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2. Mixing times of RWs on DCMs

CHAPTER 2
Mixing times of random walks on

dynamic configuration models

This chapter is based on a joint article with Luca Avena, Remco van der Hofstad and
Frank den Hollander [12].

Abstract

The mixing time of a random walk, with or without backtracking, on a random
graph generated according to the configuration model on n vertices, is known to be
of order log n. In this paper we investigate what happens when the random graph
becomes dynamic, namely, at each unit of time a fraction αn of the edges is randomly
rewired. Under mild conditions on the degree sequence, guaranteeing that the graph
is locally tree-like, we show that for every ε ∈ (0, 1) the ε-mixing time of random walk
without backtracking grows like

√
2 log(1/ε)/ log(1/(1− αn)) as n → ∞, provided

that limn→∞ αn(log n)2 = ∞. The latter condition corresponds to a regime of fast
enough graph dynamics. Our proof is based on a randomised stopping time argument,
in combination with coupling techniques and combinatorial estimates. The stopping
time of interest is the first time that the walk moves along an edge that was rewired
before, which turns out to be close to a strong stationary time.
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2. Mixing times of RWs on DCMs

§2.1 Introduction and main result

§2.1.1 Motivation and background
The mixing time of a Markov chain is the time it needs to approach its stationary
distribution. For random walks on finite graphs, the characterisation of the mixing
time has been the subject of intensive study. One of the main motivations is the
fact that the mixing time gives information about the geometry of the graph (see the
books by Aldous and Fill [4] and by Levin, Peres and Wilmer [65] for an overview
and for applications). Typically, the random walk is assumed to be ‘simple’, meaning
that steps are along edges and are drawn uniformly at random from a set of allowed
edges, e.g. with or without backtracking.

In the last decade, much attention has been devoted to the analysis of mixing times
for random walks on finite random graphs. Random graphs are used as models for
real-world networks. Three main models have been in the focus of attention: (1) the
Erdős-Rényi random graph (Benjamini, Kozma and Wormald [18], Ding, Lubetzky
and Peres [37], Fountoulakis and Reed [50], Nachmias and Peres [75]); (2) the config-
uration model (Ben-Hamou and Salez [16], Berestycki, Lubetzky, Peres and Sly [21],
Bordenave, Caputo and Salez [28], Lubetzky and Sly [67]); (3) percolation clusters
(Benjamini and Mossel [19]).

Many real-world networks are dynamic in nature. It is therefore natural to study
random walks on dynamic finite random graphs. This line of research was initiated
recently by Peres, Stauffer and Steif [83] and by Peres, Sousi and Steif [82], who
characterised the mixing time of a simple random walk on a dynamical percolation
cluster on a d-dimensional discrete torus, in various regimes. The goal of the present
paper is to study the mixing time of a random walk without backtracking on a dynamic
version of the configuration model.

The static configuration model is a random graph with a prescribed degree se-
quence (possibly random). It is popular because of its mathematical tractability and
its flexibility in modeling real-world networks (see van der Hofstad [93, Chapter 7] for
an overview). For random walk on the static configuration model, with or without
backtracking, the asymptotics of the associated mixing time, and related properties
such as the presence of the so-called cutoff phenomenon, were derived recently by
Berestycki, Lubetzky, Peres and Sly [21], and by Ben-Hamou and Salez [16]. In par-
ticular, under mild assumptions on the degree sequence, guaranteeing that the graph
is an expander with high probability, the mixing time was shown to be of order log n,
with n the number of vertices.

In the present paper we consider a discrete-time dynamic version of the config-
uration model, where at each unit of time a fraction αn of the edges is sampled
and rewired uniformly at random. [A different dynamic version of the configuration
model was considered in the context of graph sampling. See Greenhill [54] and ref-
erences therein.] Our dynamics preserves the degrees of the vertices. Consequently,
when considering a random walk on this dynamic configuration model, its station-
ary distribution remains constant over time and the analysis of its mixing time is a
well-posed question. It is natural to expect that, due to the graph dynamics, the
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§2.1. Introduction and main result

random walk mixes faster than the log n order known for the static model. In our
main theorem we will make this precise under mild assumptions on the prescribed
degree sequence stated in Condition 2.1.2 and Remark 2.1.3 below. By requiring that
limn→∞ αn(log n)2 =∞, which corresponds to a regime of fast enough graph dynam-
ics, we find in Theorem 2.1.7 below that for every ε ∈ (0, 1) the ε-mixing time for
random walk without backtracking grows like

√
2 log(1/ε)/ log(1/(1− αn)) as n→∞,

with high probability in the sense of Definition 2.1.5 below. Note that this mixing
time is o(log n), so that the dynamics indeed speeds up the mixing.

§2.1.2 Model
We start by defining the model and setting up the notation. The set of vertices
is denoted by V and the degree of a vertex v ∈ V by d(v). Each vertex v ∈ V

is thought of as being incident to d(v) half-edges (see Fig. 2.1). We write H for
the set of half-edges, and assume that each half-edge is associated to a vertex via
incidence. We denote by v(x) ∈ V the vertex to which x ∈ H is incident and by
H(v) := {x ∈ H : v(x) = v} ⊂ H the set of half-edges incident to v ∈ V . If
x, y ∈ H(v) with x 6= y, then we write x ∼ y and say that x and y are siblings of each
other. The degree of a half-edge x ∈ H is defined as

deg(x) := d(v(x))− 1. (2.1)

We consider graphs on n vertices, i.e., |V | = n, with m edges, so that |H| =∑
v∈V deg(v) = 2m =: `.

Figure 2.1: Vertices with half-edges.

The edges of the graph will be given by a configuration that is a pairing of half-
edges. We denote by η(x) the half-edge paired to x ∈ H in the configuration η. A
configuration η will be viewed as a bijection of H without fixed points and with the
property that η(η(x)) = x for all x ∈ H (also called an involution). With a slight
abuse of notation, we will use the same symbol η to denote the set of pairs of half-
edges in η, so {x, y} ∈ η means that η(x) = y and η(y) = x. Each pair of half-edges
in η will also be called an edge. The set of all configurations on H will be denoted by
ConfH .

We note that each configuration gives rise to a graph that may contain self-loops
(edges having the same vertex on both ends) or multiple edges (between the same
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2. Mixing times of RWs on DCMs

pair of vertices). On the other hand, a graph can be obtained via several distinct
configurations.

We will consider asymptotic statements in the sense of |V | = n → ∞. Thus,
quantities like V,H, d, deg and ` all depend on n. In order to lighten the notation, we
often suppress n from the notation.

Configuration model

We recall the definition of the configuration model, phrased in our notation. Inspired
by Bender and Canfield [17], the configuration model was introduced by Bollobás [24]
to study the number of regular graphs of a given size (see also Bollobás [25]). Mol-
loy and Reed [72], [73] introduced the configuration model with general prescribed
degrees.

The configuration model on V with degree sequence (d(v))v∈V is the uniform
distribution on ConfH . We sometimes write dn = (d(v))v∈V when we wish to stress
the n-dependence of the degree sequence. Identify H with the set

[1, `] := {1, . . . , `}.

A sample η from the configuration model can be generated by the following sampling
algorithm:

1. Initialize U = H, η = ∅, where U denotes the set of unpaired half-edges.

2. Pick a half-edge, say x, uniformly at random from U \ {minU}.

3. Update η → η ∪ {{x,minU}} and U → U \ {x,minU}.

4. If U 6= ∅, then continue from step 2. Else return η.

The resulting configuration η gives rise to a graph on V with degree sequence (d(v))v∈V .

Remark 2.1.1. Note that in the above algorithm two half-edges that belong to the
same vertex can be paired, which creates a self-loop, or two half-edges that belong to
vertices that already have an edge between them can be paired, which creates multiple
edges. However, if the degrees are not too large (as in Condition 2.1.2 below), then
as n→∞ the number of self-loops and the number of multiple edges converge to two
independent Poisson random variables (see Janson [58], [59], Angel, van der Hofstad
and Holmgren [10]). Consequently, convergence in probability for the configuration
model implies convergence in probability for the configuration model conditioned on
being simple.

Let Un be uniformly distributed on [1, n]. Then

Dn = d(Un) (2.2)

is the degree of a random vertex on the graph of size n. Write Pn to denote the law
of Dn. Throughout the sequel, we impose the following mild regularity conditions on
the degree sequence:
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§2.1. Introduction and main result

Condition 2.1.2. (Regularity of degrees)

(R1) Let ` = |H|. Then ` is even and of order n, i.e., ` = Θ(n) as n→∞.

(R2) Let

νn :=

∑
z∈H deg(z)

`
=

∑
v∈V d(v)[d(v)− 1]∑

v∈V d(v)
=

En(Dn(Dn − 1))

En(Dn)
(2.3)

denote the expected degree of a uniformly chosen half-edge. Then lim supn→∞ νn
<∞.

(R3) Pn(Dn ≥ 2) = 1 for all n ∈ N.

Remark 2.1.3. Conditions (R1) and (R2) are minimal requirements to guarantee
that the graph is locally tree-like (in the sense of Lemma 2.4.2 below). They also
ensure that the probability of the graph being simple has a strictly positive limit.
Conditioned on being simple, the configuration model generates a random graph that
is uniformly distributed among all the simple graphs with the given degree sequence
(see van der Hofstad [93, Chapter 7], [94, Chapters 3 and 6]). Condition (R3) ensures
that the random walk without backtracking is well-defined because it cannot get stuck
on a dead-end.

Dynamic configuration model

We begin by describing the random graph process. It is convenient to take as the
state space the set of configurations ConfH . For a fixed initial configuration η and
fixed 2 ≤ k ≤ m = `/2, the graph evolves as follows (see Fig. 2.2):

(a) At each time t ∈ N, pick k edges (pairs of half-edges) from Ct−1 uniformly at
random without replacement. Cut these edges to get 2k half-edges and denote
this set of half-edges by Rt.

(b) Generate a uniform pairing of these half-edges to obtain k new edges. Replace
the k edges chosen in step 1 by the k new edges to get the configuration Ct at
time t.

This process rewires k edges at each step by applying the configuration model sampling
algorithm in Section 2.1.2 restriced to k uniformly chosen edges. Since half-edges are
not created or destroyed, the degree sequence of the graph given by Ct is the same
for all t ∈ N0. This gives us a Markov chain on the set of configurations ConfH . For
η, ζ ∈ ConfH , the transition probabilities for this Markov chain are given by

Q(η, ζ) = Q(ζ, η) :=

 1
(2k−1)!!

(m−dHam(η,ζ)

k−dHam(η,ζ))
(mk )

if dHam(η, ζ) ≤ k,
0 otherwise,

(2.4)

where dHam(η, ζ) := |η \ ζ| = |ζ \ η| is the Hamming distance between configura-
tions η and ζ, which is the number of edges that appear in η but not in ζ. The
factor 1/(2k − 1)!! comes from the uniform pairing of the half-edges, while the factor
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2. Mixing times of RWs on DCMs

(
m−dHam(η,ζ)
k−dHam(η,ζ)

)
/
(
m
k

)
comes from choosing uniformly at random a set of k edges in η that

contains the edges in η \ ζ. It is easy to see that this Markov chain is irreducible and
aperiodic, with stationary distribution the uniform distribution on ConfH , denoted
by ConfH , which is the distribution of the configuration model.

→

Figure 2.2: One move of the dynamic configuration model. Bold edges on the left are the
ones chosen to be rewired. Bold edges on the right are the newly formed edges.

Random walk without backtracking

On top of the random graph process we define the random walk without backtracking,
i.e., the walk cannot traverse the same edge twice in a row. As in Ben-Hamou and
Salez [16], we define it as a random walk on the set of half-edges H, which is more
convenient in the dynamic setting because the edges change over time while the half-
edges do not. For a fixed configuration η and half-edges x, y ∈ H, the transition
probabilities of the random walk are given by (recall (2.1))

Pη(x, y) :=

{
1

deg(y) if η(x) ∼ y and η(x) 6= y,

0 otherwise.
(2.5)

When the random walk is at half-edge x in configuration η, it jumps to one of the
siblings of the half-edge it is paired to uniformly at random (see Fig. 2.3). The
transition probabilities are symmetric with respect to the pairing given by η, i.e.,
Pη(x, y) = Pη(η(y), η(x)), in particular, they are doubly stochastic, and so the uniform
distribution on H, denoted by UH , is stationary for Pη for any η ∈ ConfH .

Xt X
t+

1

Figure 2.3: The random walk moves from half-edge Xt to half-edge Xt+1, one of the siblings
of the half-edge that Xt is paired to.

Random walk on dynamic configuration model

The random walk without backtracking on the dynamic configuration model is the
joint Markov chain (Mt)t∈N0 = (Ct, Xt)t∈N0 in which (Ct)t∈N0 is the Markov chain

32



§2.1. Introduction and main result

on the set of configurations ConfH as described in (2.4), and (Xt)t∈N0
is the random

walk that at each time step t jumps according to the transition probabilities PCt(·, ·)
as in (2.5).

Formally, for initial configuration η and half-edge x, the one-step evolution of the
joint Markov chain is given by the conditional probabilities

Pη,x
(
Ct = ζ,Xt = z | Ct−1 = ξ,Xt−1 = y

)
= Q(ξ, ζ)Pζ(y, z), t ∈ N, (2.6)

with

Pη,x(C0 = η,X0 = x) = 1. (2.7)

It is easy to see that if d(v) > 1 for all v ∈ V , then this Markov chain is irreducible
and aperiodic, and has the unique stationary distribution ConfH × UH .

While the graph process (Ct)t∈N0 and the joint process (Mt)t∈N0 are Markovian,
the random walk (Xt)t∈N0 is not. However, UH is still the stationary distribution of
(Xt)t∈N0 . Indeed, for any η ∈ ConfH and y ∈ H we have∑

x∈H
UH(x)Pη,x(Xt = y) =

∑
x∈H

1

`
Pη,x(Xt = y) =

1

`
= UH(y). (2.8)

The next to last equality uses that
∑
x∈H Pη,x(Xt = y) = 1 for every y ∈ H, which

can be seen by conditioning on the graph process and using that the space-time
inhomogeneous random walk has a doubly stochastic transition matrix (recall the
remarks made below (2.5)).

§2.1.3 Main theorem
We are interested in the behaviour of the total variation distance between the distri-
bution of Xt and the uniform distribution

Dη,x(t) := ‖Pη,x(Xt ∈ · )− UH(·)‖TV. (2.9)

[We recall that the total variation distance of two probability measures µ1, µ2 on a
finite state space S is given by the following equivalent expressions:

‖µ1 − µ2‖TV :=
∑
x∈S
|µ1(x)− µ2(x)| =

∑
x∈S

[µ1(x)− µ2(x)]+ = sup
A⊆S

[µ1(A)− µ2(A)],

(2.10)
where [a]+ := max{a, 0} for a ∈ R.] Since (Xt)t∈N0 is not Markovian, it is not clear
whether t 7→ Dη,x(t) is decreasing or not. On the other hand,

Dη,x(t) ≤ ‖Pη,x(Mt ∈ · )− (UH × ConfH)(·)‖TV, (2.11)

and since the right-hand side converges to 0 as t→∞, so does Dη,x(t). Therefore the
following definition is well-posed:

Definition 2.1.4 (Mixing time of the random walk). For ε ∈ (0, 1), the ε-mixing
time of the random walk is defined as

tnmix(ε; η, x) := inf
{
t ∈ N0 : Dη,x(t) ≤ ε

}
. (2.12)
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2. Mixing times of RWs on DCMs

Note that tnmix(ε; η, x) depends on the initial configuration η and half-edge x.
We will prove statements that hold for typical choices of (η, x) under the uniform
distribution µn (recall that H depends on the number of vertices n) given by

µn := ConfH × UH on ConfH ×H, (2.13)

where typical is made precise through the following definition:

Definition 2.1.5 (With high probability). A statement that depends on the initial
configuration η and half-edge x is said to hold with high probability (whp) in η and
x if the µn-measure of the set of pairs (η, x) for which the statement holds tends to 1

as n→∞.

Below we sometimes write whp with respect to some probability measure other than
µn, but it will always be clear from the context which probability measure we are
referring to.

Throughout the paper we assume the following condition on

αn := k/m, n ∈ N, (2.14)

denoting the proportion of edges involved in the rewiring at each time step of the
graph dynamics defined in Section 2.1.2:

Condition 2.1.6 (Fast graph dynamics). The ratio αn in (2.14) is subject to the
constraint

lim
n→∞

αn(log n)2 =∞. (2.15)

We can now state our main result.

Theorem 2.1.7 (Sharp mixing time asymptotics). Suppose that Conditions 2.1.2
and 2.1.6 hold. Then, for every ε > 0, whp in η and x,

tnmix(ε; η, x) = [1 + o(1)]

√
2 log(1/ε)

log(1/(1− αn))
. (2.16)

Note that Condition 2.1.6 allows for limn→∞ αn = 0. In that case (2.16) simplifies to

tnmix(ε; η, x) = [1 + o(1)]

√
2 log(1/ε)

αn
. (2.17)

§2.1.4 Discussion
1. Theorem 2.1.7 gives the sharp asymptotics of the mixing time in the regime
where the dynamics is fast enough (as specified by Condition 2.1.6). Note that if
limn→∞ αn = α ∈ (0, 1], then tnmix(ε; η, x) is of order one: at every step the random
walk has a non-vanishing probability to traverse a rewired edge, and so it is qual-
itatively similar to a random walk on a complete graph. On the other hand, when
limn→∞ αn = 0 the mixing time is of order 1/

√
αn = o(log n), which shows that the
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§2.1. Introduction and main result

dynamics still speeds up the mixing. The regime αn = Θ(1/(log n)2), which is not
captured by Theorem 2.1.7, corresponds to 1/

√
αn = Θ(log n), and we expect the

mixing time to be comparable to that of the static configuration model. In the regime
αn = o(1/(log n)2) we expect the mixing time to be the same as that of the static
configuration model. In a future paper we plan to provide a comparative analysis of
the three regimes.

2. In the static model the ε-mixing time is known to scale like [1 + o(1)] c log n

for some c ∈ (0,∞) that is independent of ε ∈ (0, 1) (Ben-Hamou and Salez [16]).
Consequently, there is cutoff, i.e., the total variation distance drops from 1 to 0 in
a time window of width o(log n). In contrast, in the regime of fast graph dynamics
there is no cutoff, i.e., the total variation distance drops from 1 to 0 gradually on
scale 1/

√
αn.

3. Our proof is robust and can be easily extended to variants of our model where, for
example, (kn)n∈N is random with kn having a first moment that tends to infinity as
n→∞, or where time is continuous and pairs of edges are randomly rewired at rate
αn.

4. Theorem 2.1.7 can be compared to the analogous result for the static configuration
model only when Pn(Dn ≥ 3) = 1 for all n ∈ N. In fact, only under the latter condition
does the probability of having a connected graph tend to one (see Luczak [68], Federico
and van der Hofstad [47]). If (R3) holds, then on the dynamic graph the walk mixes
on the whole of H, while on the static graph it mixes on the subset of H corresponding
to the giant component.

5. We are not able to characterise the mixing time of the joint process of dynamic
random graph and random walk. Clearly, the mixing time of the joint process is at
least as large as the mixing time of each process separately. While the graph process
helps the random walk to mix, the converse is not true because the graph process does
not depend on the random walk. Observe that once the graph process has mixed it
has an almost uniform configuration, and the random walk ought to have mixed
already. This observation suggests that if the mixing times of the graph process and
the random walk are not of the same order, then the mixing time of the joint process
will have the same order as the mixing time of the graph process. Intuitively, we may
expect that the mixing time of the graph corresponds to the time at which all edges
are rewired at least once, which should be of order (n/k) log n = (1/αn) log n by a
coupon collector argument. In our setting the latter is much larger than 1/

√
αn.

6. We emphasize that we look at the mixing times for ‘typical’ initial conditions
and we look at the distribution of the random walk averaged over the trajectories of
the graph process: the ‘annealed’ model. It would be interesting to look at different
setups, such as ‘worst-case’ mixing, in which the maximum of the mixing times over all
initial conditions is considered, or the ‘quenched’ model, in which the entire trajectory
of the graph process is fixed instead of just the initial configuration. In such setups the
results can be drastically different. For example, if we consider the quenched model
for d-regular graphs, then we see that for any time t and any fixed realization of
configurations up to time t, the walk without backtracking can reach at most (d− 1)t
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2. Mixing times of RWs on DCMs

half-edges. This gives us a lower bound of order log n for the mixing time in the
quenched model, which contrasts with the o(log n) mixing time in our setup.

7. It would be of interest to extend our results to random walk with backtracking,
which is harder. Indeed, because the configuration model is locally tree-like and
random walk without backtracking on a tree is the same as self-avoiding walk, in
our proof we can exploit the fact that typical walk trajectories are self-avoiding. In
contrast, for the random walk with backtracking, after it jumps over a rewired edge,
which in our model serves as a randomized stopping time, it may jump back over the
same edge, in which case it has not mixed. This problem remains to be resolved.

§2.1.5 Outline
The remainder of this paper is organised as follows. Section 2.2 gives the main idea
behind the proof, namely, we introduce a randomised stopping time τ = τn, the
first time the walk moves along an edge that was rewired before, and we state a key
proposition, Proposition 2.2.1 below, which says that this time is close to a strong
stationary time and characterises its tail distribution. As shown at the end of Sec-
tion 2.2, Theorem 2.1.7 follows from Proposition 2.2.1, whose proof consists of three
main steps. The first step in Section 2.3 consists of a careful combinatorial analysis of
the distribution of the walk given the history of the rewiring of the half-edges in the
underlying evolving graph. The second step in Section 2.4 uses a classical exploration
procedure of the static random graph from a uniform vertex to unveil the locally tree-
like structure in large enough balls. The third step in Section 2.5 settles the closeness
to stationarity and provides control on the tail of the randomized stopping time τ .

§2.2 Stopping time decomposition

We employ a randomised stopping time argument to get bounds on the total variation
distance. We define the randomised stopping time τ = τn to be the first time the
walker makes a move through an edge that was rewired before. Recall from Sec-
tion 2.1.2 that Rt is the set of half-edges involved in the rewiring at time step t.
Letting R≤t = ∪ts=1Rs, we set

τ := min{t ∈ N : Xt−1 ∈ R≤t}. (2.18)

As we will see later, τ behaves like a strong stationary time. We obtain our main result
by deriving bounds on Dη,x(t) in terms of conditional distributions of the random
walk involving τ and in terms of tail probabilities of τ . In particular, by the triangle
inequality, for any t ∈ N0, η ∈ ConfH and x ∈ H,

Dη,x(t) ≤ Pη,x(τ > t) ‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV

+ Pη,x(τ ≤ t) ‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV (2.19)
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§2.3. Pathwise probabilities

and

Dη,x(t) ≥ Pη,x(τ > t) ‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV

− Pη,x(τ ≤ t) ‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV. (2.20)

With these in hand, we only need to find bounds for Pη,x(τ > t), ‖Pη,x(Xt ∈ · | τ >
t)− UH(·)‖TV and ‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV.

The key result for the proof of our main theorem is the following proposition:

Proposition 2.2.1 (Closeness to stationarity and tail behavior of stopping
time).
Suppose that Conditions 2.1.2 and 2.1.6 hold. For t = t(n) = o(log n), whp in x and
η,

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV = o(1), (2.21)
‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV = 1− o(1), (2.22)

Pη,x(τ > t) = (1− αn)t(t+1)/2 + o(1). (2.23)

We close this section by showing how Theorem 2.1.7 follows from Proposition 2.2.1:

Proof. By Condition 2.1.6,√
2 log(1/ε)

log(1/(1− αn))
= O(α−1/2

n ) = o(log n). (2.24)

Using the bounds in (2.19)–(2.20), together with (2.21)–(2.23) in Proposition 2.2.1,
we see that for t = o(log n),

(1− αn)t(t+1)/2 + o(1) ≤ Dη,x(t) ≤ (1− αn)t(t+1)/2 + o(1). (2.25)

Choosing t as in (2.16) we obtain Dη,x(t) = ε+ o(1), which is the desired result.

The remainder of the paper is devoted to the proof of Proposition 2.2.1.

§2.3 Pathwise probabilities

In order to prove (2.21) of Proposition 2.2.1, we will show in (2.69) in Section 2.5 that
the following crucial bound holds for most y ∈ H:

Pη,x(Xt = y | τ ≤ t) ≥ 1− o(1)

`
. (2.26)

By most we mean that the number of y such that this inequality holds is ` − o(`)
whp in η and x. To prove (2.26) we will look at Pη,x(Xt = y, τ ≤ t) by partitioning
according to all possible paths taken by the walk and all possible rewiring patterns
that occur on these paths. For a time interval [s, t] := {s, s+ 1, . . . , t} with s ≤ t, we
define

x[s,t] := xs · · ·xt. (2.27)
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2. Mixing times of RWs on DCMs

In particular, for any y ∈ H,

Pη,x(Xt = y, τ ≤ t) (2.28)

=
∑

T⊆[1,t]

∑
x1,...,xt−1∈H

Pη,x
(
X[1,t] =x[1,t], xi−1 ∈ R≤i ∀ i ∈ T,

xj−1 6∈ R≤j ∀ j ∈ [1, t] \ T
)

with x0 = x and xt = y. Here, r is the number of steps at which the walk moves
along a previously rewired edge, and T is the set of times at which this occurs.

For a fixed sequence of half-edges x[0,t] with x0 = x and a fixed set of times
T ⊆ [1, t] with |T | = r, we will use the short-hand notation

A(x[0,t];T ) :=
{
xi−1 ∈ R≤i ∀ i ∈ T, xj−1 6∈ R≤j ∀ j ∈ [1, t] \ T

}
. (2.29)

Writing T = {t1, . . . , tr} with 1 ≤ t1 < t2 < · · · < tr ≤ t, we note that the conditional
probability Pη,x(X[1,t] = x[1,t] | A(x[0,t];T )) can be non-zero only if each subsequence
x[ti−1,ti−1] induces a non-backtracking path in η for i ∈ [2, r + 1] with t0 = 0 and
tr+1 = t+ 1. The last sum in (2.28) is taken over such sequences in H, which we call
segmented paths (see Fig. 2.4). For each i ∈ [1, r + 1] the subsequence x[ti−1,ti−1] of
length ti − ti−1 that forms a non-backtracking path in η is called a segment.

x

xt1−1

xt1 xt2−1 xt2

xt3−1
xt3

y

η

Figure 2.4: An example of a segmented path with 4 segments. Solid lines represent the
segments, consisting of a path of half-edges in η, dashed lines indicate the succession of the
segments. The latter do not necessarily correspond to a pair in η, and will later correspond
to rewired edges in the graph dynamics.

We will restrict the last sum in (2.28) to the set of self-avoiding segmented paths.
These are the paths where no two half-edges are siblings, which means that the vertices
v(xi) visited by the half-edges xi are distinct for all i ∈ [0, t], so that if the random
walk takes this path, then it does not see the same vertex twice. We will denote by
SPηt (x, y;T ) the set of self-avoiding segmented paths in η of length t+ 1 that start at
x and end at y, where T gives the positions of the ends of the segments (see Fig. 2.5).
Segmented paths x[0,t] have the nice property that the probability Pη,x(A(x[0,t];T ))

is the same for all x[0,t] that are isomorphic, as stated in the next lemma:

Lemma 2.3.1 (Isomorphic segmented path are equally likely). Fix t ∈ N,
T ⊆ [1, t] and η ∈ ConfH . Suppose that x[0,t] and y[0,t] are two segmented paths in η
of length t+ 1 with |x[s,s′]| = |y[s,s′]| for any 0 ≤ s < s′ ≤ t, where |x[s,s′]| denotes the
number of distinct half-edges in x[s,s′]. Then

Pη,x
(
A(x[0,t];T )

)
= Pη,x

(
A(y[0,t];T )

)
. (2.30)
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x
xt1−1

xt1

xt2−1

xt2xt3−1

xt3
y

η

Figure 2.5: An element of SPηt (x, y;T ) with T = {t1, t2, t3}.

Proof. Fix x, y ∈ H. Consider the coupling ((Cxt )t∈N0
, (Cyt )t∈N0

) of two dynamic con-
figuration models with parameter k starting from η, defined as follows. Let f : H → H

be such that

f(x) =



yi if x = xi for some i ∈ [0, t],

xi if x = yi for some i ∈ [0, t],

η(yi) if x = η(xi) for some i ∈ [0, t],

η(xi) if x = η(yi) for some i ∈ [0, t],

x otherwise.

(2.31)

This is a one-to-one function because |x[s,s′]| = |y[s,s′]| for any 0 ≤ s < s′ ≤ t. What
f does is to map the half-edges of x[0,t] and their pairs in η to the half-edges of y[0,t]

and their pairs in η, and vice versa, while preserving the order in the path. For the
coupling, at each time t ∈ N we rewire the edges of Cxt−1 and Cyt−1 as follows:

(a) Choose k edges from Cxt−1 uniformly at random without replacement, say {z1, z2},
. . . , {z2k−1, z2k}. Choose the edges {f(z1), f(z2)}, . . . , {f(z2k−1), f(z2k)} from
Cyt−1.

(b) Rewire the half-edges z1, . . . , z2k uniformly at random to obtain Cxt . Set C
y
t (f(zi))

= f(Cxt (zi)).

Step 2 and the definition of f ensure that in Step 1 {f(z1), f(z2)}, . . . , {f(z2k−1),

f(z2k)} are in Cyt−1. Since under the coupling the event A(x[0,t];T ) is the same as the
event A(y[0,t];T ), we get the desired result.

In order to prove the lower bound in (2.26), we will need two key facts. The
first, stated in Lemma 2.3.2 below, gives a lower bound on the probability of a walk
trajectory given the rewiring history. The second, stated in Lemma 2.4.3 below, is a
lower bound on the number of relevant self-avoiding segmented paths, and exploits
the locally tree-like structure of the configuration model.

Lemma 2.3.2 (Paths estimate given rewiring history). Suppose that t = t(n) =

o(log n) and T = {t1, . . . , tr} ⊆ [1, t]. Let x0 · · ·xt ∈ SPηt (x, y;T ) be a self-avoiding
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2. Mixing times of RWs on DCMs

segmented path in η that starts at x and ends at y. Then

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`r

∏
i∈[1,t]\T

1

deg(xi)
. (2.32)

Proof. In order to deal with the dependencies introduced by conditioning on the event
A(x[0,t];T )), we will go through a series of conditionings. First we note that for the
random walk to follow a specific path, the half-edges it traverses should be rewired
correctly at the right times. Conditioning on A(x[0,t];T ) accomplishes part of the job:
since we have xi−1 6∈ R≤i for i ∈ [1, t] \ T and x[0,t] ∈ SPηt (x, y;T ), we know that, at
time i, xi−1 is paired to a sibling of xi in Ci, and so the random walk can jump from
xi−1 to xi with probability 1/ deg(xi) at time i for i ∈ [1, t] \ T .

Let us call the path x[0,t] open if Ci(xi−1) ∼ xi for i ∈ [1, t], i.e., if xi−1 is paired
to a sibling of xi in Ci for i ∈ [1, t]. Then

Pη,x(X[1,t] = x[1,t] | x[0,t] is open) =

t∏
i=1

1

deg(xi)
, (2.33)

and
Pη,x

(
X[1,t] = x[1,t] | x[0,t] is not open

)
= 0. (2.34)

Using these observations, we can treat the random walk and the rewiring process
separately, since the event {x[0,t] is open} depends only on the rewirings. Our goal is
to compute the probability

Pη,x
(
x[0,t] is open | A(x[0,t];T )

)
. (2.35)

Note that, by conditioning on A(x[0,t];T ), the part of the path within segments
is already open, so we only need to deal with the times the walk jumps from one
segment to another. To have x[0,t] open, each xtj−1 should be paired to one of the
siblings of xtj for j ∈ [1, r]. Hence

Pη,x
(
x[0,t] is open | A(x[0,t];T )

)
=

∑
z1,...,zr∈H

zj∼xtj ∀ j∈[1,r]

Pη,x
(
Ctj (xtj−1) = zj ∀ j ∈ [1, r] | A(x[0,t];T )

)
. (2.36)

Fix z1, . . . , zr ∈ H with zj ∼ xtj , and let yj = xtj−1 for j ∈ [1, r]. We will look at the
probability

Pη,x
(
Ctj (yj) = zj ∀ j ∈ [1, r] | A(x[0,t];T )

)
. (2.37)

Conditioning on the event A(x[0,t];T ) we impose that each yj is rewired at some
time before tj , but do not specify at which time this happens. Let us refine our
conditioning one step further by specifying these times. Fix s1, . . . , sr ∈ [1, t] such
that sj ≤ tj for each j ∈ [1, r] (the sj need not be distinct). Let Â be the event that
xi−1 6∈ R≤i for i ∈ [1, t] \ T and yj is rewired at time sj for the last time before time
tj for j ∈ [1, r]. Then Â ⊆ A(x[0,t];T ). Since sj is the last time before tj at which
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yj is rewired, the event Ctj (yj) = zj is the same as the event Csj (yj) = zj when we
condition on Â. We look at the probability

Pη,x
(
Csj (yj) = zj ∀ j ∈ [1, r] | Â

)
. (2.38)

Let s′1 < · · · < s′r′ ∈ [1, t] be the distinct times such that s′i = sj for some j ∈ [1, r],
and nyi the number of j’s for which sj = s′i for i ∈ [1, r′], so that by condition-
ing on Â we rewire nyi half-edges yj at time s′i. Letting also Di = {Cs′i(yj) =

zj , for j such that sj = s′i}, we can write the above conditional probability as

r′∏
i=1

Pη,x
(
Di | Â, ∩i−1

j=1Dj

)
. (2.39)

We next compute these conditional probabilities.
Fix i ∈ [1, r′] and η′ ∈ ConfH . We do one more conditioning and look at the

probability
Pη,x

(
Di | Â, ∩i−1

j=1Dj , Cs′i−1 = η′
)
. (2.40)

The rewiring process at time s′i consists of two steps: (1) pick k edges uniformly at
random; (2) do a uniform rewiring. Concerning (1), by conditioning on Â, we see
that the yj ’s for which sj = s′i are already chosen. In order to pair these to zj ’s with
sj = s′i, the zj ’s should be chosen as well. If some of the zj ’s are already paired to
some yj ’s already chosen, then they will be automatically included in the rewiring
process. Let m′i be m minus the number of half-edges in {x0, . . . , xt} ∪ {z1, . . . , zr},
for which the conditioning on Â implies that they cannot be in Rs′i . Then

Pη,x
(
zj ∈ Rs′i for j such that sj = s′i

∣∣∣ Â, ∩i−1
j=1Dj , Cs′i−1 = η′

)
≥
(m′i−2nyi
k−2nyi

)
(m′i−nyi
k−nyi

) =

∏nyi−1
j=0 (k − nyi − j)∏nyi−1
j=0 (m′i − nyi − j)

≥
∏nyi−1
j=0 (k − nyi − j)

mnyi
. (2.41)

Concerning (2), conditioned on the relevant zj ’s already chosen in (1), the probability
that they will be paired to correct yj ’s is

1∏nyi
j=1(2k − 2j + 1)

. (2.42)

Since the last two statements hold for any η′ with Pη,x(Cs′i−1 = η′ | Â, ∩i−1
j=1Dj) > 0,

combining these we get

Pη,x
(
Di | Â, ∩i−1

j=1Dj

)
≥

∏nyi−1
j=0 (k − nyi − j)

mnyi
∏nyi
j=1(2k − 2j + 1)

=

(
1−O(nyi /k)

2m

)nyi
. (2.43)

Since
∑r′

i=1 n
y
i = r, substituting (2.43) into (2.39) and rolling back all the condition-

ings we did so far, we get

Pη,x
(
Ctj (xtj−1) = zj ∀ j ∈ [1, r] | A(x[0,t];T )

)
≥ 1−O(r2/k)

`r
=

1− o(1)

`r
, (2.44)

41



2. Mixing times of RWs on DCMs

where we use that r2/k → 0 since r = o(log n) and k = αnn with (log n)2αn → ∞.
Now sum over z1, . . . , zr in (2.36), to obtain

Pη,x
(
x[0,t] is open | A(x[0,t];T )

)
≥

(1− o(1))
∏r
j=1 deg(xtj )

`r
, (2.45)

and multiply with (2.33) to get the desired result.

§2.4 Tree-like structure of the configuration model

In this section we look at the structure of the neighborhood of a half-edge chosen
uniformly at random in the configuration model. Since we will work with different
probability spaces, we will denote by P a generic probability measure whose meaning
will be clear from the context.

For fixed t ∈ N, x ∈ H and η ∈ ConfH , we denote by Bηt (x) := {y ∈ H : distη(x, y)

≤ t} the t-neighborhood of x in η, where distη(x, y) is the length of the shortest non-
backtracking path from x to y. We start by estimating the mean of |Bηt (x)|, the
number of half-edges in Bηt (x).

Lemma 2.4.1 (Average size of balls of relevant radius). Let νn be as in Con-
dition 2.1.2 and suppose that t = t(n) = o(log n). Then, for any δ > 0,

E(|Bηt (x)|) = [1 + o(1)] νt+1
n = o(nδ), (2.46)

where the expectation is w.r.t. µn in (2.13).

Proof. We have
|Bηt (x)| =

∑
y∈H

1{distη(x,y)≤t}. (2.47)

Putting this into the expectation, we get

E(|Bηt (x)|) =
1

`

∑
x,y∈H

P(distη(x, y) ≤ t). (2.48)

For fixed x, y ∈ H,

P(distη(x, y) ≤ t) ≤
t∑

d=1

∑
x1,...,xd−1∈H

P(xx1 · · ·xd−1y forms a self-avoiding path in η)

≤
t∑

d=1

∑
x1,...,xd−1∈H

d−1∏
j=1

deg(xj)

`− 2j + 1

 deg(y)

`− 2d+ 1

=
deg(y)

`

t∑
d=1

(
d∏
i=1

`

`− 2i+ 1

) ∑
x1,...,xd−1∈H

(
d−1∏
i=1

deg(xi)

`

)

=
deg(y)

`

t∑
d=1

(
d∏
i=1

`

`− 2i+ 1

)(∑
z∈H

deg(z)

`

)d−1

. (2.49)
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§2.4. Tree-like structure of the configuration model

Since t = o(log n) and ` = Θ(n), we have

P(distη(x, y) ≤ t) ≤ [1 + o(1)]
deg(y)

`
(νn)t. (2.50)

Substituting this into (2.48), we get

E(|Bηt (x)|) ≤ 1 + o(1)

`

∑
x,y∈H

deg(y)

`
(νn)t = [1 + o(1)] (νn)t+1 = o(nδ), (2.51)

where the last equality follows from (R2) in Condition 2.1.2 and the fact that t =

o(log n).

For the next result we will use an exploration process to build the neighborhood
of a uniformly chosen half-edge. (Similar exploration processes have been used in
[16],[21] and [67].) We explore the graph by starting from a uniformly chosen half-
edge x and building up the graph by successive uniform pairings, as explained in
the procedure below. Let G(s) denote the thorny graph obtained after s pairings
as follows (in our context, a thorny graph is a graph in which half-edges are not
necessarily paired to form edges, as shown in Fig. 2.6). We set G(0) to consist of x,
its siblings, and the incident vertex v(x). Along the way we keep track of the set of
unpaired half-edges at each time s, denoted by U(s) ⊂ H, and the so-called active
half-edges, A(s) ⊂ U(s). We initialize U(0) = H and A(0) = {x}. We build up the
sequence of graphs (G(s))s∈N0

as follows:

(a) At each time s ∈ N, take the next unpaired half-edge in A(s−1), say y. Sample
a half-edge uniformly at random from H, say z. If z is already paired or z = y,
then reject and sample again. Pair y and z.

(b) Add the newly formed edge {y, z}, the incident vertex v(z) of z, and its siblings
to G(s− 1), to obtain G(s).

(c) Set U(s) = U(s−1)\{y, z}, i.e., remove y, z from the set of unpaired half-edges,
and set A(s) = A(s− 1)∪ {H(v(z))} \ {y, z}, i.e., add siblings of z to the set of
active half-edges and remove the active half-edges just paired.

This procedure stops when A(s) is empty. We think of A(s) as a first-in first-out
queue. So, when we say that we pick the next half-edge in Step 1, we refer to
the half-edge on top of the queue, which ensures that we maintain the breadth-first
order. The rejection sampling used in Step 1 ensures that the resulting graph is
distributed according to the configuration model. This procedure eventually gives us
the connected component of x in η, the part of the graph that can be reached from x

by a non-backtracking walk, where η is distributed uniformly on ConfH .

Lemma 2.4.2 (Tree-like neighborhoods). Suppose that s = s(n) = o(n(1−2δ)/2)

for some δ ∈ (0, 1
2 ). Then G(s) is a tree with probability 1− o(n−δ).

Proof. Let F be the first time the uniform sampling of z in Step 1 fails at the first
attempt, or z is a sibling of x, or z is in A(s− 1). Thus, at time F we either choose
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2. Mixing times of RWs on DCMs

x

G(1)

x

G(3)

Figure 2.6: Example snapshots of G(s) at times s = 1 and s = 3.

an already paired half-edge or we form a cycle by pairing to some half-edge already
present in the graph. We have

P(G(s) is not a tree) ≤ P(F ≤ s). (2.52)

Let Yi, i ∈ N, be i.i.d. random variables whose distribution is the same as the distri-
bution of the degree of a uniformly chosen half-edge. When we form an edge before
time F , we use one of the unpaired half-edges of the graph, and add new unpaired
half-edges whose number is distributed as Y1. Hence the number of unpaired half-
edges in G(u) is stochastically dominated by

∑u+1
i=1 Yi−u, with one of the Yi’s coming

from x and the other ones coming from the formation of each edge. Therefore the
probability that one of the conditions of F will be met at step u is stochastically
dominated by (

∑u
i=1 Yi+u−2)/`. We either choose an unpaired half-edge in G(u) or

we choose a half-edge belonging to an edge in G(u), and by the union bound we have

P(G(s) is not a tree | (Yi)i∈[1,s]) ≤ P(F ≤ s | (Yi)i∈[1,s])

≤
∑s
u=1

∑u
i=1(Yi + u− 2)

`
=

∑s
i=1(s− i+ 1)Yi + s(s− 1)/2

`
. (2.53)

Since E(Y1) = νn = O(1) and s = o(n(1−2δ)/2), via the Markov inequality we get that,
with probability at least 1− o(n−δ),

s

s∑
i=1

Yi < n1−δ. (2.54)

Combining this with the bound given above and the fact that ` = Θ(n), we arrive at

P(G(s) is not a tree) = o(n−δ). (2.55)

To further prepare for the proof of the lower bound in (2.26) and Proposition 2.2.1
in Section 2.5, we introduce one last ingredient. For x ∈ H and η ∈ ConfH , we denote
by B̄ηt (x) the set of half-edges from which there is a non-backtracking path to x of
length at most t. For fixed t ∈ N, T = {t1, . . . , tr} ⊆ [1, t] and η ∈ ConfH , we say
that an (r+ 1)-tuple (x0, x1, . . . , xr) is good for T in η if it satisfies the following two
properties:
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(a) Bηtj−tj−1
(xj) is a tree for j ∈ [1, r] with t0 = 0, and B̄ηt−tr (xr) is a tree.

(b) The trees Bηtj−tj−1
(xj) for j ∈ [1, r] and B̄ηt−tr (xr) are all disjoint.

For a good (r + 1)-tuple all the segmented paths, such that the ith segment starts
from xi−1 and is of length ti − ti−1 for i ∈ [1, r] and the (r+ 1)st segment ends at xr
and is of length t− tr, are self-avoiding by the tree property. The next lemma states
that whp in η almost all (r + 1)-tuples are good. We denote by Nη

t (T ) the set of
(r+ 1)-tuples that are good for T in η, and let Nη

t (T )c be the complement of Nη
t (T ).

We have the following estimate on |Nη
t (T )|:

Lemma 2.4.3 (Estimate on good paths). Suppose that t = t(n) = o(log n). Then
there exist δ̄ > 0 such that whp in η for all T ⊆ [1, t],

|Nη
t (T )| = (1− n−δ̄)`|T |+1. (2.56)

Proof. Fix ε > 0 and T ⊆ [1, t] with |T | = r. We want to show that whp |Nη
t (T )c| ≤

ε`r+1. By the Markov inequality, we have

P(|Nη
t (T )c| > ε`r+1) ≤ E(|Nη

t (T )c|)
ε`r+1

=
P(Z[0,r] ∈ Nη

t (T )c)

ε
, (2.57)

where Z0, . . . , Zr are i.i.d. uniform half-edges and we use that 1/`r+1 is the uniform
probability over a collection of r+1 half-edges. Let Bi−1 = Bηti−ti−1

(Zi−1) for i ∈ [1, r]

and Br = Bηt−tr (Zr). By the union bound,

P
(
Z[0,r] ∈ Nη

t (T )c
)
≤

r∑
i=0

P(Bi is not a tree) +

r∑
i,j=0

P(Bi ∩Bj 6= ∅). (2.58)

By Lemma 2.4.1 and since t = o(log n), for any 0 < δ < 1
2 we have E|Bi| = o(nδ),

and so by the Markov inequality |Bi| = o(n(1−2δ)/2) with probability 1 − o(n−δ).
Hence, by Lemma 2.4.2 and since ` = Θ(n), for i ∈ [1, r], we have

P(Bi−1 is not a tree) = o(n−δ). (2.59)

Again using Lemma 2.4.1, we see that for any i, j ∈ [1, r],

P(Bi ∩Bj 6= ∅) ≤ P(Zj ∈ Bηt (Zi)) =
E(|Bηt (Zi)|)

`
≤ o(nδ−1). (2.60)

Since r ≤ t = o(log n), setting δ̄ = 2δ/3 and taking ε = n−δ, we get

P(|Nη
t (T )c| > ε`r+1) ≤ rn−δ̄ + r2nδ̄−1

ε
= o(n−δ/4) (2.61)

uniformly in T ⊆ [1, t]. Since there are 2t different T ⊆ [1, t] and 2t = 2o(logn) =

o(nδ/8), taking the union bound we see that (2.56) holds for all T ⊆ [1, t] with
probability 1− o(n−δ/8).
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§2.5 Closeness to stationarity and tail behavior of
stopping time

We are now ready to prove the lower bound in (2.26) and Proposition 2.2.1. Before
giving these proofs, we need one more lemma, for which we introduce some new
notation. For fixed t ∈ N, T ⊆ [1, t] with |T | = r > 0, η ∈ ConfH and x, y ∈ H, let
Nη
t (x, y;T ) denote the set of (r − 1)-tuples such that (x, x1, . . . , xr−1, y) is good for

T in η. Furthermore, for a given (r+ 1)-tuple x = (x, x1, . . . , xr−1, y) that is good for
T in η, let SPηt (x;T ) denote the set of all segmented paths in which the ith segment
starts at xi−1 and is of length ti − ti−1 for i ∈ [1, r] with x0 = x and t0 = 0, and the
(r+ 1)st segment ends at y and is of length t− tr. By the definition of a good tuple,
these paths are self-avoiding, and hence SPηt (x;T ) ⊂ SPηt (x, y;T ).

Lemma 2.5.1 (Total mass of relevant paths). Suppose that t = t(n) = o(log n).
Then whp in η and x, y for all T ⊆ [1, t],∑

x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`
. (2.62)

Proof. By Lemma 2.4.3, the number of pairs of half-edges x, y for which |Nη
t (x, y;T )| ≥

(1−n−δ̄)`|T |−1 = [1−o(1)] `|T |−1 for all T ∈ [1, t] is at least (1−2tn−δ̄)`2 = [1−o(1)] `2

whp in η. Take such a pair x, y ∈ H, and let r = |T |. By Lemma 2.3.2 and the last
observation before the statement of Lemma 2.5.1, we have∑

x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥

∑
x∈Nηt (x,y;T )

∑
y0...yt∈SPηt (x,T )

1− o(1)

`r

∏
i∈[1,t]\T

1

deg(yi)
. (2.63)

We analyze at the second sum by inspecting the contributions coming from each
segment separately. For fixed x ∈ Nη

t (x, y;T ), when we sum over the segmented paths
in SPηt (x, T ), we sum over all paths that go out of xi−1 of length ti− ti−1 for i ∈ [1, r].
Since

∏ti−1
j=ti−1+1

1
deg(yj)

is the probability that the random walk without backtracking
follows this path on the static graph given by η starting from xi−1, when we sum over
all such paths the contribution from these terms sums up to 1 for each i ∈ [1, r], i.e.,
the contributions of the first r segments coming from the products of inverse degrees
sum up to 1. For the last segment we sum, over all paths going into y, the probability
that the random walk without backtracking on the static graph given by η follows
the path. Since the uniform distribution is stationary for this random walk, the sum
over the last segment of the probabilities 1

`

∏t
j=tr+1

1
deg(yj)

gives us 1/`. With this
observation, using that |Nη

t (x, y;T )| ≥ (1− o(1))`r−1, we get∑
x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`

∑
x∈Nηt (x,y;T )

1− o(1)

`r−1
=

1− o(1)

`
, (2.64)
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which is the desired result.

• Proof of (2.21). For any self-avoiding segmented path x0 · · ·xt, we have |x[s,s′]| =

s′ − s + 1 for all 1 ≤ s < s′ ≤ t. By Lemma 2.3.1, the probability Pη,x(A(x[0,t];T ))

depends on η and T only, and we can write Pη,x(A(x[0,t];T )) = pηt (T ) for any
xx1 · · ·xt−1y ∈ SPηt (x, y;T ). Applying Lemma 2.5.1, we get

Pη,x(Xt = y, τ ≤ t) (2.65)

≥
t∑

r=1

∑
T⊆[1,t]
|T |=r

∑
x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
Pη,x

(
A(x[0,t];T )

)

≥ 1− o(1)

`

t∑
r=1

∑
T⊆[1,t]
|T |=r

pηt (T ).

If the t-neighborhood of x in η is a tree, then all t-step non-backtracking paths
starting at x are self-avoiding. (Here is a place where the non-backtracking nature
of our walk is crucially used!) In particular, for any such path xx1 · · ·xt we have
Pη,x(A(x[0,t];∅)) = pηt (∅). Denoting by Γηt (x) the set of paths in η of length t that
start from x, we also have

Pη,x(τ > t) =
∑

x0···xt∈Γηt (x)

Pη,x
(
X[1,t] = x[1,t], A(x[0,t];∅)

)
=

∑
x0···xt∈Γηt (x)

t∏
i=1

1

deg(xi)
pηt (∅) = pηt (∅), (2.66)

since the product
∏t
i=1

1
deg(xi)

is the probability that a random walk without back-
tracking in the static η follows the path x0x1 · · ·xt, and we take the sum over all
paths going out of x.

For a fixed path x0x1 · · ·xt, we have

t∑
r=1

∑
T⊆[1,t]
|T |=r

Pη,x
(
A(x[0,t];T )

)
= 1− Pη,x

(
A(x[0,t];∅)

)
. (2.67)

So, when the t-neighborhood of x in η is a tree, we have

t∑
r=1

∑
T⊆[1,t]
|T |=r

pηt (T ) = 1− pηt (∅) = 1− Pη,x(τ > t) = Pη,x(τ ≤ t), (2.68)

which gives

Pη,x(Xt = y, τ ≤ t) ≥ 1− o(1)

`
Pη,x(τ ≤ t) (2.69)

and settles the lower bound (2.26). Since the latter holds whp in η and x, y, we have
that the number of y for which this holds is [1− o(1)] ` whp in η and x. Denoting the
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set of y ∈ H for which the lower bound in (2.26) holds by Nη
t (x), we get that whp in

η and x,

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV =
∑
y∈H

[
1

`
− Pη,x(Xt = y | τ ≤ t)

]+

≤
∑

y∈Nηt (x)

[
1

`
− 1− o(1)

`

]+

+
∑

y 6∈Nηt (x)

1

`
= o(1),

(2.70)

which is (2.21).

• Proof of (2.22). First note that Pη,x(Xt ∈ Bηt (x) | τ > t) = 1. On the other hand,
using Lemma 2.4.1 and the Markov inequality, we see that UH(Bηt (x)) = |Bηt (x)|/` =

o(1) whp in η and x, and so we get

‖Pη,x(Xt ∈ · | τ > t)−UH(·)‖TV ≥ Pη,x(Xt ∈ Bηt (x) | τ > t)−UH(Bηt (x)) = 1− o(1).

(2.71)

• Proof of (2.23). Taking T = ∅ in Lemma 2.4.3, we see that Bηt (x) is a tree whp in
η and x, so each path in η of length t that goes out of x is self-avoiding. By looking
at pathwise probabilities, we see that

Pη,x(τ > t) =
∑

x0···xt∈Γηt (x)

Pη,x
(
X[1,t] = x[1,t], xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
. (2.72)

Since the event {xi−1 6∈ R≤i ∀ i ∈ [1, t]} implies that the edge involving xi−1 is open
a time i,

Pη,x
(
X[1,t] = x[1,t] | xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
=

t∏
i=1

1

deg(xi)
. (2.73)

Next, let us look at the probability Pη,x(xi 6∈ R≤i ∀ i ∈ [1, t]). By rearranging and
conditioning, we get

Pη,x
(
xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
= Pη,x

(
xj 6∈ Ri ∀ j ∈ [i− 1, t− 1]∀ i ∈ [1, t]

)
=

t∏
i=1

Pη,x
(
xj 6∈ Ri ∀j ∈ [i− 1, t− 1]

∣∣∣ xk 6∈ Rj ∀ k ∈ [j − 1, t− 1]∀ j ∈ [1, i− 1]
)
.

(2.74)

Observe that, on the event {xk 6∈ Rj ∀ k ∈ [j − 1, t − 1 ∀ j ∈ [1, i − 1]}, the path
xi−1 · · ·xt−1 has not rewired until time i − 1, and so the number of edges given by
these half-edges is t− i+ 1, since it was originally a self-avoiding path. With this we
see that for any i ∈ [1, t],

Pη,x
(
xj 6∈ Ri ∀j ∈ [i−1, t−1]

∣∣∣ xk 6∈ Rj ∀ k ∈ [j−1, t−1] ∀ j ∈ [1, i−1]
)

=

(
m−t+i−1

k

)(
m
k

) ,

(2.75)
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and hence

Pη,x
(
xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
=

t∏
i=1

(
m−t+i−1

k

)(
m
k

) =

t∏
i=1

(
m−i
k

)(
m
k

)
=

t∏
i=1

i−1∏
j=0

(
1− k

m− j

)
=

t∏
j=1

(
1− k

m− j + 1

)t−j+1

.

(2.76)

Since j ≤ t = o(log n), m = Θ(n) and n/ log2 n = o(k), we have

Pη,x
(
xi−1 6∈ R≤i for all i ∈ [1, t]

)
= [1+o(1)] (1−k/m)t(t+1)/2 = (1−αn)t(t+1)/2+o(1).

(2.77)
Putting this together with (2.73) and inserting it into (2.72), we get

Pη,x(τ > t) = [(1− αn)t(t+1)/2 + o(1)]
∑

x0···xt∈Γηt (x)

t∏
i=1

1

deg(xi)

= (1− αn)t(t+1)/2 + o(1), (2.78)

since, for each path x0 · · ·xt, the product
∏t
i=1

1
deg(xi)

is the probability that the
random walk without backtracking on the static graph given by η follows the path,
and we sum over all paths starting from x.
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