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Abstract 

Repeated dose toxicity evaluation aims at assessing the occurrence of adverse effects following 
chronic or repeated exposure to chemicals. Non-animal approaches have gained importance in the 
last decades because of ethical considerations as well as due to scientific reasons calling for more 
human-based strategies. A critical aspect of this challenge is linked to the capacity to cover a 
comprehensive set of interdependent mechanisms of action, link them to adverse effects and 
interpret their probability to be triggered in the light of the exposure at the (sub)cellular level. 
Inherent to its structured nature, an ontology addressing repeated dose toxicity could be a scientific 
and transparent way to achieve this goal. Additionally, repeated dose toxicity evaluation through the 
use of a harmonized ontology should be performed in a reproducible and consistent manner, while 
mimicking as accurately as possible human physiology and adaptivity. In this paper, the outcome of a 
series of workshops organized by Cosmetics Europe on this topic is reported. As such, this 
manuscript shows how experts set critical elements and ways of establishing a mode-of-action 
ontology model as a support to risk assessors aiming to perform animal-free safety evaluation of 
chemicals based on repeated dose toxicity data. 
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1. Introduction 

Evaluation of chemical safety to humans has drastically changed in the last decades. Historically, 
animal testing formed the basis for such risk assessment exercises. Driven by scientific and ethical 
reasons, however, there is a clear tendency worldwide to increasingly use animal-free methods for 
this purpose. This has been reinforced by a number of legislative changes over the past few years in 
the European Union, imposing a ban on animal testing for particular groups of chemicals, in casu in 
the cosmetics field (EU 2003 and 2009). Accordingly, the scientific community has been urged to 
develop animal-free methods for evaluating the safety of chemicals, being a research area that is 
gaining momentum. This has triggered a paradigm shift from classical toxicology, focusing on apical 
endpoints for toxicity in animal models, to predictive toxicology, relying on information on 
mechanisms of toxicity. In fact, contemporary safety evaluation of chemicals has become a 
multidisciplinary science, not only using (mechanistic) toxicological knowledge, but also considering 
data from a diversity of other areas, including epidemiology, (physico-)chemistry and bioinformatics. 
The optimal use of this diversity of information could be aided by a general practical framework, 
designated a mode-of-action (MoA) ontology model, for sound and reliable risk assessment. In this 
paper, such MoA ontology model is proposed for repeated dose toxicity (RDT) and is the result of a 
number of expert workshops organized by Cosmetics Europe (CE) in 2016 and 2017 in the context of 
its Long Range Science Strategy (LRSS) program. CE established the LRSS in 2016 as a follow-up of 
the Safety Evaluation Ultimately Replacing Animal Testing (SEURAT-1) program (http://www.seurat-
1.eu/). The LRSS equally supports the currently ongoing Eu-ToxRisk project, which is considered as 
the integrated European flagship program driving mechanism-based toxicity testing and risk 
assessment for the 21st century (http://www.eu-toxrisk.eu/) and that generates valuable RDT data. 
The LRSS aims to develop non-animal (in silico/in vitro) approaches, strategically combine them in a 
risk assessmentparadigm (Desprez et al., 2018), and support safety assessment and regulatory 
acceptance of these integrated non-animal approaches. Making the most of the comprehensive 
toxicological knowledge available and structure it in a transparent manner is a way to support non-
animal safety assessment. The purpose of this particular initiative within LRSS is to generate a MoA 
ontology model as a tool relying on kinetics and systemic bioavailabity in order to bridge the gap 
between effects observed in high-dose animal studies and what may happen to humans considering 
realistic exposure scenarios. The MoA ontology model is expected to be used in the context of 
exposure-led safety assessment following the criteria of the International Cooperation on Cosmetics 
Regulation (ICCR) (Dent et al., 2018). 

2. Definition and use of the mode-of-action ontology model 

According to the English Oxford dictionary, an ontology is “a set of concepts and categories in a 
subject area or domain that shows their properties and their relation between them” 
(https://en.oxforddictionaries.com/definition/ontology). The National Center for Biomedical 
Ontology defines it as “a kind of vocabulary of well-defined terms with specified relationships 
between those terms, capable of interpretation by both humans and computers”. In safety 
assessment of chemicals, one approach used, RDT evaluation aims at detecting effects that may 
occur in an organism, which would be in relation to adverse effects, mainly organ toxicities, 
triggered by internal exposure to the chemical of interest. As such, many mechanisms are potentially 
involved. Therefore, and more specifically in the field of toxicology, the ontology definition regarding 
RDT would go beyond the notion of organized vocabulary and would not be a descriptive, but rather 
an active system that supports inference. Accordingly, such system would structure and organize 
toxicological knowledge. Indeed, it should cover adverse effects, including organ toxicities, and 
relate to MoAs of chemicals. In case of organ toxicity, this could imply the use of adverse outcome 
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pathways (AOPs) relying on key events (KEs). It should include the relationships between KEs and 
thus establish networks of AOPs. This comprehensive structure, with inclusion of MoA knowledge 
and RDT, is meant for prediction purposes on the toxicity of chemicals in relation to repeated 
exposure. It should be a support to answer the question “What are the MoAs likely to be triggered 
by a certain level of exposure and certain chemical features, and which pathways of toxicity are truly 
activated after that systemic exposure is confirmed?” The MoA ontology model would therefore also 
be a system with a chemical entry point that takes into account the fate of the chemical in the 
organism, and produce an outcome that would indicate whether the chemical is toxic or not and 
which organ(s) is (are) affected. Hence, exposure and kinetics elements should be equally 
incorporated in such system. 

The envisaged MoA ontology model is much more than a passive structure that stores and groups 
toxicological data in an organized manner. It is rather a dynamic and active structure that integrates 
specific workflows, linked together, in view of supporting safety assessment.  The defined workflows 
encompass (i) exposure/kinetics, notably estimation of likely internal dose, (ii) chemistry/chemical 
features, (iii) MoAs, if internal exposure and chemical properties are likely to trigger a known 
molecular initiating event (MIE) and the series of KEs at the organelle and cellular levels that lead to 
(iv) adverse effects and toxicities at the tissue, organ and organism levels (Figure 1). Each of these 4 
workflows constitutes a pillar of the MoA ontology model, which in turn includes specific 
components and subworkflows described hereafter. 

3. Structure of the mode-of-action ontology model 

A variety of approaches could be proposed to establish a MoA ontology model. Among those is the 
definition of a number of pillars that support the model by providing critical data using a wide 
spectrum of tools. Pillar 1 hereby is the kinetic anchor that precedes the actual dynamic phase. Pillar 
2 encompasses the chemical basis for the interaction of the compound with the biological target. 
Pillar 3 and pillar 4 underlie the upstream and downstream parts of the dynamic process by 
providing a mechanistic foundation and in vivo outcome, respectively (Figure 2).  

3.1. Pillar 1: kinetics aspects 

The adverse effect of a chemical is a function of the intrinsic properties of the compound and its 
ability to interact with a biological entity in the organism as well as the exposure scenario to the 
compound at the site in an organism where a toxic action may take place. Thus, if and when a 
chemical will have a toxic effect highly depends on the concentration-time profile of the compound 
at the target site. The first consideration of a chemical’s toxicity therefore should be a description of 
the kinetic behaviour of the compound in the organism (Tsaioun et al., 2016), and hence represents 
pillar 1 in the MoA ontology model. This description comprises a number of aspects. The 
concentration-time profile at the target site is depending on the processes of uptake in the 
organism, the distribution over the body, the metabolism of the compound and the resulting 
formation of metabolites and the excretion processes from the body. In turn, these processes are to 
a high degree depending on the physico-chemical properties of the compound as well as on the 
properties of the organism. This implies that these processes, as part of the MoA ontology model, 
can be predicted and described in a high level of detail (DeJongh et al., 1997; Schmitt, 2008).   

The first element of the description of the kinetics pillar in the MoA ontology model is the 
relationship between external exposure and internal exposure. The absorption process of a 
compound is a function of the properties of the chemical as well as of the ability of the absorbing 
tissue to transport the compound. Apart from the ability to predict absorption on the basis of 
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physico-chemical properties, information on the process can also be gained by quite a number of 
experimental non-animal models (Heylings et al., 2018; Hubatch et al., 2007).  

Proper quantification of absorption may yield important information in terms of the MoA ontology 
model, while it may allow an estimation of the maximal possible systemic available compound. If this 
amount is very low, it may allow the application of the internal threshold of toxicological concern 
(TTC) (Ellison et al., 2019; Partosch et al., 2015). 

The second element of the description of the kinetics pillar in the MoA ontology model is the 
distribution of the compound in the organism. Estimating the distribution and hence the 
concentration-time profile of compounds is a function of the physico-chemical properties as well as 
of the properties of the different organs and tissues. Since the blood stream is the main transport 
route through the organism, the partitioning between blood and the tissues is the determining 
factor. In this respect, special attention needs to be paid to the existence of special barriers (Prieto 
et al., 2004), including the role of transporters (Notenboom et al., 2018). 

The third element of the description of the kinetics pillar in the MoA ontology model is the 
metabolism of the compound. This is an important determinant for the change in concentration of 
the compound to which one is exposed. Typically, the biotransformation system, consisting of a wide 
variety of enzymic reactions, will lead to compounds with a lower lipophilicity, thereby facilitating 
excretion. However, this might also yield compounds with a higher reactivity towards tissues. While 
metabolism is a critical issue and although exceptions exist, many isolated non-animal systems are 
not well equipped with the physiologically-relevant biotransformation systems. Moreover, the role 
of different tissues in biotransformation is differing widely, and this leads to concentration-time 
patterns differing considerably in the body (Coecke et al., 2006). However, for estimating the 
metabolic profile on the basis of experimental non-animal models, a proper estimation of these 
profiles is possible and this estimation needs to be part of the MoA ontology model. 

The fourth element of the description of the kinetics pillar in the MoA ontology model is excretion. 
The most important tissues contributing to excretion of compounds from the organism are the 
kidney, liver, gastrointestinal tract, lungs and to a lesser extent the skin. As holds for the other 3 
elements critical for the description of the kinetics pillar in the MoA ontology model, the physico-
chemical properties of the chemical as well as the transporter functions of the tissues dictate the 
velocity of excretion.  

In order to obtain a comprehensive picture of the concentration-time profile of the compound and 
its metabolite(s) at possible target sites, the use of physiologically-based biokinetics- (PBBK) models 
is of paramount importance (Bessems et al., 2014). PBBK models consist of a physiologically-relevant 
description of an organism, a set of parameters describing the fate of the chemical under study and 
a set of differential equations. Software handling the simultaneous solution of these equations 
ideally results in the estimation of the concentration of the compound and metabolites after any 
exposure scenario, at any time at any place in the organism. The quality of the estimates depends on 
the ability to collect the appropriate parameters to be used in the PBBK models. These parameters 
may be either estimated on the basis of the physico-chemical properties of the compounds or 
measured in non-animal methods. 

A possible adverse effect of a chemical is to a great extent depending on the concentration-time 
profile of the compound at sites of action. Kinetic modelling is an important tool to quantify such 
profiles (Bouvier d`Yvoire et al., 2007). A first use in the MoA ontology model can be the estimation 
of the possible internal exposure in tissues given a certain external exposure scenario, which will be 
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of use in determining the need to pay attention to those tissues with high concentrations in 
appropriate in vitro systems. Another use may lie in the combination with MoA knowledge for the 
compound. Concentration-time profiles may give answers to the question as to whether a high-peak 
compound or prolonged exposure is the determining factor in a compound’s toxic profile. This is of 
particular interest in RDT or extended exposure scenarios. Kinetic modelling is equally of great 
promise in the interpretation of any in vitro toxicity studies for their meaning in a risk assessment 
setting. It allows the integration of in vitro data in a quantitative in vitro-in vivo extrapolation 
(QIVIVE), thus linking this to the external exposure (Blaauboer, 2010; Yoon et al., 2015). 

3.2. Pillar 2: chemical aspects 

Pillar 2 relates to the use of chemistry to drive understanding of toxicological effects and to form 
relationships with other chemicals within the MoA ontology model. A number of aspects of 
chemistry need to be considered to implement chemistry as a pillar in a the MoA ontology model, 
especially as it may form the basis of computational approaches, namely (i) the correct 
representation of chemical structures, (ii) understanding of physico-chemical properties and their 
relationship to toxicology and biokinetics, (iii) an appreciation of the structural basis of toxicity and 
metabolism in terms of molecular structure, (iv) development of relationships with other similar 
molecules through techniques, such as read-across and quantitative structure-activity relationships 
(QSAR). Taking each consideration in turn, whilst it may sound trivial, the essential starting point for 
any chemistry-related aspect of the MoA ontology model is the correct definition of chemical 
structure. Thus, a minimum requirement is the need for appropriate structural identifiers to be 
available for chemistry. For a single substance, this would be an unambiguous definition of structure, 
including consideration of stereochemistry, such as potential isomerism and tautomerism. This is 
achieved ideally by the use of some description of chemical structure. Previously, SMILES strings, 
which may be insensitive to isomerism, and InChi Keys have been applied for this purpose. An 
important aspect to bear in mind is the definition of chemical structure that will be appropriate for 
use in toxicological databases as well as being interoperable with other computational systems. 

Another key component for the definition of chemical structure is the identification of significant 
impurities, especially those that may be relevant to the toxicological endpoint being considered. A 
MoA ontology model should also be flexible enough to define and identify mixtures, registered 
multicomponent substances, unknown or variable composition, complex reaction products or 
biological materials and even natural products. To cope with these complexities, and the other 
requirements for chemistry, a robust and flexible chemoinformatics structure and platform is 
required. 

The understanding of physico-chemical properties is a vital component of the MoA ontology model. 
Particular elements to this are the characterization of a compound’s hydrophobicity and solubility, 
ionisation, volatility, stability and reactivity. These are some, if not the majority, of the key 
properties that affect distribution of a compound throughout the target species, and hence the 
potential toxic effect and potency. The collation of measured or estimated values for the logarithm 
of the octanol-water partition coefficient, aqueous and lipid solubility, acid dissociation constant, 
vapour pressure and Henry’s Law constant is commonplace, and these properties should be 
captured through the chemoinformatics platform. Information on stability and reactivity is more 
disparate, but valuable in terms of understanding toxicity. In chemico methods, thus abiotic assays 
to measure chemical reactivity, may be of great use in this respect. As well as forming a valuable 
source of information in their own right, physico-chemical properties may form the input to 
computational models for biokinetics, distribution and toxicology. These properties will also assist in 
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the extrapolation of points-of-departure from in vitro or high-throughput assays to in vivo exposures 
as well as for reverse dosimetry.  

Chemical structure is intimately linked to toxicological effect and/or metabolism, and this can be 
used for advantage within a MoA ontology model. It is well established that specific molecular 
subfragments can be associated with toxicity, such that an overall assessment of an effect may be 
made. An excellent example includes the creation of chemical classes or categories for 
developmental and reproductive toxicity (Wu et al., 2013). The basis for this is that a particular 
chemical structure or, more commonly, substructure, is associated with toxicity, as this drives the 
interaction with the biological molecule(s), or maybe the site of metabolism. Hence, once chemical 
structure is known, analysis of possible toxic substructures and metabolic sites can be undertaken 
and used as valuable supporting information. The concept fits well into how in silico models are 
perceived to relate to AOPs, with structural chemistry being a key component in the modelling of the 
MIE (Cronin et al., 2017; Cronin and Richarz, 2017). With regard to RDT, one of the possibilities 
relates to understanding organ level effects. Taking liver toxicity as an example, much work has been 
undertaken on individual adverse effects, such as general hepatotoxicity (Hewitt et al., 2013), 
phospholipidosis (Przybylak et al., 2014) and steatosis (Mellor et al., 2016). However, an overarching 
in silico profiler is required for organ level effects. Once established, such a computational approach 
could be implemented in a robust chemoinformatics platform enabling the knowledge to be applied 
further to new chemicals and to assist in building weight-of-evidence for existing chemicals (Yang et 
al., 2018).  

A further component of the chemistry pillar of a MoA ontology model is the ability to support 
interpolation of effects to related chemicals. The ontology, and especially the definition of relevant 
chemistry, provides a suitable means of defining similarity to group-similar chemicals and allows for 
read-across of effects. Due to its mechanistic basis, the ontology has the capability to provide 
evidence directly to support a similarity hypothesis. In addition, the integration of biokinetics into 
the MoA ontology model enables the effect of change in chemical structure to be evaluated. Both 
the need for better weight-of-evidence for mechanistic effects as well as consideration of 
biokinetics, which are achievable within a MoA ontology model, are recognized needs to increase 
the acceptability of read-across for data gap filling (Schultz and Cronin, 2017; Schultz et al., 2019). 
Other in silico approaches that are appropriate to be integrated within a MoA ontology model are 
QSARs that maybe developed across chemical groups and assist in the implementation of the MoA 
ontology model, thereby rendering it a practical tool.  

3.3. Pillar 3: mechanistic aspects 

Pillar 3 of the MoA ontology model relates to the mechanisms driving the toxicological apical 
endpoint. The framework that is nowadays used to capture the mechanistic scenario underlying 
toxicity is embedded in, but not limited to, the AOP concept. An AOP refers to a conceptual 
construct that portrays existing knowledge concerning the linkage between a single MIE and an 
adverse outcome via a linear series of KEs at a biological level of organization relevant to safety 
assessment (Ankley et al., 2010). Although conceptually very similar, the scope of an AOP is broader 
compared to the MoA, as it can go up to the population level. Furthermore, while the MoA tends to 
be chemical-specific and takes into account kinetic aspects, such as metabolism, AOPs are chemical-
agnostic in that they describe a toxicological process from a purely dynamic and biological 
perspective. Thus, an AOP can be ultimately associated with any chemical that is bioavailable at the 
relevant site of action and that has the specific properties to activate the associated MIE (Becker et 
al., 2015; Burden et al., 2015; Edwards et al., 2016; Perkins et al., 2015; Villeneuve et al., 2014a and 
2014b). Each AOP comprises 2 fundamental modular components, namely KEs and key event 
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relationships (KERs). A KE represents a measurable change in a biological state that is essential, but 
not necessarily sufficient, for progression from the MIE to the adverse outcome. A KER defines a 
causal relationship between a pair of KEs, establishing one as upstream and one as downstream. It 
provides the scientifically plausible and evidence-based foundation for extrapolation from an 
upstream cause to a downstream effect, and thus for using KE information as indicators of adverse 
effects. Furthermore, a KER may reflect linkages between a pair of KEs that are either adjacent or 
non-adjacent in an AOP allowing the possibility to integrate parallel and interdependent processes 
within a single AOP (OECD, 2016 and 2017; Villeneuve et al., 2014a and 2014b).  

Evaluation of newly developed AOPs includes consideration of the so-called tailored Bradford-Hill 
criteria. The Bradford-Hill criteria have been initially introduced to determine causality of 
associations observed in epidemiological studies (Hill, 1965). In the last few years, they have been 
adopted to assess AOPs, albeit in a more tailored format. In rank order, these tailored Bradford-Hill 
considerations include biological plausibility, essentiality and empirical support. While the former 
and the latter are considered for each KER individually, essentiality of the KEs is scrutinized in the 
context of the overall AOP. Each of these tailored Bradford-Hill considerations is subjected to 
weight-of-evidence analysis, whereby confidence should be judged as strong, moderate or weak for 
each of the KEs, KERs and the AOP as such, based on the availability of documentation and/or 
empirical support (Becker et al., 2015).  

A major AOP resource includes the AOP knowledge base, introduced in 2014 by the Organization for 
Economic Cooperation and Development, the Joint Research Centre of the European Commission, 
the US Environmental Protection Agency and the US Army Engineer Research and Development 
Centre. One of the modules of the AOP knowledge base is the AOP Wiki, which provides an open-
source interface that serves as a central repository for qualitative AOPs (OECD, 2016). At present, 
the AOP Wiki contains about 280 AOPs at different levels of maturity and development for a 
plethora of toxicological endpoints, including those relevant to RDT (http://aopkb.org/). It should be 
stressed, however, that most, if not all, of these AOPs are individual constructs, with a single MIE 
and adverse outcome. Although valuable, such individual AOPs are merely pragmatic units of 
development and evaluation. For real-world applications, including integration into a MoA ontology 
model, AOP networks, considering multiple MIEs and apical endpoints, are the actual eligible tools. 

3.4. Pillar 4: toxicological aspects 

Pillar 4 implies the toxicology cornerstone of the MoA ontology model, including available animal 
testing data and, if relevant and present, human epidemiological and clinical data. Even more than 
for the other 3 pillars of the MoA ontology model, the focus of the toxicological aspects is dictated 
by the nature and intended use of the chemical under investigation. For some cosmetic ingredients, 
liver and kidney have been previously identified as potential toxicity targets, albeit upon oral 
administration of high doses to rodents (Vinken et al., 2012). This was based on combined listing of 
toxicity endpoints as described in available animal testing reports, which is a major source of input 
for this aspect of the MoA ontology model. In particular, morphological, histopathological and 
biochemical parameters can be used to feed the toxicology pillar of the MoA ontology model. Thus, 
typical clinical manifestations of chronic liver toxicity include fibrosis, hepatitis, steatosis and 
cholestasis. Steatosis is characterized by a fatty liver and associated accumulation of lipids in 
histopathological testing. Furthermore, serum levels of alanine and aspartate aminotransferases, 
triglycerides and cholesterol are increased in liver steatotic subjects. By contrast, a cholestatic liver is 
typically yellowish and shows several necrotic areas upon histopathological examination. This is 
accompanied by high quantities of alkaline phosphatase, gamma glutamyl transferase and bilirubin 
in serum. 
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Chronic kidney pathology refers to the permanent loss of a large percentage of functional nephrons. 
Chronic kidney disease is diagnosed by graded decreases in glomerular filtration rates accompanied 
by microalbuminuria. As holds for liver injury, histopathological manifestations of kidney injury may 
reflect the tissue type being injured. Injury to the podocytes of the glomerulus can be observed by 
podocyte effacement in minimum change disease and by gross aberrations of glomerular 
architecture in focal segmental glomerulosclerosis. Injury to the tubular cells, which is often 
paralleled by inflammation and recruitment of circulating immune cells, is referred to as 
tubulointerstitial nephritis. Kidney injury can also be caused by acellular chemical precipitation in the 
tubular lumen, which can lead to tubular obstruction, epithelial injury and interstitial inflammation. 
However, kidney injury can equally be much more subtle and occur in the absence of 
histopathological changes, as in the case of the Fanconi-like syndrome, which is featured by polyuria, 
glucosuria, aminoaciduria, hyperuricosuria, hypophosphatema and hyperchloremia (Heidari et al., 
2017; Klootwijk et al., 2015). 

In general, histopathological and clinical chemistry parameters for assessing toxicity, either general 
or organ-specific, and disease are routinely used in clinical settings. In addition, diagnosis of toxicity 
can also be achieved by physical examination of patients. In recent years, a plethora of novel 
biomarkers has been introduced to allow more specific and early detection of toxicity, such as 
(epi)genetic and -omics-based indicators (Vinken et al., 2013). Such human-based information, which 
can be found in published papers, public databases or reports, constitutes a valuable source of input 
for the toxicology pillar of the MoA ontology model complementary to animal data. A noteworthy 
example in this context includes the Mechanism Based Integrated Systems for the Prediction of Drug 
Induced Liver Injury (MIP-DILI) consortium (https://www.mipdili.eu). 

4. Application of the repeated dose toxicity mode-of-action ontology model 

The RDT MoA ontology model is meant to be an applied tool to support risk assessors during safety 
evaluation of chemicals. On scientific aspects and outputs, the RDT MoA ontology model includes 
the necessary broad mechanistic coverage, but has the advantage to include elements of exposure, 
kinetics and chemistry. As such, the RDT MoA ontology model  is a flexible tool, as it has the capacity 
to implement several exposure scenarios. Indeed, there are numerous targets in relation to RDT, and 
there are several ways of listing them, such as based on organ or origin (Table 1), or based on 
cellular structure and function (Table 2). From the technical perspective, the RDT MoA ontology 
model is broadly applicable because of its 4 generic pillars, transparently connected to each other, 
and since any chemoinformatics platform can be readily implemented. Both these scientific and 
technical aspects render the RDT MoA ontology model a robust tool that provides coherent outputs 
across several users. Thus, the same chemical with a given exposure should provide the same output 
irrespective of the user or the platform used. Moreover, the RDT MoA ontology model is a 
supporting tool in RDT evaluation that provides a frame for weight-of-evidence-based safety 
assessment, since it can, and should, be used together with other non-animal approaches, such as 
the (internal) TTC or read-across (Desprez et al., 2018). In this regard, in TTC exploration, exposure 
considerations overlap and link with pillar 1 of the RDT MoA ontology model, and can be used to 
confirm that being far below the TTC cut-off actually does not activate MoAs of concern, and thus no 
RDT effect is triggered. Conversely, when being above the TTC cut-off, the RDT MoA ontology model 
can help to prioritize potential MoAs of concern, and possibly trigger additional in vitro testing to 
move towards a more ab initio approach (Berggren et al., 2017). 

During the series of CE LRSS workshops addressing the RDT MoA ontology model, the general expert 
opinion was that a pilot version of the RDT MoA ontology model could be released by focusing on 
certain priorities. Indeed, for proof-of-concept purposes and testing the specific applicability of the 
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proposed RDT MoA ontology model for the safety evaluation of cosmetic ingredients, particular 
attention could be paid to liver toxicity. In this respect, a screening of RDT data present in safety 
evaluation reports issued by the Scientific Committee on Consumer Safety between 2000 and 2009 
revealed the liver as a potential target of toxicity for cosmetic ingredients based on animal studies 
using oral gavage. The inflicted hepatotoxicity hereby is mainly manifested as steatosis and 
cholestasis (Vinken et al., 2012). A plethora of data are already available for populating the different 
pillars of the RDT MoA ontology model for these 2 specific types of liver toxicity without 
necessitating the need for large-scale additional experimentation. In order to assess its generic 
utility, the robustness of the RDT MoA ontology model can be challenged in a further step by 
application to other adverse effects and targets organs of RDT as well as to other chemical areas, 
such as the pharmaceutical, food and biocide industries. It can be anticipated that upon thorough 
evaluation of the RDT MoA ontology model, a tool will be delivered for direct implementation in 
chemical risk assessment yielding accurate and reliable prediction of human safety without using 
experimental animals. 
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Figure and Table legends 

Figure 1: Functioning of a repeated dose toxicity ontology based on exposure and kinetics, 
chemistry, modes-of-action and organ toxicity elements in view of supporting safety assessment 
(AOP, adverse outcome pathway; MIE, molecular initiating event; MoA, mode-of-action). 

Figure 2: Proposal of a repeated dose toxicity mode-of-action ontology model. The model relies on 4 
pillars providing critical information on kinetics (pillar 1), chemo-biological interaction (pillar 2), 
mechanisms (pillar 3) and in vivo outcome (pillar 4). Pillars 2-4 spread over different levels of 
biological organization (ADME, absorption/distribution/metabolism/excretion; AO, adverse 
outcome; KE(R), key event (relationship); MIE, molecular initiating event). 

Table 1: Representative targets at the organ level (not exhaustive). 

Table 2: Representative targets at the cellular level (not exhaustive). 
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Figure 1 
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Figure 2 
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Table 1 

Liver 

Bile salt export pump 

Bile duct obstruction 

Peroxisome proliferator-activated receptor alpha/gamma activation 

Nuclear hormone-receptor activation 

Mitochondrial activity 

Immunotoxicity 

Biotransformation enzyme induction 

Transforming growth factor beta signalling/fibrosis 

Kidney 

Intercellular connections: tight junctions (paracellular transport) and adherens junctions 

Renal transport: organic-anion and cation transport and megalin/cublin uptake 

Renal metabolism: gamma-glutamyl transferase and beta lyase 

Oxidative phosphorylation, leading to decreased energy production and transport shut-down 

Podocyte injury and glomerular defacement 

Immune reactivity with glomerular basement 

Crystallization events and tubular obstruction 

Lung 

DNA damage 

Particle-induced toxicity 

Oxidative stress 

Alveolar integrity 

Mucus production/composition 

Heart 

Ion channels 

Innervation 

Mitochondria 

Cellular communication 

Cyto-architecture 
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Cell-to-cell adhesion 

Circulation 

Coagulation/thrombocytes 

Hemolysis 

Blood cell count 

Complement system 

Immune system 

Histamine/mastocyte cells 

Activation of death receptors 

Activation of cytokine receptors 

Cell cycling 

Cyclophilins 

Muscle 

Innervation 

Mitochondria 

Actin/myosin system 

Central nervous system 

Ions channels 

Transmitter receptors 

Microtubule inhibitors 

Acetylcholine inhibition 

Guidance receptors 

Neurotransmitter/receptor turn-over 

Mitochondrial inhibition 

Sensory system 

Cilia 

Mitochondria 

Retinal cells 

Vasculature 

Endocrine system 
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Hypothalamic-pituitary-adrenal axis 

Thyroid signalling 

Estrogenic/androgenic signalling 

General homeostasis 

Microtubules 

Carbohydrate metabolism/Krebs cycle/oxidative phosphorylation 

Cytoskeleton 

DNA repair 

Epigenome 

Cell cycle/death effectors 

Cell-cell and cell-extracellular matrix contacts 
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Table 2 

Cellular structures/compartments 

DNA 

RNA 

Endoplasmic reticulum 

Lipids/cholesterol 

Proteins 

Low molecular weight molecules 

Membranes 

Mitochondria/peroxisomes 

Endosomes/lysosomes 

Cellular functions 

Death 

Cell division 

Respiration/energy production 

Transcription/translation 

Polarity 

Epigenetic stability 

Metabolic capacity 

Communication with system 

Membrane potential 

Ion and osmolyte homeostasis 

Cellular integrity 

Tissue-specific cellular function 

Receptors 

Nuclear receptors 
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Plasma membrane receptors 

Enzyme receptors 

Transcription factor receptors 

Structural proteins 

Movement/motility 

Secretion 

Autophagy 

Enzymes and signalling molecules 

 

 

 

 

 

 

 


