5 illustrates this dependence for the
Tolman length.

A striking feature of the Tolman length in a multicom-
ponent fluid is that it can take any real value, as illustrated
by the red solid curve. However, the directions parallel to P
are not meaningful for a curvature expansion of the surface
tension since the curvature is constant in these directions,
equal to zero. This is reflected in asymptotes in the Tol-
man length profile at θ = ±π/2. The Tolman length changes
sign somewhere in between, but it is negative for most val-
ues of θ, including the perpendicular direction correspond-
ing to θ = 0. Moreover, Fig. 5 shows that ‖µ1‖ approaches
∞ when θ approaches θ = ±π/2 and has the symmetry of
an even function with respect to θ, with a minimum at
θ = 0. This means that the perpendicular direction in µ-
space (θ = 0) is the one in which the chemical potential of
large droplets is the least sensitive with respect to changes in
curvature.

TABLE III. A VLE state (planar interface) and a droplet state (spherical
interface) used to generate results. The VLE state is that shown in Figs. 3
and 4, and the droplet state is shown in Fig. 4. The mole fraction x is that of
heptane.

State Pvap (kPa) xvap Pliq (kPa) xliq Re (nm) Rt (nm)

VLE 11.4 0.35 11.4 0.63 ∞ ∞

Droplet 16.50 0.49 3739.14 0.23 10.00 10.14
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FIG. 5. The Tolman length δ (red curve) and ‖µs
1 ‖ (blue dashed curve) as

functions of the direction in chemical-potential space, as measured by θ.

Figure 6(a) shows how the second-order curvature cor-
rection for droplets and bubbles, called the spherical rigidity
ks = 2k + k̄, and µs

2 vary with the choice of path. We have
here considered a straight line in the chemical-potential space,
implying that µ1 ∝ µ2. The spherical rigidity varies little for
directions close to the normal direction, but starts to diverge
at approximately |θ| > π/4.

We have also considered paths that cannot be described by
straight lines in µ-space, but curves (like the pathPb in Fig. 1).
To this end, we fixed the angle of µ1 to θ = 0 and varied the
angle θ2 between µ2 and the normal vector of the saturation
locus; µ2 is then fully determined by Eq. (15). The resulting
behavior of ks and ‖µ2‖ is shown in Fig. 6(b), which reveals
that the second-order coefficients are essentially constant when
µ1 is fixed to the perpendicular direction. More generally, we
find that for fixed directions of µ1 close to the perpendicular
direction, approximately |θ| . π/6, the rigidity constants are
to a good approximation independent of θ2. We will therefore

in the following constrain the discussion to paths that can be
described by straight lines in µ-space.

C. Behavior of the Helfrich coefficients
across the phase envelope for fixed choices
of paths

The Tolman length and rigidities of a multicomponent
fluid are only state functions and useful from a practical
point of view after a path has been specified, as explained
in Sec. IV A. Therefore, we next fix the path according
to different choices and study the change in the Tolman
length and rigidities along the phase envelope. We parametrize
the phase envelope by using the liquid mole fraction of
heptane.

The Tolman length exhibits a very different behavior
across the phase envelope depending on the path chosen, as
shown in Fig. 7(a). If the path is chosen so as to keep the com-
position at the center of the droplet constant (blue solid curve),
then the Tolman length increases monotonically and close to
linearly with the liquid mole fraction of heptane. If the vapor
composition is kept constant, however (green dotted curve),
the Tolman length exhibits a maximum. A similar behavior
is seen if the path increases the chemical potential of hexane
twice as much as heptane; this corresponds to paths that are
straight lines in µ-space with a slope of 2 so that µ1 ∝ [1, 2] (red
curve). (The direction [1, 2] was chosen arbitrarily as an exam-
ple.) When the path is perpendicular to the phase envelope
in µ-space (black dashed curve), the Tolman length exhibits
both a maximum and minimum. A common denominator for
all the choices of paths in Fig. 7(a) is that they recover the
pure-component Tolman lengths in the pure-component limit.
This is in agreement with the consistency criteria listed in
Sec. III C.

Unlike the path for which µ1 ∝ [1, 2], the directions of
µ1 for the other three paths have to be calculated. To cal-
culate the perpendicular direction in µ-space, first note that
µ − µ0 is perpendicular to S if and only if (µ − µ0)dµ0 is

FIG. 6. The spherical rigidity ks = 2k + k̄ (red curve) and ‖µs
2 ‖ (blue dashed curve) as functions of the angle θ, using the total equimolar radius. The angles

have different meanings in the two plots: In (a) µs
1 ∝ µs

2 and θ = θ2. In (b) we have fixed µ1 to be in the perpendicular direction (θ = 0), while µ2 forms an
angle θ2 with the perpendicular direction.
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FIG. 7. Coefficients of the Helfrich expansion across the phase envelope at T = 298.15 K for the hexane-heptane mixture, using the total equimolar radius.
The colors of the curves have the same meaning in all plots and is indicated in the legend in plot (b). (a) Tolman length δ. (b) Spherical rigidity ks = 2k + k̄.
(c) Gaussian rigidity k̄. (d) Bending rigidity k.

zero for all vectors dµ0 that are tangent to S at µ0. Since the
Gibbs–Duhem relation shows that S is locally defined by the
relation (ρliq

0 − ρ
vap
0 )dµ0 = 0, it follows that the perpendicu-

lar directions in µ-space are proportional to (ρliq
0 − ρ

vap
0 ). The

calculation of the direction of µ1 for paths of constant vapor
or liquid composition is more involved and is described in the
supplementary material.

A natural question to investigate is whether there exists
any simple “mixing rule” for Tolman lengths, i.e., a for-
mula that estimates the Tolman length of a mixture from
pure-component values. Since the Tolman length is a path-
dependent property, such mixing rules should be for the Tol-
man length along a particular path. After inspecting the
selection of paths plotted in Fig. 7(a), it appears that, for
this hydrocarbon mixture, the Tolman length δ along paths
of constant liquid composition varies almost linearly with the
liquid-phase composition; the same is true for the quantity
σ0δ. For systems where this linearity holds, it is straight-
forward to implement curvature corrections for the surface
tension as the only required information is the coefficients
of the Helfrich expansion for the pure components and the
composition of the liquid phase. We evaluate the accuracy of

the curvature expansion along the constant-liquid-composition
path in Secs. IV D and IV E.

We have also plotted the rigidity constants in
Figs. 7(b)–7(d) for the case when µ1 ∝ µ2, corresponding
to straight lines in µ-space. The behavior of these coefficients
across the phase envelope is in general very different depend-
ing on the choice of path. However, for the paths corresponding
to constant (to first order) liquid or vapor composition, we
see that similar to the Tolman length, the rigidity constants
depend nearly linearly on the liquid-phase composition. We
conclude that, for the hexane-heptane mixture, all coefficients
in the Helfrich expansion exhibit a nearly linear dependence
on the liquid mole fraction of heptane for the path corre-
sponding to constant liquid composition (solid curves), but
for other choices of paths they generally vary in a less regular
way. The value of the spherical rigidity constant ks is about
−1 kBT.

D. Which path yields the most accurate representation
of small droplets and bubbles?

In Secs. IV B and IV C, we showed that the magnitude and
the behavior of the Tolman length and the rigidities depend

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-019820
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strongly on the path taken in the thermodynamic variable
space. Figure 4 shows that the same droplet can be described
by traversing different paths. It is important to emphasize that
once the choice of dividing surface has been specified, the
surface tension of a droplet is a state function and different
paths will recover this surface tension within the accuracy
of the Helfrich expansion. An important question then arises:
which path yields the most accurate representation of droplets
and bubbles? Using SGT as a reference, this accuracy can be
determined by numerically evaluating the deviation between
the second-order expansions in Eqs. (8)–(12) and the corre-
sponding thermodynamic properties obtained from the full
SGT representation of droplets.

One path of particular interest is the perpendicular path
in chemical-potential space, as for a given droplet µdrop this
corresponds to performing a curvature expansion from the
closest VLE state µ0, where closest means that ‖µ − µ0‖

is minimized. Figure 8 shows the relative error between
the Helfrich expansion and the surface tension for the fixed
droplet state specified in Table III. The figure shows that
for all choices of paths satisfying |θ| < π/4, i.e., directions
that are not too far away from the perpendicular direction
in µ-space, the Helfrich expansion gives a very accurate
representation of the surface tension, with a relative error
below 0.1%.

Figure 8 displays the accuracy for only one droplet; a
more comprehensive evaluation should consider a wide range
of droplets of varying composition. The bar charts in Fig. 9
show the absolute average relative deviation (AARD) between
the second-order curvature expansion and the full SGT rep-
resentation for droplets and bubbles of radius 10 nm. By
calculating the full SGT solution for 50 VLE states along
the phase envelope, 50 bubbles, and 50 droplets, the devia-
tion is calculated by estimating the µ, σ, and ∆P for every
droplet and bubble from every VLE state using a curvature
expansion, and the AARD is plotted as a function of the
counterclockwise angle θ measured with respect to the perpen-
dicular direction. The results have been binned into 11 intervals
of equal width for the angle θ. Droplets corresponding to

FIG. 8. The relative deviation when estimating the surface tension of the
droplet in Table III from different VLE states, corresponding to different angles
θ, using the Helfrich expansion. The relative deviation for the path of constant
liquid composition is −6 × 10−6 and is given by the blue point.

|θ| > π/2 relative to a VLE state have not been considered.
For the hexane-heptane mixture, Fig. 9 presents evidence that
the perpendicular direction θ = 0 is, on average, the best choice
of all fixed-θ paths. However, it is not so that the perpendic-
ular direction is always the most accurate, and the minimum
error for the quantities examined is usually shifted slightly
toward θ > 0 for some droplet/bubble-states and toward
θ < 0 for other droplet/bubble-states.

For the hexane-heptane mixture, it turns out that there is a
path that is even more accurate on average that the perpendic-
ular path (θ = 0), namely, the one corresponding to constant
liquid composition. The deviations for this path are given by
the green dashed lines in Fig. 9.

In Table IV, we present the calculated AARDs for 50
droplets with even smaller radii, namely 5 nm. It is clear
that in the collective estimation of chemical potentials, sur-
face tensions, and liquid–vapor pressure differences, the path
of constant liquid composition is better than the perpendicular
direction in µ-space, although for the surface tensions they
give very similar results.

E. How small droplets and bubbles can be accurately
represented by the Helfrich expansion?

For possible applications, it is important to know the size
range for droplets and bubbles where the Helfrich expan-
sion gives an accurate representation of the surface tension.
In Fig. 10, we consider the fixed VLE state of Table III and
compare the Helfrich expansion to the full SGT solution for
droplets and bubbles of decreasing radius for different choices
of θ. For the perpendicular direction displayed in Fig. 10(a), a
visual inspection shows that one has to consider the last bul-
let point before the Helfrich expansion (solid curve) starts to
deviate significantly from the center location of the surface
tension predicted by SGT, i.e., at R ∼ 2.5 nm. The accu-
racy of the path of constant liquid composition is displayed
in Fig. 10(b) and is seen to be very similar to that of the per-
pendicular direction; this is consistent with Figs. 9(c)–9(d)
and Table IV. For these paths, the Helfrich expansion gives
the same predictions of the surface tension as the full SGT to
a very high accuracy, even for droplets with radii of less than
3 nm.

A larger deviation can be seen in Fig. 10(c), correspond-
ing to θ = 5π/18, while Fig. 10(d) shows how choosing |θ| too
large results in useless predictions with the Helfrich expan-
sion. Unlike the other directions in Fig. 10, the direction
θ = 5π/12 has a positive Tolman length, and moreover a
positive spherical rigidity. The second-order derivative of σ
with respect to R−1 is seen to change sign from positive
for small curvatures to negative at large curvatures, and the
second-order (Helfrich) expansion is in fact worse than the
first-order (Tolman) expansion since it predicts that the sur-
face tension diverges to infinity. We have not plotted the bubble
solutions in Fig. 10(d) since there is a limit to how small bub-
bles that can exist along in directions in µ-space that are almost
tangent to the phase envelope. This is because a straight path
in the bubble regime may lead us back to the droplet regime
again (imagine changing the direction of the path PA in Fig. 1
to be almost tangential to S).
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FIG. 9. The AARD of thermodynamic properties estimated using the curvature expansion for droplets (left-hand side) and bubbles (right-hand side) with radius
10 nm. The black bars represent deviations as a function of θ, while the green dashed line is the deviation for the constant liquid composition direction. (a)
Relative error in estimating µ for a droplet. (b) Relative error in estimating µ for a bubble. (c) Relative error in estimating σ for a droplet. (d) Relative error in
estimating σ for a bubble. (e) Relative error in estimating ∆P for a droplet. (f) Relative error in estimating ∆P for a bubble.

While Figs. 10(c) and 10(d) demonstrate how a poor
choice of path impacts the accuracy, we also mention another
pitfall that must be avoided when considering paths P that

cross the VLE envelope so that the curvature changes sign. If
the path P is not smooth across the envelope, the curvature
coefficients will have different values when estimated from
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TABLE IV. Average absolute relative deviations when estimating the thermodynamic properties of droplets with
radius 5 nm and varying compositions at 298.15 K, using various curvature expansions. The deviations are
calculated by comparing the values predicted from the curvature expansion to that of the full SGT description of
the droplets.

Expansion type ‖µest
� µ ‖/‖µ ‖ |σest

� σ|/|σ| |∆Pest
� ∆P|/|∆P|

Linear mixing rules 6.2× 10�2 2.9× 10�4 3.2× 10�4

Constant liquid composition 3.7× 10�6 3.0× 10�5 1.3× 10�5

Perpendicular direction 1.2× 10�5 4.4× 10�5 4.5× 10�4

bubble properties compared to when they are estimated from
droplet properties, and the curves plotted in Fig. 10 would
then exhibit “kinks.” This caveat applies equally well to non-
isothermal variations of curvature, in which case the Hel-
frich coefficients acquire a path-dependence even for one-
component systems, and has previously been a source of con-
fusion in the literature.62 The paths PA and PB in Fig. 1 are
examples of smooth paths.

F. Practical use of the Helfrich expansion
for mixtures

At least for describing droplets and bubbles of the hexane-
heptane mixture, there is one choice of path that stands out:
the path of constant liquid composition. On average, it yields
the most accurate representation of the surface tension with
the Helfrich expansion. In addition, the Tolman length and
rigidities of the mixture are nearly linear in the mole fraction
of the liquid phase. In order to use the Helfrich coefficients, for
example, to describe the critical cluster/cavity in nucleation,
the only requirement would be the pure component values

of the curvature expansion coefficients and the liquid-phase
composition.

We have tested the applicability of the linear mixing rules
that apply to the path of constant liquid-phase composition by
obtaining the curvature expansion coefficients for the single-
component systems, and then assuming a linear dependence
with respect to the mole fraction at the center of the droplet,
this corresponds to assuming that σ0, σ0δ, and ks are lin-
ear in the liquid composition. The results are shown in the
second row of Table IV. The table shows that for this hydro-
carbon mixture, the linear mixing rule works very well for
estimating the surface tension and the pressure difference.
Results for the estimation of the droplets’ chemical poten-
tial are less satisfactory, but usually also of less interest. The
average accuracy for the surface tension of 5 nm droplets as
predicted by the Helfrich expansion with linear mixing rules is
0.03%.

These conclusions remain valid at higher temperatures.
The good performance of the linear mixing rule is not expected
to hold for all mixtures, and may be a consequence of the fact
that for the hexane-heptane mixture the planar surface tension

FIG. 10. Accuracy of the curvature
expansion from a fixed VLE state as a
function of inverse radius 1/Re, where
Re is the total equimolar radius. All plots
correspond to straight paths through µ-
space, forming an angle θ to the perpen-
dicular direction of the VLE envelope
S, as illustrated in Fig. 4. The VLE state
(flat surface) in these plots is specified in
Table III. (a) Perpendicular path, θ = 0.
(b) Direction of constant liquid compo-
sition, θ = −11.5◦. (c) θ = 5π/18 = 50◦.
(d) θ = 5π/12 = 75◦.
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is approximately linear in the liquid composition. Although
the linear rule for planar surface tension is known to fail for
many mixtures,63 our results demonstrate that at least for some
mixtures it is possible to develop approximate mixing rules
for the coefficients in the Helfrich expansion. For mixtures
where the linear mixing rule fails, one could try to extend
the established non-linear mixing rules63 for planar surface
tension to curved surfaces.

V. CONCLUSION

In this work, we have presented and explained the gen-
eral theory for the curvature dependence of the surface tension
for multicomponent fluids by use of the Helfrich expansion.
Square gradient theory (SGT) was employed for a mixture
of hexane-heptane at 298.15 K to obtain the quantitative
estimates of the first-order correction, given by the Tolman
length, and the second-order corrections, given by the rigidi-
ties. With these coefficients, the Helfrich expansion can be
used to describe the surface tension of spherical or cylindrical
droplets/bubbles or of arbitrarily curved vapor–liquid films up
to second-order in the curvature. The Tolman length of a mul-
ticomponent fluid was shown to be independent of the choice
of dividing surface. The rigidities do depend on the choice of
dividing surface, and we presented simple formulae to account
for the change in the rigidities with a change of dividing
surface.

Unlike in the one-component case, the Tolman length
and rigidities of a multicomponent fluid depend on the path
taken through thermodynamic variable space, i.e., how the
pressure and composition of the exterior phase are changed
as the droplet/bubble shrinks and the curvature increases. We
explained where this path dependence comes from and showed
that the magnitude and behavior of the Tolman length and
rigidities depend strongly on the choice of path. The path
that on average gave the most accurate representation of small
droplets and bubbles was found to be the one corresponding
to constant liquid composition; however, good accuracy was
found for all paths in directions sufficiently far away from the
directions parallel to the saturation locus, i.e., sufficiently close
to the perpendicular direction in µ-space.

All the paths considered reproduce the pure-component
Tolman length and rigidities in the limit of pure hexane and
heptane. For the hydrocarbon mixture investigated, we found
that the Tolman length and rigidity constants are nearly linear
in the mole fraction of the liquid phase along paths of constant
liquid composition. We compared the Helfrich expansion to the
full description of droplets and bubbles as provided by SGT,
finding excellent agreement even for very small droplet/bubble
sizes. For the path of constant liquid composition, the Helfrich
expansion reproduces the surface tension from SGT within
0.1% for droplet radii down to 3 nanometers. Valuable future
work would be to test the generality of our findings for other
mixtures, and more sophisticated density functional theories
than SGT. The multicomponent Helfrich expansion and the
framework developed in this work have the potential to be used
in several important applications, such as in nucleation theory,
or in the description of multicomponent droplets forming on
solid surfaces.

SUPPLEMENTARY MATERIAL

See supplementary material for details regarding the fol-
lowing: (1) the derivation of the transformation formulae for
the Tolman length and rigidity constants upon a change of
dividing surface; (2) the derivation of the curvature expansion
of the excess grand free energy per surface area; (3) the cal-
culation of the direction of µ1 for paths of constant vapor or
liquid composition.
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APPENDIX: SGT FORMULA FOR THE NOTIONAL
DERIVATIVE OF A DROPLET

Expanding the formula for the notional derivative,
[∂σ/∂R]T,µ = dσ/dR + Γdµ/dR, yields

[
∂σ

∂R

]

T ,µ
=
σ1 + µ1Γ0

R2

−
2σ2 + µ1Γ1 + 2µ2Γ2

R3
+ · · · .

Using the the SGT expressions for σ1 and σ2 given by
Eqs. (45) and (46), and the formulae for the adsorptions given
by Eqs. (17) and (18), we find that
[
∂σ

∂R

]

T ,µ
= −

g

R2

∫ (
zρᵀ0zKρ0z

)
dz −

g

R3

∫ [
(g − 1)z2ρᵀ0zKρ0z

− ρᵀ0zKρ1 + z2µs
1ρ0z + zµs

1ρ
E
0
]
dz + · · · .

All the coefficients in this expansion are zero for the surface of
tension. Setting the (1/R2)-coefficient to zero yields a compact
characterization of the position of the surface of tension for a
plane surface in SGT:∫

zρᵀ0zKρ0zdz = 0 . (A1)

Using the formulae for parallel and tangential pressures for
the SGT model,40 one can verify that Eq. (A1) is equivalent
to requiring that the first moment of the parallel minus the
tangential pressure to be zero. Since the surface tension equals
the integral of the parallel minus the tangential pressure, the
surface of tension is the effective position at which the surface
tension acts.

Moreover, setting the (1/R3)-coefficient to zero yields an
integral condition that ρ1—which depends on the choice of
dividing surface—has to satisfy when computed relative to
the surface of tension. This is most conveniently written in the
form∫

ρᵀ0zKρ1dz =
∫

[(g − 1)z2ρᵀ0zKρ0z + z2µs
1ρ0z + zµs

1ρ
E
0 ]dz .

(A2)
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10A. Malijevský and G. Jackson, J. Phys.: Condens. Matter 24, 464121

(2012).
11E. M. Blokhuis and A. E. van Giessen, J. Phys.: Condens. Matter 25, 225003

(2013).
12Ø. Wilhelmsen, D. Bedeaux, and D. Reguera, J. Chem. Phys. 142, 064706

(2015).
13N. Bruot and F. Caupin, Phys. Rev. Lett. 116, 056102 (2016).
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