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4. Mixing times of random walks with random rewirings

CHAPTER 4
Mixing times of random walks with

random rewirings

Abstract

We consider a random walk without backtracking on a general class of dynamic
random graphs with n vertices, where the vertices and their degrees are fixed but
the edges are rewired according to a prescribed rule. In previous works [12, 13], we
considered the special case in which, at each unit of time, a certain fraction of the
edges, chosen uniformly and independently of the random walk, are rewired uniformly.
We showed that there are three different regimes, depending on how the fraction of
edges to be rewired decays as a function of the number of vertices. In this paper,
we show, for a general class of rewiring rules, how the mixing time of the random
walk on the dynamically rewired random graph is linked to the mixing time of the
random walk on static random graphs, drawn according to the configuration model.
Furthermore, we give an explicit example, called local rewiring, in which the edges are
rewired only along the random walk path, and using the above link, we show that,
for this model, we have the same trichotomy as in [13] but on a different time scale.
In our proof, we use a coupling argument where the random walk on the dynamically
rewired random graph is coupled to a modified version of the random walk on the
static random graph.
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4. Mixing times of random walks with random rewirings

§4.1 Introduction

We consider a random walk on a dynamic random graph in which the vertices are fixed
but the edges are randomly rewired at each unit of time according to a prescribed
rule. By rewiring we mean an operation on the graph that changes the edges while
keeping the degrees of the vertices fixed. This type of graph dynamics was considered
in the context of uniform sampling of simple graphs with given degree sequences
[34, 46, 54, 53, 69]. The main purpose of these works is to construct Markov chains
on the set of simple graphs with a given degree sequence whose stationary distribution
is uniform on this set. If the convergence to the stationary distribution of the Markov
chain is sufficiently fast, i.e. the mixing time is sufficiently small, then it is possible to
obtain approximately uniform samples in an efficient way, simply by simulating the
Markov chain.

In [34, 54, 53], the authors consider a so-called switch chain in which, at each time
unit, two edges (i, j) and (k, l), are chosen uniformly at random and their end-points
are switched to obtain the edges (i, k) and (j, l), provided that the resulting graph
is simple. In [34], the authors consider the switch chain in the context of simple
regular graphs and show that the mixing time is polynomial in the size of the graph.
Their results were later extended to the case of simple graphs with irregular degree
sequences [54] and to directed graphs [53]. In [46, 69], the authors consider a so-
called flip chain, which is a modified version of the switch chain in which a switch is
performed if the two randomly chosen edges have a common neighbor, i.e., if (i, l) is
an edge. In [46], the authors consider the flip chain in the context of simple regular
graphs and they show that the mixing time is polynomial in the size of the graph by
comparing the flip chain to a switch chain and using the results of [34].

In the present paper, we are interested in the behaviour of a random walk on a
dynamically rewired random graph, rather than in the behaviour of the random graph
dynamics itself. Namely, we study the mixing times of random walks on dynamically
rewired random graphs, where the initial graph is drawn according to the configuration
model. Our results are in the same spirit as those in [12, 13], in which random walks
on a dynamic version of the configuration model with a specific rewiring mechanism
were considered. In fact, we extend the results of [12, 13] to a more general class of
dynamically rewired versions of the configuration model, which includes the dynamic
configuration model of [12] as a special case.

The mixing times of random walks on static random graphs has been studied in the
last few decades for a wide range of random graph models. For an overview, we refer
to [12, 13] and references therein. In contrast, there are relatively few studies on the
mixing times of random walks on dynamic random graphs. This line of research was
started recently in [83], which considers random walks on dynamical percolation on Zd
in the subcritical regime. In [82], the results in [83] were extended to the supercritical
regime. In [89], the authors consider random walks on a dynamic version of Erdős-
Rényi random graph model and show that the joint chain of the random walk and
the dynamic random graph exhibits cut-off phenomenon. Since there are two layers
of randomness, the random walk and the graph dynamics, in all these works, several
distinct notions of mixing times are considered, such as the annealed case vs. the
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§4.1. Introduction

quenched case and the mixing time of the random walk vs. the mixing time of the
joint chain. In our work, we consider the mixing time of the random walk component
annealed over the graph dynamics, which will be made clear in the sequel.

The remainder of this paper is organised as follows. In Section 4.1.1, we intro-
duce the model and set the notation. In Section 4.1.2, we state our main theorem
(Theorem 4.1.5). Section 4.2 is devoted to the introduction of some core ingredients.
In Section 4.3, we give the proof of the main theorem. In Section 4.4, we introduce
a specific model within the framework of random walks on dynamically rewired ran-
dom graph models and show that it exhibits the same trichotomy found in [13] but
on a different time scale. In Section 4.5, we put our work in the proper context by
discussing several issues in more detail and suggesting possible extensions.

Throughout the sequel we use standard notations for the asymptotic compar-
ison of functions f, g : N → [0,∞): f(n) = O(g(n)) or g(n) = Ω(f(n)) when
lim supn→∞ f(n)/g(n) < ∞; f(n) = o(g(n)) or g(n) = ω(f(n)) when limn→∞
f(n)/g(n) = 0; f(n) = Θ(g(n)) when both f(n) = O(g(n)) and g(n) = O(f(n)).

§4.1.1 Model
We denote by V the set of vertices of the graph and by deg(v) the degree of vertex
v ∈ V . To each vertex v ∈ V we associate deg(v) half-edges and by H we denote the
set of all half-edges, i.e.,

H = {(v, i) : v ∈ V and 1 ≤ i ≤ deg(v)}.

If a half-edge x ∈ H is associated to a vertex v ∈ V , then we say that x is incident to
v. We denote by v(x) ∈ V the vertex to which x ∈ H is incident and by H(v) := {x ∈
H : v(x) = v} ⊂ H the set of half-edges incident to v ∈ V . If x, y ∈ H(v) with x 6= y,
then we write x ∼ y and say that x and y are siblings of each other. The degree of a
half-edge x ∈ H is defined as

deg(x) := deg(v(x))− 1. (4.1)

We consider graphs on n vertices, so that |V | = n, with m edges, so that |H| =∑
v∈V deg(v) = 2m =: `.
We view the set of edges as a pairing of half-edges. A pairing of half-edges ξ,

called a configuration, is a bijection of H to itself without fixed points and with the
property that ξ(ξ(x)) = x for all x ∈ H. With a slight abuse of notation, we will
use the same symbol ξ to denote the set of pairs of half-edges in ξ, so {x, y} ∈ ξ

means that ξ(x) = y and ξ(y) = x. Each pair of half-edges in ξ will also be called an
edge. The set of all configurations on H will be denoted by ConfH , and the uniform
distribution on ConfH will be denoted by ConfH .

We note that each configuration gives rise to a (multi-)graph that may contain
self-loops (edges having the same vertex on both ends) or multiple edges (between
the same pair of vertices). The distribution of the random graph corresponding to a
uniformly distributed configuration is called the configuration model (see [93, Chapter
7]). On the other hand, a graph can be obtained via several distinct configurations.
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4. Mixing times of random walks with random rewirings

We will consider asymptotic statements in the sense of |V | = n → ∞. Quantities
like V,H,deg,m and ` all depend on n. In order to lighten the notation, we often
suppress n from the notation.

The central object of this study is a Markov chain (X,C) = (Xt, Ct)t∈N0
, where

Xt ∈ H and Ct ∈ ConfH for all t ∈ N0. Here, X denotes the random walk component
and C denotes the random configuration component. The configuration component
gives rise to a graph sequence in which each graph has the same degree sequence. At
each time t ∈ N, we first update the configuration and then let the walk move.

Random walk. We consider a random walk on a dynamic random graph in which
some half-edges are rewired at each step. The random walk is not allowed to back-
track, in the sense that it cannot traverse the same edge twice in a row. Since in our
model the underlying graph is dynamic and the edges change over time, it is more
conveniently defined as a random walk on the set of half-edges H. Suppose that at
time t ∈ N we updated the configuration to Ct = ξ. Then the random walk moves,
according to the transition probabilities

Pξ(x, y) :=

{
1

deg(y) if ξ(x) ∼ y and ξ(x) 6= y,

0 otherwise.
(4.2)

In words, when the random walk is at half-edge x in configuration ξ, it jumps to
one of the siblings of the half-edge it is paired to uniformly at random (see Fig. 4.1).
The transition probabilities are symmetric with respect to the pairing given by ξ, i.e.,
Pξ(x, y) = Pξ(ξ(y), ξ(x)), in particular, the matrix of transition probabilities is doubly
stochastic, and so the uniform distribution on H, denoted by UH , is stationary for
Pξ for any ξ ∈ ConfH . In the sequel, when we use the term random walk we always
refer to this model.

Xt X
t+

1

Figure 4.1: The random walk moves from half-edge Xt to half-edge Xt+1, one of the siblings
of the half-edge that Xt is paired to.

Graph dynamics. We consider a general class of graph dynamics in which some
edges are randomly rewired at each unit of time according to a presribed rule. A subset
of edges to be rewired is chosen randomly, these edges are broken into half-edges and
the resulting half-edges are paired randomly according to a prescribed distribution.
The set of half-edges involved in the rewiring at time t ∈ N is denoted by Rt.

Suppose that Xt−1 = x and Ct−1 = ξ. Then, at time t, the above dynamics gives
rise to a distribution Qx(ξ, ·) on ConfH . In [12, 13], a specific choice of dynamics was
considered, in which Qx(ξ, ·) did not actually depend on x. In such a situation, the
configuration component forms a Markov chain itself.
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§4.1. Introduction

Joint chain. The law of the joint chain (X,C) = (Xt, Ct)t∈N0
, starting from initial

half-edge x and initial configuration ξ, is given by the conditional probabilities

Px,ξ(Xt = z, Ct = ζ | Xt−1 = y, Ct−1 = η) (4.3)
= Qy(η, ζ)Pζ(y, z), t ∈ N

with
Px,ξ(X0 = x,C0 = ξ) = 1. (4.4)

While the joint chain is Markov, the marginal chains X = (Xt)t∈N and C = (Ct)t∈N
are not necessarily Markov.

We note that when the graph dynamics does not depend on the random walk,
i.e., Qx(·, ·) = Qy(·, ·) for all x, y ∈ H, the uniform distribution UH is a stationary
distribution for the random walk, i.e., for all ξ ∈ ConfH and t ∈ N,∑

x∈H

1

`
Px,ξ(Xt ∈ ·) = UH(·).

This can be easily seen by noting that the random walk conditioned on a realization
of the graph dynamics is a time-inhomogeneous Markov chain for which UH is a
stationary distribution.

§4.1.2 Main theorem
We are interested in the behaviour of the total variation distance between the dis-
tribution of the random walk component and the uniform distribution on the set of
half-edges UH , i.e.,

Dx,ξ(t) := ‖Px,ξ(Xt ∈ ·)− UH(·)‖TV. (4.5)

The total variation distance between two probability measures µ and ν on the same
finite state space S is defined by

‖µ− ν‖TV :=
∑
x∈S
|µ(x)− ν(x)| =

∑
x∈S

[µ(x)− ν(x)]+ = sup
A⊆S

[µ(A)− ν(A)]. (4.6)

We emphasize that the marginal chain X = (Xt)t∈N is not Markov and the total
variation distance ‖Px,ξ(Xt ∈ ·) − UH(·)‖TV is not guaranteed to be decreasing in t,
even when it converges to 0.

Theorem 4.1.5 below concerns the behaviour of Dx,ξ(t) for “typical” choices of x
and ξ. We formalize the notion of typicality now:

Definition 4.1.1 (With high probability). Let µ = µn := UH × ConfH . A state-
ment that depends on the initial half-edge x and configuration ξ is said to hold with
high probability (whp) in x and ξ if the µ-measure of the set of pairs (x, ξ) for which
the statement holds tends to 1 as n→∞.

One of the key objects of our study will be a randomized stopping time, namely, the
first time the random walk steps along a previously rewired edge. Let R≤t := ∪ts=1Rs,
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4. Mixing times of random walks with random rewirings

and let It denote the indicator of the event that the random walk steps along a
previously rewired edge at time t, i.e., if Xt−1 ∈ R≤t, then It = 1, and otherwise
It = 0. We define the randomized stopping time τ as follows:

τ := min{t ∈ N : It = 1}. (4.7)

Theorem 4.1.5 below will be stated in terms of the tail probabilities of τ , written
Px,ξ(τ > t), and only holds under certain conditions. First, we give the conditions
that concerns the degree sequences of the random graphs that we deal with:

Condition 4.1.2. (Regularity of degrees)

(R1) ` is even and ` = Θ(n) as n→∞.

(R2) maxv∈V deg(v) =: dmax = o(n/(log n)2) as n→∞.

(R3) deg(v) ≥ 2 for all v ∈ V .

Condition 4.1.2(R1) ensures that the underlying graph is sparse, and together
with Condition 4.1.2(R2) ensures that random walk paths are with high probability
self-avoiding, as we will see in the proof of Lemma 4.2.2. Condition 4.1.2(R3) ensures
that random walk is well-defined. These are the minimal conditions under which
Theorem 4.1.5 is true. Next, we give additional conditions which allow us to use
results of Ben-Hamou and Salez [16] on the mixing times of random walks on static
configuration models:

Condition 4.1.3. (Additional regularity of degrees)

(R1*) maxv∈V deg(v) =: dmax = no(1) as n→∞.

(R2*)
λ2

λ3
1

= ω

(
(log log `)2

log `

)
,

λ
3/2
2

λ3

√
λ1

= ω

(
1√
log `

)
, n→∞,

where

λ1 :=
1

`

∑
z∈H

log(deg(z)), λm :=
1

`

∑
z∈H
| log(deg(z))− λ1|m, m = 2, 3.

(R3*) deg(v) ≥ 3 for all v ∈ V .

Conditions 4.1.3(R1*) and (R2*) are technical and it might be possible to relax
them via a truncation argument [22]. Condition 4.1.3(R3*) ensures that the random
walk does not behave deterministically, and under this condition the configuration
model is connected with high probability. Condition 4.1.3 will not be used in The-
orem 4.1.5 below, but will be needed to use results of Ben-Hamou and Salez [16] to
refine Theorem 4.1.5 in Corollary 4.1.6 below.

Next, we give the conditions that concern the graph dynamics. To do so we need
more notation. We define the annealed distribution by

P :=
∑
x∈H,
ξ∈Conf

µ(x, ξ)Px,ξ, (4.8)
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§4.1. Introduction

which is the distribution of the random walk on the dynamically rewired graph an-
nealed over the initial half-edge and the initial configuration. We will look at the
annealed distribution of the graph dynamics at time t conditional on the walk before
time t and on some partial information about the rewiring history before time t.

For t ∈ N, let [t] := {1, . . . , t}, and for s ∈ N with s < t, and let [s, t] := {s, . . . , t}.
Fix t ∈ N, let T = {t1, . . . , tr} be a subset of [t − 1]. Consider four sequences of
half-edges, x[0,t−1] = x0x1 . . . xt−1, x̄[0,t−1] = x̄0x̄1 . . . x̄t−1, x̂[r] = x̂1x̂2 . . . x̂r and
x̃[r] = x̃1x̃2 . . . x̃r, such that

• x̄s−1 ∼ xs for s ∈ [t− 1] \ T ,

• x̂i ∼ xti for i = 1, . . . , r,

• the vertices v(x0), v(x1), . . . , v(xt−1), v(x̄t1−1), . . . , v(x̄tr−1), v(x̄t−1), v(x̃1), . . . ,

v(x̃r) are all distinct.

We call such sequences dynamically self-avoiding with respect to T . We will look at:

• the set T : the times up to time t − 1 at which the random walk steps along a
previously rewired edge,

• the sequence x0 . . . xt−1: the path of the random walk up to time t− 1,

• the sequence x̄0 . . . x̄t−1: the pairs of the latter in the initial configuration,

• the sequence x̂1 . . . x̂r: the pairs of xt1−1 . . . xtr−1 at the times t1, . . . , tr respect-
ively,

• the sequence x̃1, . . . x̃r: the pairs of x̂1 . . . x̂r in the initial configuration.

For fixed t ∈ N, T = {t1, . . . , tr} ⊂ [t − 1], and fixed sequences of half-edges x[0,t−1],
x̄[0,t−1], x̂[r] and x̃[r], let H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) be the event that

• Is = 1 for s ∈ T and Is = 0 for s ∈ [t− 1] \ T ,

• C0(xs) = x̄s for s = 0, . . . , t− 1,

• Cti(xti−1) = x̂i for i = 1, . . . , r,

• C0(x̂i) = x̃i for i = 1, . . . , r,

• Xs = xs for s = 0, . . . , t− 1.

When this event occurs we say that the the history of the walk on the dynamically
rewired graph up to time t is dynamically self-avoiding.

With these definitions in hand, we can state the conditions on the graph dynamics:

Condition 4.1.4. (Regularity of graph dynamics) For all t = t(n) = O(log n) and
all T = {t1, . . . , tr} ⊂ [t− 1],

(D1) P(It = 1 | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r])) is the same for all choices of x[0,t−1],
x̄[0,t−1], x̂[r], x̃[r] that are dynamically self-avoiding with respect to T .
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4. Mixing times of random walks with random rewirings

(D2) ‖P(Ct(xt−1) ∈ · | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) ∩ {It = 1}) − UH(·)‖TV =

o(1/ log n) for all choices of x[0,t−1], x̄[0,t−1], x̂[r], x̃[r] that are dynamically self-
avoiding with respect to T .

For x ∈ H and ξ ∈ ConfH , we denote by Pstat
x,ξ (Xt ∈ ·) the law of the random walk

on the static graph given by the configuration ξ, and by Dstat
x,ξ (t) its total variation

distance to the uniform distibution UH at time t. Our main result reads as follows:

Theorem 4.1.5. Suppose that t = t(n) = O(log n). Subject to Conditions 4.1.2 and
4.1.4, the following holds for the random walk on the dynamically rewired graph whp
in x and ξ:

Dx,ξ
(
t
)

= Px,ξ(τ > t)Dstat
x,ξ (t) + o(1). (4.9)

For the static model, under Condition 4.1.3, the ε-mixing time inf{t ∈ N0 : Dstat
x,ξ (t)

≤ ε} is known to scale like tstat
mix = tstat

mix(n) := [1 + o(1)] cn,stat log n for all ε ∈ (0, 1),
with cn,stat = 1/λ1 ∈ (0,∞), where λ1 is as defined in Condition 4.1.3(R2*)(Ben-
Hamou and Salez [16]). This holds whp in ξ and uniformly in the starting position
x. Using this relation we can refine Theorem 4.1.5:

Corollary 4.1.6. Suppose t = t(n) = O(log n). Subject to Conditions 4.1.2(R1),
4.1.3 and 4.1.4, the following hold for the random walk on dynamically rewired graphs
whp in x and ξ:

Dx,ξ
(
t
)

=

{
Px,ξ(τ > t) + o(1) if lim supn→∞ t/tstat

mix < 1,

o(1) if lim infn→∞ t/tstat
mix > 1.

(4.10)

Proof. By the results in [16], whp in ξ we have

Dstat
x,ξ (t) =

{
1− o(1) if lim supn→∞ t/tstat

mix < 1,

o(1) if lim infn→∞ t/tstat
mix > 1.

Combining these with Theorem 4.1.5 we get the desired result.

The proof of Theorem 4.1.5 will be given in Section 4.3. In the next section (Sec-
tion 4.2), we introduce the key ingredients of the proof. After proving Theorem 4.1.5,
we introduce a specific example of a random walk on dynamically rewired random
graph, which we call ‘random walk with local rewiring’ and prove a mixing time result
for this model in Section 4.4, by using Corollary 4.1.6.

§4.2 Coupling to the modified random walk

We define the modified random walk, denoted by (Yt)t∈N0
, as the random walk on the

static graph that at certain random times makes uniform jumps. The distribution of
the jump times does not depend on the random walk path. More formally, we have a
sequence (Jt)t∈N of random variables adapted to a filtration (Ft)t∈N0

, taking values
in {0, 1} according to a given distribution on {0, 1}N. For fixed t ∈ N, Jt is seen as
the indicator of the event that the modified random walk makes a uniform jump at
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§4.2. Coupling to the modified random walk

time t. The law of the modified random walk (Yt)t∈N0
on ξ that starts from the initial

half-edge x, which is also adapted to (Ft)t∈N0
, is given by the conditional probabilities

Pmod
x,ξ (Yt = z | Yt−1 = y, J1 = j1, . . . , Jt = jt) (4.11)

= Pmod
x,ξ (Yt = z | Yt−1 = y, Jt = jt) =

{
Pξ(y, z) if jt = 0,
1
` if jt = 1,

t ∈ N, (4.12)

with
Pmod
x,ξ (Y0 = x) = 1. (4.13)

We note that, according to the definition, neither (Jt)t∈N nor the pair (Yt, Jt)t∈N
needs to be Markov but (Yt)t∈N0

is Markov conditional on a realisation of (Jt)t∈N.
Uniform jumps of the modified random walk can be rephrased in the following

form. Let Y ′t be a uniformly chosen half-edge, independent of the random walk path
and the jump times. If Jt = 1, then we choose a uniform sibling of Y ′t , say y, and set
Yt = y. Since Y ′t is uniform and one of its siblings is chosen uniformly at random,
the resulting half-edge is distributed uniformly on H. In the following we use this
formulation, since it makes the exposition more clear.

As an analogue of τ , we define σ to be the first time that the modified random
walk makes a uniform jump, i.e.,

σ := inf{t ∈ N : Jt = 1} (4.14)

Coupling of two random walks. We couple the law Px,ξ(Xt ∈ ·) of the random
walk on the dynamic random graph, with initial half-edge x and initial configuration
ξ, to the law Pmod

x,ξ (Yt ∈ ·) of the modified random walk. We want the coupled
random walks to stick together as much as possible. When the two random walks
make different steps, we say that the coupling of the two random walks has failed,
and we denote the first time that this happens by F . Until the coupling fails, the
times at which the random walk on the dynamically rewired graph makes a step over
a previously rewired edge correspond to the times at which the modified random walk
makes a uniform jump.

We define an auxiliary random set At, called the set of active half-edges, which is
constructed by adding half-edges at each unit of time. This set will keep track of the
half-edges traversed by the two random walks, the half-edges that are rewired at the
position of the random walk, and their pairs in the initial configuration. Note that
A0 consists of x and its siblings, i.e., A0 = H(v(x)). The coupling is as follows:

(a) At time t ∈ N, if the coupling has not failed yet and neither ξ(Xt−1) nor any
of its siblings belongs to At−1, then maximally couple the distribution of It,
conditional on the history of the random walk and the rewirings seen by the
random walker, to the distribution of Jt, conditional on the values of indicators
J1, . . . , Jt−1:

(a) If the coupling of the conditional distributions of It and Jt is successful
and It = Jt = 0, then add ξ(Xt−1) and all of its siblings to At−1 to obtain
At, let X make a random walk move, and set Yt = Xt.
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4. Mixing times of random walks with random rewirings

(b) If the coupling of the conditional distributions of It and Jt is successful and
It = Jt = 1, then maximally couple the distribution of the pair of Xt−1 in
Ct, Ct(Xt−1), conditional on the history of the random walk and the event
that It = 1, to the distribution of Y ′t :

(a) If the coupling of Ct(Xt−1) and Y ′t is succesful, and neither Ct(Xt−1)

nor any of its siblings is in At−1, then add ξ(Xt−1) and all of its
siblings, Ct(Xt−1) and all of its siblings to At−1 to obtain At, let X
make a random walk move, and set Yt = Xt.

(b) Otherwise, declare the coupling of the two random walks as failed.

(c) If the coupling of the conditional distributions of It and Jt is not succesful,
i.e., It 6= Jt, then declare the coupling of the two random walks as failed.

(b) At time t ∈ N, if the coupling has failed before, then let X and Y evolve
independently. If the coupling has not failed yet but either ξ(Xt−1) or some of
its siblings belong to At−1, then declare the coupling of the two random walks
as failed, and let X and Y evolve independently.

Remark 4.2.1. At each time t ∈ N, the random walks try to avoid stepping on the
active half-edges At−1. The coupling of the two random walks fails in three cases:

(a) if the coupling of Ct(Xt−1) and Y ′t fails, or the two random walks step over a
half-edge in At−1 in step (b),

(b) if the coupling of It and Jt fails in step (c),

(c) if the pair of Xt−1 in the starting configuration is already in At−1 as in step (b).

The second case in item 1, as well as item 3, correspond to the situation in which
the random walks are not dynamically self-avoiding. We want to avoid this situation,
since it might lead to a previously rewired half-edge that was stepped over previously.
This implies that the random walks are dynamically self-avoiding before the coupling
of the two random walks fail. The first case in item 1 corresponds to the situation in
which the conditional distribution of Ct(Xt−1) is far from the uniform distribution in
total variation distance. Item 3 corresponds to the situation in which the conditional
distribution of the times at which the random walk on the dynamically rewired graph
and the conditional distribution of the times at which the modified random walk makes
uniform jumps are far from each other in total variation distance.

The next lemma states that these events are unlikely up to logarithmic times when
Conditions 4.1.2 and 4.1.4 hold for the random walk on the dynamically rewired graph:

Lemma 4.2.2. Suppose that t = t(n) = O(log n), and that Conditions 4.1.2 and
4.1.4 hold for the random walk on the dynamically rewired graph. For all s ≤ t and
all T = {s1, . . . , sr} ⊂ [s− 1], fix a group of sequences xs,T[0,s−1], x̄

s,T
[0,t−1], x̂

s,T
[r] , x̃

s,T
[r] that

is dynamically self-avoiding with respect to T , and consider the modified random walk
fpr which the jump distribution has conditional distribution

Pmod
x,ξ (Js = 1 | Js′ = 0 for s′ ∈ [s− 1] \ T, Js′′ = 1 for s′′ ∈ T )

= P(Is = 1 | H(T, xs,T[0,s−1], x̄
s,T
[0,s−1], x̂

s,T
[r] , x̃

s,T
[r] )). (4.15)
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§4.2. Coupling to the modified random walk

Then, whp in x and ξ,

‖Px,ξ(Xt ∈ ·)− Pmod
x,ξ (Yt ∈ ·)‖TV = o(1) (4.16)

and
Px,ξ(τ > t) = Pmod

x,ξ (σ > t) + o(1). (4.17)

Proof. Let Pcouple
x,ξ denote the law of the coupling of the two random walks withX0 = x

and C0 = ξ. Since the two random walks agree up to the time the coupling fails, we
have

‖Px,ξ(Xt ∈ ·)− Pmod
x,ξ (Yt ∈ ·)‖TV ≤ Pcouple

x,ξ (F ≤ t). (4.18)

So, in order to prove our claim, it suffices to show that, whp in x and ξ,

Pcouple
x,ξ (F ≤ t) = o(1). (4.19)

To achieve this, we will use an annealing argument on the initial graph and the initial
location. Recall that µ = UH × ConfH , and let

Pcouple =
∑
x,ξ

µ(x, ξ)Pcouple
x,ξ . (4.20)

We will show that
Pcouple(F ≤ t) = o(1) (4.21)

by exploring the initial configuration through the coupled random walk paths until
time F , the time at which the coupling fails. The exploration proceeds as follows:

(a) At time s = 0, choose a half-edge uniformly at random from H, say x, set
X0 = Y0 = x and A0 = H(v(x)), the subset of H consisting of x and its
siblings.

(b) At time s ∈ N, first explore the pair ofXs−1 = Ys−1 in the initial configuration ξ,
then make the coupled random walks move until the coupling fails, and update
As accordingly.

According to this description, the exploration process explores the part of the graph
seen by the random walks, as well as the parts changed by the rewiring at the positions
of the random walks, and it stops as soon as the coupling of the two random walks
fails. Suppose that the coupling of the two random walks has not failed before time
s. Then it can fail at time s in the following three cases:

(a) if coupling of Is and Js fails in step (c),

(b) if coupling of Cs(Xs−1) and Y ′s fails in step (b),

(c) if the random walks step over a half-edge that is in As−1 in step (b) or step (b).

By (4.15), Is and Js can be coupled perfectly, so the probability of the event in case
1 is 0.

For case 2 we note that, by Remark 4.2.1, before the coupling of the two random
walks fails, the history of the random walk is dynamically self-avoiding. By Condi-
tion 4.1.4(D2), the total variation distance between the conditional distribution of
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4. Mixing times of random walks with random rewirings

Cs(Xs−1) and the uniform distribution UH is o(1/ log n). Since Y ′s is also distributed
uniformly on H, the probability of the event in case 2 is o(1/ log n).

For case 3, we first need an upper bound on the size of As−1. Each time we
explore the initial configuration, we add at most dmax half-edges to the set of active
half-edges. If, in addition, a rewiring occurs, then we add at most 2dmax half-edges
to the set of active half-edges. This gives us

|As−1| ≤ 3sdmax. (4.22)

For a fail event in step (b), we see that the probability that Cs(Xs−1) ∈ As−1 is
smaller than

|As−1|
`

+ o(1/ log n) ≤ 3sdmax

`
+ o(1/ log n), (4.23)

since the random walk is dynamically self-avoiding before the coupling of the two
random walks fails (see Remark 4.2.1), so the total variation distance between the
conditional distribution of Cs(Xs−1) and the uniform distribution UH is o(1/ log n),
by Condition 4.1.4(D2). For a fail event in step (b), we see that the probability that
C0(Xs−1) ∈ As−1 is smaller than

|As−1|
`− 4s+ 4

≤ 3sdmax

`− 4s+ 4
, (4.24)

since up to time s we form at most 2s− 2 pairs in C0, s− 1 of them on the random
walk path and an additional s− 1 if rewiring occurs at each step up to time s.

The above estimates give us

Pcouple(F = s | F > s− 1) ≤ 6sdmax

`− 4s+ 4
+ o(1/ log n). (4.25)

Taking a union bound up to time t, and using that t = O(log n), dmax = o(n/(log n)2)

and ` = Θ(n), we get

Pcouple(F ≤ t) ≤ 3t(t+ 1)dmax

`− 4t
+ o(1) = o(1), (4.26)

which in turn implies that, with µ-probability 1− o(1),

Pcouple
x,ξ (F ≤ t) = o(1). (4.27)

Indeed, letting Pcouple(F ≤ t) = pn and B = {(x, ξ) ∈ H × ConfH : Pcouple
x,ξ (F ≤ t) >

p
1/2
n }, we see that

Pcouple(F ≤ t) = pn > µ(B)p1/2
n , (4.28)

and hence µ(B) < p
1/2
n . So, with µ-probability at least 1− p1/2

n , we have Pcouple
x,ξ (F ≤

t) ≤ p1/2
n = o(1).

Since the Is’s and Js’s are perfectly coupled until the coupling of the two random
walks fails, we also have, whp in x and ξ,

|Px,ξ(τ > t)− Pmod
x,ξ (σ > t)| ≤ Pcouple

x,ξ (F ≤ t) = o(1). (4.29)
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§4.3 Link between the dynamic and the static models

In this section, we prove Theorem 4.1.5. Consider the modified random walk given
in the statement of Lemma 4.2.2 and sample uniform jump times up to time t. For
any fixed T = {t1, . . . , tr} ⊂ [t], we see that the modified random walk conditional on
the event J(T ) := {Js = 0 for s ∈ [t] \ T, Js = 1 for s ∈ T} is a time-inhomogeneous
Markov chain that makes random-walk moves at times s ∈ [t] \ T and uniform jumps
at times s ∈ T . Since this Markov chain becomes stationary when it makes a uniform
jump, for any ∅ 6= T ⊂ [t], x ∈ H and ξ ∈ ConfH ,

Pmod
x,ξ (Yt ∈ · | J(T )) = UH(·), (4.30)

which gives us

Pmod
x,ξ (Yt ∈ · | σ ≤ t) =

∑
T⊂[t],T 6=∅ Pmod

x,ξ (Yt ∈ · | J(T ))∑
T⊂[t],T 6=∅ Pmod

x,ξ (J(T ))
= UH(·). (4.31)

On the other hand, since the modified random walk up to time t conditional on the
event {σ > t} is the same as the random walk on the static graph, for any x ∈ H and
ξ ∈ ConfH we have

‖Pmod
x,ξ (Yt ∈ · | σ > t)− UH(·)‖TV = Dstat

x,ξ (t). (4.32)

Using the triangle inequality twice, we obtain

‖Pmod
x,ξ (Yt ∈ ·)− UH(·)‖TV ≤Pmod

x,ξ (σ > t)‖Pmod
x,ξ (Yt ∈ · | σ > t)− UH(·)‖TV

+ Pmod
x,ξ (σ ≤ t)‖Pmod

x,ξ (Yt ∈ · | σ ≤ t)− UH(·)‖TV (4.33)

and

‖Pmod
x,ξ (Yt ∈ ·)− UH(·)‖TV ≥Pmod

x,ξ (σ > t)‖Pmod
x,ξ (Yt ∈ · | σ > t)− UH(·)‖TV

− Pmod
x,ξ (σ ≤ t)‖Pmod

x,ξ (Yt ∈ · | σ ≤ t)− UH(·)‖TV. (4.34)

Inserting (4.31) and (4.32), we obtain

‖Pmod
x,ξ (Yt ∈ ·)− UH(·)‖TV = Pmod

x,ξ (σ > t)Dstat
x,ξ (t). (4.35)

Now using Lemma 4.2.2, we see that, whp in x and ξ,

Dx,ξ(t) = Px,ξ(τ > t)Dstat
x,ξ (t) + o(1). (4.36)

§4.4 Random walk with local rewiring

In this section, we consider a specific example of a random walk on a dynamically
rewired graph in which the graph dynamics depends on the position of the random
walk. We call this model the random walk with local rewiring. The rewiring mechan-
ism works as follows:
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4. Mixing times of random walks with random rewirings

(a) At each time t ∈ N, we draw a Bernoulli random variable Zt with parameter
α, independent of each other and independent of the random walk and the
configuration,

(b) If Zt = 0, then the configuration does not change, Ct = Ct−1, and Xt makes a
random-walk move,

(c) If Zt = 1, then we draw a half-edge uniformly at random from H \ {Xt−1}, say
y, we pair Xt−1 to y and Ct−1(Xt−1) to Ct−1(y) to obtain the new configuration
Ct, and Xt makes a random walk move on Ct.

More fomally, let

QRx (ξ, η) = QRx (η, ξ) :=

{
1
`−1 if ξ(η(x)) = η(ξ(x)) and |ξ \ η| ≤ 2,

0 otherwise.
(4.37)

Within the framework of Section 4.1.1, the above mechanism corresponds to the model
in which

Qx(ξ, η) = (1− α)I(ξ, η) + αQRx (ξ, η), (4.38)

where I(ξ, η) = 1 if η = ξ, and I(ξ, η) = 0 otherwise, i.e., I is the identity matrix.
Since QRx is symmetric for all x ∈ H, we see that the distribution ConfH is a stationary
distribution for QRx for all x ∈ H. This implies that ConfH is a stationary distribution
for Qx for all x ∈ H.

A direct calculation shows that UH × ConfH is a stationary distribution of this
dynamics:

Proposition 4.4.1. UH × ConfH is a stationary distribution for the random walk
with local rewiring with parameter α, for any α ∈ [0, 1].

Proof. Since UH is stationary for Pη for any η ∈ ConfH , and ConfH is stationary for
Qx for any x ∈ H, for any y ∈ H and η ∈ ConfH ,∑

x∈H

∑
ξ∈ConfH

UH(x)ConfH(ξ)Px,ξ(X1 = y, C1 = η)

=
∑
x∈H

∑
ξ∈ConfH

UH(x)ConfH(ξ)Qx(ξ, η)Pη(x, y)

=
∑
x∈H

UH(x)Pη(x, y)
∑

ξ∈ConfH

ConfH(ξ)Qx(ξ, η)

= ConfH(η)
∑
x∈H

UH(x)Pη(x, y) = ConfH(η)UH(y),

which shows that UH × ConfH is a stationary distribution for the random walk with
local rewiring model.

It is not easily seen that the Markov chain is irreducible and aperiodic. In Sec-
tion 4.4.1 we show that this is indeed the case when α ∈ (0, 1), and so the distribution
of the joint chain converges to UH × ConfH as t → ∞. An important implication is
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that the distribution of the random walk alone converges to UH as t → ∞. Indeed,
for any x ∈ H, ξ ∈ ConfH and t ∈ N we have

Dx,ξ(t) ≤ ‖Px,ξ((Xt, Ct) ∈ ·)− UH × ConfH(·)‖TV,

and since the right-hand side tends to 0 as t→∞, Dx,ξ(t) also tends to 0 as t→∞.
On the other hand, this argument does not automatically imply that Dx,ξ(t) is non-
increasing in t.

§4.4.1 Irreducibility and aperiodicity
In this section we show that the random walk with local rewiring model is irreducible
and aperiodic, which ensures that the total variation distance Dx,ξ(t) converges to 0

as t→∞ for fixed x ∈ H, ξ ∈ ConfH and α ∈ (0, 1). Our proof builds on the proof of
irreducibility of the switch chain on multigraphs given by Eggleton and Holton [40].

Proposition 4.4.2. The rewiring random walk (Xt, Ct)t∈N0
is irreducible and aperi-

odic for any initial state (x, ξ) ∈ H × ConfH and any choice of α ∈ (0, 1).

Proof. Let V = {v1, . . . , vn} and assume that deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vn).
Identify the set of half-edges H with [`] = {1, . . . , `} such that the half-edges 1, . . . ,

deg(v1) are associated to v1, the half-edges deg(v1) + 1, . . . ,deg(v1) + deg(v2) to v2,
and so on. Let v′1, . . . , v′2k ∈ V be the odd-degree vertices. We fix a configuration
ξ0 ∈ ConfH such that each vertex has the maximum number of self-loops, i.e., each
vertex v ∈ V with even degree has deg(v)/2 self-loops, each vertex v ∈ V with odd
degree has (deg(v)− 1)/2 self-loops, and there is exactly one edge between every pair
of odd-degree vertices v′2i−1, v

′
2i for i = 1, . . . , k (see Figure 4.2). We will show that

the pair (1, ξ0) ∈ H×ConfH is accessible from any pair (x, ξ) ∈ H×ConfH by allowed
moves in the random walk with local rewiring model.

. . .

Figure 4.2: The configuration ξ0.

First we show that, for any x ∈ H, (1, ξ0) is accessible from (x, ξ0), by considering
two different scenarios:

(a) Suppose that x is on a self-loop and ξ0(x) = x′. We first move to (1, ξ1) from
(1, ξ0) by rewiring the half-edges x, x′, 1 and 2 where ξ0 and ξ1 agree on all the
edges except that ξ1(1) = x′ and ξ1(2) = x. After that we again move to (1, ξ0)

from (1, ξ1) by rewiring 1, 2, x and x′ (see Figure 4.3).

(b) Suppose that x is not on a self-loop, i.e., it is on an edge between two odd-
degree vertices. We first move to (x′, ξ0) without rewiring, where x′ ∈ H is on
a self-loop. After that we apply the procedure in the item 1 to (x′, ξ0).
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1 2 x x′ 1

2

x′

x

1 2 x x′

Figure 4.3: Move from half-edge x on a self-loop to half-edge 1 in ξ0. The red color indicates
the position of the walk.

Next, we show that for any (x, ξ) ∈ H × ConfH with ξ 6= ξ0 we have access from
(x, ξ) to (y, ξ0), for some y ∈ H. To do this, we show that we can move from (x, ξ)

to some (y, η) ∈ H ×ConfH such that the configuration η has more edges in common
with ξ0 than ξ has, i.e., |ξ ∩ ξ0| < |η ∩ ξ0|, by considering the two scenarios:

(a) Suppose that x is on an edge that is not in ξ0, i.e., ξ(x) 6= ξ0(x). Then we move
to (y, η) by rewiring the half-edges x, ξ(x), ξ0(x) and ξ(ξ0(x)), where ξ and η

agree on all the edges except that η(x) = ξ0(x) and η(ξ(x)) = ξ(ξ0(x)) and
y ∼ ξ0(x). Since η(x) = ξ0(x), we have that |ξ ∩ ξ0| ≤ |η ∩ ξ0| − 1.

(b) Suppose that x is on an edge that is in ξ0, i.e., ξ(x) = ξ0(x). Let y ∈ H be a half-
edge such that ξ(y) 6= ξ0(y), ξ(x) = x′ and ξ(y) = y′. Since deg(v) ≥ 2 for all v ∈
V , in the graph given by ξ there is a cycle of edges {y, y′}, {y1, y

′
1}, . . . , {yK , y′K}

with v(y′) = v(y1), v(y′K) = v(y) and v(y′i) = v(yi+1) for i = 1, . . . ,K − 1. Let
η ∈ ConfH be the configuration that agrees with ξ on all the edges except that
η(x) = y′ and η(y) = x′, so that the edges {y1, y

′
1}, . . . , {yK , y′K} are present in

η as well as in ξ. First we move from (x, ξ) to (y1, η) by rewiring x, x′, y and
y′. Then we make K moves, from (yi, η) to (yi+1, η) for i = 1, . . . ,K, where
yK+1 = y without rewiring. After that we move from (y, η) to (y1, ξ) by rewiring
x, x′, y and y′, and finally we traverse the cycle again without rewiring to reach
(y, ξ) from (y1, ξ) (see Figure 4.4). Now y is on an edge that is not in ξ0, so by
applying the procedure in item 1 we can increase the number of edges we have
in common with ξ0.

By applying these procedures, we can reduce the number of edges that are not in ξ0,
so we can go from any (x, ξ) ∈ H ×ConfH to (y, ξ0) for some y ∈ H, and then apply
the above procedure to reach (1, ξ0).

y′ y

x x′

y′ y

x x′

y′ y

x x′

Figure 4.4: Moving from (x, ξ) to (y, η) by using a cycle. The red color indicates the position
of the walk.

82
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To show that we can access an arbitrary state (x, ξ) from (1, ξ0), we first note that
we can access (y, ξ0), for any y, from (1, ξ0) by relabelling the half-edges and using
the first argument above. Then we see that we can access (x, ξ) from (y, ξ0) for any y
using the above strategy of reducing the edges and using the cycles to move around.
Hence, the Markov chain is irreducible. Since, by traversing the self-loop without
rewiring, we can reach (1, ξ0) from itself in one step, we see that the Markov chain is
also aperiodic.

§4.4.2 The mixing time of the random walk with local
rewiring

In this section, we study the quantity Dx,ξ(t) for the random walk with local rewiring
and show that we have the same trichotomy as for the random walk on the dynamic
configuration model [13]:

Theorem 4.4.3 (Scaled mixing profiles). Suppose that limn→∞ αn = 0 and
limn→∞ αn log n = β ∈ [0,∞], and consider the rewiring random walk with para-
meter αn. Subject to Condition 4.1.2(R1) and Condition 4.1.3, the following hold
whp in x and ξ:

(1) If β =∞, then

Dx,ξ
(
bcα−1

n c
)

= e−c + o(1), c ∈ [0,∞). (4.39)

(2) If β ∈ (0,∞), then

Dx,ξ
(
bc log nc

)
=

{
e−βc + o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(4.40)

(3) If β = 0, then

Dx,ξ
(
bc log nc

)
=

{
1− o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(4.41)

Proof. We show that Condition 4.1.4 holds and then use Corollary 4.1.6 to prove
the claim. For fixed t = O(log n), fix some T = {t1, . . . , tr} ⊂ [t − 1] and some
x[0,t−1], x̄[0,t−1], x̂[r] and x̃[r] that are dynamically self-avoiding with respect to T .
Conditioned on the event H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]), xt−1 cannot be rewired be-
fore time t. Indeed, by construction the half-edges that are rewired before time t are
xt1−1, . . . , xtr−1, x̄t1−1, . . . , x̄tr−1, x̂1, . . . , x̂r and x̃1, . . . , x̃r, and xt−1 is not equal to
any of these. So we have

P(It = 1 | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]))

= P(Zt = 1 | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r])) = αn, (4.42)
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and P(Ct(xt−1) ∈ · | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) ∩ {It = 1}) is the uniform distri-
bution on H \ {xt−1}, which gives

‖P(Ct(xt−1) ∈ · | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) ∩ {It = 1})− UH(·)‖TV =
1

`
.

(4.43)

Since this holds for any choice of x[0,t−1], x̄[0,t−1], x̂[r] and x̃[r], Condition 4.1.4 holds.
On the other hand, the event {τ = t} is the same as the event {min{s ∈ N : Rs =

1} = t}, since when a rewiring occurs the random walk steps over a rewired edge with
probability 1. This implies that for any x and ξ, and since limn→∞ αn = 0,

Px,ξ(τ > t) = (1− αn)t = exp(−αnt) + o(1). (4.44)

So we have

Px,ξ(τ > t) = exp(−c) + o(1) when lim
n→∞

αn log n =∞ and t = bcα−1
n c, (4.45)

Px,ξ(τ > t) = exp(−βc) + o(1) when lim
n→∞

αn log n = β and t = bc log nc, (4.46)

Px,ξ(τ > t) = 1− o(1) when lim
n→∞

αn log n = 0 and t = bc log nc. (4.47)

Combining these with Corollary 4.1.6, we obtain the desired result.

§4.5 Discussion

1. Coupling between the two random walks: The core ingredient of the proof of
the main result, which is the coupling between the random walk on the dynamically
rewired graph and the modified random walk, is best visualised as follows: imagine
we are looking at the random walk on the dynamically rewired graph from the point
of view of the initial configuration. Then it looks as if the random walk performs an
ordinary random walk on the static initial graph (when it walks on the parts that
are not changed by the dynamics), with the exception that at some random times it
makes uniform jumps (when it encounters a previously rewired edge). This suggests
that the random walk on the dynamically rewired graph can be coupled to a random
walk that exactly does this.

The framework of the coupling to a modified random walk introduced in this paper
is based on the ideas developed in [13]. In fact, the coupling of the random walk on the
dynamically rewired random graph and the modified random walk is implicit in the
proof of the main theorem of [13]. There the main idea was that the path probabilities
under the two random walk models coincide for self-avoiding paths, and it was shown
that the random walk paths are with high probability self-avoiding.

The crucial observation is that the random walk paths on a typical configuration
are self-avoiding with high probability under the law of the configuration model. The
particular form of Condition 4.1.4 is motivated by this observation. This also suggests
that the same results should hold when the distribution of the initial graph is replaced
by some other distribution on graphs on which random walk paths are ‘typically’ self-
avoiding.
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2. One-sided cut-off: It is easy to construct examples of one-sided cut-off in the more
general framework of Markov chains. Suppose that P is the matrix of transition prob-
abilities of an ergodic Markov chain on a state space X with a stationary distribution
π, and let Π be the matrix whose rows are all equal to π. Fix α ∈ (0, 1] and consider
the Markov chain where at each step transitions are made according to matrix P with
probability 1 − α and according to matrix Π with probability α, and these choices
are made independently at each step. This corresponds to the Markov chain with
transition probabilities given by (1− α)P + αΠ. Note that, as soon as Π is used for
transition, the Markov chain becomes stationary. If we let σ be the first time Π is
used for a transition then σ is a strong stationary time for the Markov chain, and
hence the total variation distance can be bounded by tail probabilities of σ. In fact,
for any x ∈ X and t ∈ N we have

‖Qt(x, ·)− π‖TV = (1− α)t‖P t(x, ·)− π‖TV, (4.48)

since the probability of the event {σ > t} is (1−α)t and the Markov chain is stationary
at time t conditioned on the event {σ ≤ t}.

Now, suppose (Pn)n∈N is a sequence of ergodic Markov chains indexed by the size
n of the state space, πn is the stationary distribution and Tn is the mixing time of Pn
with Tn →∞ as n→∞. Let Πn be the matrix of transition probabilities whose rows
are all equal to πn, and consider the Markov chain whose transition probabilities are
given by the matrix Qn = (1 − αn)Pn + αnΠn. If (Pn)n∈N exhibits cut-off, then we
have the same trichotomy as in Theorem 4.4.3:

• limn→∞ αnTn =∞: the mixing time is of order α−1
n without cut-off,

• limn→∞ αnTn = β ∈ (0,∞): the mixing time is of order Tn with one-sided
cut-off,

• limn→∞ αnTn = 0: the mixing time is of order Tn with two-sided cut-off (the
same as for Pn).

3. Regularity of the graph dynamics: Simple modifications to the random walk with
local rewiring model can lead to violations of Condition 4.1.4. Let us consider a modi-
fication in which the rewiring mechanism is slightly changed: When Zt = 1 we choose
an edge, say {y, z}, uniformly at random from the set of all edges of Ct−1 except the
edge {Xt−1, Ct−1(Xt−1)}, and we pair the half-edges Xt−1, Ct−1(Xt−1), y, z uniformly
at random to obtain the new configuration Ct. In this case, the probability that Xt−1

is paired to its previous pair Ct−1(Xt−1) is 1/3, and hence Condition 4.1.4(D2) is not
satisfied. Another possibility is to let αn depend on Xt−1. Suppose that we are given
a sequence (αn,x)x∈H , and Zt = 1 with probability αn,x conditioned on Xt−1 = x. In
this case Condition 4.1.4(D1) is violated.

4. Local vs. global rewiring mechanisms: The rewiring mechanism of the random
walk with local rewiring model can be seen as a ‘local-to-global’ rewiring mechanism:
one end of the rewired edge is selected ‘locally’ at the position of the random walk,
while the other end is selected ‘globally’ from the set of all possible half-edges. On the
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other hand, the rewiring mechanism of the random walk on the dynamic configuration
model introduced in [12], can be seen as a ‘global-to-global’ rewiring mechanism, in
the same sense. The effects of local versus global choices are best seen in the tail
probabilities of the randomised stopping time τ . In the random walk on the dynamic
configuration model, we had Px,ξ(τ > t) = (1 − α)t(t+1)/2 + o(1) whp in x and ξ,
where the t(t+ 1)/2 term comes from the cumulative effect of doing a global rewiring
at each step.

It would be interesting to study rewiring mechanisms that interpolate between
these two examples. One possibility is to consider a model in which some of the
half-edges in a neighborhood of the random walk are paired to randomly chosen half-
edges. Formally, let Brξ (x) be the set of half-edges that can be reached from x by a
random walk of at most r steps on the configuration ξ. Suppose that, at each time
t, every half-edge in BrCt−1

(Xt−1) is rewired independently with probability α. The
case r = 0 would correspond to the random walk with local rewiring model, while
the case r =∞ would correspond to a global-to-global rewiring mechanism similar to
the rewiring mechanism of the dynamic configuration model. In between these two
extremes, we expect to see that tail probabilities of τ interpolating between that of
the random walk with local rewiring model and the random walk on the dynamic
configuration model.

5. Comparison with the switch chain: The rewiring mechanism of the random walk
with local rewiring model can be seen as a variation of the switch chain of [34]. There
are two main differences:

• in the switch Markov chain, the switching edges are chosen uniformly at random
from all possible pairs, while in the random walk with local rewiring model one
of the switching edges is chosen according to the random walk,

• in the switch Markov chain, the underlying graph is forced to be simple, while
in the random walk with local rewiring model, multiple edges and self-loops are
allowed.

It would be interesting to study a variation of the random walk with local rewiring
model in which the simplicity of the graph is preserved. The main challenge would
be to deal with the combinatorial contraints that are imposed by the preservation of
the simplicity.


