

Conductance and gating effects at sputtered oxide interfaces Yin, C.

Citation

Yin, C. (2019, July 3). *Conductance and gating effects at sputtered oxide interfaces. Casimir PhD Series*. Retrieved from https://hdl.handle.net/1887/74527

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/74527

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/74527</u> holds various files of this Leiden University dissertation.

Author: Yin, C. Title: Conductance and gating effects at sputtered oxide interfaces Issue Date: 2019-07-03

Conductance and Gating Effects at Sputtered Oxide Interfaces

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van de Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 3 juli 2019 klokke 10.00 uur

door

Chunhai Yin

geboren te Cangzhou, China in 1987

Promotor:

Prof. dr. J. Aarts

Universiteit Leiden

Promotiecommissie:

Dr. A. D. Caviglia	Technische Universiteit Delft
Prof. dr. J. Santamaria	Universidad Complutense Madrid
Prof. dr. E. R. Eliel	Universiteit Leiden
Prof. dr. ir. T. H. Oosterkamp	Universiteit Leiden

Casimir PhD series, Delft-Leiden 2019-24 ISBN 978-90-8593-407-3

An electronic version of this thesis is available at http://openaccess.leidenuniv.nl/

Cover design: Chunhai Yin

About the cover: The cover shows an illustration of the $LaAlO_3/SrTiO_3$ interface. The left side is the $LaAlO_3$ film and the right side is the $SrTiO_3$ substrate. The light blue, dark blue, orange, red and gray spheres represent La, Al, Sr, Ti and O atoms, respectively. The light gray squares represent oxygen octahedra.

To my grandfather

Contents

1	Intr	oduction	1		
	1.1	Complex oxides	2		
	1.2	$LaAlO_3/SrTiO_3$ heterostructures	3		
	1.3	Mechanisms for interfacial conduction	4		
		1.3.1 Intrinsic mechanism: polar discontinuity	4		
		1.3.2 Extrinsic mechanisms: roles of defects	6		
	1.4	Electrostatic gating of $LaAlO_3/SrTiO_3$ heterostructures	8		
		1.4.1 Band structure at the LaAlO ₃ /SrTiO ₃ interface	8		
		1.4.2 Electric-field effects in $LaAlO_3/SrTiO_3$ heterostructures	10		
	1.5	Outline of this thesis	11		
2	Ехр	Experimental setups 1			
	2.1	Thin film deposition	14		
		2.1.1 Introduction to sputter deposition.	14		
		2.1.2 90° off-axis sputtering	16		
	2.2	Sample fabrication	17		
		2.2.1 Substrate Preparation	17		
		2.2.2 Thin film growth	18		
		2.2.3 Hall bar device fabrication	18		
	2.3	3 Sample characterization			
		2.3.1 Atomic force microscopy	20		
		2.3.2 X-ray diffraction	20		
		2.3.3 Magnetotransport measurements	22		
3	Con	trolling the interfacial conductance in LaAlO, /SrTiO, in 90° off-axis sput-			
	ter o	deposition 25			
	3.1	Introduction	26		
	3.2	Optimization of growth parameters	27		
	3.3	Controlling conductivity by varying sputtering pressure			
		3.3.1 Surface and interface	29		
		3.3.2 X-ray diffraction	32		
		3.3.3 Transport properties	33		

	3.4	Discussion	33
	3.5	Conclusion	35
4	Elec	ctron trapping mechanism in LaAlO ₃ /SrTiO ₃ heterostructures	37
	4.1	Introduction	38
	4.2	Experiments	39
	4.3	Back-gate tuning of magnetotransport properties.	40
	4.4	Schrödinger-Poisson calculations.	43
	4.5	Revaluation of thermal escape mechanism	45
	4.6	Discussion	46
	4.7	Conclusion	47
5	Tun	ing Rashba spin-orbit coupling in LaAlO ₃ /SrTiO ₃ heterostructures by band	
	filli	ng	51
	5.1	Introduction	52
	5.2	Theoretical concepts	53
		5.2.1 Rashba spin-orbit coupling in $LaAlO_3/SrTiO_3$ heterostructures	53
		5.2.2 Weak localization and weak antilocalization effects	54
	5.3	Experiments	57
	5.4	Back-gate tuning of magnetotransport properties.	58
	5.5	Weak antilocalization analysis	61
	5.6	Conclusion	63
6	Tun	able magnetic interactions in LaAlO ₃ /SrTiO ₃ heterostructures by ionic	
	liqu	id gating	65
	6.1	Introduction	66
	6.2	Experiments	67
	6.3	Tuning of Kondo effect	68
	6.4	Tuning of anomalous Hall effect	71
	6.5	Discussion	74
	6.6	Conclusion	75
A Self-consistent Schrödinger-Poisson calculation		-consistent Schrödinger-Poisson calculation	79
	A.1	Introduction	80
		A.1.1 Anisotropic effective mass of Ti $3d$ orbitals $\ldots \ldots \ldots \ldots$	80
		A.1.2 Permittivity of $SrTiO_3$	80
	A.2	Self-consistent Schrödinger-Poisson calculation	81
		A.2.1 Input parameters	83
		A.2.2 Self-consistent calculation	84

Contents	vii
References	87
Summary	105
Samenvatting	109
List of Publications	113
Curriculum Vitæ	115
Acknowledgements	117