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Chapter 7

General Discussion

The main objective of the COSA framework is to produce distances that can capture
an underlying clustering structure from high-dimensional data, where each cluster
can have its own important attributes. Since its first formulation by Friedman and
Meulman (2004), this monograph is the first extensive study on the properties of
COSA. In Chapter 1, the background information for COSA is described. Chapter 2
provides a recapitulation of the COSA-K Nearest Neighbors (COSA-KNN) algorithm.
Chapter 3 gives an explanation why median-based attribute weights are more robust
than mean-based attribute weights, and in the same chapter a strategy is presented
for choosing the tuning parameter values in COSA-KNN of λ and K. In Chapter 4, we
reformulate COSA in such a way that only the tuning parameter λ remains necessary,
referred to as COSA-λNN. Moreover, we show that with a different initialization
of the attribute weights, and with a COSA distance that better separates pairs of
objects in different clusters, COSA can become more powerful. To derive L clusters
from the distances obtained by either COSA-λNN, or COSA-KNN, we propose in
Chapter 5 a partitioning algorithm, referred to as MVPIN. In a first examination
of its effectiveness, MVPIN produces promising results in combination with COSA-
KNN, and especially with COSA-λNN. We compared COSA with MVPIN to other
state-of-the-art L clustering algorithms in Chapter 6. We showed that COSA-λNN,
but also in combination with MVPIN, is a compelling option for the clustering of
high-dimensional data.

7.1 Limitations

This monograph shows that COSA has good potential for real world application.
However, the many compelling examples of applications of COSA in this monograph
should be considered as demonstrations. Although all the examples do provide useful
insights in the behavior of the original COSA algorithm and its improvements, we
should address certain limitations in more detail. These are limitations concerning
the simulation studies; the computational costs of COSA, theoretical and technical
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details of COSA, and missing data.

7.1.1 The Simulation Examples

The variety of models that have been used to generate high-dimensional data for
COSA has been small. The two typical models that have been used as starting points
were presented in the Chapter 1 of this monograph: the COSA prototype model, and
the COSA weak spot model. The motivation for these two generative models has
been to support the general conclusion that COSA is especially powerful in identi-
fying clusters that have their own subset of attributes with locally low dispersion as
compared to the dispersion computed for these attributes over all the objects. There-
fore, it is of importance that all attributes have a similar scale. Moreover, based on
these two models, it is also shown that COSA is less strong in finding clusters that
have a large within-cluster variance on their own subset of attribute, when compared
to the between-cluster variance on these attributes.

A further limitation is the absence of a description of the ‘breakdown’ points for
COSA. It would be interesting to have a well informed overview of the sensitivity
of COSA to changes in each within-cluster attribute dispersion, or the cluster sizes,
the number of irrelevant attributes, and the number of masking objects. Moreover,
the breakdown points that result from such a sensitivity analysis, would be especially
valuable to know about if they could indicate when to use COSA versus other algo-
rithms. For example, both the simple approach to sparse clustering (SAS), and the
fully improved version of COSA, perform equally well on data from the prototype
model as well as the weak spot model. However, empirical evidence so far suggests
that when the variance between the cluster attribute means becomes smaller in the
weak spot model, SAS will outperform COSA. Similarly, when in the prototype model
the number of overlapping attributes becomes larger, or, when the number of masking
objects becomes larger, COSA will outperform SAS.

Apart from the two generative models used as starting point, it would have been
interesting to see how COSA’s performance would have been effected when other fam-
ilies of probability distributions (e.g., mixtures of gamma distributions), are used for
generative models. In Steinley and Brusco (2008), a modified version of COSA still
had a competitive performance on other normal-mixture model based clustering algo-
rithms. However, these were results based in lower-dimensional data settings (N > P ),
and data in which the underlying clusters were not allowed to have their own unique
subspace of attributes. Still, Steinley and Brusco (2008) presented a well-designed
comprehensive Monte Carlo study to compare a number of clustering algorithms.

To our knowledge there is, as of yet, no comprehensive (Monte Carlo) study avail-
able where distance functions for high-dimensional data are compared. There are
some comprehensive studies for distance functions such as France, Carroll, and Hiong
(2012), Pekalska and Duin (2005), and Aggarwal (2001). None of these studies, how-
ever, provide a comparative study between distance functions that apply a weighting
strategy to the attributes in high-dimensional data.
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7.1.2 Computational Costs

In a prescription by Kriegel et al. (2016) it is stated that

‘Any paper proposing a new algorithm should come with an evaluation of
efficiency and scalability (particularly when we are designing methods for
“big data”)’.

So far we did not provide any information on the computational costs of COSA-
KNN, COSA-λNN, and any of the other algorithms. In the same study by Kriegel et
al. (2016), rules of thumb are given that show that the comparison of computational
costs of the algorithms (or implementations) is far from trivial.

However, the computational complexity of the original COSA-KNN algorithm is
easily determined. In each iteration a distance matrix is computed on N objects and
P attributes which results in P ×N(N − 1)/2 operations, then to obtain the N × P
attribute weights, we need to find the K nearest neighbors for each object i, by sorting
the distances for each object using a sort method. The worst case time complexity of
the sort method is O(N log(N)). Then, for each iteration in COSA-KNN, the worst
case computing time for COSA-KNN is

O
(
PKN2 log(N)

)
. (7.1)

The computational complexity of COSA-λNN is more difficult to formulate. COSA-
λNN has an extra merge sorting algorithm for the attributes with complexityO(P log(P )).
Moreover, instead of having neighborhoods each being of size K, COSA-λNN allows
the sizes of the neighborhoods to be different for each object. We denote the size of
each neighborhood by the function of λ, Ni(λ), and is defined as

Ni(λ) = |λNN(i)| , (7.2)

the number of the λ driven nearest neighbors of object i, as defined in equation
(4.29) from Chapter 4. Having described the parameters, the COSA-λNN worst case
complexity is

O

(
P log(P )

[
N∑
i=1

Ni(λ)

]
N log(N)

)
. (7.3)

Whether COSA-λNN or COSA-KNN has higher computational costs is dependent
on the noise and clustering structure in the data. When

K >

(
log(P )

N∑
i=1

Ni(λ)

)
/N, (7.4)

then COSA-KNN will have higher computational costs. This particular setting occurs
in a situation when data set consists of a very large proportion of noise objects, each
living in small neighborhoods. However, more important is that that the cost for
optimizing the tuning parameters for COSA-λNN is (much) lower than for COSA-
KNN, since the optimization is over a one-dimensional (versus a two-dimensional)
grid of the tuning parameter values.
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It may be helpful to report that the computing time (wall clock time) for COSA-
λNN and COSA-KNN was fairly equal to each other on all the data examples we
used in this monograph. Another remark is that the COSA algorithms were slower
than all other algorithms we ran in this monograph. However, we remark that COSA
gives ample opportunity for parallelization. Moreover, the implementations of the
algorithms are based on a mixture of Fortran, C++, and R code, each having their own
compiling perks and quirks. To stay in line with at least some of the recommendations
in Kriegel et al. (2016): we did use realistic data sets (Chapter 6), and all code that
has been used in this monograph is published online, see https://www.tinyurl.com/
MonographCOSA.

7.1.3 Optima and Convergence

So far, the convergence properties of COSA have not been extensively discussed in
this monograph. Neither proof, nor empirical support has been given to show that
the COSA algorithms converge. Empirical evidence so far suggests that the solution
for the attribute weights in COSA most likely converges. For some empirical data
examples, for example the COSA weak spot model, we see that COSA ends in an
oscillation between two solutions for W. This ‘back and forth’ process between two
solutions typically occurs when local minima for Q(W |C) and Q̃(C |W) are equally
attractive, but not compatible. When this occurs, we advise to use the solution for the
attribute weights that has the minimum value for Q(W |C). This oscillating process
between the two solutions can be referred to as a second order stationary process, and
loosely speaking, could be seen as convergence.

For small data sets we could find the global minimum. Consider a data set of
N = 20 objects, on which we wish to run COSA-KNN with K = 10. Then, it is still
feasible to find the global minimum for the leading criterion Q(W |C).Out of the(

N

K

)
= 184, 756

neighborhoods of size K, there are ‘only’(
N − 1

K

)
= 92, 378

neighborhoods for each object for which we need to find the minimum within-neighborhood
sum of the distances (Dij [w]). For COSA-λNN a comparable, but feasible, strategy
can be created to find the global minimum for Q(W |C).

When investigating the convergence properties, the homotopy strategy in COSA
also needs to be considered. As was described in Chapter 2, the COSA algorithms
have an homotopy strategy implemented to avoid convergence to suboptimal local
minima. Whereas in COSA-KNN the suboptimal local minima are avoided due to a
linear path for the homotopy parameter η, the COSA-λNN only applies the homotopy
strategy at the start of the first iteration and then iterates without a homotopy path,
i.e. η = λ at the start, but after the first itertation η is set equal to ∞. For the

https://www.tinyurl.com/MonographCOSA
https://www.tinyurl.com/MonographCOSA
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examples in this monograph, however, we would not have obtained differences in the
interpretation of the COSA-λNN results, compared to the situation where the linear
path was used.

To show empirically that suboptimal local minima are avoided with the homotopy
strategy, it could be informative to plot the values for each iteration of the within-
neighborhood criterion Q(W|C), the criterion with the COSA distances Q̃(C|W),
and the iteration number. The comparison of a plot for the results of COSA with
the (linear) homotopy strategy, on the one hand, and for the results where no homo-
topy strategy was used, on the other hand, could lead to insights for new homotopy
strategies.

It may be easy to come up with a homotopy strategy that would improve the
path with which suboptimal local minima are avoided. The homotopy parameter η
regularizes the Kullback-Leibler divergence between each of the tijk’s and vijk’s, as
given in the second term of the inverse exponential distance:

Dη
ij [W] = min

tij

{
P∑
k=1

tijkdijk + η

P∑
k=1

tijk log

(
tijk
vijk

)}
(7.5)

(equation 2.47 from Chapter 2). An idea to improve the path over which the distance
evolves is to assure that in iteration b with homotopy parameter ηb, the regularized
Kullback-Leibler divergence is never larger than the divergence term for any of the
object pairs in the next iteration, b + 1. In this way it can be assured that the role
of the solution for the attribute weights (vij) becomes more important with each
iteration. However, so far, such strategies result in considerably higher computational
costs.

Another open avenue that could be explored is to avoid local minima by intro-
ducing fuzzy membership for the clusters or neighborhoods. Whereas in COSA the
membership of object i to cluster (or neighborhood) l could only be true (cil = 1) or
false (cil = 0), a fuzzy version of the criterion, where 0 ≤ cil ≤ 1 with

L∑
l=1

cil = 1, (7.6)

could smooth away some of the local optima in the criterion. For a comparable strategy
and its properties, see Heiser and Groenen (1997). Thus, apart from smoothing the
distances between the objects with a homotopy strategy, the attribute weights could
also be smoothed across the objects with the use of fuzzy cluster memberships.

7.1.4 Missing Data

A problem of practical importance is how well COSA deals with missing data. In
Chapter 4 we did apply COSA to a data set that contained missing values, but how
COSA copes with incomplete data has not been discussed. When either object i or
object j have a missing value on attribute k, then the attribute weight vijk is modified
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with the following rule:

vijk ← I(xik 6= missing)I(xjk 6= missing)vijk. (7.7)

For each object i′ that has missing values on attributes, the attribute weights on the
non-missing values are re-normalized as

wkl∗
i′
← wkl∗

i′

/
P∑
k=1

I(xi′k 6= missing)wkl∗
i′
. (7.8)

Thus, for those object pairs where at least one of the objects has a missing value on
attribute k, we set vijk equal to a value of zero, and the attribute weights for the
non-missing attributes wkl∗

i′
are renormalized to sum to 1 for each object i′. If for two

objects there are no overlapping non-missing attribute values, then these two objects
are assigned an infinite COSA distance.

When applying COSA to data with missing values, one should be aware of resulting
effects from the above strategy. Suppose objects i and j have no missing attributes,
have exactly the same clustering pattern, and let object i′ be a version of object i
where at least one of the attribute values xijk is missing. Then, with COSA’s strategy
on dealing with missing values we could have the following inequality property for the
attribute weights:

P∑
k=1

vi′jk >

P∑
k=1

vijk. (7.9)

Due to the re-normalization of the attribute weights, this inequality property (7.9)
(7.9) would strongly hold when object i has missing values on the attributes that would
have received attribute weights above average. The consequence of this property is
that the COSA distance between object i′ and j becomes larger than it should have
been, risking that objects i′ and j will not end up in the same cluster.

The reverse effect occurs when object i′ has missing values on the attributes that
would have received weight values below average, when the attributes are not impor-
tant for the clustering. Then, due to the re-normalization of the attribute weights we
obtain

P∑
k=1

vi′jk <

P∑
k=1

vijk. (7.10)

This inequality property (7.10) results in a smaller COSA distance for objects i′ and
j, and is less problematic.

In Chapter 4 we applied COSA-KNN and COSA-λNN on a benchmark gene ex-
pression data set for breast cancer tumors (Perou, 2000) that contained missing values,
and COSA seems to cope well. A very likely reason is that there were missing values
on those attributes that were irrelevant for the clustering of the involved objects, while
these objects did have values on the attributes important for clustering. For such a
specific distribution of missing values, re-normalization of the attribute weights will
not have a detrimental effect on the COSA distances.
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The renormalization strategy in equation (7.8) can have harmful effects for object
pairs where all attributes have equal importance. Let us create the following three
scenarios. In the first scenario, scenario i., we have a complete data set of N = 100
objects by P = 1, 000 non-missing attributes that consists of noise values only (i.i.d
∼ N(0, 1)). In the second and third scenario we have for 20 out of the N = 100 objects
that either have ii. 200 missing values, completely at random, out of the P = 1, 000
attributes for each object; or iii. 200 missing values on exactly the same attributes
for each object. Figure 7.1 displays the typical average linkage dendrogams for our
COSA-KNN distances.
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Figure 7.1: Results of COSA-KNN distances of ‘noise only’ data, displayed in average linkage
dendrograms. The left dendrogram gives the results based on a data set with no missing values,
the middle dendrogram is based on the data set with 20 objects (in red) that have missing
values completely at random (MCAR) on 200 attributes (out of the 1,000 attributes), the
right dendrogram is based on a data set where 20 objects (in red) have 200 missing not at
random (MNAR) values on exactly the same attributes. The COSA distances are normalized
to have a sum of squares equal to N .

In the three scenario’s all objects should be approximately equidistant to each
other. However, as we can see in Figure 7.1, for scenario’s ii. and iii. the distances
seem to be systematically different for the objects with missing values (colored red)
and the objects that have no missing values (in black). In scenario ii we see that the
objects with no missing values are somehow very similar to each other, and the objects
with missing values are very distant to the other objects. Moreover, note that the
objects with missing values have the largest distances between each other. In scenario
iii. all objects that have the exact same MNAR pattern for the attribute values seem
to be equidistant to each other. Similarly, all objects without missing attribute values
also seem to be equidistant to each other. While the MCAR scenario in practice can
easily be detected and used as an advice to discard the objects that have missings,
the MNAR may lead to misleading clustering conclusions. However, also the MNAR
disturbance can be easily detected when re-running COSA on the attributes that do
not contain any missing values. Apart from the need of being aware of such results,
it may be of interest to further study the behavior of COSA to recognize results that
are systematically influenced by missing values. Still, it is a strength that COSA can
cope with missing values. Especially since the typical K-means, or fuzzy C-means,
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algorithms are not able to cope with missing values at all.

7.2 Future Avenues

In the previous section we stipulated how some limitations of this monograph could
be further studied as research problems in future investigations. In this section we
give a small overview on topics that we did not deal with in this monograph, but are
still deemed noteworthy in relation to the COSA framework. Some of these topics
have already been proposed or studied in Friedman and Meulman (2004), Kampert,
Meulman and Friedman (2017). Others are open avenues for further study that have
not (yet) received any attention at all.

7.2.1 Different regularization strategies for the attributes

While the COSA algorithms uses Kullback-Leibler divergence regularization, we con-
jecture that a family of COSA algorithms with closed-form solutions for the attribute
weights can be created from other classes of divergences as well. A canonical exam-
ple of a regularization based on the Bregman divergence (Bregman, 1967) is COSA
criterion where, instead of the Kullback-Leibler divergence, the Squared Euclidean
distance between the attribute weights in W and the initial attribute weights {ul}Ll=1

is regularized. Especially in the light of the new COSA-λNN algorithm, where the
number of zero-value attribute weights is also steered by λ, these different regulariza-
tion forms could be interesting directions for future research.

Another interesting direction is to simplify the COSA framework. Instead of at-
tribute weights, a hard crisp subset of equally weighted attributes may lead to better
and simpler results. The number of attributes that are selected for each neighborhood
could be selected based on the largest gap between the sum of the within-neighborhood
attribute dispersions and a reference sum of attribute dispersion from random neigh-
borhoods. Note that this strategy could also be seen as a modification of SAS towards
a COSA approach, resulting in different COSA distances.

7.2.2 COSA Distances

We have defined a new COSA distance in Chapter 4 to create a stronger separation
between objects from different clusters. We have seen that vijk could be defined differ-
ently from being the maximum of wkl∗i and wkl∗j . So far, we have only one restriction
for any definition of a COSA distance, i.e. the COSA distance should reduce to a
COSA within-cluster distance when vijk = wkl∗i = wkl∗j for all atributes k, expressed
as

D[W] = D[wi] = D[wj ]. (7.11)

Thus, we could study new COSA distances with the purpose to incorporate between-
cluster distances based on the centroids of clusters, i.e. the within-cluster average value
for each attribute. Let dklij be the distance between the average value on attribute k
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for cluster li, on the one hand, and the average value on attribute k for cluster lj , on
the other hand. Then, we could consider a following definition for vijk:

vijk =
wkl∗i + wkl∗j

2
+

(
|wkl∗i − wkl∗j |

1− |wkl∗i − wkl∗j |

)(
1 + dklij

η

)
. (7.12)

Here, η is the homotopy parameter, and with this definition of vijk, we obtain one
of the many possible definitions in the family of COSA distances. Note that when
wkl∗i = wkl∗j holds for all k, then we also have vijk = wkl∗i = wkl∗j for each k.

So far, we have shown examples that merely indicate that there is a wide open
world to explore for COSA distances. Another direction could be to create proper
COSA distances that have a perfect fit with an MDS configuration that is constrained
on finding clusters, or even ultrametric COSA distances from which a dendrogram
could be formed directly.

7.2.3 Targeting and the Attribute Distances1

Not only the COSA distances, but also the attribute distances have potential for
further research. In this monograph the COSA clustering could be on any possible
joint values on subsets of attributes. However, in Friedman and Meulman (2004) it
was also possible to look for clusters that group on particular values. This was referred
to as ‘targeted clustering’ and can actually also be seen as a first step that may bring
us closer towards distances based on composite kernel spaces (Wange et al., 2016).
Examples of the usefulness of targeting can be found in Friedman and Meulman
(2004), as well as in Kampert, Meulman and Friedman (2017); here we just give a
short explanation on what we mean by targeted attribute distances.

Suppose that objects only cluster on particular values, say yk, which are possibly
different for each attribute k. Here, the {yk} are chosen to be of special interest; and
can be used to reduce the search space of the solutions for the clustering structure;
when chosen correctly, these targets render it more likely to recover clusters. Examples
are groups of consumers (objects) that spend relatively large amounts on products
(attributes), while we wish to ignore consumers who spend relatively small or average
amounts (or the other way around). If we focus on one particular value, we call this
single targeting. We modify the original distance between objects i and j on attribute
k, dijk = d(xik, xjk), into targeted distances, and require objects i and j to be close
to each other and to the particular target.

The so-called single target distance is defined as:

dijk(tk) = max[dk(xik, yk), dk(xjk, yk)], (7.13)

where yk is the target value, e.g., a high or low or even average value. This distance
is small only if both objects i and j are close to the target value yk on attribute k.
In addition to single targeting, we can also focus on two different targets, e.g. being
naturally either high or low values. An example is in microarray data, where we could

1A large part of this subsection is from Kampert, Meulman, and Friedman (2017).



188 Improved Strategies for COSA

search for clusters of samples with either high or low (but not moderate) expression
levels on subsets of genes (attributes). In dual targeting, we define two targets y1k
and y2k, and we use the dual target distance

dijk(y1k, y2k) = min[dijk(y1k), dijk(y2k)] (7.14)

on selected attributes xk, where dijk(·) is the corresponding single target distance
(7.13). This dual target distance is small whenever xik and xjk are either both close
to y1k or both close to y2k. Thus, in gene expression and consumer spending examples,
one might set y1k and y2k to values near the maximum and minimum data values of
the attributes, respectively, and we will cause COSA to seek clusters based on extreme
attribute values, ignoring clusters with (uninteresting) moderate attribute values.

7.2.4 Mixed Types of Attributes

In this monograph we only used ‘numeric’ attributes. Although, no specific advice was
given on the choice for the specific attribute distance functions, COSA was originally
designed for mixed type of attributes e.g. numerical and categorical (Friedman &
Meulman, 2004), and this is (still) a desired and ongoing topic of research, e.g. see
Grané and Romera (2016), Van de Velden et al. (2018); for an overview see Foss et
al. (2018).

7.2.5 Different Objectives for COSA

Future avenues for different objectives with COSA may also be considered when
relating COSA to techniques as Points of View Analysis (PVA; Tucker & Messick,
1963, Meulman & Verboon, 1993) and the Self-Organizing Map (SOM; Kohonen,
1980). In this last subsection of the monograph we will restate aspects of COSA
such that it becomes relatable to techniques as PVA and SOM. We conjecture that
these relatable techniques provide useful insights regarding the properties and further
improvement of the COSA approach.

Points of View Analysis

When we consider the neighborhood of an object i to be a cluster li, then the COSA
within-cluster distance is based the attribute weights of the neighborhood of object
i, and is defined as

D[wli ]ij =

P∑
k=1

wklidijk, (7.15)

which is a proper metric distance when each attribute distance also satisfies the metric
properties. Here, we argue that this specifc COSA within-cluster distance could also
be interpreted as a distance from the viewpoint of object i.
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Similarly, D[wlj ]ji can be interpreted as a distance from the viewpoint of object
j, and, when wli 6== wlj , it is most likely that

D[wli ]ij 6= D[wlj ]ji, (7.16)

meaning that the viewpoint of the distances from object j is different than that from
object i. Suppose the objective would be to find for each of the N possible COSA
within-cluster distance matrices a MDS representation for the objects, then we have
for each object a visualization of each object’s viewpoint. Similarly, viewpoints could
be formed, based on the attribute weights from equation (6.17) in Chapter 6, for each
COSA-validated cluster. Since each cluster is based on its own unique partitioning
of the attributes, these viewpoints are closely related and linked to the objective in
the so-called Point of View Analysis (Tucker & Messick, 1963, Meulman & Verboon,
1993).

Self-Organizing Maps

COSA is also relatable to Kohonen’s Self-Organizing Maps (SOM), an artifical neural
network technique based on competitive learning with which the data are non linearly
projected onto a lower-dimensional display (Kohonen, 2001). Consider each object il
from neighborhood li as a neuron that receives input information from the neighboring
objects. Comparable with SOM, we find that the neighboring neurons for il will
gradually specialize to represent similar inputs. In other words, when objects i and j
live in closely the same neighborhoods, the attribute weights wlj and wlj , for neurons
li and lj , respectively, will become more similar over time, i.e., during the iterations
in the COSA algorithm. Although the attribute weights and the objects for each
neighborhood become updated with each iteration, in COSA the attribute values of
the neuron remain the same, while in SOM the attribute values of the neuron are
‘smoothed’ based on the nearest neighbor objects, e.g.,

xlik =

N∑
j

cjlixjk

/
N∑
j

cjli . (7.17)

Information Retrieval

When relating COSA to a special case of SOM, as was done in the previous section,
the possibilities of COSA and information retrieval may also become apparent. E.g.,
an estimate for the missing value xik could be retrieved based on equation (7.17), as
long as the nearest neighbors do not have missing values on attribute k. In Gabrielsson
and Gabrielson (2008) and Purbey et al. (2014), SOM is being used for the purpose
of information retrieval in recommender systems.

When we know the behavior of COSA in the presence of missing data, in greater
detail, the COSA approach could contribute to research involved with information
retrieval. Suppose that object i does not have a value on attribute k, but each of its
nearest neighbors (cjli = 1), has a non-missing value on the specific attribute. Then,
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we may be able to compute the attribute weights wkli when the attribute dispersion
is computed as

Skli =
1

N2
li

N∑
j=1

N∑
j′=1

cjlicj′lidjj′k. (7.18)

Here, the definition of the attribute dispersion Skli does not involve object i, itself.
Thus, even though we do not know the value of object i on attribute k, we can
compute to what extent attribute k is important for the clustering of object i, which
is valuable information for e.g., recommender systems and imputation strategies for
missing data.


