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A B S T R A C T

Structural brain markers are studied extensively in the field of neurodegeneration, but are thought to occur rather
late in the process. Functional measures such as functional connectivity are gaining interest as potentially more
subtle markers of neurodegeneration. However, brain structure and function are also affected by ‘normal’ brain
ageing. More information is needed on how functional connectivity relates to aging, particularly in the absence of
overt neurodegenerative disease. We investigated the association of age with resting-state functional connectivity
in 2878 non-demented persons between 50 and 95 years of age (54.1% women) from the population-based
Rotterdam Study. We obtained nine well-known resting state networks using data-driven methodology. Within
the anterior default mode network, ventral attention network, and sensorimotor network, functional connectivity
was significantly lower with older age. In contrast, functional connectivity was higher with older age within the
visual network. Between resting state networks, we found patterns of both increases and decreases in connectivity
in approximate equal proportions. Our results reinforce the notion that the aging brain undergoes a reorgani-
zation process, and serves as a solid basis for exploring functional connectivity as a preclinical marker of
neurodegenerative disease.
1. Introduction

Normal aging is associated with brain changes that can be linked to
neurodegeneration (Peters, 2006). Non-invasive imaging techniques
(e.g., MRI) have enabled us to study structural brain changes such as grey
matter atrophy and white matter lesions in relation to aging and de-
mentia (Brant-Zawadzki et al., 1985). More recently, it has been hy-
pothesized that these anatomical brain changes are preceded by changes
in the brain's functional organization (Jack et al., 2010). Developed over
three decades ago, functional MRI (fMRI) is a non-invasive method for
investigating the functional dynamics of the brain. fMRI indirectly re-
flects neural activity by measuring MRI signal fluctuations induced by
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changes in blood oxygenation and flow resulting from changes in neural
metabolic demand (Logothetis, 2002). In the absence of an explicit
stimulus, resting-state fMRI quantifies the synchronization of sponta-
neous signal fluctuations over time, or functional connectivity, across
multiple brain regions (Fox and Raichle, 2007).

Measures of functional connectivity have been shown to differ be-
tween patients with Alzheimer's disease and controls (Dennis and
Thompson, 2014; Wang et al., 2007). In parallel, many studies of aging
have shown reduced functional connectivity within resting-state net-
works such as the default mode network (DMN), the salience network,
and the motor network (Betzel et al., 2014; Chan et al., 2014; Ferreira
et al., 2016; Geerligs et al., 2015; Grady et al., 2016). In contrast,
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functional connectivity between networks has been found to increase with
age, which may reflect decreased segregation (Andrews-Hanna et al.,
2007; Chan et al., 2014; Ferreira and Busatto, 2013; Ng et al., 2016).
These age-related decreases in within-network connectivity and in-
creases in between-network connectivity have also been demonstrated to
be related to, for example, cognitive performance and motor ability
(Andrews-Hanna et al., 2007; Chan et al., 2014; Ferreira and Busatto,
2013; Geerligs et al., 2015; Keller et al., 2015; Wu et al., 2007). Impor-
tantly, previous studies on functional connectivity in normal aging were
conducted with relatively small samples, or included wide age ranges
rather than middle-aged and elderly persons who are at greatest risk for
neurodegeneration. Also, the lack of a population-based design in most
studies may hamper the generalizability of the findings (Chan et al.,
2014; Ferreira et al., 2016; Grady et al., 2016; Sala-Llonch et al., 2015;
Siman-Tov et al., 2016). Moreover, brain function depends on the
segregation and integration of brain networks. Limiting analyses to an
individual resting-state network, such as the DMN, may be inadequate in
gaining a more comprehensive understanding of the functional organi-
zation of the aging brain (Baldassarre A, 2015; Greicius et al., 2004;
Hafkemeijer et al., 2012; Koch et al., 2010; Ng et al., 2016; Tsvetanov
et al., 2016). Finally, previous studies defined networks based on
anatomical parcellations that do not necessarily conform to the true
functional architecture of the human brain (Song et al., 2014;Wang et al.,
2010).

Additional knowledge about the aging brain in the healthy elderly
may increase our insight into the neural basis of neurodegenerative
diseases. Based on the current literature, we hypothesized that older age
in the general population is negatively associated with within-network
connectivity, and positively associated with between-network connec-
tivity. Given previous literature, we more specifically hypothesized that
in middle-aged and elderly persons from the general population, net-
works showing greatest decreases in functional connectivity would most
likely be those that have been previously implicated in aging or neuro-
degeneration in smaller (clinical) studies, i.e. the DMN, salience network
and motor network. Yet, to allow for changes in other networks to be
detected, as well as to avoid a bias towards network decreases, we
deployed an exploratory approach, analyzing large-scale networks in the
entire brain as well as allowing for both decreases and increases in
connectivity. In addition, we explored how various factors such as sex,
cardiovascular risk, and apolipoprotein E ε4 carrier status associate with
functional connectivity in an aging population.

2. Materials and methods

2.1. Study population

This study was conducted within the Rotterdam Study, a prospective
population-based cohort study aimed at investigating determinants and
consequences of age-related diseases in the elderly (Ikram et al., 2017).
The cohort originated in 1990 andwas comprised of 7983 participants 55
years of age and older. In 2000 and 2006 the cohort was expanded and
now consists of 14,926 participants 45 years of age and older.
Resting-state functional MRI (rs-fMRI) was piloted in 2010–2011, and
fully implemented into the study protocol from 2012 onwards (Ikram
et al., 2015). Between 2010 and 2016, a total of 3288 participants un-
derwent rs-fMRI. We excluded participants with poor data quality (e.g.
poor registration based on visual inspections, excessive head motion or
high levels of ghosting; n¼ 293), with cortical infarcts on MRI (n¼ 80),
and with prevalent dementia or insufficient dementia screening (n¼ 37).
In total, 2878 participants were included for the current analysis.

Data can be obtained upon request. Requests should be directed to-
wards the management team of the Rotterdam Study (secretariat.epi@
erasmusmc.nl), which has a protocol for approving data requests.
Because of restrictions based on privacy regulations and informed con-
sent of the participants, data cannot be made freely available in a public
repository. The Rotterdam Study has been approved by the Medical
433
Ethics Committee of the ErasmusMC (registration numberMEC 02.1015)
and by the Dutch Ministry of Health, Welfare and Sport (Population
Screening Act WBO, license number 1071272-159521-PG). The Rotter-
dam Study has been entered into the Netherlands National Trial Register
(NTR; www.trialregister.nl) and into the WHO International Clinical
Trials Registry Platform (ICTRP; www.who.int/ictrp/network/primary/
en/) under shared catalogue number NTR6831. All participants pro-
vided written informed consent to participate in the study and to have
their information obtained from treating physicians.

2.2. MRI acquisition, tissue segmentation and infarct rating

Neuroimaging was performed on a 1.5-Tesla MRI scanner (Signa
Excite II, GE Healthcare, Milwaukee, WI, USA) using an eight-channel
head coil. Structural imaging included a T1-weighted 3D fast RF
spoiled gradient recalled acquisition in steady state with an inversion
recovery pre-pulse (FSPGR-IR) sequence (repetition time (TR)¼ 13.8ms,
echo time (TE)¼ 2.8ms, inversion time (TI)¼ 400ms, field-of-view
(FOV)¼ 25 cm2, matrix¼ 416� 256 (interpolated to 512� 512), flip
angle¼ 20�, number of excitations (NEX)¼ 1, bandwidth
(BW)¼ 12.50 kHz, 96 slices with slice thickness 1.6mm zero-padded in
the frequency domain to 0.8mm), a proton density (PD) weighted
sequence (TR¼ 12,300ms, TE¼ 17.3ms, FOV¼ 25 cm2, ma-
trix¼ 416� 256, NEX¼ 1, BW¼ 17.86 kHz, 90 slices with slice thick-
ness 1.6mm), and a T2-weighted fluid-attenuated inversion recovery
(FLAIR) sequence (TR¼ 8000ms, TE¼ 120ms, TI¼ 2000ms,
FOV¼ 25 cm2, matrix¼ 320� 224, NEX¼ 1, BW¼ 31.25 kHz, 64 slices
with slice thickness 2.5mm). rs-fMRI data were obtained using an echo-
planar imaging sequence (TR¼ 2900ms, TE¼ 60ms, FOV¼ 21 cm2, 31
axial slices, flip angle¼ 90�, matrix size¼ 64� 64, slice thick-
ness¼ 3.3mm, 165 vol). Acquisition time was 7:44min. Participants
were instructed to lie still with their eyes open and to stay awake.

2.3. Structural MRI quantification

T1-weighted MRI scans were processed using FreeSurfer (v5.1)
(Fischl et al., 2004) to obtain brain tissue segmentations and volumetric
summaries of intracranial and supratentorial grey matter volume. Pres-
ence of infarcts was visually assessed on structural MRI sequences, and
those involving cortical gray matter were classified as cortical infarcts
(Ikram et al., 2015).

2.4. rs-fMRI data preprocessing

Preprocessing was carried out using the FMRIB Software Library (FSL;
http://www.fmrib.ox.ac.uk/fsl) (Jenkinson et al., 2012) and involved:
removal of the first five volumes to allow for signal equilibration, head
movement correction by volume-alignment using FSL's MCFLIRT (Jen-
kinson et al., 2002), global 4D mean intensity normalization, spatial
smoothing (Gaussian kernel with 6mm full-width at half-maximum) and
temporal high-pass filtering (>0.01Hz). To quantify head motion in the
rs-fMRI data we used the maximum absolute as well as the mean relative
(i.e. frame-wise) head displacement as calculated by MCFLIRT. After
preprocessing, functional images were co-registered to the corresponding
T1-weighted images using FSL's FLIRT (Jenkinson et al., 2002; Jenkinson
and Smith, 2001) and subsequently registered to 2mm isotropic
MNI-152 standard space by applying the transformation obtained from
non-linear registration of the T1-weighted images to MNI-152 template
using FSL's FNIRT (Andersson et al., 2010). All registrations were visually
inspected in order to exclude scans with registration failures or with large
artefacts. Scans that showed absolute head displacement greater than
3 mm and/or mean frame-wise displacement greater than 0.2 mm were
excluded. A technical issue caused participants to be scanned with the
phase and frequency encoding directions swapped during the resting
state fMRI acquisition. This rotated acquisition scheme led to a mild
ghost artifact in the phase encoding direction. Ghost-to-signal ratio
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(G/S-ratio) was defined as follows: first the fMRI image was divided into
4 regions: 1) background, 2) ghost outside the brain, 3) ghost þ signal
within the brain, 4) signal within brain. G/S-ratio was then calculated by
dividing the median intensity within region 2 by the median intensity
within region 4. G/S-ratio was treated as a covariate in the analyses (see
statistical analyses section). Moreover, scans with G/S-ratio>0.1 were
excluded.

In addition to the standard rs-fMRI pre-processing, FMRIB's ICA-based
Xnoiseifier (FIX v1.06) was used to remove structured noise from the
data. First, we applied independent component analysis (ICA) to the
preprocessed single-subject data, using automatic dimensionality esti-
mation, as implemented in FSL's MELODIC (v5.0.5). Next, FIX was used
to automatically detect the components representing noise, which were
then removed from the data (with the option for soft cleanup and addi-
tional removal of motion confounds) (Griffanti et al., 2014; Salimi--
Khorshidi et al., 2014). To optimize its classification performance we
trained FIX using a study-specific training dataset of 60 randomly
selected subjects (equally distributed across age-binned 5 year strata, and
among women and men). Two raters independently hand-labeled the
components derived from these scans as ‘signal’, ‘unknown’ or ‘noise’, by
visual inspection of each components' spatial map, time-course and
power spectrum (Griffanti et al., 2017). Inconsistently labeled compo-
nents were further discussed/inspected to achieve a final consensus la-
beling. This training dataset was used to train FIX and to evaluate its
performance by means of a leave-one-out cross validation. We found the
training set to perform well, with a mean proportion of correctly labeled
‘signal’ and ‘noise’ components of respectively 94% and 76%.

2.5. Connectivity analysis

For our functional connectivity analysis, we first generated a study-
specific functional parcellation using high-dimensionality ICA (Kivi-
niemi et al., 2009; Smith et al., 2013). To generate this parcellation, we
employed a temporally concatenated group-ICA using FSL's MELODIC on
a selection of 500 datasets with maximal brain coverage, matching the
total sample on age and sex distribution, to guarantee optimal brain
coverage of the atlas. The dimensionality of the ICA was set to 100 com-
ponents, similar to the population-based UK Biobank (Miller et al., 2016).
These 100 components were hand-labeled as either ‘signal’, ‘noise’, or
‘unknown’ using the same rating procedure as discussed above for the
subject-level denoising. Out of 100 components, 50 components were
labeled as ‘signal’, which we will further refer to as ‘functional nodes’.

We exploited these spatial templates in a multivariate linear regres-
sion against each subjects' rs-fMRI data (e.g. first stage of the dual
regression framework (Beckmann et al., 2009; Filippini et al., 2009) to
derive subject-level time-series of the 100 components. For every subject,
we then obtained a 50� 50 connectivity matrix by calculating the full
temporal correlation, converted to Z-scores using Fisher Z-trans-
formation, between every pair of signal time-series using the tools
implemented in FSLNets (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets).
For a more comprehensive analysis and to aid comparison across studies,
we mainly focused on analyses on a network-level. We therefore clus-
tered the 50 functional nodes into large-scale networks by hierarchically
clustering the full group-level correlation matrix (Smith et al., 2013).
Subsequently, we derived network-level subject-specific connectivity
matrices by calculating the mean correlation value of the respective
node-pairs within and between every (pair of) network(s). Furthermore,
we computed the standard deviation of each node's time series as a
measure of nodal strength (i.e., signal amplitude), as implemented in
FSLNets. Finally, for every network we averaged its associated nodal
strengths to define a measure of network-strength, which we refer to as
mean signal amplitude.

2.6. Other measurements

A number of cardiovascular risk factors, based on information derived
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from home interviews and physical examinations during visits to our
research center, were assessed. Body mass index was calculated by
dividing weight (in kilograms) by height (in meters) squared. Systolic
and diastolic blood pressure (in mmHg) weremeasured twice on the right
arm with a random-zero sphygmomanometer, and the two readings were
averaged for analyses. Serum glucose (mmol/L), total cholesterol (mmol/
L), and HDL-cholesterol (mmol/L) levels were measured using standard
laboratory techniques (Ikram et al., 2017). Diabetes mellitus was defined
as a fasting serum glucose level �7.0mmol/L, or use of anti-diabetic
medication. Smoking habits were assessed by interview and catego-
rized as current smoker, former smoker, and never smoked. Information
on use of antihypertensive medication and lipid-lowering medication
was obtained by interview. APOE genotype was determined by poly-
merase chain reaction on coded DNA samples in the original cohort, and
by bi-allelic Tacqman assays (rs7412 and rs429358) for the expansion
cohorts. In 93 participants APOE genotype was determined by genetic
imputation (Illumina 610K and 660K chip; imputation with Haplotype
Reference Consortium (HRC) reference panel (v1.0) with Minimac 3).
APOE-ε4 carrier status was defined as carrier of one or two ε4 alleles.

2.7. Statistical analyses

Missing values on cardiovascular risk factors (maximum 4.0%) were
imputed using 5-fold multiple imputation, based on age, sex, and the
other available cardiovascular risk factors. Distribution of covariates was
similar in the imputed versus the non-imputed dataset.

Group-level non-parametric permutation testing (n¼ 10,000 unique
permutations), as implemented in FSL's randomise (Winkler et al., 2014)
was used to associate sex and age with functional connectivity within and
between networks. We applied two levels of correction for multiple
testing. First, we corrected for multiple testing (family-wise error (FWE),
n ¼ 9 within network and n ¼ 36 between network analyses) using
randomise. Secondly, an alpha of pFWE <0.0125 was considered statis-
tically significant by Bonferroni correcting FWE-adjusted p-values for the
two main effects (age and sex) and two-tailed tests. We first investigated
the association between age and functional connectivity. Therefore, we
started investigating whether age was positively or negatively correlated
with functional connectivity, within and between networks. Subse-
quently, we classified age-related associations with functional connec-
tivity as follows: 1) increasingmagnitude of positive network correlation,
2) decreasing magnitude of positive network correlation, 3) increasing
magnitude of nodal/network anti-correlation, 4) decreasing magnitude
of network anti-correlation 5) shift in networks from anti-correlation to
positive correlation and 6) shift from positive correlation to
anti-correlation. We next investigated whether there were sex-related
differences in functional connectivity, within and between resting state
networks. To assess the focal nature of the network associations, we
investigated the association of age and sex with functional connectivity at
the node-level. After examining the correlation amongst nodes/net-
works, we investigated the association of age and sex with mean signal
amplitude within each network. For each analysis, in order to investigate
whether the association between age and functional connectivity was
modified by sex, we tested the statistical interaction by adding an
age*sex interaction term to the regression models. All analyses described
above were performed using three models. In the first model, we adjusted
for age or sex, mean frame-wise head displacement, and ghost-to-signal
ratio. In the second model, we additionally adjusted for supratentorial
grey matter volume and intracranial volume to investigate whether the
associations with functional connectivity were independent of macro-
structural brain makers. In the third model, we additionally adjusted for
the cardiovascular risk factors (i.e., body mass index, systolic and dia-
stolic blood pressure, total and high-density lipoprotein cholesterol,
diabetes mellitus, smoking, antihypertensive and lipid-lowering medi-
cation) and apolipoprotein E-ε4 carrier status, to study whether there
were pathways relating age to functional connectivity measures, other
than those involving these factors, and to remove any confounding effects
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Table 1
Characteristics of the study population.

Characteristics N¼ 2878

Age, years 66.9 (9.3)
Female sex 1558 (54.1)
Body mass index, kg/m2 27.2 (3.9)
Systolic blood pressure, mmHg 138.9 (20.2)
Diastolic blood pressure, mmHg 82.6 (10.8)
Total cholesterol, mmol/L 5.5 (1.1)
High-density lipoprotein, mmol/L 1.5 (0.4)
Diabetes mellitus 356 (12.4)
Smoking

Never 928 (32.9)
Former 1430 (50.8)
Current 459 (16.3)

Antihypertensive medication 1129 (39.9)
Lipid-lowering medication 803 (28.4)
Hypertension 1859 (64.6)
APOE-ε4 carrier 748 (27.8)
Intracranial volume, mL 1478 (118)
Supratentorial grey matter volume, mL 594 (38)

Values are depicted as mean (SD) for continuous variables, and absolute
numbers (%) for categorical variables. N¼ sample size; APOE¼ apolipopro-
tein E; SD¼ standard deviation. The following variables had missing data:
body mass index (n¼ 83), blood pressure (n¼ 87), serum total cholesterol
(n¼ 115), serum high-density lipoprotein (HDL) cholesterol (n¼ 115), dia-
betes mellitus (n¼ 14), smoking (n¼ 61), antihypertensive and lipid-
lowering medication (n¼ 50), and APOE-ε4 carrier (n¼ 192).
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by these factors. To further explore the effect of cardiovascular risk fac-
tors and APOE on functional connectivity, all analyses were run with
both connectivity measures, adjusted for age, sex, mean frame-wise head
displacement, ghost-to-signal ratio, supratentorial grey matter volume
and intracranial volume. With respect to smoking status, for these ana-
lyses smoking was classified as current versus ever/former smoking.
Hypertension was defined as a systolic blood pressure>140 mmHg,
diastolic blood pressure>90 mmHg, or use of blood pressure lowering
medication. To allow for comparison across continuous cardiovascular
risk factors (body mass index, systolic and diastolic blood pressure,
cholesterol levels), we calculated z scores (subtracting the population
mean and dividing by the standard deviation). Additionally, to reproduce
our findings we split the whole sample into two randomly selected
groups by using SPSS and repeated the analysis with age. Finally, we
stratified by age (dichotomized at 65 years of age), and we repeated age
analyses for both strata adjusted for age, sex, mean frame-wise head
displacement and ghost-to-signal ratio (Model I). Furthermore, to ac-
count for a possible non-linear age-effect, age*age was added to the
linear regression models and all analyses were repeated. To put effect
estimates of our age-related associations with functional connectivity in a
context, we compared effect estimates of age on functional connectivity
(Model I) with the effect estimates of age on supratentorial grey matter
volume, since grey matter volume is an established imaging marker of
which its association with age has been extensively described before. To
aid comparison, we calculated Z-scores of age, supratentorial grey matter
volume and correlation values. In addition, we adjusted supratentorial
grey matter volume for intracranial volume.

Analyses were done using IBM SPSS Statistics version 21.0 (IBM Corp,
Armonk, NY), and FSL's randomise. Kernel density plots and heat maps
were created using R v3.2.2 (R Foundation for Statistical Computing,
Vienna, Austria).

3. Results

3.1. Study characteristics and network definitions

Characteristics of the study population are presented in Table 1. Out
of 2878 participants, 54.1% were women and the mean age was 66.9
years (ranging from 50.5 to 95.2 years).

For resting-state fMRI analyses, we first clustered the 50 functional
nodes into 9 large-scale networks using hierarchical clustering of the full
group-level correlation matrix (Supplementary Figure 1): the anterior
default mode network (DMNa), posterior default mode network (DMNp),
frontoparietal network (FPN), dorsal attention network (DAN), ventral
attention network (VAN), sensorimotor network (SMN), visual network
(Vis), subcortical network (Subcort), and temporal network (Temp)
(Fig. 1). Using this clustering, we obtained the subject-specific network-
level connectivity matrices (see Methods) and Fig. 2 displays the average
network-level matrix across all individuals.

3.2. Age with network connectivity

The heat maps in Fig. 3 show the association between age and func-
tional connectivity on a nodal-level for all the three models. The numbers
along the x- and y-axis represent node-numbers presented in Fig. 1. In
Fig. 3, for example, clusters of negative association are seen mainly
involving nodes in the DMNa and SMN network, which remain after
additional model adjustments. Between networks, robust clusters of
positive associations are seen for the DAN-DMN nodes and Vis-Temp
nodes. A mixture of positive and negative associations within a
network are observed between SMN-DMN nodes. As described in section
2.4 connectivity analysis, we mainly focused on the association between
age and functional connectivity on a network-level. Fig. 4 and Supple-
mentary Figure 2 illustrate the age association on functional connectivity
using kernel density plots, within and between all pairs of networks. The
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kernel density plots show whether (1) a network is positively or nega-
tively correlated (as depicted by the horizontal line at correlation value
0 (y-axis)), and (2) whether there is a positive or negative association
with age (direction of the regression-line). In addition, the heat map in
Fig. 5 shows the associations of age with functional connectivity within
and between all pairs of networks for the three models, separated into
positively and negatively connected network-pairs. Supplementary
Table 1 shows the parameter estimates including 95% confidence in-
tervals for Model I. Within networks, as displayed on the diagonal of
Fig. 5, we observed that older age was associated with an increased
magnitude of positive correlation values for the visual network (differ-
ence in Z(r) per year increase in age, 0.002; 95% confidence interval [CI]:
0.001; 0.002; PFWE-corrected <0.0125). Furthermore, we found that older
age was associated with a decreased magnitude of positive correlation
values for: DMNa (�0.004, 95% CI: -0.005;-0.003; PFWE-corrected<0.001),
VAN (�0.003, 95% CI: -0.004;-0.003; PFWE-corrected <0.001), and SMN
(�0.003, 95% CI: -0.003;-0.002; PFWE-corrected <0.0125). Associations
remained largely the same after additionally adjusting for grey matter
volume and intracranial volume, cardiovascular risk factors and APOE-ε4
carrier status.

Between networks, older age was associated with increased magni-
tude of positive correlation values between the DMNa-FPN, DMNp-DAN,
DMNp-Vis, FPN-VAN, and Subcort-Temp networks, all PFWE-

corrected<0.0125. Furthermore, older age was related to decreased
magnitude of a positive correlation values between the DMNp-DMNa,
DAN-VAN, and VAN-SMN, all PFWE-corrected<0.0125. Age was also nega-
tively correlated with between network connectivity where the following
network pairs were more strongly anti-correlated in older individuals:
DMNa-Vis, DAN-Subcort, VAN-Vis, VAN-Temp, and SMN-Temp, all PFWE-

corrected<0.0125. An association of older age with decreased magnitude of
anti-correlation values was found for the: DMNa-DAN, DMNa-VAN,
DMNp-Subcort, FPN-SMN, and SMN-Subcort (all PFWE-corrected<0.0125).
Lastly, we observed an age-related shift from positive network connec-
tivity to negative network connectivity for the DMNa-Temp, and FPN-
Temp networks. Conversely, a shift from negative to positive connec-
tivity was found between the Vis-Temp networks. After adjustments for
structural brain markers, cardiovascular risk factors and APOE-ε4 status,
associations became slightly weaker, but in essence unchanged.



Fig. 1. Functional connectome of the human brain.
Functional connectome of the human brain and asso-
ciated spatial maps (axial views). The 50 functional
nodes are clustered into nine networks, based on a T-
test (mean group effect) on the edges between all
nodes (i.e., the correlation matrix) across all 2
878 individuals, as implemented in FSLNets (http://
fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets) (edges pre-
sented by T-values thresholded at 2/3 of the full
range, with positive correlations in red, and anti-
correlations in blue). Abbreviations: DMNa default
mode network anterior; DMNp default mode network
posterior; FPN frontoparietal network; DAN dorsal
attention network; VAN ventral attention network;
SMN sensorimotor network; Vis visual network; Sub-
cort subcortical network; Temp temporal network.

H.I. Zonneveld et al. NeuroImage 189 (2019) 432–444
3.3. Sex differences in network connectivity

We found that, compared to women, men had stronger within-
network positive connectivity in the FPN, DAN and SMN networks. Be-
tween networks, differences between men and women were predomi-
nantly observed involving the DAN, VAN, and Subcort (Supplementary
Figure 3). When examining the association of sex with correlation values
on a node-level, we observed similar findings as on a network-level
(Supplementary Figure 4). Finally, although we observed significant
differences in correlation values between men and women, the statistical
interaction by age and sex was limited to DMNa-SMN (Models I and II),
and DMNp-Subcort (Models II and III). For these networks, we observed
that middle-aged women had higher anti-correlation values compared to
middle-aged men, whereas at older age women had lower anti-
correlations values compared to men (data not shown).
3.4. Mean signal amplitude

Older age was associated with lower mean signal amplitude in all
networks, with the exception of subcortical and temporal network. After
adjusting for cardiovascular risk factors and APOE-ε4 status, associations
in the DMNp, FPN, and Vis networks were no longer statistically signif-
icant (Supplementary Table 2). Additionally, men had a higher mean
signal amplitude compared to women within the DMNa, FPN, DAN, VAN,
and SMN networks for all models (Supplementary Table 3).
3.5. Functional connectivity and risk factors for neurodegenerative disease

Fig. 6 shows the association between cardiovascular risk factors,
APOE and functional connectivity on a network-level. Higher body mass
index (BMI) was associated with lower within VAN connectivity.
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Hypertension was associated with lower within SMN connectivity.
Higher high-density lipoprotein was found to be associated with higher
within VAN connectivity. Between networks, most significant findings
were found for BMI (e.g., decreased magnitude of correlation values
between the DMNa-DMNP and DAN-Vis networks, and increased anti-
correlation values between the SMN-FPN, SMN-DAN, DMNp-Subcort,
Vis-Subcort, and Vis-Temp networks, all PFWE-corrected<0.0125). Dia-
betes mellitus was associated with decreased positive correlation values
of DMNa-DMNp and DMNp-Temp. No significant findings were found for
serum total cholesterol, APOE-ε4 carriership, and current smoking.
Supplementary Table 4 shows the association between the various car-
diovascular risk factors, APOE, and mean signal amplitude. Higher BMI
and blood pressure were associated with lower mean signal amplitude in
several networks.
3.6. Reproducibility of the findings, age stratification and comparison of
effect estimates

Supplementary Table 5 shows the characteristics of the two split
samples. With regards to the characteristics there were no significant
differences between the two groups. Fig. 7 illustrates that both split
samples show similar results to the whole sample and to each other,
albeit with lower statistical power.

Supplementary Figure 5 shows the age-stratified results. Age-effects
seemed to be stronger in the older sample (above 65 years of age)
versus the younger participants, though the direction and pattern of as-
sociations was similar in both groups. Furthermore, the exploration of a
possible non-linear relationship of age with functional connectivity on a
network-level showed that a significant association of age*age with
functional connectivity was limited to within-network functional con-
nectivity of SMN (Supplementary Figure 6).

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSLNets


Fig. 2. Mean correlation value of the node-pairs respectively within and be-
tween every (pair of) network(s), averaged across all individuals. Colors and
sizes of the blocks correspond to mean correlation (Z(r)) values of the node-pairs
(nodes are specified in Fig. 1, indicated by numbers) respectively within (on the
diagonal) and between every (pair of) network(s), with blue and red indicating
negative and positive correlations, respectively. Abbreviations: DMNa default
mode network anterior; DMNp default mode network posterior; FPN fronto-
parietal network; DAN dorsal attention network; VAN ventral attention network;
SMN sensorimotor network; Vis visual network; Subcort subcortical network;
Temp temporal network.
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We found the strongest effect estimate of age for DMNa within-
network connectivity with a mean difference in z score per standard
deviation increase in age: -0.21 (standard deviation (sd) 0.02), and VAN
within-network connectivity: βage¼�0.23 (sd 0.02). The weakest effect
estimates for within-network connectivity were found for FPN
(βage¼�0.01 (sd 0.02)), and Temp (βage¼�0.01 (sd 0.02)). Between
networks, the strongest effect estimates were observed for DMNa-DMNp:
Fig. 3. Association between age and functional connectivity on a node-level. Colors a
age in relation to functional connectivity, with blue and red indicating negative and
sociations, and all colored blocks survived multiple testing (P-FWEcorrected <0.0125). N
Model I: adjusted for sex, mean frame-wise head displacement, and ghost-to-signal r
matter volume and intracranial volume. Panel C. Model III: as Model II, additionally a
density lipoprotein cholesterol, diabetes mellitus, smoking, antihypertensive and lipid
A default mode network anterior; DMN-P default mode network posterior; FPN fronto
SMN sensorimotor network; VisN visual network; Subcort subcortical network; Tem
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βage¼�0.20 (sd 0.02), and Vis-Temp (βage¼ 0.20 (sd 0.02)). The
weakest effect estimate was found for DMNp-SMN (βage¼�0.01 (sd
0.02)). The effect estimate of age in relation to supratentorial grey matter
volume was βage (per standard deviation increase in age)¼�0.27 (sd 0.01).

4. Discussion

In this large population-based study, we studied patterns of functional
brain connectivity at the network level in an aging population using
resting-state fMRI. We found that within the anterior default mode
network, ventral attention network, and sensorimotor network, func-
tional connectivity decreased with increasing age, and that this was most
pronounced after the age of 65 years. Conversely, within the visual
network, functional connectivity increased with older age. Between
networks, we found patterns of both increases and decreases of (anti-)
correlations in approximate equal proportions. Furthermore, we found
that men showed higher within-network functional connectivity in the
frontoparietal, dorsal attention and sensorimotor networks compared to
women. Between networks, men and women differed predominantly in
the attentional networks and the subcortical network. The strongest ef-
fect size for age with within-network connectivity (observed for the
default mode network) had a similar magnitude of effect as the relation
between age and supratentorial greymatter volume. It is well-known that
age is the major risk factor for dementia and that synaptic dysfunction
represents an early sign of this disease associated with hallmark neuro-
pathological findings. Therefore, it can be hypothesized that changes in
functional connectivity in brain aging found in the current study may
represent one part of the spectrum from aging to clinical dementia. Thus,
this study adds to our understanding of functional connectivity of the
aging brain in middle-aged and elderly individuals, and can serve as the
basis for studies examining functional connectivity as a potential early
marker of neurodegenerative disease.

Although several studies have shown links between resting state
functional connectivity and cognition or dementia, fewer studies have
addressed functional connectivity within an aging population free of
stroke and dementia (Ferreira et al., 2016; Geerligs et al., 2015; Grady
et al., 2016; Sala-Llonch et al., 2015). Most studies that have investigated
the effect of age on functional connectivity measured differences within
or between brain networks using hypothesis-driven region of interest
based correlations, data-driven techniques such as independent compo-
nent analysis or by using graph theory. To incorporate our current results
nd sizes of the blocks correspond to t-values from the linear regression models of
positive associations, respectively. Darker colored blocks indicate stronger as-

umbers along x- and y-axis represent node-numbers presented in Fig. 1. Panel A.
atio. Panel B. Model II: as Model I, additionally adjusted for supratentorial grey
djusted for body mass index, systolic and diastolic blood pressure, total and high-
-lowering medication and apolipoprotein E-ε4 carriership. Abbreviations: DMN-
parietal network; DAN dorsal attention network; VAN ventral attention network;
p temporal network.



Fig. 4. Age associations with correlation values of functional connectivity within networks. Kernel density plots visualize the distribution of the data (red ¼ dense)
and the direction of the age effect on the connectivity values; black line denotes the linear regression line (with blue 95% confidence interval), adjusted for mean
frame-wise head displacement, ghost-to-signal ratio and sex, across nine networks. Dotted horizontal line indicates a connectivity value of zero as reference. Sig-
nificant associations are indicated by asterisks (*).
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into the heterogeneous findings from previous studies, some points
deserve discussion. First, previous studies assessed age-related changes in
functional connectivity from childhood into old age, or by comparing a
group of younger individuals to a group of much older individuals; this is
distinct from the approach utilized by the current study in which all
participants were between 50 and 95 years of age, and age was modeled
continuously. When comparing a group of young participants with a
group of older participants, it might be difficult to disentangle neuro-
development and neurodegeneration when investigating the effect of
aging on functional connectivity. This is supported by our finding that the
effect of age on connectivity was less strong in younger versus older
participants in our sample. In addition, it is hypothesized that aging af-
fects cerebrovascular dynamics (e.g., atherosclerosis or reduced vascular
reactivity) (Ferreira et al., 2016). Therefore, results from functional
connectivity studies that compared (very) young and older subjects
should be interpreted in the light of these limitations. Because our study
sample exists of middle-aged and elderly participants, we therefore think
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that this issue is less of a concern. Second, the methodology to investigate
functional connectivity differs considerably across studies, particularly
with respect to how nodes/networks are defined and how nodal/network
time-series are extracted from the data. Nodes can be defined using either
an anatomical (e.g., MNI-coordinates, AAL atlas (Tzourio-Mazoyer et al.,
2002)) or a functional atlas (e.g., (Yeo et al., 2011), and either as ‘hard’
(non-overlapping sets of voxels; e.g., AAL atlas (Tzourio-Mazoyer et al.,
2002) or ‘soft’ (overlapping weighted spatial maps; e.g., ICA-based
atlases (Kiviniemi et al., 2009; Smith et al., 2013)) parcels. Nodal
time-series can be obtained using either a univariate seed-based
approach (i.e., mean time-series) or multivariate regression. Given the
notion that anatomically defined brain areas do not always align with
function, and that our study population ranged in age between 50 and 95
years deviates from previously research, we obtained a study-specific
functional brain atlas. Importantly, this data-driven approach yielded
resting-state networks which highly correspond to the networks known
from literature (Yeo et al., 2011).



Fig. 5. Association between age and functional connectivity on a network-level, separated into positively and negatively connected network-pairs. Colors and sizes of
the blocks correspond to t-values from the linear regression models of age in relation to functional connectivity, with blue and red indicating negative and positive
associations, respectively. Larger blocks indicate stronger associations, and significance levels as indicated by asterisks: *P-FWEcorrected<0.0125 **P-FWEcorrected<0.0025.
Panel A/D. Model I: adjusted for sex, mean frame-wise head displacement, and ghost-to-signal ratio. Panel B/E. Model II: as Model I, additionally adjusted for
supratentorial grey matter volume and intracranial volume. Panel C/F. Model III: as Model II, additionally adjusted for body mass index, systolic and diastolic blood
pressure, total and high-density lipoprotein cholesterol, diabetes mellitus, smoking, antihypertensive and lipid-lowering medication and apolipoprotein E-ε4 status.
Abbreviations: DMNa default mode network anterior; DMNp default mode network posterior; FPN frontoparietal network; DAN dorsal attention network; VAN ventral
attention network; SMN sensorimotor network; Vis visual network; Subcort subcortical network; Temp temporal network.
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Given the above-mentioned considerations, our results can be placed
in the context of existing literature in the following way. We observed
that DMNa, VAN and SMN within-network connectivity showed signifi-
cant negative associations with older age, which has been reported pre-
viously in aging populations but also in Alzheimer's disease (Chan et al.,
2014; Ferreira et al., 2016; Grady et al., 2016). Conversely, the visual
network within-network connectivity showed significant positive asso-
ciation with older age. With respect to between-network connectivity, we
found both age-related increases and decreases in functional connectiv-
ity, as well as both positive and negative correlations between networks.
Notably, this can result in complex findings regarding the directionality
of associations, challenging their interpretation (e.g., a positive
inter-network age effect could indicate two networks becoming less
negatively or more positively correlated). Interestingly, generally in
literature an increased functional connectivity between networks in
elderly has been reported (Chan et al., 2014; Geerligs et al., 2015; Song
et al., 2014). It is hypothesized these changes together reflect a
decreasing segregation of brain networks. Importantly, this decreasing
segregation has previously primarily been investigated over wide age
ranges, spanning from young adulthood to very old age (Chan et al.,
2014). A general explanation is that with aging, the brain changes its
functional specialization. Our study importantly adds to this by showing
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that this segregation is still subject to change in middle and old age,
showing similar patterns as those observed over the full lifespan. Given
previous findings that decreases in segregation relate to cognitive decline
(Chan et al., 2014), our study findings implicate that this is also relevant
up to high age, may potentially be modified (given our results with
cardiovascular risk factors), and may link aging and neurodegeneration.

A post-hoc analysis showed that age-related effects on functional
connectivity on a nodal-level, while adjusting for sex, ghost-to-signal
ratio and motion, were negatively associated with the nodal distance
(r¼�0.18, p< 0.001). In other words, we observed stronger age-related
decreases in long-range connections such as between the nodes of DMNa-
DMNp and DAN-VAN networks. Our observation that in particular longer
distance networks were affected by decrease in functional connectivity
could relate to these connections potentially being more vulnerable to
damaging pathology such as amyloid deposition, reduced white matter
integrity or white matter lesions (Chan et al., 2017; Tomasi and Volkow,
2012). In this respect, the fact that amyloid pathology has been described
to occur as one of the earliest regions in the DMN, is of particular interest
(Mormino et al., 2011; Sheline et al., 2010b; Sperling, 2011). Whereas
previous studies on aging changes in the DMN were inconclusive, our
study more convincingly supports the DMNa to decrease in connectivity
in aging, as well as its connections with other networks, lending further



Fig. 6. Association of cardiovascular risk factors and APOE-ε4 status with functional connectivity on a network-level. Colors and sizes of the blocks correspond to t-
values from the linear regression models of cardiovascular risk factors and APOE-ε4 status in relation to functional connectivity, with turquoise and fuchsia indicating
negative and positive associations, respectively. Larger blocks indicate stronger associations, and significance levels as indicated by asterisks: *P-FWEcorrected<0.0125
**P-FWEcorrected<0.0025. Model is adjusted for age, sex, mean frame-wise head displacement, ghost-to-signal ratio, supratentorial grey matter volume and intracranial
volume. Abbreviations: 95% CI 95% confidence interval; DMNa default mode network anterior; DMNp default mode network posterior; FPN frontoparietal network;
DAN dorsal attention network; VAN ventral attention network; SMN sensorimotor network; Vis visual network; Subcort subcortical network; Temp temporal network;
APOE-ε4 apolipoprotein E-ε4.
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support to the hypothesis that this may an important site of accumulation
of pathology, even in asymptomatic subjects. In parallel, we found
age-related increases in functional connectivity in short-range connec-
tions such as between the nodes of the DMNa-FPN and the DMNp-DAN.
This may suggest that at older age functional connectivity primarily in-
creases between networks that are anatomically close, whereas it de-
creases between networks that are further apart, although to our
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knowledge such findings have not been reported before.
Of the major resting state networks reported in the literature, the

DMN is most frequently investigated. The DMN comprises a set of brain
regions including the ventral/dorsal medial prefrontal cortex and the
anterior cingulate cortex (together the DMNa), and the posterior cingu-
late cortex, precuneus and inferior parietal lobules (DMNp). The DMN is
deactivated during (cognitive) tasks, shows high levels of activity at rest,



Fig. 7. Reproducibility of the association between age and functional connectivity on a network-level. Colors and sizes of the blocks correspond to t-values from the
linear regression models of age in relation to functional connectivity, with blue and red indicating negative and positive associations, respectively. Larger blocks
indicate stronger associations, and significance levels as indicated by asterisks: *P-FWEcorrected<0.0125 **P-FWEcorrected<0.0025. First panel reflects the whole sample
and corresponds to Fig. 4 (Panel A), second and third panel reflect the randomly selected samples. Model adjusted for sex, mean frame-wise head displacement, ghost-
to-signal ratio, supratentorial grey matter volume and intracranial volume. Abbreviations: DMNa default mode network anterior; DMNp default mode network
posterior; FPN frontoparietal network; DAN dorsal attention network; VAN ventral attention network; SMN sensorimotor network; Vis visual network; Subcort
subcortical network; Temp temporal network.
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and has been studied extensively in relation to dementia (Greicius et al.,
2004; Hafkemeijer et al., 2012). Several studies have also investigated
age-related changes in DMN connectivity, but the results are inconclusive
(Andrews-Hanna et al., 2007; Ferreira et al., 2016; Jockwitz et al., 2017;
Klaassens et al., 2017). Within the DMNa, older age was associated with
decreased magnitude of a positive correlation value whereas within the
DMNp we did not observe any association with age. Interestingly, con-
nectivity between DMNA-DMNp showed a negative association with
older age, which is consistent with previous studies in healthy aging
(Andrews-Hanna et al., 2007; Esposito et al., 2008; Ferreira et al., 2016).
Such age-related decreases in functional connectivity within DMN could
potentially influence the ability of the brain to shift from a task-negative
to a task-positive state, thereby hampering cognitive performance
(Andrews-Hanna et al., 2007). A population-based study of 711 older
adults (55–85 years of age) found no age-related changes in the DMN
(Jockwitz et al., 2017). Importantly, in that study, the DMN was not
divided into its anterior and posterior subsystems, indicating the poten-
tial relevance of investigating DMN at different scales of functional
organization.

When examining networks implicated in primary information pro-
cessing, we found increased functional connectivity in the visual
network. This is in contrast with a study that found decreased functional
connectivity in the visual network when comparing a group of old and
young adults (Nashiro et al., 2017). In line with previous research, the
sensorimotor network showed decreased within-network functional
connectivity (Nashiro et al., 2017). On a node-level, we observed pri-
marily decreased correlation values between nodes from the auditory
cortex and primary motor cortex. Within temporal and subcortical net-
works, no aging effects on functional connectivity measures were
observed. However, these two networks showed age-associations with
other networks.

Taken together, these findings suggest that with an increase in age,
the brain seems to undergo a complex reorganization process with
integration and segregation of resting-state networks (Sala-Llonch et al.,
2015; Sun et al., 2012). Though it remains unclear whether changes in
functional connectivity seen in aging can be explained by reductions in
grey matter volume, associations in the present study did not substan-
tially change after adjusting for global grey matter volume. It may thus be
assumed that age-associations in resting-state connectivity found in the
current study were not entirely driven by differences in atrophy rates
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(Friston, 2011; Jockwitz et al., 2017; Klaassens et al., 2017).
The BOLD signal is considered an indirect measure of neural activity,

and depends on neurovascular coupling and cerebrovascular reactivity,
both of which are known to undergo age-related changes (Liu, 2013). In
line with this, we found that older age was associated with lower mean
signal amplitude within several resting state networks. In addition,
several cardiovascular risk factors were associated with the mean signal
amplitude, and adjusting signal amplitude for cardiovascular risk factors
led to weaker associations. This might suggest that cardiovascular risk
factors affect neurovascular coupling, cerebrovascular reactivity, and
subsequent BOLD signal (Liu, 2013). It has been suggested that there are
regional, age-specific differences in vascular reactivity, which may only
partly reflect those captured on a global level. Although we have
attempted to control for differences on a global level, regional specificity
might deviate from the overall global pattern (Tsvetanov et al., 2015).

Little is known about sex differences in functional connectivity. The
observed pattern of differences in the functional connectome found in the
current study is different compared to another large population-based
study (Ritchie et al., 2017). We observed greater connectivity in men
within the FPN, DAN and SMN, whereas higher connectivity within the
DMN in women and higher connectivity within the SMN and visual
network was previously reported. Comparing the between-network
analysis from both studies is challenging due to the fact that the con-
nectivity in that study was measured regardless of valence (Ritchie et al.,
2017). Furthermore, the authors calculated the strength of a connection
differently from the approach used in the current study.

With respect to the effect of cardiovascular risk factors and APOE-ε4
status on functional connectivity, we observed the strongest associations
for body mass index with a wide range of networks. Furthermore, we
observed in participants with diabetes mellitus lower functional con-
nectivity between DMNa-DMNp. It has been hypothesized that type 2
diabetes mellitus and insulin resistance are associated with systemic
hyperinsulinemia and reduced brain insulin levels, which are risk factors
for dementia (Blazquez et al., 2014; Craft, 2007). A previous study found
that type 2 diabetes mellitus patients showed lower correlation values
between seeds of DMNa and DMNp compared to healthy controls (Musen
et al., 2012), which is in line with our results. Although we did not
observe a significant association with hypertension and functional con-
nectivity of a network-level, we did observe that higher systolic blood
pressure was associated with lower mean signal amplitude in several
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networks, whilst higher BMI was associated with higher mean signal
amplitude in several networks. This might indicate that although high
BMI is associated with poor cardiovascular risk, BMI and high blood
pressure associate differently with functional connectivity. Furthermore,
in contrast to previous literature which showed that the APOE-ε4 allele
modulates functional connectivity decades before clinical symptoms
arise (Filippini et al., 2009; Sheline et al., 2010a), our present study did
not find such a significant association with APOE-ε4 status. Notably, we
observed lower within-network connectivity and lower mean signal
amplitude in APOE-ε4 carriers, albeit non-significant. This may indicate
that at the age of our study participants (45 years and above), the effect of
APOE is already reduced. Yet, more research is needed to investigate the
role of APOE-ε4 in the relationship between functional connectivity and
cognition.

Though this study has several strengths, some limitations deserve to
be acknowledged. First, it is known that motion can affect functional
connectivity (Van Dijk et al., 2012). A post-hoc analysis showed that
older age was associated with greater frame-wise head displacement
(r¼ 0.21, P< 0.001). In rs-fMRI, handling motion-related effects is a
complex issue for which as of yet no perfect correction method has been
found (Caballero-Gaudes and Reynolds, 2017; Power et al., 2017). By
applying FMRIB's ICA-based Xnoiseifier, adding amotion covariate in our
group-level analyses, and excluding participants with extensive head
motion we aimed to limit potential bias and to increase sensitivity, whilst
also staying in line with methods applied in similar studies in order to
facilitate comparison of results (Alfaro-Almagro et al., 2018; Miller et al.,
2016). In addition, we performed several additional post-hoc analyses to
ensure our results are not contingent upon using FIX-ICA and adding
motion as covariate to the regression models only. For this we performed
the following analyses:

(I) We compared ‘high-movers’with ‘low-movers’within age strata to
investigate motion effect on functional connectivity independent of the
age effect. This analysis revealed no significant motion-related effects on
functional connectivity within the age strata (see Supplementary Figure 7
including description of the sample). (II) Second, we created a motion-
matched sample in order to explore the age-effects on functional con-
nectivity within a motion-matched study sample (n¼ 664 subjects from
the original population, matched on severity of motion). Within this
matched sample, we found similar age-effects on functional connectivity
compared to the whole study population, indicating that our results are
not driven by motion-effects (see Supplementary Figure 8 for the results
and the description of the motion-matched sample). (III) Finally, we
replicated the nodal distance plot in the motion-matched sample (Sup-
plementary Figure 9). We observed a similar pattern in the motion-
matched sample compared to the whole sample. This again shows that
the age-effects found in the current study are, at least not importantly,
dependent on motion effects.

Furthermore, in this field of much debate and controversy, global
signal regression has recently been suggested to remove noise from data.
Global signal regression removes the average fMRI signal across all the
voxels in the brain, with an important recognized drawback that it may
remove temporal signal, which comprises signal of interest and not just
noise. This may even result in distance-dependent artifacts. Therefore, in
the current study we preferred an ICA-based procedure, which allows for
removing noise while specifically retaining signal of interest, although
we acknowledge that there is at present no universally accepted optimal
method for removing motion from the data. In addition, though there is
no standard procedure that has been shown to fully remove the effect of
head motion from the data (Pruim et al., 2015), an ongoing debate
persists on whether such residual effects might reflect neurobiological
correlates rather than noise (Couvy-Duchesne et al., 2014; Van Dijk et al.,
2012). Second, a weak age-association with functional connectivity on a
network-level may also be driven by a mixture of positive and negative
age-associations on a nodal level, which may cancel out each other.
Importantly, if any, this might lead to an underestimation rather than an
overestimation of the age-effect. Third, it is still under debate whether
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negative correlations are artificial in origin. Also, there is much discus-
sion on how these anti-correlations relate to the preprocessing (e.g.,
global signal regression). Since there is much debate about it, we chose to
report the full picture rather than a selective one (e.g., only positive
correlations), but are at the same time cautious about making inferences
based on these negative correlations. Fourth, measuring correlation
values between networks does not provide the crucial causal information
about the dynamic nature of functional connectivity. Functional con-
nectivity may exist between anatomically unconnected nodes, but can be
driven by other pathways of the functional connectome (Adachi et al.,
2012). To investigate this, studies that investigate partial correlation
(direct vs indirect connections) and effective connectivity (causal con-
nections) are needed (Friston, 2011). Fifth, the number of edges is
dependent of the number of nodes within a certain network. In the cur-
rent study, we clustered 50 functional nodes into networks. The identi-
fied networks differ in the number of nodes per network, e.g. the
subcortical network consists of two nodes, whereas the sensorimotor
network consists of eight nodes. This will affect the level of detail of our
findings and potentially the accuracy of our results.

Sixth, imaging at 1.5T has a lower signal-to-noise ratio than higher
field strengths. Due to the population-based nature of the study, in the
current scan-protocol we had to carefully balance the restrictions of time,
costs and inconvenience for the participants with the relevance and
quality of the acquired imaging data. In addition, more noise in the time
series may result in less reliable (and probably lower) connectivity values
(Bijsterbosch et al., 2017). Thus, combined with the constraints on
temporal and spatial resolution of our rs-fMRI sequence (due to the
population-based nature of the study), this may have reduced our
sensitivity to find biological effects (Wardlaw et al., 2012).

In conclusion, this exploratory population-based study allowed us to
examine age-related patterns of functional brain connectivity. This work
extends beyond previous work by showing that age is not only related to
decreases in within-network functional connectivity, but also to diffuse
increases and decreases in (anti-)correlations between different net-
works. Moreover, this study could provide useful information for studies
of neurodegeneration to contrast their findings against. Our results pro-
vide additional support to the notion that the aging brain undergoes a
complex functional reorganization process. Future longitudinal studies
are needed to elucidate the mediation role of structural brain features as
well as to explore the association between functional connectivity and
cognition or dementia.
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