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A.1. Introduction

T he self-consistent Schrödinger-Poisson (S-P) model was first used by F. Stern to study

energy levels, populations, and charge distributions in n-type inversion layers on p-

type Si in 1972 [133]. It has also been used by several groups to provide valuable insights

into experimental results in LaAlO3/SrTiO3 heterostructures [89, 90, 128, 132, 135].

In the S-P model, quantum effects are taken into account in the effective mass ap-

proximation, and the envelope wave function is assumed to vanish at the surface [133].

Compared to Si inversion layers, calculations for the LaAlO3/SrTiO3 interface are more

complicated, which is due to the anisotropic effective mass of the Ti 3d orbitals and the

field-dependent permittivity of the SrTiO3 substrate [62, 91].

A.1.1. Anisotropic effective mass of Ti 3d orbitals
The LaAlO3 film is grown on a SrTiO3 (001) substrate, and the S-P calculation is per-

formed along the growth direction, i.e. the z direction. The effective masses of the dx y

and dxz,y z subbands are anisotropic. We take the masses of the various bands as

mx,y
x y = ml , mz

x y = mh ;

mx,z
xz = ml , my

xz = mh ; (A.1)

my,z
y z = ml , mx

y z = mh ,

where ml = 0.7me and mh = 14me [89, 124, 134], with me being the mass of a free elec-

tron.

A.1.2. Permittivity of SrTiO3
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Figure A.1: (a) Temperature dependence of the permittivity (εr) of SrTiO3 without gate voltage applied. Image

adapted from Ref. [62]. (b) Electric-field dependence of εr at 4.2 K from two empirical expressions [123, 132].

SrTiO3 single crystal has a temperature-dependent permittivity (εr) as shown in Fig.

A.1(a), which reaches >20000 at low temperature. However, εr decreases when an electric
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field (E) is applied to the material. So far, the field dependence of εr is still described by

empirical expressions. Here, we discuss two widely used expressions. The first one was

reported by Neville et al. [123]:

εr(E) = 1

A(T )+B(T ) |E | , (A.2)

where A(T ) is the inverse zero-field permittivity as a function of temperature, and B(T )

is the field-dependent part as a function of temperature. At 4.2 K, A = 4.097×10−5 and

B = 4.907×10−10 m/V for the (001) direction. The second one was reported by Gariglio

et al. [132]:

εr(E) = 1+ B

[1+ (E/E 0)2]1/3
, (A.3)

where B = 25462, and E 0 = 82213 V/m. It can be seen from Fig. A.1(b) that the two curves

overlap well in low fields but differ a lot in high fields. In LaAlO3/SrTiO3 heterostructures,

the typical electric field at the interface is on the order of 107 V/m. Therefore, the two

expressions can lead to very different results. We use Eq. (A.3) in our calculation.

A.2. Self-consistent Schrödinger-Poisson calculation
The S-P model involves the Schrödinger equation

(
− ħ2

2mz
α

d 2

d z2 +eV (z)
)
ψnα(z) = εnαψnα(z), n = 1,2,3, · · · , (A.4)

and the Poisson equation

− d

d z

(
ε0εr(E(z))

d

d z
V (z)

)
= ρ3D(z), (A.5)

where α =x y , xz, y z labels the Ti t2g orbitals (dx y , dxz , dy z ), V (z) is the confining po-

tential, ψnα(z) and εnα are normalized wave function and eigen value of the nth sub-

band of the α orbital, respectively, ε0 is the vacuum permittivity, and ρ3D(z) is the three-

dimensional (3D) charge distribution.

At the LaAlO3/SrTiO3 interface, electrostatic confinement is described by the confin-

ing potential V (z), which can be calculated by the Poisson equation. For a given charge

distribution and electrostatic boundary conditions, V (z) is uniquely defined. On the

other hand, for a given V (z), the distribution of mobile electrons is determined by the

population of bound states in V (z), which can be calculated by the Schrödinger equa-

tion. Therefore, the coupling between these two equations could enable a self-consistent

calculation of V (z). A schematic of the self-consistent S-P calculation is shown in Fig.

A.2.
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Figure A.2: Schematic of the Schrödinger-Poisson calculation, which contains two self-consistent loops. The

first loop (dotted teal box) is for calculating the electric field E(z) and the second loop (dotted purple box) for

the electric potential V (z).
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A.2.1. Input parameters
Input parameters of the S-P calculation include the initial mobile electron density nm

0 ,

the initial trapped electron density ntr
0 , the gate-induced mobile electron density nm

G (VG),

the gate-induced trapped electron density ntr
G(VG), a trial wave functionψ0(z), and a trial

electric field E0(z). Now we discuss them one by one.

Initial mobile and trapped electron density

Initial mobile electron density nm
0 is the sheet carrier density of the virgin state, which is

obtained from magnetotransport measurement. In our sample, nm
0 = 1.41×1013 cm−2.

Initial trapped electron density ntr
0 can only be obtained from trial and error until the

calculated results cover the experimental results. In our case, ntr
0 = 6.4×1013 cm−2. We

take z Ê 0 to be SrTiO3 and z < 0 to be LaAlO3. The positive charge density is nm
0 +ntr

0 on

the LaAlO3 side as the boundary condition, which keeps an overall charge neutrality.

Gate-induced mobile and trapped electron density

In back-gating experiment, the total amount of electrons ntot
G (VG) induced by the gate

voltage (VG) can be calculated using a parallel plate capacitor model [130, 131]:

ntot
G (V G) =

∫ V2

V1

ε0

ed STO
εr(V G)dV G, (A.6)

where d STO = 0.5 mm is the thickness of the SrTiO3 substrate, and E =V G/d STO. It should

be noted that the electric field E here is considered to be position independent. The rea-

son is that E only changes significantly at the interface within about 20 nm and is con-

stant in the SrTiO3 bulk. As discussed in Chapter 4, the gate-induced trapped electron

density ntr
G(VG) can only be obtained from experimental results. In our sample,

ntr
G(V G) = N (1−e−

V G
400 ), (A.7)

where N = 6.2×1013 cm−2. Therefore, the gate-induced mobile electron density

nm
G (V G) = ntot

G (V G)−ntr
G(V G). (A.8)

Trial wave function and trial electric field

A trial wave function (ψ0(z)) gives a first guess of the mobile charge distribution. We use

the Fang-Howard variational wave function, which gives a good approximation for the

ground state in the z direction [131]

ψ0(z) =
√

b3

2
ze−

bz
2 , (A.9)
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where b is the variational parameter

b =
(33π

2

(
nm

0 +nm
G (V G)

)
a2

B

) 1
3 1

aB
, (A.10)

where aB is the Bohr radius

aB = 4πεrε0ħ2

m∗e2 . (A.11)

It should be noted that the actual input values for Eq. (A.11) do not affect the final results.

We take εr = 1 and m∗ = me .

A trial electric field (E0(z)) can be any reasonable value and we take E0(z) = 1000 V/m.

A.2.2. Self-consistent calculation
First, we calculate the 3D charge distribution ρ3D(z), which is the sum of the distribution

of mobile and trapped electrons,

ρ3D(z) = ρm
3D(z)+ρtr

3D(z). (A.12)

The mobile charge distribution is given by

ρm
3D(z) =−e

(
nm

0 +nm
G (V G)

)∣∣ψ0(z)
∣∣2 . (A.13)

The trapped charge distribution should also be obtained from trial and error. In our

sample,

ρtr
3D(z) =

0 for z < 0

−e
ntr

0 +ntr
G(V G)
λ e−

z
λ for z Ê 0

(A.14)

where λ= 50 nm.

Integration of Eq. (A.5) along the z direction gives

−ε0εr(E(z))
d

d z
V (z) =−ε0εr(E(z))E(z) =

∫ L

0
ρ3D(z)d z, (A.15)

where the integration range is from 0 to L = 100 nm, which is divided into 2000 equal

sections.

Now we enter the first self-consistent loop for calculating E(z) as shown in Fig. A.2.

The convergence is checked by

η= 1

L

∫ L

0

(Ei (z)−Ei−1(z)

Ei (z)

)2
d z. (A.16)

If η is large than the error tolerance εp (set to 10−5 ), a new electric field (E
′
i (z)) is calcu-

lated by the over relaxation method in order to get a faster convergence

E
′
i (z) = ζEi−1(z)+ (1−ζ)Ei (z), (A.17)
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where ζ = 0.3. If η is smaller than εp , the calculation is converged. Integration of Ei (z)

along the z direction gives the electric potential V j−1(z).

Next, V j−1(z) is injected into Eq. (A.4). The outcome of solving the Schrödinger

equation is the eigen values (εnα) and the normalized wave functions (ψnα(z)) of the

subbands of different t2g orbitals. We can calculate the mobile charge distribution again

with εnα and ψnα(z):

ρm
3D(z) =−e

∑
n,α
Θ(E F −εnα)

√
mx

αmy
α

πħ2 (E F −εnα)
∣∣ψnα(z)

∣∣2 , (A.18)

where Θ is the Heaviside step function and EF is the Fermi energy. EF can be obtained

by numerically solving

nm
0 +nm

G (V G) = ∑
n,α
Θ(E F −εnα)

√
mx

αmy
α

πħ2 (E F −εnα). (A.19)

A new ρ3D(z) is obtained by summing up Eq. (A.14) and Eq. (A.18).

Now we enter the larger self-consistent loop for calculating V (z) as shown in Fig. A.2.

By treating the new electric potential V j (z) and V j−1(z) with the same manner as shown

in Eq. (A.16) and Eq. (A.17), a converged electric potential V (z) can be obtained.

The subband dispersion can be calculated by

Enα = ħ2k2
x

2mx
α

+
ħ2k2

y

2my
α

+εnα, (A.20)

where kx and ky are the wavevector in the x and y directions, respectively.




