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3. Random walks on dynamic configuration models: a trichotomy

CHAPTER 3
Random walks on dynamic

configuration models: a trichotomy

This chapter is based on a joint article with Luca Avena, Remco van der Hofstad and
Frank den Hollander [13].

Abstract

We consider a dynamic random graph on n vertices that is obtained by starting
from a random graph generated according to the configuration model with a pre-
scribed degree sequence and at each unit of time randomly rewiring a fraction αn of
the edges. We are interested in the mixing time of a random walk without backtrack-
ing on this dynamic random graph in the limit as n → ∞, when αn is chosen such
that limn→∞ αn(log n)2 = β ∈ [0,∞]. In [12] we found that, under mild regularity
conditions on the degree sequence, the mixing time is of order 1/

√
αn when β = ∞.

In the present paper we investigate what happens when β ∈ [0,∞). It turns out that
the mixing time is of order log n, with the scaled mixing time exhibiting a one-sided
cutoff when β ∈ (0,∞) and a two-sided cutoff when β = 0. The occurrence of a
one-sided cutoff is a rare phenomenon. In our setting it comes from a competition
between the time scales of mixing on the static graph, as identified by Ben-Hamou
and Salez [16], and the regeneration time of first stepping across a rewired edge.
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3. Random walks on dynamic configuration models: a trichotomy

§3.1 Introduction

§3.1.1 Background
The goal of the present paper is to study the mixing time of a random walk without
backtracking on a dynamic version of the configuration model. The static configura-
tion model is a random graph with a prescribed degree sequence. For random walk on
the static configuration model, with or without backtracking, the asymptotics of the
associated mixing time, and related properties such as the presence of the so-called
cutoff phenomenon, were derived recently by Berestycki, Lubetzky, Peres and Sly [21],
and by Ben-Hamou and Salez [16]. In particular, under mild assumptions on the de-
gree sequence, guaranteeing that the graph is an expander with high probability, the
mixing time was shown to be of order log n, with n the number of vertices.

In an earlier paper [12], we consider a discrete-time dynamic version of the con-
figuration model, where at each unit of time a fraction αn of the edges is sampled
and rewired uniformly at random. Our dynamics preserves the degrees of the ver-
tices. Consequently, when considering a random walk on this dynamic configuration
model, its stationary distribution remains constant over time and the analysis of its
mixing time is a well-posed question. It is natural to expect that, due to the graph
dynamics, the random walk mixes faster than the log n order known for the static
model. Under very mild assumptions on the prescribed degree sequence (Condi-
tion 3.1.2 below), we have shown that this is indeed the case when (αn)n∈N satisfies
limn→∞ αn(log n)2 = ∞, which corresponds to a regime of ‘fast enough’ graph dy-
namics. In particular, we have shown that for every ε ∈ (0, 1) the ε-mixing time grows
like

√
2 log(1/ε)/αn as n→∞ (when also limn→∞ αn = 0), with high probability (in

the sense of Definition 3.1.1 below).
In the present paper we look at a slower dynamics, namely, (αn)n∈N satisfying

limn→∞ αn(log n)2 = β ∈ [0,∞). Our main result (Theorem 3.1.4 below) states
that, under somewhat stronger assumptions on the prescribed degree sequence (Con-
dition 3.1.3 below), the mixing time is of order log n, as for the static model, but that
there is an interesting difference between the cases β ∈ (0,∞) and β = 0. Our proof
builds on the strategy developed in [12] for the regime of fast dynamics. However,
the argument in [12] establishing the almost self-avoiding nature of the random walk
cannot be immediately extended to the regime of slow dynamics. This difficulty is
overcome by using a different proof, in combination with an annealing argument (see
Section 3.3).

The rest of the paper is organised as follows. In Section 3.1.2 we define the model.
This is a verbatim repetition of what was written in [12, Section 1.2], in which we
introduce notation and set the stage. In Section 3.1.3 we state our main theorem,
which is a trichotomy for the cases β = ∞, β ∈ (0,∞) and β = 0. In Section 3.1.4
we place this theorem in its proper context.

Throughout the sequel we use standard notations for the asymptotic compar-
ison of functions f, g : N → [0,∞): f(n) = O(g(n)) or g(n) = Ω(f(n)) when
lim supn→∞ f(n)/g(n) < ∞; f(n) = o(g(n)) or g(n) = ω(f(n)) when limn→∞
f(n)/g(n) = 0; f(n) = Θ(g(n)) when both f(n) = O(g(n)) and g(n) = O(f(n)).
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§3.1. Introduction

§3.1.2 Model
Since this section was a verbatim repetition of Section 2.1.2, we remove it and refer
to Section 2.1.2 whenever necessary.

§3.1.3 A trichotomy
We are interested in the behaviour of the total variation distance between the distri-
bution of Xt and the uniform distribution

Dη,x(t) := ‖Pη,x(Xt ∈ · )− UH(·)‖TV. (3.1)

Note that Dη,x(t) depends on the initial configuration η and half-edge x. We will
prove statements that hold for typical choices of (η, x) under the uniform distribution
µn (recall that H depends on the number of vertices n) given by

µn := ConfH × UH on ConfH ×H, (3.2)

where typical is made precise through the following definition:

Definition 3.1.1 (With high probability). A statement that depends on the initial
configuration η and initial half-edge x is said to hold with high probability (whp) in η
and x if the µn-measure of the set of pairs (η, x) for which the statement holds tends
to 1 as n→∞.

Regularity conditions

In Theorem 3.1.4 below we use two sets of regularity conditions on the degree sequence:

Condition 3.1.2. (Regularity of degrees)

(R1) ` is even and ` = Θ(n) as n→∞.

(R2) lim supn→∞ νn <∞, where

νn :=

∑
z∈H deg(z)

`
=

∑
v∈V d(v)[d(v)− 1]∑

v∈V d(v)
(3.3)

denotes the expected forward degree of a uniformly chosen half-edge.

(R3) d(v) ≥ 2 for all v ∈ V .

Condition 3.1.3. (Regularity of degrees (Cont.))

(R1*) dmax = `o(1) as n→∞, where

dmax := max
v∈V

d(v). (3.4)
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3. Random walks on dynamic configuration models: a trichotomy

(R2*) As n→∞,

λ2

λ3
1

= ω

(
(log log `)2

log `

)
,

λ
3/2
2

λ3

√
λ1

= ω

(
1√
log `

)
, (3.5)

where

λ1 :=
1

`

∑
z∈H

log(deg(z)), λm :=
1

`

∑
z∈H
| log(deg(z))− λ1|m, m = 2, 3.

(3.6)

(R3*) d(v) ≥ 3 for all v ∈ V .

Condition 3.1.2 was used in [12] to deal with the regime of ‘fast graph dynamics’.
Conditions (R1) and (R2) are minimal requirements to guarantee that the graph is
locally tree-like. Condition (R3) ensures that the random walk without backtracking
is well-defined. Condition 3.1.3 was used in [16] to deal with the regime of no graph
dynamics, i.e., the static graph. Condition (R1*) provides control on the large degrees.
Condition (R2*) is technical and states that the degrees vary neither too little nor
too much. Condition (R3*) ensures that the graph is connected with high probability
and that there are no nodes where the random walk without backtracking moves
deterministically.

Below, we will work under the Conditions (R1)–(R3) as well as (R1*)–(R3*). If
Dn = d(Vn) denotes the degree of a random vertex, then Condition (R2*) is implied by
the often used condition that Dn → D in distribution (when P(D ≥ 3) > 0), together
with E[Dn]→ E[D] (see e.g. van der Hofstad [93, Chapter 7]). Thus, Condition (R2*)
is rather mild. Condition (R1*) excludes vertices with a degree that is a positive power
of n, which is claimed to be realistic for real-world networks (see e.g. [93, Chapter 1]
for an extensive introduction). We have a truncation argument, along the lines of the
one in Berestycki, van der Hofstad and Salez [22], showing that the degrees can be
truncated and the random walk is unlikely to notice this truncation. However, the
truncated graph may have vertices of degree 2, so that it is not clear how to apply
the results in Ben-Hamou and Salez [16]. Furthermore, we believe that Condition
(R3*) is unnecessary for our results. We state it here because we rely on the work
of [16], which considers random walk without backtracking started from the worst-
possible starting point. When there is a positive proportion of vertices of degree 2,
the configuration model is bound to contain a long path of such vertices. On such
a stretch, the walk moves deterministically, but it slows down the mixing because it
takes time ω(log n) to leave the stretch. Thus, mixing would occur at a time that is
ω(log n) larger than that when the walk starts from a uniform vertex, which makes
worst-case and average-case mixing different. Still, since our walk starts from the
uniform measure on half-edges, it is unlikely to encounter such a stretch. We refrain
from investigating this issue further.

Main theorem

Define the proportion of rewired edges per unit of time as

αn := k/m, n ∈ N, (3.7)

54



§3.1. Introduction

where m = `/2 is the total number of edges and k is the number of edges that get
rewired per unit of time. For the static model (αn ≡ 0), under Condition 3.1.3, the
ε-mixing time inf{t ∈ N0 : Dη,x(t) ≤ ε} is known to scale like [1 + o(1)] cn,stat log n

for all ε ∈ (0, 1), with cn,stat = 1/λ1 ∈ (0,∞) (Ben-Hamou and Salez [16]). If
Condition 3.1.2 holds too, then n 7→ cn,stat is bounded away from 0 and ∞. If also
the degree distribution tends to a limit, then limn→∞ cn,stat = cstat ∈ (0,∞).

Our main theorem shows that the above behaviour turns into a trichotomy for the
dynamic model:

Theorem 3.1.4 (Scaled mixing profiles). Suppose that limn→∞ αn(log n)2 = β ∈
[0,∞]. The following hold whp in η and x:

(1) Subject to Condition 3.1.2, if β =∞, then

Dη,x
(
cα−1/2

n

)
= e−c

2/2 + o(1), c ∈ [0,∞). (3.8)

(2) Subject to Condition 3.1.2(R1) and Condition 3.1.3, if β ∈ (0,∞), then

Dη,x
(
c log n

)
=

{
e−βc

2/2 + o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(3.9)

(3) Subject to Condition 3.1.2(R1) and Condition 3.1.3, if β = 0, then

Dη,x
(
c log n

)
=

{
1− o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(3.10)

The proof of Theorem 3.1.4 is organised as follows. Theorem 3.1.4(1) was already
proved in [12]. In Section 3.2 we show that Theorems 3.1.4(2)–(3) follow from a
key proposition (Proposition 3.2.1 below), which will be proved in Sections 3.3–3.4.
In Section 3.3 we show that on scale log n with high probability the random walk
is self-avoiding, i.e., does not visit the same vertex twice, and that the same holds
for a version of the random walk with random resets. In Section 3.4 we compute
probabilities of rewiring histories and of self-avoiding paths conditional on rewiring
histories.

§3.1.4 Discussion
1. Theorem 3.1.4 gives the sharp asymptotics of the mixing profiles in three regimes,
which we refer to as supercritical (β = ∞), critical (β ∈ (0,∞)) and subcritical
(β = 0). The latter includes the case of the static configuration model. While in the
supercritical regime the mixing time is of order 1/

√
αn = o(log n), in the critical and

the subcritical regime it is of order log n (see Fig. 3.1). Note that for β = ∞ the
scaling does not depend on the degrees, while for β ∈ [0,∞) it does via the constant
cn,stat.

2. For the static model, because the scaling of the ε-mixing time does not depend on
ε ∈ (0, 1) (Ben-Hamou and Salez [16]) there is two-sided cutoff, i.e., the total variation
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3. Random walks on dynamic configuration models: a trichotomy

1 t
√
αn

D(t)

1 t/cn,stat log n

D(t)

1 t/cn,stat log n

D(t)

Figure 3.1: Plot of D(t) on time scale 1/
√
αn for β = ∞, respectively, on time scale

cn,stat logn for β ∈ (0,∞) and β = 0. Because the scaling holds whp in η and x, we
have suppressed these indices.

distance drops from 1 to 0 in a time window of width o(log n). Theorem 3.1.4 shows
that this behaviour persists throughout the subcritical regime, but that in the critical
regime the drop is not from height 1 but from height < 1, i.e., there is one-sided cut-
off. In contrast, in the supercritical regime there is no cutoff, i.e., the total variation
distance drops from 1 to 0 gradually on scale 1/

√
αn.

3. We emphasize that we look at the mixing times for ‘typical’ initial conditions and
at the distribution of the random walk averaged over the trajectories of the graph
process: the ‘annealed’ model. It would be interesting to investigate different setups,
such as ‘worst-case’ mixing, in which the maximum of the mixing time over all initial
conditions is considered, or the ‘quenched’ model, in which the entire trajectory of
the graph process is fixed instead of just the initial configuration. In such setups
the results can be drastically different. For example, we might consider an initial
configuration in which every vertex has a maximal number of self-loops, which would
give a maximal component size of 2, and the initial position is a half-edge of an
isolated vertex with small degree. In such a situation, we have to wait at least until
one of the half-edges of the isolated vertex is rewired, and this time can be of order of
1/αn, which is much larger than 1/

√
αn. Another interesting example is to consider

a uniformly sampled initial configuration, with a worst-case starting location for the
random walk. We may expect our results to carry over because the mixing-time
estimates of Ben-Hamou and Salez [16] hold for worst-case initial positions. However,
to show that this is true we would require more sophisticated techniques, since the
underlying graph changes at each step of the dynamics.
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§3.2. Stopping time decomposition

4. It would be of interest to extend our results to random walk with backtracking.
This is much harder. Indeed, because the configuration model is locally tree-like and
random walk without backtracking on a tree is the same as self-avoiding walk, in
our proof we can exploit the fact that typical walk trajectories are self-avoiding. In
contrast, for the random walk with backtracking, after it jumps over a rewired edge,
which in our model serves as a randomized stopping time, it may jump back over the
same edge, in which case it has not mixed. This problem remains to be resolved.

§3.2 Stopping time decomposition

As in [12], the proof is based on a randomized stopping time argument. Let

τ := min{t ∈ N : Xt−1 ∈ R≤t}. (3.11)

where R≤t := ∪ts=1Rs is the set of rewired edges up to time t. By the triangle
inequality, we have

Dη,x(t) ≤ Pη,x(τ > t)‖Pη,x(Xt ∈ · | τ > t)− UH‖TV

+ Pη,x(τ ≤ t)‖Pη,x(Xt ∈ · | τ ≤ t)− UH‖TV (3.12)

and

Dη,x(t) ≥ Pη,x(τ > t)‖Pη,x(Xt ∈ · | τ > t)− UH‖TV

− Pη,x(τ ≤ t)‖Pη,x(Xt ∈ · | τ ≤ t)− UH‖TV. (3.13)

Proposition 3.2.1 (Closeness to stationarity and stopping time tails).
Suppose that Condition 3.1.2(R1) and Condition 3.1.3 hold and that β ∈ [0,∞). If
t = t(n) = [1 + o(1)] c log n for some c ∈ (0,∞), then whp in η and x,

‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV =

{
1− o(1), c ∈ [0, cn,stat),

o(1), c ∈ (cn,stat,∞),
(3.14)

Pη,x(τ > t) = (1− αn)t(t+1)/2 + o(1). (3.15)

If, in addition, k = k(n) = ω((log n)2), then

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV = o(1). (3.16)

We show how Theorems 3.1.4(2)–(3) follow from Proposition 3.2.1:

Proof of Theorem 3.1.4(2)–(3). First we prove (3.9). Under the condition
limn→∞ αn(log n)2 = β ∈ (0,∞), since m = Θ(n) we have k = ω((log n)2), and
so we can use all three items of Proposition 3.2.1. From (3.12), (3.13) and (3.16) it
follows that, for any t = [1 + o(1)] c log n,

Dη,x(t) = Pη,x(τ > t)‖Pη,x(Xt ∈ · | τ > t)− UH‖TV + o(1). (3.17)
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3. Random walks on dynamic configuration models: a trichotomy

Since limn→∞ αn = 0 and tαn = o(1), by (3.15) also

Pη,x(τ > t) = (1− αn)t(t+1)/2 + o(1) = exp(−αnt2/2) + o(1). (3.18)

Since αn = [1 + o(1)]β/(log n)2, (3.18) together with (3.14) gives us

Dη,x(t) =

{
exp(−βc2/2) + o(1), c ∈ [0, cn,stat),

o(1), c ∈ (cn,stat,∞).
(3.19)

Next, we prove (3.10). If limn→∞ αn(log n)2 = β = 0, then by (3.15), for any t =

[1 + o(1)] c log n,

Pη,x(τ > t) = exp(−αnt2/2) + o(1) = 1− o(1), Pη,x(τ ≤ t) = o(1). (3.20)

Inserting (3.20) into (3.12) and (3.13), we get

Dη,x(t) = [1− o(1)] ‖Pη,x(Xt ∈ · | τ > t)− UH‖TV + o(1). (3.21)

Using (3.14), we obtain

Dη,x(t) =

{
1− o(1), c ∈ [0, cn,stat),

o(1), c ∈ (cn,stat,∞).
(3.22)

§3.3 Self-avoiding trajectories

In this section, we show that the random walk trajectories are self-avoiding on the
relevant time scales with high probability. We let SAt denote the event {v(Xs) 6=
v(Xs′) for any 0 ≤ s < s′ ≤ t}, i.e., no two half-edges are incident to the same vertex
along the trajectory up to time t.

Along the way we need a random walk on the static model that is a slightly
modified version of the random walk without backtracking. This version will be
instrumental in the proof of our main theorem. For fixed t ∈ N, let [t] := {1, . . . , t}
and define the t-stepmodified random walk starting from configuration η and half-edge
x as follows:

(a) Let T be a random subset of [t] drawn according to a probability mass function
(pt(T ))T⊂[t] with pt(∅) ∈ (0, 1) for all t (to be defined later on).

(b) At each time s ∈ [t], if s 6∈ T , then the random walk makes a non-backtracking
move in configuration η, while if s ∈ T , then it jumps to a uniformly chosen
half-edge (possibly the half-edge it is on).

This is a random walk without backtracking that resets its position to a uniformly
chosen half-edge at certain random times. We denote its law by Pmod

η,x , and put
Pmod
η,x (X0 = x) = 1. Note that, although the distribution of this random walk depends

on t and on the distribution of T , we suppress these from the notation.
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§3.3. Self-avoiding trajectories

If we condition on the event that T 6= ∅, then the modified random walk makes
a uniform jump at some time in [t] after which it becomes stationary, and so

Pmod
η,x (Xt ∈ · | T 6= ∅) = UH(·). (3.23)

On the other hand, if we condition on the event that T = ∅, then the modified random
walk is the same as the random walk without backtracking on the static graph given
by configuration η starting from x. Denoting the law of the latter by Pstat

η,x , we have

Pmod
η,x (· | T = ∅) = Pstat

η,x (·). (3.24)

The main result of this section is the following lemma:

Lemma 3.3.1. Suppose that Condition 3.1.2(R1) and Condition 3.1.3(R1*) hold and
that t = [1 + o(1)] c log n for some c ∈ (0,∞). Then whp in η and x,

Pη,x(SAt) = 1− o(1), Pmod
η,x (SAt) = 1− o(1). (3.25)

Proof. The proof uses two exploration processes on the graph with the help of the two
random walks in the annealed setting. Recall that µn = ConfH × UH . The annealed
measures for the two random walks are defined as

P(·) :=
∑
η,x

µn(η, x)Pη,x(·), Pmod(·) :=
∑
η,x

µn(η, x)Pmod
η,x (·). (3.26)

First, we describe the exploration process for the random walk on the dynamic
configuration model. To compute the probability of a self-avoiding path, we keep
track of already explored half-edges. The exploration process proceeds as follows:

(a) At time s = 0, choose x uniformly at random from H, set X0 = x and set A0

to be the set containing x and all its siblings (the set of ‘active’ half-edges at
time 0).

(b) At each time s ∈ [t], reveal the pair of Xs−1 = xs−1 in Cs, say ys−1. Denote
the edge {xs−1, ys−1} by es. Add ys−1 and all its siblings to As−1 to obtain As
(the set of ‘active’ half-edges at time s); some siblings may already have been
added in a previous step.

(c) Choose one of the siblings of ys−1 uniformly at random, say xs, and set Xs = xs.

This procedure builds up the trajectory of the random walk while ignoring what
happens in the rest of the graph. Note that we only pair the half-edges along the
trajectory, while the siblings of the half-edges along the trajectory are not paired until
they are visited by the random walk.

Under this construction, the first time the random walk is not self-avoiding is the
first time the revealed pair at step 2 is in the set of active half-edges. Hence we want
to bound the probability

P
(
Cs(xs−1) ∈ As−1 | ei ∈ Ci, i ∈ [s− 1]

)
, (3.27)

where e1, . . . , es−1 form a self-avoiding path. For any y ∈ H \ {xs−1}, if y is not
paired up to time s, then it can be paired to xs−1 through the initial pairing at
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3. Random walks on dynamic configuration models: a trichotomy

time 0 or through rewiring at later times. Since the initial pairing is uniform and
this distribution is stationary under the graph dynamics, for all such y the above
conditional probability is the same, and so we have

P
(
Cs(xs−1) = y | ei ∈ Ci, i ∈ [s− 1]

)
≤ 1

`− 2s+ 1
, (3.28)

where we note that 2(s− 1) half-edges are paired before time s. On the other hand,
if y ∈ H \ {xs−1} is already paired before time s, then it can be paired to xs−1

only through rewiring. Hence the same probability is less than it is for an unpaired
half-edge, and so we have the same upper bound. Summing over As−1, we get

P
(
Cs(xs−1) ∈ As−1 | ei ∈ Ci, i ∈ [s− 1]

)
≤ |As−1| − 1

`− 2s+ 1
≤ sdmax

`− 2s+ 1
, (3.29)

where we use that at each time we activate at most dmax = maxv∈V d(v) half-edges.
Finally, since dmax = no(1) by Condition 3.1.3(R1*), t = [1+o(1)] c log n and ` = Θ(n)

by Condition 3.1.2(R1), via a union bound and summing over s ∈ [t], we get

P(SAct) ≤
dmaxt(t+ 1)/2

`− 2t+ 1
= o(1), (3.30)

which establishes the left-hand side of (3.25). Indeed, by the Markov inequality, for
any (wn)n∈N that tends to zero arbitrarily slowly, we have

µn(Pη,x(SAct) > wn) ≤ P(SAct)

wn
, (3.31)

which implies that, with µn-probability at least 1− o(1),

Pη,x(SAt) = 1− o(1). (3.32)

Next, we describe the exploration process for the modified random walk. Again,
we let At denote the set of active half-edges. Now, instead of random rewirings, we
have a static configuration chosen randomly according to the configuration model,
and we have a set of random times T ⊂ [t] at which the random walk makes uniform
jumps. The exploration process proceeds as follows:

(a) At time s = 0, choose x uniformly at random from H, set X0 = x and let A0

be the set containing x and all its siblings. Choose also T ⊂ [t] randomly with
probabilities (pt(T ))T⊂[t].

(b) At each time s ∈ [t], we do the following:

(a) If s ∈ [t] \ T , then reveal the pair of Xs−1 = xs−1 in η, say ys−1. Add
ys−1 and all its siblings to As−1 to obtain As. Choose one of the siblings
of ys−1 uniformly at random, say xt, and set Xs = xs.

(b) If s ∈ T , then choose xs uniformly at random from H, set Xs = xs, add
xs and all its siblings to As−1 to obtain As.
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§3.4. Proof of the main proposition

Under this construction, the first time the random walk is not self-avoiding is the first
time we either have that the revealed pair at step 2(a) is in the set of active half-edges
or that the random walk jumps to an active half-edge at step 2(b). We look at the
probability

Pmod(Xs ∈ As−1 | X[0,s−1] = x[0,s−1]), (3.33)

where x[0,s−1] is a self-avoiding segmented path. We see that if s ∈ T , then this
probability is |As−1|/`. Otherwise it is at most (|As−1| − 1)/(`− 2s + 1), and so we
get

Pmod
(
Xs ∈ As−1 | X[0,s−1] = x[0,s−1]

)
≤ |As−1|
`− 2s+ 1

≤ sdmax

`− 2s+ 1
. (3.34)

This bound agrees with (3.30), so we get the same conclusion for Pmod. Hence, with
µn-probability at least 1− o(1),

Pmod
η,x (SAt) = 1− o(1). (3.35)

The proof for the modified random walk can easily be adapted to the random
walk without backtracking on the static graph, simply by removing step 2(b) in the
exploration process for the modified random walk. Hence we also have, whp in η and
x,

Pstat
η,x (SAt) = 1− o(1). (3.36)

§3.4 Proof of the main proposition

In this section, we prove Proposition 3.2.1. We use the notation introduced in [12]
and recall some of the definitions that are needed along the way.

For a fixed sequence of half-edges x[0,t] with x0 = x and a fixed set of times T ⊆ [t],
we use the short-hand notation

A(x[0,t];T ) :=
{
xi−1 ∈ R≤i ∀ i ∈ T, xj−1 6∈ R≤j ∀ j ∈ [1, t] \ T

}
, (3.37)

where R≤i denotes the set of half-edges that are rewired up to time i. This event
gives us the rewiring history for the sequence of half-edges x[0,t]. More precisely, it is
the event that, for i ∈ [t] \ T , the half-edge xi−1 in not rewired until time i, and, for
i ∈ T , the half-edge xi−1 is rewired at some time before or at time i.

We say that a sequence x[0,t] of half-edges of length t is a self-avoiding segmented
path in the configuration η with respect to T = {t1, . . . , tr} ⊂ [t] if x[0,t] is self-
avoiding, meaning that no two half-edges in x[0,t] are siblings, and each subsequence
x[ti−1,ti−1] induces a path in η for i ∈ [r+ 1] with t0 = 0 and tr+1 = t+ 1. We denote
by SPηt (x, y;T ) the set of all self-avoiding segmented paths in η with respect to T
with x0 = x and xt = y (see Fig. 3.2) and by SPηt (x;T ) the set of all self-avoiding
segmented paths in η with respect to T with x0 = x. Note that for T = ∅ these are
simply the sets of self-avoiding paths.
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x
xt1−1

xt1
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xt2xt3−1
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Figure 3.2: An element of SPηt (x, y;T ) with T = {t1, t2, t3}.

Lemmas 3.4.1 and 3.4.2 below are slight modifications of [12, Lemmas 3.1–3.2] and
will be instrumental in the proof of Proposition 3.2.1. The first lemma is concerned
with the probabilities of the rewiring histories of self-avoiding segmented paths:

Lemma 3.4.1 (Rewiring histories of self-avoiding segmented paths). Fix
t ∈ N, T ⊆ [t] and η, ζ ∈ ConfH . Suppose that x[0,t] and y[0,t] are two self-avoiding
segmented paths in η and ζ, respectively, of length t+ 1. Then

Pη,x
(
A(x[0,t];T )

)
= Pζ,y

(
A(y[0,t];T )

)
. (3.38)

Proof. The proof follows the same line of argument as in the proof of [12, Lemma 3.1]
and uses a coupling between two dynamic configuration models. Let f be a one-to-one
map from H to itself with the property that it maps xi to yi for all i ∈ [0, t], and
preserves the edges between two configuration η and ζ, i.e., f(η(x)) = ζ(f(x)) for all
x ∈ H. The Markovian coupling (Cxt , C

y
t )t∈N0 , where Cx0 = η and Cy0 = ζ, proceeds

at every step t ∈ N as follows:

(a) Choose k edges from Cxt−1 uniformly at random without replacement, say {z1, z2},
. . . , {z2k−1, z2k}. Choose the edges {f(z1), f(z2)}, . . . , {f(z2k−1), f(z2k)} from
Cyt−1.

(b) Rewire the half-edges z1, . . . , z2k uniformly at random to obtain Cxt and set
Cyt (f(zi)) = f(Cxt (zi)).

Since under the coupling the event A(x[0,t];T ) on η is the same as the event A(y[0,t];T )

on ζ, we get the desired result.

From this lemma we see that the probability of a specific rewiring history for a self-
avoiding segmented path does not depend on the path itself nor on the configuration:
it only depends on t and T . In what follows we set pt(T ) = Pη,x(A(x[0,t], T )) for
which it can be easily seen that

Pη,x(A(x[0,t], T )) > 0 and
∑
T⊂[t]

Pη,x(A(x[0,t], T )) = 1 for all T ⊂ [t].

When we refer to the modified random walk we will use these probabilities as the
distribution for the random times T .
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The second lemma is concerned with path probabilities for the random walk con-
ditioned on the rewiring history:

Lemma 3.4.2 (Paths estimate given rewiring history). Suppose that t = t(n) =

[1 + o(1)] c log n for some c ∈ (0,∞), k = k(n) = ω((log n)2) and T = {t1, . . . , tr} ⊆
[t]. Let x0 · · ·xt ∈ SPηt (x, y;T ) be a self-avoiding segmented path in η that starts at x
and ends at y. Then

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`r

∏
i∈[1,t]\T

1

deg(xi)
. (3.39)

Proof. The proof follows the same line of argument as the proof of [12, Lemma 3.2].

We continue with the proof of Proposition 3.2.1. We start by proving the result
on the tail probabilities of τ , since this is easier.

B Proof of (3.15). Using (3.25), we see that whp in η and x

Pη,x(τ > t)− o(1) ≤ Pη,x(SAt, τ > t) ≤ Pη,x(τ > t). (3.40)

On the other hand, by considering all possible self-avoiding paths,

Pη,x(SAt, τ > t) =
∑

x[0,t]∈SPηt (x;∅)

Pη,x
(
X[1,t] = x[1,t], A(x[0,t];∅)

)
=

∑
x[0,t]∈SPηt (x;∅)

(
t∏
i=1

1

deg(xi)

)
Pη,x

(
A(x[0,t];∅)

)
= pt(∅)Pstat

η,x (SAt), (3.41)

where in the second line we use that

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];∅)

)
=

t∏
i=1

1

deg(xi)
(3.42)

and in the third line that these are the path probabilities for the random walk without
backtracking in the static model. By following the proof of [12, Eq. (2.6)], we also get

Pη,x
(
A(x[0,t];∅)

)
= (1− αn)t(t+1)/2 + o(1). (3.43)

Combining this with (3.36), we obtain

Pη,x(SAt, τ > t) = (1− αn)t(t+1)/2 + o(1), (3.44)

and the claim follows from (3.40).
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B Proof of (3.14). Fix y ∈ H. We have

Pη,x(Xt = y,SAt, τ > t) =
∑

x[0,t]∈SPηt (x,y;∅)

Pη,x
(
X[1,t] = x[1,t], τ > t

)
=

∑
x[0,t]∈SPηt (x,y;∅)

(
t∏
i=1

1

deg(xi)

)
Pη,x

(
A(x[0,t];∅)

)
(3.45)

= pt(∅)Pstat
η,x (Xt = y,SAt).

Using the third line of (3.41), we obtain

Pη,x(Xt = y | SAt, τ > t) = Pstat
η,x (Xt = y | SAt). (3.46)

On the other hand, by partitioning according to SAt and SAct and using that Pη,x(SAt)
= 1− o(1), we obtain

‖Pη,x(Xt ∈ · | τ > t)− Pη,x(Xt ∈ · | SAt, τ > t)‖TV = o(1), (3.47)

and
‖Pstat

η,x (Xt ∈ · )− Pstat
η,x (Xt ∈ · | SAt)‖TV = o(1). (3.48)

Combining these relations with (3.46), we obtain

‖Pη,x(Xt ∈ · | τ > t)− Pstat
η,x (Xt ∈ ·)‖TV = o(1). (3.49)

Using the results of [16] for the random walk without backtracking in the static
configuration model, we see that if t = [1 + o(1)]c log n with c ∈ (0, cn,stat), then

‖Pη,x(Xt ∈ · | τ > t)− UH‖TV = 1− o(1), (3.50)

while if t = [1 + o(1)] c log n with c ∈ (cn,stat,∞), then

‖Pη,x(Xt ∈ · | τ > t)− UH‖TV = o(1). (3.51)

B Proof of (3.16). Fix y ∈ H and suppose that k = k(n) = ω((log n)2). Using
Lemmas 3.4.1 and 3.4.2,

Pη,x(Xt = y,SAt, τ ≤ t)

=

t∑
r=1

∑
T⊆[1,t]
|T |=r

∑
x[0,t]∈SP(x,y;T )

Pη,x
(
X[0,t] = x[0,t] | A(x[0,t];T )

)
Pη,x

(
A(x[0,t];T )

)

≥ [1− o(1)]

t∑
r=1

∑
T⊆[1,t]
|T |=r

pt(T )
∑

x[0,t]∈SP(x,y;T )

 ∏
i∈[t]\T

1

deg(xi)

 1

`r
. (3.52)
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We immediately note that

Pmod
η,x (Xt = y,SAt | T = T ) =

∑
x[0,t]∈SP(x,y;T )

 ∏
i∈[t]\T

1

deg(xi)

 1

`|T |
, (3.53)

and so

Pη,x(Xt = y,SAt, τ ≤ t) ≥ [1− o(1)]Pmod
η,x (Xt = y,SAt, T 6= ∅). (3.54)

Using (3.24), (3.25) and (3.41), whp in η and x, we also have

Pη,x(SAt, τ ≤ t) = Pη,x(SAt)− Pη,x(SAt, τ > t)

≤ Pmod
η,x (SAt) + o(1)− pt(∅)Pstat

η,x (SAt)

= Pmod
η,x (SAt) + o(1)− Pmod

η,x (SAt, T = ∅)

= Pmod
η,x (SAt, T 6= ∅) + o(1). (3.55)

Combining this with (3.54) we get, for any y ∈ H,

Pη,x(Xt = y | SAt, τ ≤ t) ≥ [1− o(1)]Pmod
η,x (Xt = y | SAt, T 6= ∅). (3.56)

which in turn gives

‖Pη,x(Xt ∈ · | SAt, τ ≤ t)− Pmod
η,x (Xt ∈ · | SAt, T 6= ∅)‖TV = o(1). (3.57)

On the other hand, (3.25) gives

‖Pη,x(Xt ∈ · | SAt, τ ≤ t)− Pη,x(Xt ∈ · | τ ≤ t)‖TV = o(1), (3.58)

and

‖Pmod
η,x (Xt ∈ · | SAt, T 6= ∅)− Pmod

η,x (Xt ∈ · | T 6= ∅)‖TV = o(1). (3.59)

Finally, from the latter two relations in combination with (3.23) and (3.57), we get

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV = o(1), (3.60)

which is the desired result.
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