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The configurational temperature has emerged as a useful
tool to compute the temperature in molecular simulations.1 It
has been employed in Monte Carlo simulations as a diagnostic
tool2 and in molecular dynamics (MD) simulations where it
has given enhanced understanding of systems in Poiseuille
flow,3–5 nanopores,6 as well as many other systems.7–12 Jepps
et al.4 showed that the configurational temperature can be
determined from

kBTcon =


N
i=1

F2
i



−

N
i=1
∇i · Fi

 , (1)

where kB is Boltzmann’s constant, Tcon is the configurational
temperature, Fi is the force acting on particle i, N is the
total number of particles, and ⟨·⟩ is the ensemble average.
For spherically symmetric interaction potentials, statistical
mechanics gives that14
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−
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∞
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U ′′(r) + 2

r
U ′(r)


, (3)

where ρ is the number density, U(r) is the interaction
potential, r is the distance between the particles, and g(r)
is the radial distribution function. In the derivation of the
expression for the configurational temperature in Eq. (1)
presented by Jepps et al.,4 the interaction potential is required
to be continuously differentiable. Hence, the expression
for Tcon is expected to be inaccurate for truncated (and
shifted) potentials. No such truncation error is expected
for the kinetic temperature since it uses only the particle
momenta.

In the following, we consider a truncated and shifted
Lennard-Jones (LJ) potential that is cut off at r = rc. When
the configurational temperature is obtained by Eq. (1), with
Fi set equal to zero beyond rc, we obtain a temperature

a)Electronic mail: oivind.wilhelmsen@sintef.no

which lies below the kinetic temperature as shown by
the blue circles in Fig. 1. Previously, it was shown that
this discrepancy can be partially resolved by adding tail
corrections to the numerator (∆n) and denominator (∆d) in
Eq. (1)13

∆n = 4πρN

∞
rc

d r r2g(r)[U ′(r)]2, (4)

∆d = 4πρN

∞
rc

d r r2g(r)

U ′′(r) + 2

r
U ′(r)


, (5)

where U(r) represents the full LJ potential. Using g(r)
from Ref. 15, these corrections lead to the green squares in
Fig. 1. The figure shows that Eq. (1) with the tail corrections
in Eqs. (4) and (5) recovers the kinetic temperature of
the system accurately, except at low truncation values and
high densities (see Figs. 1(b)–1(d)). The rationale for using
Eqs. (4) and (5) to extrapolate to the full potential is that
the corrections keep the system temperature unchanged and
that Eq. (1) is strictly valid for the full potential since the
full potential is continuously differentiable. In this Note, our
goal is to develop an alternative correction method that
resolves the discrepancy between the kinetic and configu-
rational temperature also for low truncation values and high
densities.

To achieve this, we consider an interaction potential,
Uε(r), which is smooth and differentiable, but which depends
on some small parameter ε in such a way that in the limit
ε → 0 it reproduces the cutoff and shifted LJ potential
exactly. For any arbitrarily small but positive value for ε,
Eq. (1) remains strictly valid and can be used. Then, in the
limit ε → 0, the first derivative of the interaction potential
approaches

U ′ε(r) −→ U ′(r)Θ(rc − r), (6)

where Θ(.) is the Heaviside function. In the same limit, the
second derivative of the interaction potential becomes more
and more sharply peaked at r = rc, approaching

U ′′ε (r) −→ U ′′(r)Θ(rc − r) −U ′(rc) δ(r − rc). (7)

0021-9606/2016/144(5)/056101/2/$30.00 144, 056101-1 © 2016 AIP Publishing LLC

http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
http://dx.doi.org/10.1063/1.4941453
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
mailto:oivind.wilhelmsen@sintef.no
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4941453&domain=pdf&date_stamp=2016-02-03


056101-2 Lervik et al. J. Chem. Phys. 144, 056101 (2016)

FIG. 1. The configurational tempera-
ture (Tcon) relative to the kinetic temper-
ature (Tkin) as a function of the cut-off
distance and number density (ρ) for the
truncated and shifted LJ potential: un-
corrected (blue circles), corrected with
Eqs. (4) and (5) (green squares), and
corrected with Eq. (10) (black trian-
gles). The system contains 500 particles
and the configurational temperature was
calculated as explained in Ref. 13, ex-
cept that we reduced the time-step with
a factor of 2 for the smallest cut-offs
(1.5 and 2.0) to avoid energy-drift.

The result is that the expressions in Eqs. (2) and (3)
continuously approach the limits N

i=1

F2
i


−→ 4πρN

rc
0

d r r2g(r)[U ′(r)]2, (8)


−

N
i=1

∇i · Fi


−→ 4πρN
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U ′′(r) + 2
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+∆disc, (9)

where

∆disc = −4πρNr2
c g(rc)U ′(rc). (10)

Using g(r) from Ref. 15 and the above correction, ∆disc, in
the denominator of Eq. (1), we obtain the black triangles in
Fig. 1. The figure shows that Eq. (1) with the new correction
reproduces the kinetic temperature within the accuracy of the
simulations for all the cases considered. Contrary to the tail
corrections in Eqs. (4) and (5), Eq. (10) works also at low
truncation values and high densities. As an approximation,
one could set g(rc) = 1, which gives for the LJ potential:
∆disc ≈ 96πρN

�
2r−11

c − r−5
c
�
.

To conclude, the success of the new correction in recov-
ering the kinetic temperature of the system suggests that the
expression for the configurational temperature given in Eq. (1)
is valid also for interaction potentials with a discontinuous
force, provided that the discontinuity is explicitly accounted
for by the expression in Eq. (10).
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