
Higgs dynamics in the early universe
Vis, J.M. van de

Citation
Vis, J. M. van de. (2019, July 2). Higgs dynamics in the early universe. Retrieved from
https://hdl.handle.net/1887/74691
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/74691
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/74691


 
Cover Page 

 
 

 
 
 

 
 
 

The handle http://hdl.handle.net/1887/74691  holds various files of this Leiden University 
dissertation. 
 
Author: Vis, J.M. van de 
Title: Higgs dynamics in the early universe 
Issue Date: 2019-07-02 
 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/74691
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 1

Introduction

Cosmology is the study of the universe as a whole. It aims to understand the evolution from a

state of very large energy density, 13.8 billion years ago, to the universe that we live in today,

that is filled with radiation, dust and clusters of galaxies and the mysterious dark matter and dark

energy. Cosmological structures and observations involve very large length scales. Particle physics,

on the contrary, is about the very small (subatomic) scales. The Standard Model (SM) of particle

physics describes the elementary particles and their interactions. This thesis describes research at

the interface of particle physics and cosmology.

Even though the length scales of cosmological observations today are very large, the data contain

traces of particle physics processes in the early universe. These processes happened at energy scales

much larger than the scales accessible at particle accelerators on earth. Observations of the early

universe are thus a unique probe of particle physics. Properties of elementary particles guide us

in unravelling the history of the universe whilst cosmological observations also constrain models of

Beyond the Standard Model (BSM) physics. We list some examples of this interplay.

• The particles that dominate the energy density of the universe determine its rate of expansion.

Very early in the history of the universe, the energy density was dominated by relativistic

particles. This epoch is referred to as radiation-dominated. At a later time, the main con-

stituent became massive, non-relativistic particles. In the matter-dominated epoch the rate

of expansion of the universe is different from the expansion rate in the radiation-dominated

epoch.

• Measurements of e.g. rotation curves of galaxies [7–9], gravitational lensing [10] and oscillations

in the power spectrum of the Cosmic Microwave Background [11] indicate that there is a large

amount of ‘dark matter’ (DM) in the universe. This massive contribution to the energy budget
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of the universe does not interact through the electromagnetic interaction and is therefore not

visible. The observations above can be explained by DM with a particle nature, which is

an indication of BSM physics. There are also searches for alternative descriptions of gravity

[12, 13], but these alternatives have so far not managed to explain all observational indications

for DM.

• The value of the neutrino masses affects the evolution of cosmological perturbations and struc-

ture formation. The sum of neutrino masses can be constrained by observations of the Cosmic

Microwave Background and Large Scale Structure [14].

There are many more examples of the interplay between particle physics and cosmology but in this

thesis we will focus on two: reheating after inflation and electroweak baryogenesis. Before diving

into these two topics, we will give a brief introduction into the Standard Model of particle physics

and cosmology.

1.1 The Standard Model of particle physics

It would be an impossible task to introduce the Standard Model of particle physics in its full glory

in a short introductory section. We will therefore only focus on the aspects of the SM that are

relevant for this work. More extensive introductions than the one presented here, can be found in

Refs. [15–17].

The formulation of the SM was a formidable task that took several decades. A very important

first step was the theory of Quantum Electrodynamics. This theory was formulated and proved

to be renormalizable in the ’40s, with major contributions from Bethe, Tomonaga, Schwinger and

Feynman [18–24]. The full electroweak sector was written down by Glashow, Weinberg and Salam

[25–27] and shown to be renormalizable by ‘t Hooft and Veltman [28].

Of all the particles of the SM, the Higgs particle plays the main role in this thesis. Since a Higgs

field on its own does not lead to very interesting particle physics, we will first present the full particle

content of the SM in section 1.1.1. We will then introduce the electroweak Lagrangian and its gauge

invariance in section 1.1.2. In section 1.1.3 we show how the SM particles obtain their masses through

spontaneous symmetry breaking.
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Figure 1.1: Particle content of the Standard Model (credit: CERN). Fermions are shown on the
left, with quarks in the top two rows and leptons in the bottom two rows. On the right-hand side

the bosons are shown.

1.1.1 Particle content

Figure 1.1 shows the particle content of the SM. The matter sector, consisting of fermions with spin

1/2, is shown on the left. There are three generations of quarks and three generations of leptons.

Quarks participate in all three fundamental interactions described by the SM: the strong interaction,

the weak interaction and the electromagnetic interaction. Leptons are not charged under the strong

interaction, and therefore only interact via weak and electromagnetic interactions. The neutrinos

have zero electromagnetic charge and consequently only interact through the weak interaction.

In the SM Lagrangian, fermions are represented by four-component spinors. An important property

of these spinors is ‘chirality’ or ‘handedness’. A right-handed spinor ψR is an eigenvector of the

chirality matrix γ5 with eigenvalue +1. A left-handed spinor ψL has eigenvalue −1,

γ5ψR = +ψR , γ5ψL = −ψL . (1.1)

We will see below that the properties of right- and left-handed particles are not identical.

The gluon, photon and W- and Z-bosons are spin 1 particles. They are the gauge bosons of the

strong, electromagnetic and weak interaction respectively. The gauge bosons are represented by
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vector fields in the SM Lagrangian. The gluon and photon are massless, but the mediators of the

weak interaction are massive.

The particle on the very right of figure 1.1 is the Higgs boson. It has spin 0 and is therefore

represented by a scalar field in the SM Lagrangian.

1.1.2 Gauge symmetry

The SM is a gauge theory with gauge group SU(3)C × SU(2)L × U(1)Y (see Ref. [29] for an intro-

duction into gauge theories in particle physics). U(1) is an Abelian gauge group, but SU(3) and

SU(2) are non-Abelian, which means that the elements of the group do not commute.

The spin 1 gauge fields correspond to the generators of the different gauge groups. The group

SU(3)C is associated to the strong force. It has 8 generators, corresponding to 8 gluons. The weak

and electromagnetic interaction are unified in the SU(2)L × U(1)Y electroweak (EW) interaction.

We denote the three gauge bosons associated to SU(2)L by Aiµ and the gauge boson corresponding

to U(1)Y (hypercharge) by Bµ. We will see below that the photon and W- and Z-bosons are linear

combinations of the fields Aiµ and Bµ. The subscript L in SU(2)L indicates that the SU(2)L-part

only interacts with left-handed fermions. The left-handed fermions form SU(2)L-doublets

QL =

uL
dL

 , LL =

νL
eL

 , (1.2)

where QL and LL denote quark and lepton doublets respectively. uL (dL) is a left-handed up-

(down-)type quark, and νL (eL) is a left-handed neutrino- (electron-)type lepton. The corresponding

right-handed fields

uR , dR , eR , (1.3)

are singlets under SU(2)L. The SM does not include right-handed neutrino fields.

To see how the gauge symmetry works, we will write down the Lagrangian for the electroweak sector.

For simplicity, we only consider a single generation of quarks and leptons.

LEW =− Q̄Li /DQL − ūRi /DuR − d̄Ri /DdR − L̄Li /DLL − ēRi /DeR − (DµΦ)†DµΦ

− 1

4

(
AiµνA

i µν +BµνB
µν
)

− µ2Φ†Φ− λ(Φ†Φ)2 −
(
Q̄LYuΦ̃uR + Q̄LYdΦ dR + L̄LYeΦ eR + h.c.

)
.

(1.4)
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The first line is the kinetic term for the fermions and the Higgs field Φ. As usual, the ‘barred’ spinor

ψ̄ is defined as ψ̄ = ψ†γ0. The derivatives Dµ are covariant derivatives instead of ordinary partial

derivatives to make the Lagrangian gauge invariant. We have used the notation /D = γµDµ, with

Dµ = ∂µ − igAiµ
τ i

2
− ig′Y

2
Bµ , (1.5)

where g and g′ are the coupling constants of SU(2)L and U(1)Y respectively and the τ i/2 are the

generators of SU(2), with the τ i the Pauli matrices. A summation over the repeated index i is

implied. Y denotes the hypercharge of the field that the covariant derivative is acting on.

The second line of the Lagrangian (1.4) contains the kinetic terms for the gauge fields. The third

line describes the Higgs potential and the interactions between the Higgs and the fermions. Φ̃ is

defined as Φ̃a = εabΦb∗, where εab is the antisymmetric tensor in two dimensions (ε12 = +1).

Let’s see what happens to the terms in the Lagrangian (1.4) under a SU(2)L × U(1)Y gauge trans-

formation. The transformations are described by 3 + 1 spacetime-dependent parameters

{ϑ1(x), ϑ2(x), ϑ3(x), ξ(x)}. The unitary representations of the transformations are

U(~ϑ) = exp

[
iϑiτ i

2

]
, U(ξ) = exp

[
iξY

2

]
, (1.6)

or, combined

U(~ϑ, ξ) = exp

[
iϑiτ i

2
+
iξY

2

]
. (1.7)

Under a SU(2)L × U(1)Y -transformation, the left-handed quark and lepton doublets transform as

QL → Q′L = U(~ϑ, ξ)QL = exp

[
iϑiτ i

2
+
iξ

6

]
QL ,

LL → L′L = U(~ϑ, ξ)LL = exp

[
iϑiτ i

2
− iξ

2

]
LL ,

(1.8)

where we used that quark doublets have hypercharge Y = 1/3 and lepton doublets Y = −1. Since

the right-handed fields are singlets under SU(2)L, they simply transform as

uR → u′R = exp

[
2

3
iξ

]
uR , dR → d′R = exp

[
−1

3
iξ

]
dR , eR → e′R = exp [−iξ]eR , (1.9)



6 Chapter 1

where we used that the hypercharges of uR, dR and eR are 4/3, −2/3 and −2 respectively. The

Higgs field, which has hypercharge +1, transforms as

Φ→ Φ′ = exp

[
iϑi · τ i

2
+
iξ

2

]
Φ . (1.10)

Finally, we write down the transformation of the gauge fields themselves:

Aiµ
τ i

2
→ A

′i
µ

τ i

2
= U(~ϑ)

[
Aiµ

τ i

2
− i

g
∂µ

]
U−1(~ϑ) ,

Bµ
Y

2
→ B′µ

Y

2
= U(ξ)

[
Bµ

Y

2
− i

g′
∂µ

]
U−1(ξ) .

(1.11)

Plugging in the transformation of the gauge fields into the covariant derivatives, we find that

Dµ → D′µ = U(ϑ, ξ)DµU
−1(ϑ, ξ) and this implies that the kinetic terms are indeed invariant un-

der gauge transformations.

Gauge invariance in the second line of the Lagrangian (1.4) is obtained for the following field strength

tensors

Aiµν = ∂µA
i
ν − ∂νAiµ + gεijkAjµA

k
ν ,

Bµν = ∂µBν − ∂νBµ ,
(1.12)

with εijk the structure constant of SU(2). Since the BµνB
µν contains only terms that are quadratic

in Bµ, this field does not have self-interactions. The last term in Aiµν does allow for self-interactions,

which is a typical property of non-Abelian gauge groups.

1.1.3 Spontaneous symmetry breaking

It is known from experiments that the W- and Z-bosons, which mediate the weak interaction, are

massive. This raises a problem for the theory as it was just described. For concreteness, consider

the Abelian hypercharge field (the same problem arises for the non-Abelian gauge fields). The gauge

transformation of eq. (1.11) can be written as:

Bµ → B′µ −
1

g′
∂µξ . (1.13)

If we added a mass term

Lm = −1

2
m2BµB

µ , (1.14)

this would clearly break gauge invariance.
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The fermions have a related problem: the left-handed particles are part of SU(2)L-doublets, but

the right-handed particles are singlets under SU(2)L. A fermion mass term would mix the left- and

right-handed components, and would therefore violate SU(2)L-gauge invariance.

A consistent solution of these problems is provided by spontaneous symmetry breaking using the

Higgs mechanism1 which generates masses for the Z- and W-bosons and fermions. This is achieved

by introducing a doublet of scalar fields parameterized as

Φ =
1√
2

θ1 + iθ2

φ+ iθ

 . (1.15)

It will be useful to split the component φ into a classical background value ϕ and an excitation h

(the Higgs boson), φ(x, t) = ϕ+ h(x, t) 2.

The Higgs field couples to the electroweak gauge bosons through its kinetic term and to the fermions

through the Yukawa interactions. The potential can be read off from eq. (1.4)

V (Φ,Φ†) = µ2Φ†Φ + λ(Φ†Φ)2 , (1.16)

where λ is assumed to be positive, such that the potential is bounded from below 3 and µ2 is negative.

The shape of this potential is often described as a Mexican hat. The potential is minimized for

Φ†Φ =
v2

0

2
, with v0 =

√
−µ

2

λ
, (1.17)

which defines the vacuum state. v0 is referred to as the ‘vacuum expectation value’ (vev). Combining

eq. (1.17) with the requirement that electromagnetic gauge symmetry is unbroken, we obtain the

expectation value of the Higgs field:

〈Φ〉 =
1√
2

 0

v0

 , (1.18)

1The terms ‘Higgs field’ and ‘Higgs mechanism’ do not do justice to all scientists that introduced these concepts.
The often-used names ‘Higgs field’, ‘Higgs boson’ and ‘Higgs mechanism’ refer to Peter Higgs, who introduced this
mechanism in Ref. [30]. He also pointed out the existence of a neutral spin 0 boson, that would eventually be detected
at the LHC [31, 32]. The same mechanism that gives mass to the fermions and gauge bosons was introduced by Robert
Brout and François Englert in Ref. [33], who however did not mention the existence of the corresponding boson. It
could thus be argued that the name ‘Higgs boson’ is appropriate, but that the corresponding field and mechanism
should be called ‘BEH-field’ and ‘BEH-mechanism’. In order to avoid confusion, we will stick to the names that are
most commonly used in literature, and thus refer to the ‘Higgs field’ and ‘Higgs mechanism’.

2In cosmology, ϕ(t) is time-dependent.
3The measured values of the Higgs and top quark mass indicate that λ could run negative at large energy

scales & 1011 GeV. We study this possibility in chapter 3. If this is the case, the potential should be bounded
from below by higher-dimensional operators.
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where v0 is the value of ϕ. The vev spontaneously breaks the SU(2)L × U(1)Y -symmetry into a

residual U(1)Q-symmetry. The spontaneous symmetry breaking generates mass terms for the gauge

bosons. To see this, we write Φ in unitary gauge:

Φ =
1√
2

 0

v0 + h

 , (1.19)

and plug this into the Higgs Lagrangian LHiggs = −(DµΦ)†DµΦ− V (Φ,Φ†):

LHiggs = −1

2
∂µh∂

µh− g2

4
(v0 + h)2W †µW

†µ − g2

8 cos2 θW
(v0 + h)2ZµZ

µ − λ

4
(h2 + 2v0h)2 . (1.20)

We can read off the Higgs boson mass

mh =
√
−2µ2 , (1.21)

where we used eq. (1.17). The W- and Z-bosons are linear combinations of the Aiµ and Bµ fields

defined above

Wµ =
A1
µ − iA2

µ√
2

, Zµ = cos θWA
3
µ − sin θWBµ , (1.22)

where θW is the Weinberg angle [26]. The masses of the gauge bosons are

mW =
gv0

2
, mZ =

gv0

2 cos θW
. (1.23)

Spontaneous symmetry breaking has thus resulted in mass terms for the gauge bosons without

breaking gauge symmetry at the level of the Lagrangian. The photon, which is the combination of

A3
µ and Bµ orthogonal to Zµ, does not couple to the Higgs boson. It remains massless and mediates

the electromagnetic force; it is associated with the residual U(1)Q-symmetry, with Q standing for

electric charge. Q is related to Y , hypercharge, and I3, weak isospin, by

Q = I3 +
Y

2
. (1.24)

The value of I3 is zero for SU(2)L-singlets and +1/2 (−1/2) for the upper (lower) components of

SU(2)L doublets.

The Higgs field also gives masses to the fermions, for which gauge symmetry also forbids an explicit

mass term in the Lagrangian. The Higgs field couples to fermions via so-called ‘Yukawa’ interactions,

as written in the last line of eq. (1.4). After spontaneous symmetry breaking the mass of a fermion
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f is

mf =
yfv0√

2
. (1.25)

Since the neutrinos do not have Yukawa interactions, they are massless in the SM. However, the

observation of neutrino oscillations indicates that they must be massive. This mass is an indication

of BSM physics.

In the upcoming chapters we will often encounter the situation where the Higgs field does not sit

at its zero-temperature vev. Instead, its background value ϕ(t), will be dynamical. In the adiabatic

limit, the masses of the fermions and gauge bosons are obtained by replacing v0 with ϕ in eqs. (1.23)

and (1.25).

1.2 Cosmology

We will now give a very brief overview of what is currently known about the evolution of the universe.

The estimated age of the universe is 13.8×109 years [34], but we will mostly focus on the first 380,000

years. The processes that are described in this thesis, reheating and baryogenesis, both take place

before the universe was even a second old. We will nevertheless describe the further evolution of the

universe, because observational constraints on the very early universe can be derived from processes

that happened later.

The formation of light elements during Big Bang Nucleosynthesis (BBN) is the first process that

can be probed by observations. Strictly speaking, any description of the universe before BBN is

speculation. However, data from the Cosmic Microwave Background (CMB) and BBN and properties

of elementary particles strongly restrict the history of the universe. In section 1.2.2 we will introduce

the widely accepted Hot Big Bang (HBB) model, which gives accurate predictions for BBN and CMB

observables. The inflationary phase, which is the topic of section 1.2.4, was introduced to solve some

shortcomings of the HBB model that are explained in section 1.2.3. We will start with an important

pillar of cosmology: the cosmological principe. Extensive introductions into the phenomenology of

the early universe can be found for example in Refs. [35–38].

1.2.1 Cosmological principle

Modern cosmology is built on the so-called cosmological principle, which states that, on large scales,

the universe is homogeneous and isotropic. The cosmological principle is not just some philosophical
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Figure 1.2: Sketch of the evolution of the universe (credit: NASA).

idea, but it is also confirmed by observations [39–41]. A homogeneous and isotropic universe is

described by the Friedman-Lemâıtre-Robertson-Walker [42–45] solution of the Einstein equations

[46], with line element in spherical coordinates:

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
, (1.26)

where t is cosmic time, r, θ, φ spherical polar coordinates and dΩ2 = dθ2 + sin2 θdφ2. k is the

curvature parameter, it has dimensions of length−2. A positive k corresponds to a closed universe,

k = 0 to a spatially flat universe and negative k to an open universe. a(t) is the time-dependent

scale factor. The metric can also be written in conformal form

ds2 = a2(τ)

[
−dτ2 +

dr2

1− kr2
+ r2dΩ2

]
, (1.27)

which defines conformal time as dτ = dt/a(t). The coordinates r, θ andφ are called comoving co-

ordinates: particles that are at rest in these coordinates, will remain at rest. If we take two comoving

particles, with comoving distance dcom, the physical distance dphys between these two particles is

given by

dphys(t) = a(t)dcom . (1.28)

Since dcom remains constant, the physical distance between the two particles increases if the universe

is expanding (ȧ(t) > 0):

ḋphys(t) =
ȧ(t)

a(t)
dphys(t) ≡ H(t)dphys(t) . (1.29)



Introduction 11

This relation is known as the Hubble-Lemâıtre law [43, 47] and H(t) as the Hubble parameter. The

value of the Hubble parameter today is denoted as H0. If we let dphys denote the physical distance

between two galaxies instead of two particles, we see that galaxies move away from each other with

increasing velocity, which has also been confirmed by observations [47].

The evolution of the scale factor a(t) depends on the energy content of the universe. We model the

matter and energy in the universe as a perfect fluid with energy density ρ and pressure P . It will

be convenient to define the equation of state parameter w

w ≡ P

ρ
. (1.30)

The equations of state for matter, radiation and vacuum energy (cosmological constant) are shown

in table 1.1. Plugging the energy-momentum tensor of the perfect fluid into the Einstein equation,

we obtain the two Friedmann equations

H2 =
ρ

3m2
pl

− k

a2
, (1.31)

ä

a
= − 1

2m2
pl

(ρ
3

+ P
)
. (1.32)

From energy-momentum conservation, ∇νTµν , we obtain a continuity equation

ρ̇+ 3H(ρ+ p) = 0 , (1.33)

which can be used instead of the second Friedmann equation. The continuity equation gives us a

relation between the energy density and the scale factor

ρ ∝ a−3(1+w) , (1.34)

which depends on the equation of state w. In reality, the universe consists of components with

different equations of state and the total energy density is the sum of these components. The

dominant contribution to the energy density then determines the dependence on the scale factor.

Solving eq. (1.31) with k = 0 4, for the dominant constituent gives the time-dependence of the scale

factor

a(t) ∝


t2/3(1+w) w 6= −1 ,

expHt w = −1 .

(1.35)

4Observations show that the energy density associated to curvature is small: Ωk ≡ − k
H2a2

= 0.001 ± 0.002 [34].
Setting k = 0 is thus a good approximation.
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w a(t) ρ(a)

Matter 0 t2/3 a−3

Radiation 1
3 t1/2 a−4

Vacuum energy −1 expHt a0

Table 1.1: Equation of state, time-dependence of the scale factor and scale-factor-dependence of
the energy density for matter, radiation and vacuum energy.

Table 1.1 shows the dependence of the energy density on the scale factor and the time-dependence

of the scale factor for matter, radiation and vacuum energy.

The very early universe has a temperature that is much larger than the masses of the SM particles5.

As a consequence, all particles are relativistic and radiation is thus the main contribution to the

energy density. The scale factor evolves as a ∝ t1/2. As table 1.1 shows, the energy density in

radiation decreases faster with the expansion of the universe than the energy density in matter.

When the universe is approximately 60,000 years old, at a temperature of T = 0.75 eV, the energy

density in matter becomes equal to the energy density in radiation. The matter-dominated expansion

a ∝ t2/3 persists until the energy density in matter has diluted to ρΛ, the energy density of dark

energy. This happens when the universe is about 9 × 109 years old, at T = 0.33 meV. Since then,

the universe has been in a phase of accelerated expansion.

1.2.2 Standard Hot Big Bang Cosmology

The original Hot Big Bang (HBB) model [48, 49] describes the evolution of a universe that started in

a very hot and dense state. Even though the model was later complemented with a period of inflation

that preceded Hot Big Bang evolution, this should not affect the predictions of HBB cosmology. We

will thus start our description of the evolution of the universe in the HBB model and find out why

the inflationary phase was introduced along the way.

We will focus on processes involving SM particles, but we stress that HBB evolution does not apply

to SM physics only. There are strong indications (e.g. DM and neutrino oscillations) that the SM is

not complete. Any BSM degrees of freedom can be incorporated into the HBB model, as long as the

BSM physics does not spoil the successful predictions of HBB. The BBN and CMB data are thus

useful tools to constrain BSM physics.

5Since we have set kB = c = 1, we can express temperature and mass in units of energy. A temperature of 1 eV
corresponds to T = 1.16× 104 K.
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1.2.2.1 Plasma of relativistic particles

The HBB evolution starts at some high temperature T at which the Higgs potential is dominated

by finite-temperature contributions, such that it only has a minimum at ϕ = 0 (more about this

in section 5.2). All SM particles are thus massless and relativistic6,7. The universe is radiation-

dominated, with energy density

ρ =
π2

30
g∗(T )T 4 , (1.36)

where g∗ is the total number of relativistic degrees of freedom. The SM particles can exchange

momentum and energy efficiently, since interaction rates Γ are large with respect to the Hubble

parameter H. If Γ� H holds for a certain reaction

A+B ↔ C +D , (1.37)

the particles are said to be in chemical equilibrium, which sets a relation between the chemical

potentials

µA + µB = µC + µD . (1.38)

In the early universe, particles that have a large number density typically have very small chemical

potentials that can be neglected [37, 38]. A relativistic particle i that is in chemical equilibrium has

the following number density

ni =
ζ(3)

π2
giT

3


1 bosons ,

3
4 fermions ,

(1.39)

where gi is the number of internal degrees of freedom of species i.

1.2.2.2 Electroweak phase transition and annihilation

Combining eq. (1.36) with the scale-factor dependence of the energy density in a radiation-dominated

universe, we see that the temperature T decreases as T ∝ a(t)−1. When the temperature reaches

T ≈ 100 GeV the finite-temperature contributions to the Higgs potential become small enough such

that the potential obtains the Mexican-hat shape described in section 1.1.3. The vev transitions

6The SM particles would also be relativistic if the Higgs field would have a nonzero vev, as long as T > m.
7Technically, the temperature at which HBB evolution starts is only constrained by Big Bang Nucleosynthesis (see

section 1.2.2.3) to be above a few MeV. For this relatively low temperature, the Higgs is already in its broken phase
and the SM particles are massive. However, most inflationary models end in a thermal state with a temperature many
orders of magnitude above O(1 MeV). In our description we will assume that this is the case.
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from ϕ = 0 to ϕ 6= 0 and the SM fermions and W- and Z-bosons become massive. This is referred

to as the Electroweak Phase Transition (EWPT).

Once the particles become massive, the top quark becomes non-relativistic, since T . mt. Its number

density then gets Boltzmann-suppressed due to annihilations of top quarks and anti-top quarks. The

equilibrium number density of a nonrelatvistic particle i is given by

ni = g

(
miT

2π

)3/2

exp

[
µi −mi

T

]
. (1.40)

Soon after top-antitop annihilation, the Higgs boson and the W- and Z-bosons become non-relativistic

and annihilate as well, followed by the bottom and charm quarks and the tau lepton. The temper-

ature lowers further to T ≈ 150 MeV, the temperature of the QCD phase transition [50]. Below this

scale, quarks and gluons are confined to baryons (consisting of three quarks) and mesons (consisting

of a quark-antiquark pair). The baryons and mesons become immediately nonrelatvistic during the

phase transition and thus get Boltzmann-suppressed, except for the light pions. At a slightly lower

temperature, the pions and muons annihilate as well. At a temperature of a few MeV all SM particles

are still in chemical equilibrium and most of them are Boltzmann suppressed. If this equilibrium

would persist forever, all massive particles would eventually annihilate and the universe would be

filled with photons only. Fortunately, chemical equilibrium is disturbed when the weak interaction

freezes out and light nuclei are formed in Big Bang Nucleosynthesis.

1.2.2.3 Big Bang Nucleosynthesis

Big Bang Nucleosynthesis [49, 51] describes the formation of light elements in the early universe.

Recent reviews of BBN can be found in Refs. [52–55].

At a temperature of a few MeV neutrons n and protons p are non-relativistic and their interactions

with electrons and neutrinos

p+ e↔ n+ νe , (1.41)

(and the interactions that are related by crossing symmetry) are in equilibrium. As the chemical

potentials of electrons and neutrinos are negligible at this stage, chemical equilibrium implies µn = µp

and the neutron-to-proton ratio is given by

nn
np

=

(
mn

mp

)3/2

exp

[
−mn −mp

T

]
. (1.42)
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If equilibrium persisted forever, the number density of neutrons would drop to zero. This does not

happen, since the weak interaction becomes too slow to compete with the expansion of the universe

around T ≈ 1 MeV (step 1 in figure 1.3). The neutron-to-proton ratio then remains constant up to

neutron decay:
nn
np

=
nn
np

∣∣∣∣
freeze out

exp [−t/τ ] , (1.43)

with τ = 886.7± 0.8 s the neutron lifetime and nn
np

∣∣∣
freeze out

the value of the neutron-to-proton ratio

at the instant when the weak interactions freeze out. Figure 1.3 clearly shows that the neutron

abundance (light blue line) decreases much more slowly than it would in the equilibrium situation

(black line). But again, if nothing would change, all neutrons would decay into protons. Fortunately,

the temperature has now dropped below the nuclear binding energy (BD = 2.2 MeV) of deuteron D

(an isotope of hydrogen consisting of a proton and a neutron), that is formed via the reaction

n+ p→ D + γ . (1.44)

Deuteron formation actually only becomes efficient at T . 100 keV, because the number density of

photons is much larger than the number densities of protons and neutrons. Even though the average

photon energy at T . 2.2 MeV is too small to disassociate a deuterium nucleus, there are enough

photons in the energetic tail of the spectrum to block production of significant amounts of deuteron

before T . 100 keV. As soon as deuteron becomes available, it combines with protons to form 3He

and subsequently 3He and D form 4He (formation of 4He can also proceed through combination of

tritium and deuteron). Since the nuclear binding energy of 4He is larger than the nuclear binding

energy of deuteron and tritium, the abundance of 4He is energetically favored. As a consequence,

virtually all available neutrons combine into 4He, which then makes up ∼ 25% of the baryonic mass.

Hydrogen nuclei make up ∼ 75% and there are still some small traces of other light elements (D,

3He and 7Li). BBN completes at a temperature of ∼ 10 keV.

The predictions of light element abundances from BBN match observations very well [53]. This is

one of the main triumphs of the HBB model. The success of BBN tells us that, at a temperature of

a few MeV, the universe needs to be radiation-dominated with SM particles in chemical equilibrium.

This constrains BSM physics. Furthermore, the value of the helium-to-hydrogen ratio depends on

the neutron-to-photon ratio at neutron freeze-out. The latter depends on the temperature at freeze-

out and thus on the number of relativistic degrees of freedom, which puts another constraint on new

physics. See Ref. [56] for other examples of BSM constraints from BBN.
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Figure 1.3: Numerical results for the evolution of neutron, deuteron and helium abundance. Figure
copied from Ref. [38].

1.2.2.4 Recombination and photon decoupling

At a temperature of T ≈ 10 keV, BBN has completed and the universe is filled with photons,

relativistic electrons and positrons and baryons, mostly in the form of H and 4He nuclei. When

the temperature drops below the electron mass, electrons and positrons become non-relativistic and

their density becomes Boltzmann-suppressed. Despite Boltzmann suppression, Thomson scattering

between photons and electrons

e+ γ ↔ e+ γ , (1.45)

is in equilibrium, such that the universe is still opaque. Neutral hydrogen and helium do not yet

form, as the temperature is above the atomic binding energies. As the temperature drops, neutral

helium forms first, as it has the larger atomic binding energy. The atomic binding energy of hydrogen

is 13.6 eV, but as in the case of deuteron above, the formation of neutral hydrogen becomes efficient

at a lower temperature T ≈ 0.3 eV, because of the relatively large number density of photons. The

formation of neutral atoms from free electrons and nuclei is called ‘recombination’.

During recombination, the number density of free electrons drops dramatically. At T ≈ 0.27 eV

the number density of free electrons has become so small that the interaction rate for Thomson

scattering drops below the expansion rate H. When this interaction freezes out, photons are no

longer coupled to the primordial plasma. This implies that the universe becomes transparent to
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photons and they start to stream freely. These photons, that last interacted with the primordial

plasma when the universe was about 380,000 years old, are observed today as the Cosmic Microwave

Background (CMB) radiation.

The existence of background radiation as a consequence of HBB evolution was first predicted by

Alpher and Herman in 1948 [57]. It was discovered by Penzias and Wilson in 1964 [58] and has

become a very important probe of the early universe. Over the past decades, it has been measured

with ever increasing accuracy [34, 59, 60]. The background radiation has a blackbody spectrum

with a very uniform temperature TCMB = 0.23 meV (or TCMB = 2.7 K) . There are, however, small

temperature fluctuations, that form the seeds of stars and galaxies that start to form later.

Even though the detection of the CMB corroborates the HBB model, the fact that it is so homogen-

eous also indicates that the HBB model is not complete, as we will see in section 1.2.3.

1.2.2.5 Intermezzo: asymmetry between baryons and antibaryons

In our description of BBN and recombination we tacitly assumed that our universe has a baryon

asymmetry: it contains more baryons (matter) than antibaryons (antimatter). As a result, before

the QCD phase transition, the number density of quarks is slightly larger than the number density of

antiquarks. After the phase transition, the quarks and antiquarks combine into baryons and a slightly

smaller amount of antibaryons. As the (anti)baryons become immediately non-relativistic, baryons

and antibaryons start to annihilate. The slight excess of baryons prevents these annihilations to

complete and some nonzero baryon number remains. These leftover baryons, which have a number

density that is much smaller than the number density of photons, eventually end up in neutral

hydrogen and helium.

BBN and CMB observations are two independent methods to determine the value of the baryon

asymmetry [61]. The value of the baryon asymmetry determines TBBN, the temperature at which

the production of light elements starts. The final abundances depend on the initial neutron-to-proton

ratio, which is determined by TBBN. To determine the abundances of light elements for a given value

of the baryon asymmetry one needs to solve a coupled set of Boltzmann equations. By comparing

the predicted abundances to the observed values, the correct value of the baryon asymmetry can

be determined. Alternatively, the value of the baryon asymmetry can be obtained from the angular

power spectrum of the CMB [62].
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The origin of the baryon asymmetry is unknown. Since the SM can not explain the value of the ob-

served asymmetry, this is a strong hint for BSM physics. Part II of this thesis focuses on electroweak

baryogenesis, a mechanism in which the baryon asymmetry is generated during the electroweak

phase transition. For an introduction into the generation of the baryon asymmetry, with a focus on

electroweak baryogenesis, see chapter 5.

1.2.2.6 Structure formation

The small temperature fluctuations observed in the CMB correspond to slightly overdense and

underdense regions. Due to gravity, matter collapses onto the overdense regions, which then become

even denser. The overdense regions form the seeds of stars and galaxies. The first stars formed when

the universe was approximately 700 million years old [63]. An overview of galaxy formation can e.g.

be found in Ref. [64].

1.2.3 Shortcomings of the HBB model

The predictions of the abundances of light elements were already a success of the Hot Big Bang

model, but especially the confirmation of the existence of a CMB lead to the acceptance of the HBB

model as the correct description of the history of the universe (during the ‘50s there was a fierce

debate between supporters of the HBB model and supporters of the Steady State Theory [65, 66]).

The HBB seems a very good model for the description of the early universe, but it has two main

issues: the horizon problem and the flatness problem.

1.2.3.1 Horizon problem

Let’s ask the following question: how far could a light ray, emitted at ti, the time of the beginning

of Hot Big Bang evolution, have travelled at the time of photon decoupling, tCMB? At tCMB, this

is the largest distance over which information could have been exchanged within the lifetime of the

universe. This distance is called the ‘particle horizon’, Rp.

We take a light ray moving in the radial direction: θ = φ = 0. Light rays travel along null geodesics,

so dr = ± 1
a(t)dt. The physical distance that the light ray could have travelled is thus

Rp = a(tCMB)

∫ tCMB

ti

1

a(t)
dt = a(tCMB)

∫ ln aCMB

ln ai

d(ln a)

aH
≈ 2

1 + 3w
(H(tCMB))−1 . (1.46)
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We assumed the same equation of state throughout (this is not completely correct, as the universe

becomes matter-dominated before recombination, but this is a small effect and it does not change

the main point) and in the last step neglected the contribution from the lower bound on the integral.

We can do this if 1 + 3w > 0, which holds for all matter sources that we have so far encountered

in HBB evolution. The length scale (aH)−1 is called the ‘comoving Hubble radius’ (or comoving

Hubble horizon). For standard HBB cosmology it is approximately equal to the (comoving) particle

radius, but this is not true in general.

The horizon problem is the following [67]: comparing any two points on the CMB map, the differences

in the temperature are as small as δT
T = 10−5, suggesting that all regions had been in causal contact

at the time of recombination. However, using eq. (1.46) to compute the particle horizon at that time,

one finds that patches larger than 1 squared degree on the CMB map were not causally connected

at the time of recombination! How did the temperature of the universe become so homogeneous?

1.2.3.2 Flatness problem

The first Friedmann equation (1.31) contains a contribution from the spatial curvature k. So far,

we did not pay much attention to this contribution, since observations show that it is small: Ωk ≡

− k
a2H2 = 0.001± 0.002 [34].

For matter satisfying 1 + 3w > 0, Ωk increases as the universe expands. To get a small value of Ωk

today, the value of Ωk in the early universe had to be extremely small. The value of Ωk needs to

be tuned by ∼ O(10−60) (the exact amount of tuning depends on the initial temperature) [68]. The

requirement of such a large amount of fine-tuning to explain the small value of the spatial curvature

is called the flatness problem.

The horizon problem and the flatness problem both concern the initial conditions of the HBB evol-

ution. In principle, the spatial curvature and fluctuations in the temperature could be tuned to

match the values that are observed today. The enormous amount of fine-tuning would be a very

unattractive feature of the HBB model. It turns out that a period of inflation prior to the HBB

evolution can solve the flatness and horizon problems, without further modifications to the HBB

model.
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1.2.4 Inflation

Both the horizon and flatness problem could be solved if, before the standard HBB evolution starts,

there is a phase in which the comoving Hubble horizon (aH)−1 decreases. For such a phase, the lower

bound in the integral of eq. (1.46) dominates and the particle horizon becomes much larger than the

value from HBB. During this phase the value of Ωk decreases such that the small value of Ωk does

no longer require fine-tuning. We call this phase inflation [69–71]. Readers that want to read more

about inflation than this very brief introduction can for example consult Refs. [36, 38, 72, 73].

A phase of decreasing comoving Hubble horizon is equivalent to a phase of accelerated expansion

d

dt
(aH)−1 < 0 ⇐⇒ ä > 0 . (1.47)

This also implies that the fractional change of H per e-fold N (an increase of the scale factor by a

factor e) is small

d

dt
(aH)−1 < 0 ⇐⇒ ε < 1 , where ε ≡ − Ḣ

H2
= −d lnH

dN
. (1.48)

Assuming that the energy scale of the universe at the end of inflation is ∼ 1015 GeV, it can be

shown that inflation solves the hierarchy and flatness problems if the scale factor grows by at least

a factor ∼ 1028 between the beginning I and end E of inflation 8

aI
aE
& 1028 → N = ln

aI
aE
& 64. (1.49)

Note that this is only a lower bound on the duration of inflation.

We have seen above that matter with an equation of state satisfying 1 + 3w > 0 will not lead to a

decreasing comoving Hubble horizon. Instead we need some source of energy density with negative

pressure

w =
P

ρ
< −1

3
. (1.50)

In eq. (1.35) and table 1.1 we have already seen an example of matter satisfying the condition

w < −1/3: vacuum energy has an equation of state w = −1, leading to a ∝ expHt, a deSitter

universe. The inflationary phase should however not be exactly deSitter, because inflation has to

8If inflation happens at a much lower scale, for example the electroweak scale, the required amount of e-folds of
expansion is smaller.
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end and allow for HBB evolution. Fortunately, there are other ways of to generate an inflationary

phase. We will focus on the one that is most widely used.

1.2.4.1 Scalar field inflation

A phase of accelerated expansion occurs when the energy density is dominated by a homogeneous

scalar field χ(t) moving in a flat potential V (χ). The energy density and pressure of the inflaton

field χ are

ρ =
1

2
χ̇2 + V (χ) , P =

1

2
χ̇2 − V (χ) , (1.51)

and the equation of motion

χ̈+ 3Hχ̇+ V,χ = 0 , (1.52)

with the subscript ,χ denoting a derivative with respect to the χ-field. By plugging the energy

density and pressure of the inflaton into the Friedmann equations, we find that Ḣ = −χ̇2/(2mpl)
2.

Substituting into eq. (1.48) gives

ε =
1
2 χ̇

2

m2
plH

2
. (1.53)

Remembering that m2
plH

2 = ρ/3, we find that the requirement ε < 1 is satisfied if the kinetic energy

is smaller than 1/3 of the full energy density, or

χ̇2 < V (χ) , (1.54)

and this indeed leads to an equation of state w < −1/3.

Inflation ends when ε becomes larger than 1. In many models, and also the ones that we study in

chapters 2, 3 and 4 the inflaton then starts to oscillate at the bottom of its potential. Since inflation

was introduced to solve the problems of the initial conditions of the HBB model, but not to replace

it, we should connect the end state of inflation to the beginning of HBB evolution. The energy

density of the inflaton field has to be transferred to the particles of the SM that then thermalize.

This process is called reheating and is the subject of the first part of this thesis. It will be introduced

more extensively in chapter 2.

1.2.4.2 Fluctuations and CMB constraints

Besides solving the horizon and flatness problems, inflation can also explain the small fluctuations



22 Chapter 1

that are observed in the CMB and that eventually formed stars and galaxies. The temperature

fluctuations correspond to fluctuations in the energy density that are caused by quantum fluctuations

in the inflaton field [74].

The fluctuations in the CMB can be described by their power spectrum. The measured amplitude

of the fluctuations and the scale dependence of the power spectrum can be used to constrain models

of inflation [72, 73, 75]. Furthermore, the non-detection of tensor modes puts an upper bound on

the value of the Hubble parameter during inflation [76, 77].

It is a remarkable fact that even the simplest models, where inflation is caused by a single scalar

field, can correctly predict the power spectrum of fluctuations as observed in the CMB [77]. There

are many different models for scalar field inflation [78]. In chapter 3 we will not stick to a specific

model, but in chapter 4 we will study the case where the Higgs is the inflaton.

1.3 Outline of this thesis

In this thesis we focus on two stages of the early universe. The topic of Part I is reheating: the phase

connecting inflation to HBB evolution. In chapter 2 we show why studying the reheating phase is

interesting and sketch how the energy of the inflaton field is transferred to SM particles. Chapter 3

addresses a problem that arises from the running of the Higgs self-coupling λ, which becomes negative

at energy scales above 1011 GeV. Efficient production of Higgs modes during preheating would

cause the Higgs field to end up in an energetically favorable vacuum at ϕ � 246 GeV, which is

in contradiction with observations. In chapter 4 we study reheating after inflation caused by the

Higgs field. We focus on production of Higgs modes and gauge modes, as these are most efficiently

produced.

The topic of Part II is electroweak baryogenesis. Chapter 5 sums up the necessary conditions for

baryogenesis. We then show how the baryon asymmetry can be obtained during the electroweak

phase transition and give an overview of the computation of the baryon asymmetry. The central

question of chapter 6 is whether electroweak baryogenesis can be studied in the framework of the

Standard Model Effective Field Theory. We focus on the contribution from top quarks to the baryon

asymmetry, but find that this does not result in a value of the baryon asymmetry that is consistent

with observations. In chapter 7 we will then study the importance of leptons for generating the

baryon asymmetry.


