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5. Union complexity of random disk regions

CHAPTER 5
Union complexity of random disk

regions

This chapter is based on joint work with Mark de Berg.

Abstract

We study the union complexity of a set of n disks when disk centers are sampled
uniformly and independently at random in a convex compact region S. We consider
the case where all the disks have a common radius R = diam(S) and prove that if S
is a square or a disk, then the expected union complexity is Θ(n1/3). Our proofs are
based on the arguments used by Har-Peled [55] for the expected complexity of convex
hulls of random points. We also show a connection between the union complexity of
disk regions and the complexity of convex hull of a set of points.
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5. Union complexity of random disk regions

§5.1 Introduction and main results

The introduction to this chapter was given in Section 1.2. Nevertheless, we repeat
the setting and the definitions for ease of reading. Let S be a fixed convex compact
region in R2, and X = {X1, . . . , Xn} be a set of n points sampled independently and
uniformly at random from S. Let D = {D1, . . . , Dn} be a collection of n disks, where
Di is the closed disk centered at Xi with a fixed radius R such that diam(S) ≤ R <∞,
where diam(S) is the diameter of S, for i = 1, . . . , n. By choosing the radius large
enough such that any disk covers S completely, we make sure that the boundary
of the disks always lie outside of S and this makes the analysis easier. The set of
boundary disks of D, denoted by BD(D), is the set of disks in D whose boundaries
are not completely covered by other disks, i.e.,

BD(D) = {D ∈ D : ∂D \ ∪D′∈D\{D}D′ 6= ∅},

where ∂D denotes the boundary of D. We are interested in union complexity of D
which is the number of boundary arcs of D. This number is linear in the number of
disks in BD(D). Let Bn denote the number of boundary disks of D when D contains
n disks. Bn is a random variable, since disk centers are random, and we are interested
in the expected value of Bn as a function of n. We consider two cases: the case where
S is a unit square and all the disks have radius R =

√
2, and the case where S is a

unit disk and all the disks have radius R = 2.
In what follows, we use the notation for asymptotic comparison of functions f, g :

N → [0,∞): f(n) = O(g(n)) or g(n) = Ω(f(n)) when lim supn→∞ f(n)/g(n) < ∞;
f(n) = o(g(n)) or g(n) = ω(f(n)) when limn→∞ f(n)/g(n) = 0; f(n) = Θ(g(n))

when both f(n) = O(g(n)) and g(n) = O(f(n)). We denote by d(x, y) the Euclidean
distance between x, y ∈ R2, and with a slight abuse of notation we write d(x,A) =

inf{d(x, y) : y ∈ A} for x ∈ R2 and A ⊂ R2. Our main result is given in the following
theorem.

Theorem 5.1.1. Suppose that

(a) either S is the unit square [0, 1]× [0, 1] ∈ R2 and each disk has radius R =
√

2 ;

(b) or S is the unit disk {x ∈ R2 : d(x, o) ≤ 1}, where o is the origin, and each disk
has radius R = 2.

Then
E(Bn) = Θ(n1/3).

For the case of the unit square, the problem appears in the context of conflict-free
colouring as discussed in Section 1.2.1. We present the unit-disk case as a generalisa-
tion. The union-complexity problem is related to the problem of the complexity of
the convex hull, as we pointed out in Section 1.2.2. In fact, our proof follows some
ideas developed for tackling convex-hull problems [39, 55]. In Section 5.2 we give the
proof of Theorem 5.1.1 for the case of a unit square and in Section 5.3 for the case of
a unit disk. In Section 5.4, we discuss several extensions of the boundary complexity
problem.
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§5.1. Introduction and main results

Figure 5.1: The halo for a set of 6 disks with centers inside the unit square is shown as the
shaded region in the square.

Before proceeding with the proof of the Theorem 5.1.1, we introduce some further
notation and state a lemma that will be crucial. Consider the general setting: S is a
convex compact region and the disks have radius diam(S) ≤ R < ∞. Let Cov(D) :=

∪D∈DD denote the coverage area of D, i.e., the subset of R2 covered by the disks in
D. Let Halo(D) = {x ∈ S : d(x, ∂(Cov(D)) ≤ R} be the set of points in S whose
distance to the boundary of the coverage area is less than R (see Figure 5.1), and let
An = E(Area(Halo(D))) be the expected area of the halo. To compute the expected
number of boundary disks, we use the area of the halo. The two are related through
the following lemma, which is analogous to Efron’s Theorem for the convex hull [39].

Lemma 5.1.2. Suppose that S is a convex compact region in R2 with unit area, and
let D be a collection of n disks with a fixed radius R such that any single disk covers
S completely and such that the centers are sampled uniformly and independently from
S. Then E(Bn) = nAn−1, where An is the expected area of the halo of a set of n
points sampled uniformly and independently at random from S.

Proof. First we note that, for any i = 1, . . . , n, the disk Di is a boundary disk if and
only if its center falls inside the halo of Di, where Di := D \ {Di}. This gives

Bn =

n∑
i=1

1{Di∈BD(D)} =

n∑
i=1

1{Xi∈Halo(Di)},

so

E(Bn) =

n∑
i=1

P(Xi ∈ Halo(Di))

=

n∑
i=1

∫
Sn−1

P(Xi ∈ Halo(Di) | Xj = xj , j ∈ [n] \ {i})dx1 . . . dxi−1dxi+1 . . . dxn.
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5. Union complexity of random disk regions

Note that the conditional probability P(Xi ∈ Halo(Di) | Xj = xj , j ∈ [n] \ {i}) is
equal to Area(Halo(Di)), and so by symmetry we have

E(Bn) =

n∑
i=1

∫
Sn−1

Area(Halo(Di))dx1 . . . dxi−1dxi+1 . . . dxn

=

n∑
i=1

E(Area(Halo(Di))) = nAn−1.

§5.2 Case of the unit square

In this section we give the proof of Theorem 5.1.1 for the case of the unit square.
Thanks to Lemma 5.1.2, in order to compute the expected boundary complexity we
only need to compute the expected area of the halo An. The next proposition gives
an upper bound. The proof follows the arguments in [55] for the convex hull of a
point set sampled in the unit square.

Proposition 5.2.1. Suppose that S is the unit square [0, 1] × [0, 1] ⊂ R2. Then
An = O(n−2/3).

Proof. We divide the unit square into n rows and n columns each of width 1/n, which
gives n2 small squares of size 1/n× 1/n. We derive an upper bound for the number
of squares that intersect the halo and multiply this by n−2 to get an upper bound for
the area.

Let Si,j = [(i − 1)/n, i/n] × [(j − 1)/n, j/n] be the jth square of the ith column,
Ci = ∪nj=1Si,j be the ith column, and C(k, l) = ∪li=kCi. Let X = {X1, . . . , Xn} be
the random set of disk centres. Let m = bn2/3c and for j = m+ 1, . . . , n−m define
Yj := min{k ∈ [n] : X ∩ (∪j−1

i=j−mSi,k) 6= ∅}, i.e., Yj is the index of the lowest row that
contains a point from X in C(j−m, j− 1). Define Y ′j analogously for C(j+ 1, j+m)

(see Figure 5.2a).
The squares at the bottom of the jth column that intersect the halo stay below or

intersect the circle arc with radius
√

2 that passes through the lowest disk centers in
C(j −m, j − 1) and C(j + 1, j +m). Furthermore, this arc stays below the arc that
passes through the upper-left corner of the square Sj−m,max{Yj ,Y ′j } and the upper-right
corner of the square Sj+m,max{Yj ,Y ′j }. The latter arc has cord length (2n2/3 + 1)/n =

2n−1/3 + n−1, so the distance between the highest point of the arc and the cord is
√

2−
√

2−
(
2n−1/3 + n−1

)2
= O(n−2/3) as n tends to∞. Let Rj denote the number

of squares that stay between the chord and the highest point of the arc. Then Rj is
of order O(n1/3) (see Figure 5.2b).

Clearly, the number of small squares in Cj that intersects the halo is less than
max{Yj , Y ′j } + Rj < Yj + Y ′j + Rj . Next we compute the E(Yj) and E(Y ′j ). For
Yj , we divide the area C(j − m, j − 1) into rectangles of area 1/n, so that each
rectangle is m squares wide and n/m squares high. Let Zj be the index of the lowest
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§5.2. Case of the unit square

rectangle that contains a point from X. Then Yj ≤ n1/3Zj . Now, observe that
P(Zj ≥ k) ≤ (1− (k − 1)/n)n ≤ e−(k−1). Hence

E(Zj) ≤
n2/3∑
k=1

kP(Zj = k) ≤
∞∑
k=1

P(Zj ≥ k) ≤
∞∑
k=1

ke−(k−1) = O(1). (5.1)

From this we get E(Yj) = O(n1/3) and similarly E(Y ′j ) = O(n1/3). Summing over
j = m, . . . , n−m, we see that the expected number of small squares that fall into the
halo at the bottom of the square between the columns m+ 1 and n−m is O(n4/3).
Doing the same for the upper, left and right sides, we get a total number of O(n4/3)

small squares contributing to the halo. We have not accounted for the four squares
with side length m = n2/3 at the corners, but these contain a total number of O(n2/3)

small squares. So in total the halo has O(n4/3) small squares. Since each small square
has area n−2, we get An = O(n−2/3).

Sj

1/n

1/n

1/n

1/n

1/n

1/n

Yj

Y ′
j

(a)

Yj

Y ′
j

Rj

(b)

Figure 5.2: Illustration of proof of Proposition 5.2.1

Using similar arguments, we next prove that n2/3 is the correct order for the
expected area of the halo.

Proposition 5.2.2. Suppose that S is the unit square [0, 1] × [0, 1] ⊂ R2. Then
An = Ω(n−2/3).

Proof. As in the proof of Proposition 5.2.1, consider the window of width 2m +

1 = 2bn2/3c + 1 around the jth column. Consider the arc whose endpoints are
((j − m − 1)/n, 0) and ((j + m)/n, 0) and whose center lies below the unit square.
The cord length of this arc is (2m + 1)/n, so y-coordinate of the highest point of

this arc is
√

2 −
√

2− ((2m+ 1)/n)
2

= Ω(n−2/3) and hence the latter point lies in
a row with index Ω(n1/3). The expected number of small squares on jth column
that stay in the halo is bounded from below by the minimum of the row index of the
highest point of the latter arc and E(min{Yj , Y ′j })− 1. Dividing C(j −m, j − 1) and
C(j + 1, j + m) into rectangles of area 1/n, and defining Zj and Z ′j as in the proof
of Proposition 5.2.1, we see that Yj − 1 ≥ n1/3(Zj − 1) and Y ′j − 1 ≥ n1/3(Z ′j − 1),
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5. Union complexity of random disk regions

pj−1

pj

pj+1

pj+2

π/n Sj

Sj+1

Sj−1

Oj+1

Oj−1

Rj

p

q

C1C2C3

r r′

Figure 5.3: Illustration of proof of Proposition 5.3.1.

so E(min{Yj , Y ′j }) − 1 ≥ n1/3E(min{Zj , Z ′j} − 1). Note that E(min{Zj , Z ′j} − 1) ≥
P(Zj > 1, Z ′j > 1) = (1 − 2/n)n ≥ e−3 for large enough n. From this we conclude
that E(min{Yj , Y ′j })−1 = Ω(n1/3), so the expected number of squares on jth column
that stay in the halo is Ω(n1/3), which gives us the desired result.

Combining the last two propositions with Lemma 5.1.2, we obtain the result of
Theorem 5.1.1 for the unit square.

§5.3 Case of the unit disk

In this section we give the proof of Theorem 5.1.1 for the case of the unit disk. As in
the case of the unit square, we obtain upper and lower bounds for the expected area of
the halo An, then we combine these bounds with Lemma 5.1.2 to obtain the result of
Theorem 5.1.1. The next proposition gives an upper bound. Again, the proof follows
the arguments in [55] for the convex hull.

Proposition 5.3.1. Suppose that S is the unit disk {x ∈ R2 : d(x, o) ≤ 1} ⊂ R2.
Then An = O(n−2/3).

Proof. Assuming without loss of generality that n = m3 for some m ∈ N, we divide
the unit disk S into n tiles of equal area as follows: divide S into m slices, S1, . . . , Sm,
by drawingm lines from the center tom equally spaced points p1, . . . , pm on ∂S. Then
divide each slice into m2 tiles of equal area as follows: consider m2 concentric rings
given by m2 concentric circles C1 = ∂S,C2, . . . , Cm2 , with radii r1 = 1, r2, . . . , rm2

respectively, such that the intersection of each slice and ring gives a tile of area π/n
(see Figure 5.3). Let Si,j be the ith outermost tile in Sj for i = 1, . . . ,m2 and
j = 1, . . . ,m, i.e., Si,j is the intersection of Sj and the ring between the circles Ci and
Ci+1. We compute the expected number of tiles that intersects the halo and multiply
the result by 1/n to get an upper bound for the expected area of the halo. We do
this by computing the expected number of tiles that intersect the halo for each slice.
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§5.3. Case of the unit disk

pj−1

pj

pj+1

pj+2

Sj

Sj+1

Sj−1

Y ′j

Zj

Yj

Wj

Figure 5.4: Illustration of proof of Proposition 5.3.2.

Let Yj be the index of the outermost tile of the slice Sj−1 that contains a disk
center, i.e., Yj = min{i : Si,j−1 ∩ X 6= ∅}, and analogously define Y ′j for the slice
Sj+1. Let Oj−1 and Oj+1 be the outermost disk centers, that are the disk centers
furthest away from the origin, in Sj−1 and Sj+1 respectively. Consider the arc with
radius 2 that passes through Oj−1 and Oj+1 whose center lies away from the origin
relative to the line passing through Oj−1 and Oj+1. The tiles of Sj that intersect
the halo stay outside this arc. Furthermore, the latter arc stays outside the arc a
with radius 2 that passes through points p and q and whose center lies away from
the origin relative to the line passing through p and q, where p and q are the extreme
points of the arc a′ = CZj+1 ∩ (Sj−1 ∪ Sj ∪ Sj+1) and Zj = max{Yj , Y ′j }. Let r and
r′ be the midpoints of the arcs a and a′, respectively, and let Rj be the number of
tiles between r and r′ (see Figure 5.3). Then the number of tiles in Sj that intersect
the halo is bounded from above by Rj + Zj ≤ Rj + Yj + Y ′j .

The length of the line segment connecting r and r′ is

d(o, p)− d(o, p) sin

(
3π

m

)
+ 2

(
1− cos

(
arcsin

( |op|
2

sin

(
3π

m

))))
= O(m−2),

On the other hand, the radial length of every tile is greater than or equal to r1− r2 ≥
1/(2m2), so we have Rj = O(1). To compute E(Yj), we note that P(Yj ≥ k) =

(1− (k − 1)/n)n ≤ exp(−(k − 1)). This gives

E(Yj) =

∞∑
k=1

P(Yj ≥ k) ≤
∞∑
k=1

e−(k−1) = O(1). (5.2)

Thus, the expected number of tiles in Sj that intersect the halo is O(1) and the
expected total number of tiles that intersect the halo is O(m), which gives An =

O(m−2) = O(n−2/3).

The next proposition gives a lower bound for the expected area of the halo An:

Proposition 5.3.2. Suppose S is the unit disk {x ∈ R2 : d(x, o) ≤ 1} ⊂ R2. Then
An = Ω(n−2/3).
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5. Union complexity of random disk regions

Proof. As in the proof of Proposition 5.3.1, we divide the disk into tiles and obtain
a lower bound for the number of tiles of Sj that stay in the halo for j = 1, . . . ,m.
Let Yj and Y ′j be as defined in the proof of Proposition 5.3.1, Zj be the index of the
outermost tile of the slice Sj , andWj be the index of the innermost tile of Sj that does
not intersect the arc with radius 2 that passes through the points pj−1 and pj+2 (see
Figure 5.4). Then a lower bound for the number of tiles of Sj that stay in the halo is
min{Yj − 1, Y ′j − 1, Zj − 1,Wj}. We note that Wj is not random, and a calculation
similar to that of Rj in the proof of Proposition 5.3.1 gives thatWj > 0. We also note
that E(min{Yj , Y ′j , Zj} − 1) ≥ P(Yj > 1, Y ′j > 1, Zj > 1) = (1− 3/n)n ≥ e−4 = Ω(1)

for large enough n. So the expected number of tiles of Sj that stay in the halo is
Ω(1). Taking the sum over j = 1, . . . ,m = n1/3, we see that the expected number of
tiles that intersect the halo is Ω(n1/3) and multiplying by the area of each tile, which
is 1/n, we obtain the desired result.

§5.4 Discussion

In this section, we briefly discuss several extensions of the boundary complexity prob-
lem. One possible extension is where the radius of the random disks depends on the
number of disks n. For instance the random disks have radius rn with limn→∞ rn = 0.
In this case, the expected number of boundary disks is a function of n and rn, and its
behaviour depends on how fast rn tends to 0. For example, when rn = O(n−2), the
number of isolated disks, i.e., the disks that have no intersection with any other disk,
is of order n, which tells us that the number of boundary disks is of order n as well.
When rn = Ω(n−2), however, the problem becomes more complicated and we will ad-
dress it in future work. Another interesting regime is the case where limn→∞ rn =∞.
For example, in this case Proposition 1.2.3 suggests that if rn tends to infinity fast
enough, then the boundary complexity is the same as the complexity of the convex
hull. Also this will be the subject of future work.

Another possible extension is to replace S by an arbitrary convex polygon or
convex compact region with smooth boundary. By following the proofs in [55] for
the convex hull, the proofs for the unit square and the unit disk can be adapted to
arbitrary polygons and regions with smooth boundary, to show that the order of the
number of boundary disks is again n1/3. The leading order coefficient can be different
for different shapes and its computation requires a more detailed analysis.
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