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1. Introduction

CHAPTER 1
Introduction

The present thesis consists of two parts. Part I focusses on random walks on dynamic
configuration models, Part II focusses on union complexity of random disk regions.
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1. Introduction

§1.1 Introduction to Part I

The theory of random graphs provides abstract mathematical tools for studying real-
world problems related to complex networks. Questions concerning the formation,
structure and functionality of real-world networks have been studied via random graph
models. Many questions involve also a random process on the network. Mathematical
notions for modelling random processes on networks include random walks, percola-
tion and interacting particle systems. These notions have been studied extensively in
the context of static random graphs. However, many real-world networks are dynamic
in nature: their structure changes over time. Thus, it is natural to extend static set-
tings to dynamic settings. Part I of the thesis contains our work in this direction: it
studies mixing properties of random walks on dynamic random graphs.

In Section 1.1.1, we give an overview of random graph theory in the context of
complex networks. We start by discussing the historical development of the study
of complex networks. After that, we review two basic random graph models, the
Erdős-Rényi Random Graph model and the configuration model, which are among
the most widely studied models. We close Section 1.1.1 by discussing, very briefly,
other random graph models that were invented in the context of complex networks.
In Section 1.1.2, we give a review of the theory of random walks on static random
graphs, with a focus on mixing times. We introduce the notion of mixing times in
the more general framework of Markov chains and discuss several aspects. We close
Section 1.1.2 by reviewing the literature on mixing times of random walks on random
graphs. In Section 1.1.3, we review the modest literature on random walks on dynamic
random graphs that has accumulated so far and list our contributions.

§1.1.1 Complex networks and random graphs
Since 1999, there has been a surge of interest in the study of real-world networks,
and network science has emerged as an independent academic discipline. A number
of journals are devoted to the field, and many universities offer courses and special
programs on network science and complex networks. The term ‘complex networks’
was used by Steven Strogatz in his 2001 paper [90] to refer to networks with non-
trivial topological features, unlike regular networks such as chains, grids, lattices and
fully-connected graphs. Many real-world networks are complex in this sense.

The research on complex networks was pioneered in a series of papers by Barabási
and co-authors [14, 15, 3], Watts and Strogatz [98], and Newman and Watts [76, 77].
Their aim was to explain the mechanisms behind the formation of networks that
give rise to certain statistical features that are observed in real-world networks, but
cannot be explained by randomness alone. Empirical studies of real-world networks
have shown that many real-world networks have certain key features in common, such
as:

• Sparsity: the average number of links per node does not grow too large with
the network size.

• Power-law degrees: the empirical distribution of the number of edges per ver-
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§1.1. Introduction to Part I

tex follows a power-law distribution. In a power-law distribution, the frequency
of vertices with k edges is roughly proportional to k−γ for some γ > 2 and for
large k.

• Small-world phenomenon: the distance between typical vertex pairs does
not grow too fast with the size of the network.

• High clustering: if two vertices are connected to a third vertex, then it is
likely that these two vertices are connected to each other as well.

The above properties are observed in networks in many different settings, such as
the World Wide Web, social networks and biological networks. For a review of early
studies on real-world networks and their statistical properties, see [2, 78].

Why is it that different networks have so many features in common and how do
these features affect the functionality of the network, for example, the vulnerability
of a computer network or the spread of a disease in a population? The mathematical
tools that can tackle these problems are provided by the mathematical theory of
random graphs. Before going into details, we review two random graph models that
are widely studied in the mathematics community.

Erdős-Rényi random graph model

The theory of random graphs was initiated by Paul Erdős and Alfred Rényi in their
seminal papers dating back to 1959–1961 [42, 43, 44]. Although Erdős and Rényi
studied random graphs for their own sake, their random graph model was motivated
by the use of the probabilistic method for solving problems in extremal graph theory;
see for example [41]. The probabilistic method can be summarised as the use of prob-
abilistic arguments to prove deterministic statements, often in the form of existence
results of combinatorial structures with certain properties. The basic principle is as
follows: if a random combinatorial structure has a certain property with a positive
probability, then there exists at least one deterministic structure with that property.
The canonical reference for the probabilistic method is Alon and Spencer’s textbook
on the subject [8].

The remarkable discovery of Erdős and Rényi was the threshold phenomenon (also
called phase transition) exhibited by random graphs. Their goal was to determine the
number of edges a random graph must have in order to acquire a certain property,
such as containing a set of given subgraphs, containing a ‘giant’ component or being
connected. They showed that these properties emerge rather suddenly and formalised
this emergence in mathematical terms. Let us denote by ERn(m) the random graph
distributed uniformly over the set of graphs on n vertices with m edges. In the formal
setting, one considers a family of random graphs whose number of vertices n tends
to infinity and whose number of edges m = m(n) depends on the number of vertices.
In [43], Erdős and Rényi showed that ERn(m) acquires certain properties, with high
probability, only when the number of edges m grows faster than some threshold
function A(n), and they call this threshold phenomenon.

The line of research initiated by Erdős and Rényi was later continued by others.
The body of results with a similar flavor and of techniques used for proving these
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1. Introduction

results make up the core of the monograph entitled Random Graphs by Bollobás [25].
In fact, the majority of the works study a different but related model. For p ∈ [0, 1],
let ERn(p) be the random graph on n vertices where each of the

(
n
2

)
edges is present

with probability p, independently of each other. Although, in their original papers,
Erdős and Rényi studied ERn(m), the model with ERn(p) is referred to as the Erdős-
Rényi Random Graph (ERRG) model. The two models are practically interchangeable
when m is close to p

(
n
2

)
(see [25, Theorem 2.2]), and ERn(p) also exhibits threshold

phenomena for many properties. One particular feature of ERn(p) in the sparse
regime (where p = λ/n for some λ ∈ (0,∞)) is that the local neighborhoods of the
vertices are tree-like in the following sense: the neighborhood of a uniformly chosen
vertex in ERn(p) can be coupled to the family tree of a branching process with a
Poisson offspring distribution. This can be used to prove the phase transition for the
emergence of a giant component in ERn(p) (see [93, Chapter 4]).

While the ERRG model exhibits many mathematically interesting phenomena, it
fails to capture many features exhibited by real-world networks. When p = λ/n for
some λ ∈ (0,∞), ERn(p) is sparse, the average degree converges in probability to λ as
n tends to∞, and the distribution of the degree of a fixed vertex is close to a Poisson
distribution with parameter λ for large n. Most real-world networks have power-law
degree distributions, thus the ERRG model cannot capture the scale-free property of
real-world networks. Another drawback of the model is that it is completely sym-
metric, in the sense that the vertices have the same degree distribution. To remedy
these shortcomings, generalisations of ERRG model have been suggested, such as the
generalised random graph model [29], the inhomogeneous random graph model [26],
the Chung-Lu model [33] and the Norros-Reittu model [79]. For an extensive review,
see [93, Chapter 6].

Configuration model

One of the problems with the ERRG model and its generalisations is that the res-
ulting graph contains isolated vertices with positive probability in the sparse regime,
which makes them impractical in many cases for the study of real-world networks.
One possible solution is to fix the degrees of the graph beforehand and generate a
random graph with the prescribed degree sequence. The configuration model is one
such model. Let d = (d1, . . . , dn) be the given degree sequence on n vertices. The
configuration model is constructed by attaching di half-edges to vertex vi for each
i ∈ [n] := {1, . . . , n} and then pairing these half-edges uniformly at random. A pair-
ing of the half-edges is called a configuration and a uniformly distributed configuration
is denoted by Confn(d). The resulting graph is denoted by CMn(d), which need not
be simple. A simple graph is a graph that does not contain any loop (an edge with
the same vertex at both ends) or multiple edges between any pair of vertices. For
graphs that are not necessarily simple, the term multi -graph is used. In the rest of
this section, we use the term graph to refer to multi-graphs.

In the configuration model, each configuration is identified with a graph, and a
graph can be obtained via several distinct configurations. Letting `n =

∑
i∈[n] di, we

see that there are (`n− 1)!! := (`− 1)× (`− 3)× · · · × 3× 1 distinct configurations in
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§1.1. Introduction to Part I

total, so each configuration has probability 1
(`n−1)!! . We can identify a graph G with

a matrix (Xij)i,j∈[n], where Xij denotes the number of edges between vertices vi and
vj for i 6= j and Xii the number of self-loops at vi. This gives

di = Xii +
∑
j∈[n]

Xij , i ∈ [n].

The distribution of CMn(d) is given by the following proposition:

Proposition ([93, Proposition 7.7]). Let G = (xij)i,j∈[n] be a graph on n vertices
such that

di = xii +
∑
j∈[n]

xij for i ∈ [n].

Then

P(CMn(d) = G) =
1

(`n − 1)!!

∏
i∈[n] di!∏

i∈[n] 2xii
∏

1≤i≤j≤n xij !
.

From this, we see that CMn(d) is not distributed uniformly over the set of graphs
on n vertices with degree sequence d. However, when G is a simple graph, i.e. when
xii = 0 for all i ∈ [n] and xij ∈ {0, 1} for all i, j ∈ [n], we have

P(CMn(d) = G) =

∏
i∈[n] di!

(`n − 1)!!
. (1.1)

This shows that the distribution of CMn(d) conditionally on being simple is uniform
on the set of simple graphs on n vertices with degree sequence d.

The configuration model was introduced by Bollobás [24] to count labelled simple
regular graphs. This work was inspired by ideas introduced by Bender and Canfield
[17]. To count the labelled simple graphs, we can use the configuration model as
follows. We know that, conditional on being simple, CMn(d) is distributed uniformly
on the set of simple graphs with degree sequence d. Letting Nn(d) denote the number
of simple graphs with degree sequence d, we see that for any simple graph G with
degree sequence d,

P(CMn(d) = G | CMn(d) is simple) =
1

Nn(d)
.

Combining this with (1.1), we see that

Nn(d) =
(`n − 1)!!∏
i∈[n] di!

P(CMn(d) is simple).

So, if we can estimate the probability that the resulting graph is simple, then we can
estimate the number of simple graphs with the given degree sequence. This is exactly
how Bollobás obtained his result on the number of simple regular graphs.

The configuration model and uniform simple graphs with given degree sequences
were later studied by others. Łuczak showed that when the minimum degree is three,
the resulting graph is connected with a probability tending to 1 as n tends to infinity
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1. Introduction

[68]. Molloy and Reed studied the emergence of a giant component and its size for
sparse random graphs with nonregular degree sequences [72, 73]. They established
the phase transition for the giant component, similar to that of the ERRG model. In
fact, some results for ERn(p) and ERn(m) can be obtained through the results for
uniform random graph with a given degree sequence, by noting that the latter has
the same distribution as the former conditioned on the degree sequence. Fernholz and
Ramachandran [48] established that the diameter of the uniform random graph with
a given degree sequence on n vertices is c log n + o(log n), for some c > 0 depending
on the degree sequence, under certain sparsity conditions. Using this result and the
above observation, they refined earlier results on the diameter of the ERn(p) [32, 26].
The diameter and typical distances for the configuration model, especially for the
scale-free degree sequences, was also studied by van der Hofstad and co-authors (see
for example [31, 95, 96]).

When studying the configuration model, one typically considers fixed degree se-
quences indexed by the number of vertices n, i.e. (dn = (dni )i∈[n])n∈N with certain
statistical properties, and studies properties of CMn(dn) as n tends to infinity. A typ-
ical condition on the degrees is the convergence of the empirical degree distribution to
a deterministic limit distribution. Let Dn be the random variable whose distribution
function is given by

Fn(x) =

n∑
i=1

1{dni ≤x},

i.e., Dn is the degree of a uniformly chosen vertex on the graph with n vertices whose
degree sequence is given by dn = (dni )i∈[n] and Fn is the empirical distibution of the
degrees. The following regularity conditions on the degrees are common:

Condition 1.1.1 (Regularity of the degrees). There exists an integer-valued random
variable D with P(D > 0) = 1 such that

(a) Dn
d−→ D as n→∞, where d−→ denotes convergence in distribution,

(b) limn→∞ E[Dn] = E[D] <∞,

(c) limn→∞ E[D2
n] = E[D2] <∞.

In the context of complex networks, the limiting degree distribution D is usually
assumed to follow a power-law distribution. Conditions 1.1.1(a)-(b) ensure that the
degree sequences are sparse. Condition 1.1.1(c) controls the variance of the degrees
and the maximum degree. Under Conditions 1.1.1(a)-(c), the asymptotics of the
probability that CMn(dn) is a simple graph is given by the following theorem:

Theorem 1.1.2 ([93, Theorem 7.12]). Assume that the sequence of degree sequences
(dn)n∈N satisfies Conditions 1.1.1(a)-(c). Then the probability that CMn(dn) is
simple converges to

e−ν/2−ν
2/4,

where ν = E[D(D − 1)]/E[D].

Using this result and the above arguments about the number of simple graphs with
a given degree sequence, we see that, under Conditions 1.1.1(a)-(c), Nn(dn) grows
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§1.1. Introduction to Part I

asymptotically as
(`n − 1)!!∏
i∈[n] d

n
i !

e−ν/2−ν
2/4.

As in the ERRG model, one of the characteristics of the configuration model is its
tree-like structure. The neighborhood of a uniformly chosen vertex can be coupled to
the family tree of a branching process whose offspring distribution is related to the
degree sequence. Again, this can be used to prove results about the phase transition
for the giant component, typical distances and the diameter (see [94, Chapters 3
and 6]). The tree-like structure is best formalized in the framework of local weak
convergence, which was developed in [20, 6, 5]. Under certain regularity conditions,
local weak limits of configuration models and Erdős-Rényi Random Graph models are
unimodular Galton-Watson trees [94]. We emphasize the tree-like structure, since it
is also important for the study of random walks on these graphs. As we will see later,
it plays a crucial role in the analysis of the mixing time of random walks.

Apart from the counting perspective, early studies on the configuration model also
focused on the problem of uniformly sampling a graph with a given degree sequence.
The simplest approach is to repeatedly sample from the configuration model until
the resulting graph is simple. In [100], the author adopts this approach to generate
a uniform simple regular graph. However, when the degrees are large this method
is prohibitively inefficient, as is evident from Theorem 1.1.2, because ν is large. A
sampling procedure is considered to be efficient when the expected running time of
the underlying algorithm is polynomial in the size of the graph. Later, McKay and
Wormald [71] relaxed the degree constraints by incorporating a switching mechanism
into this procedure, and Gao and Wormald [52] relaxed the degree constraints further.
If one is content with approximately uniform samples, then Markov Chain Monte Carlo
methods are a fallback option. We will discuss this approach later in more detail, in
the context of dynamic random graphs.

While the configuration model provides great flexibility in terms of degree se-
quences, particularly in the study of scale-free complex networks, it exhibits a low
clustering compared to many real-world networks. This is mainly due to its tree-like
structure. To overcome this shortcoming, extensions of the configuration model were
proposed in which clustering information can be incorporated. Examples of these
models include the configuration model with household structure [92], and the hier-
archical configuration model [97]. For a more thorough discussion of these extensions,
see [93, Chapter 7].

Complex networks and random graphs

A big leap in the study of random graphs came with the works on complex networks
appearing in the physics literature in late 1990’s. The small-world model of Watts
and Strogatz [98] and the preferential attachment model of Barabási and Albert [14]
led to an explosion of research in the field of random graphs. The study of complex
networks within the physics community was largely based on the empirical study
of real-world networks and on simulation of random graph models. These studues
usually lack mathematical rigour. However, mathematicians were quick to fill in
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1. Introduction

the gaps and push the theory forward. For example, Bollobás, Riordan, Spencer
and Tusnády [27] showed that the preferential attachment mechanism suggested by
Barabási and Albert [14] indeed gives rise to a power-law degree sequence, as they
predicted using simulations and a heuristic argument. There have been many works
on this theme since 2000, on many different aspects of random graph models related
to the phenomena occuring in real-world networks. For a detailed account of these,
we refer to the book by Durrett [38] on random graph dynamics and the two books
by van der Hofstad [93, 94] on random graphs and complex networks.

§1.1.2 Random walks on static random graphs

In this section, we give an overview of the study of random walks on static random
graphs. The classical theory of random walks focuses on random walks on infinite
graphs with a simple structure, such as Zd. The canonical example is the nearest-
neighbour simple random walk on Zd, in which jumps to neighbouring vertices occur
with equal probability at each time unit. Results on this type of random walks go back
almost a hundred years. In a classical result for the nearest-neighbour simple random
walk on Zd [84], Pólya established that when d ≤ 2 the random walk comes back to
its initial position infinitely many times with probability one, i.e., the random walk is
recurrent, while when d ≥ 3 the random walk visits every vertex at most finitely many
times with probability one, i.e., the random walk is transient. Also random walks in
random environments have been considered. In this setting, the jump probabilities
are themselves random. This line of research mostly focuses on qualitative behaviour
of the random walk, such as recurrence versus transience, or laws of large numbers,
central limit theorems and large deviation principles.

The study of random walks on more general but finite graphs has attracted much
attention more recently. In contrast to the classical theory of random walks, this line
of research focuses on the asymptotics of the finite-time behaviour of the random walk
when the size of the graph tends to infinity. Within this framework, the main objects
of study are hitting times, mixing times and cover times. The simplest example
is again the simple random walk, in which jumps to neighbouring vertices occur
with equal probabilities, as in the case of the simple random walk on Zd. However,
since the degrees need not be the same for all vertices, the jump probabilities are
inhomogeneous. These inhomogeneities make it harder to study random walks on
general graphs in detail. In a more complicated setting, the underlying graph is
also random. While random walks on random graphs can be viewed as an example
of random walks in random environments, the research focuses on different settings
and different questions, and the mathematical techniques used in the two areas differ
greatly. One of the main reasons for this is that the natural questions in finite and
infinite graph settings are vastly different.

In this thesis, we concentrate on the mixing time of random walks on random
graphs. We first review the mixing time of general Markov chains.
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§1.1. Introduction to Part I

Mixing time of general Markov chains

Let (Xt)t∈N0
be a time-homogeneous, irreducible and aperiodic Markov chain on a

finite state space S of size n, whose transition probabilities are given by a n×n matrix
P whose rows and columns are indexed by the elements of S, i.e.,

P(Xt = y | Xt−1 = x) = P (x, y) for all t ∈ N and x, y ∈ S.

Then there exists a unique probability measure π on S, called the stationary distri-
bution, which solves the equation

πP = π,

where π is viewed as a row vector of length n. Moreover, t-step transition probabilities
converge to π as t→∞, in the following sense:

lim
t→∞

P t(x, y) = π(y) for any x, y ∈ S.

In practice, one is interested in the speed of convergence towards π. The usual way
of measuring how far the distribution of the Markov chain is from the stationary
distribution is the total variation distance. The total variation distance between two
probability measures µ and ν on a countable state space S is defined as

‖µ− ν‖TV :=
1

2

∑
x∈S
|µ(x)− ν(x)|.

In the literature, convergence to stationarity is usually studied in the worst-case set-
ting as we explain next. Let

Dx(t) := ‖P t(x, ·)− π(·)‖TV and D(t) = max
x∈S
Dx(t).

It is easy to see that both Dx(t), for all x ∈ S, and D(t), are non-decreasing in t. A
classical result states that the convergence to the stationary distribution measured in
total variation distance happens exponentially fast:

Theorem (Theorem 4.9 in [65]). Suppose that P is the matrix of transition prob-
abilities of an irreducible and aperiodic Markov chain on a finite state space S with
stationary distribution π. Then there exist two constants α ∈ (0, 1) and C > 0 such
that

D(t) ≤ Cαt.
Using this theorem, we see that the asymptotic rate of exponential convergence

can be bounded from above
lim sup
t→∞

D(t)1/t ≤ α.

When the Markov chain is also time-reversible, i.e., if the detailed balance condition

π(x)P (x, y) = π(y)P (y, x), x, y ∈ S,

holds, then the asymptotic rate of exponential convergence is given by

lim
t→∞

D(t)1/t = λ∗,
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1. Introduction

where
λ∗ = max{|λ| : λ is an eigenvalue of P and λ 6= 1}

For a proof of this, see for example [65, Corollary 12.7].
While the above setting describes the asymptotic convergence properties of a fixed

Markov chain P as t→∞, research in the past few decades has focused on the finite-
time asymptotics of a family of Markov chains indexed by the size of the state space
in the limit as the size tends to infinity. In this setting, a precision level ε is fixed and
one usually looks at the first time when the distance to the stationary distribution
falls below ε. The ε-mixing time is defined as

tmix(ε) := min{t ∈ N : D(t) ≤ ε}.

In fact, mixing times at different precision levels can be related to each other by using
the sub-multiplicativity of D(t). Indeed, for all s, t ∈ N, D(s + t) ≤ D(s)D(t), and
therefore it is possible to show that (see [65, Section 4.5])

tmix(ε) ≤ dlog2 ε
−1etmix(1/4).

The techniques used to study mixing times vary greatly, and in specific examples
one has to come up with ad hoc methods. However, there are a few techniques that
can be used in more general settings. One such method is coupling. A coupling of two
probability distributions µ and ν on state spaces S1 and S2, respectively, is a pair of
random variables (X,Y ) ∈ S1 ×S2 such that the marginal distribution of X is µ and
the marginal distribution of Y is ν, i.e., P(X ∈ ·) = µ(·) and P(Y ∈ ·) = ν(·). The
notion of coupling is related to total variation distance via the following relation (see
[91, Chapter 1]):

‖µ− ν‖TV = inf{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν}. (1.2)

To see how this can be used in the context of mixing times of Markov chains, we need
to define another notion of distance to stationarity. Let D(t) = maxx,y∈S ‖P t(x, ·)−
P t(y, ·)‖TV. Although the definition of this quantity does not involve the stationary
distribution directly, it satisfies the inequalities (see [65, Lemma 4.10])

D(t) ≤ D(t) ≤ 2D(t). (1.3)

Given a Markov chain on state space S with transition matrix P , a Markovian
coupling of two copies of the same Markov chain is a Markov chain (Xt, Yt)t∈N0

on
S × S such that, for all x, y, x′, y′ ∈ S and t ∈ N,

P(Xt = x′ | Xt−1 = x, Yt−1 = y) = P (x, x′),

P(Yt = y′ | Xt−1 = x, Yt−1 = y) = P (y, y′).

Consider a Markovian coupling of two copies of the Markov chain given by P , with
the additional property

if Xt = Yt, then Xs = Ys for all s ≥ t,

10



§1.1. Introduction to Part I

so that whenever the two components meet they stick together. Let τcouple be the
first time the two components meet. Then {Xt 6= Yt} ⊂ {τcouple > t} and hence
P(Xt 6= Yt) ≤ P(τcouple > t). Using (1.2) and the first inequality of (1.3), we see that

D(t) ≤ P(τcouple > t).

For examples of how to obtain upper bounds on mixing times via coupling, see [65,
Chapter 5] and references therein.

Another useful tool to obtain upper bounds on mixing times is the notion of
strong stationary times. A strong stationary time for a Markov chain on state space
S starting from state x ∈ S with stationary distribution π is a randomised stopping
time τ such that, for all t ∈ N0 and y ∈ S,

Px(Xt = y, τ = t) = π(y)Px(τ = t),

or equivalently,
Px(Xt = y, τ ≤ t) = π(y)Px(τ ≤ t),

where Px denotes the law of the Markov chain starting from x ∈ S. In words, Xτ has
distribution π and is independent of τ . The total variation distance to the stationary
distribution can be bounded by the tail probability of the strong stationary time (see
[65, Proposition 6.11]):

Dx(t) ≤ Px(τ > t).

In fact, strong stationary times may be optimal in some sense. To explain this, we
need another notion of distance to stationarity, called the separation distance, defined
by

sx(t) := max
y∈S

[
1− P t(x, y)

π(y)

]
.

Let s(t) = maxx∈S sx(t). The total variation distance to the stationary distribution
can be bounded by the separation distance (see [65, Lemma 6.16])

Dx(t) ≤ sx(t).

If the Markov chain is reversible, then (see [65, Lemma 6.17])

s(2t) ≤ 1− (1− D̄(t))2 ≤ 2D̄(t) ≤ 4D(t).

There are strong stationary times that are optimal in the following sense:

Proposition ([65, Proposition 6.21]). For every starting state x ∈ S, there exists a
strong stationary time τ such that, for all t ∈ N0

sx(t) = Px(τ > t).

For examples of how to obtain upper bounds on mixing times via strong stationary
times, see [65, Chapter 6] and references therein. In our proofs in Chapters 2,3 and
4, we use a randomised stopping time that is not a strong stationary time, but very
close to one.
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1. Introduction

The usual setting in recent works on mixing times of Markov chains involves a
family of Markov chains P (n), n ∈ N, where P (n) is a Markov chain on a state space
S(n) and the size of the state space tends to infinity as n tends to infinity. Letting
t
(n)
mix(ε) denote the ε-mixing time of the Markov chain P (n), one is usually interested in
finding an expression for t(n)

mix(ε) as a function of n. Within this setting, a remarkable
phenomenon observed for many different families of Markov chains is the so-called
cutoff phenomenon, in which t(n)

mix(ε) virtually does not depend on ε. More precisely,
a family of Markov chains is said to exhibit a cutoff phenomenon if, for all ε > 0,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

In this case, the distance to the stationary distribution stays near 1 for awhile and
subsequently drops to near 0 in a relatively short time window. The notion of cutoff
window is formalised in the following way. A family of Markov chains is said to have
cutoff with a window of size O(wn) if wn = o(t

(n)
mix( 1

4 )) and

lim
α→−∞

lim inf
n→∞

D(n)(t
(n)
mix( 1

4 ) + αwn) = 1,

lim
α→∞

lim sup
n→∞

D(n)(t
(n)
mix( 1

4 ) + αwn) = 0.

In early works, Diaconis and Shahshahani [36] established cutoff for uniform trans-
position random walks on permutation groups, and Aldous [7] for random walks on
hypercubes. Later, cutoff was observed for many other Markov chains, including
random walks on groups, random walks on random graphs, and interacting particle
systems. For a more detailed discussion of the cutoff phenomenon, we refer to [65,
Chapter 18].

Mixing times of random walks on static random graphs

The study of mixing times of random walks on random graphs has received consid-
erable attention in last few decades. While these studies are interesting in their own
right, they are motivated by problems in combinatorics and computer science [35]. A
Markov chain on a state space of size n is said to be rapidly mixing if the mixing time
is polynomial in log n. Rapid mixing is especially useful in algorithmic applications,
where one usually deals with very large state spaces, typically exponential in the sys-
tem size. In such cases, rapid mixing is used to obtain polynomial time algorithms.
Many examples of random walks on random graphs have been shown to be rapidly
mixing.

In an early work on mixing times of random walks on random graphs [56], Hilde-
brand studied simple random walks on random regular graphs with degrees d =

(log n)a for some a ≥ 2 and on ERn(p) with p = d/n, and showed that the mixing
time is log n/ log d in both cases. Later, Benjamini and Mossel [19] studied simple
random walk on the part of the infinite cluster of supercritical percolation on Zd within
the box [−n, n]d. Using the average conductance method developed by Lovász and
Kannan [66], they showed that the mixing time is of order n2. In [51], Fountoulakis
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and Reed improved the conductance method of Lovász and Kannan. Using improved
estimates, they showed that the mixing time of simple random walk on the giant
component of the supercritical Erdős-Rényi random graph is of order log2 n [50].

Benjamini, Kozma and Wormald [18] obtained the same result on the mixing time
of simple random walk on the giant component by using different techniques, namely,
via expansion properties of the giant component. Nachmias and Peres [75] showed
that the mixing time of simple random walk on the largest component of ERn(p)

is of order n within the critical window, i.e., when p = (1 + λn−1/3)/n with λ ∈ R.
Ding, Lubetzky and Peres [37] studied the near-critical case, where p = (1+ε)/n with
n−1/3 � ε � 1, and showed that the mixing time is of order ε−3 log2(ε3n), which
interpolates between the critical and the supercritical case.

In 2010, Lubetzky and Sly [67] established cutoff for simple random walk and
nonbacktracking random walk on d-regular graphs with d ≥ 3, and derived precise
asymptotics of the total variation distance, via path counting arguments. Nonback-
tracking random walk is the same as simple random walk, except that it cannot
traverse the same edge twice in a row.

Theorem (Lubetzky and Sly [67]). Let G be a uniformly random d-regular graph on
n vertices with d ≥ 3. Then, for all ε ∈ (0, 1), with high probability:

(a) the mixing time of nonbacktracking random walk on G satisfies

t
(n)
mix(ε) = logd−1(dn) +OP(1).

(b) the mixing time of simple random walk on G satisfies

t
(n)
mix(ε) =

d

d− 2
logd−1 n+ (Λ + oP(1))Φ−1(ε)

√
logd−1 n,

where Λ =
2
√
d(d−1)

(d−2)3/2
and Φ(x) = 1

2π

∫∞
x

exp(−u2/2)du, x ∈ R.

Here, with high probability refers to the randomness of the underlying graph and
means that the asymptotics holds with a probability that tends to 1 as n tends to
infinity. A crucial ingredient in the proof in [67] is the locally tree-like structure of
random regular graphs.

Extensions to the configuration model with non-regular degrees were later obtained
by Berestycki, Lubetzky, Peres and Sly [21] (for simple and nonbacktracking random
walks), and by Ben-Hamou and Salez [16] (for nonbacktracking random walks). In
[21], the authors study the mixing time of random walks starting from a typical po-
sition, instead of a worst-case position. As in [67], they use the locally tree-like
structure of the configuration model, but the presence of inhomogeneities in the de-
grees of vertices requires a more sophisticated approach. In [16], the authors obtain
finer asymptotics for the mixing time of nonbacktracking random walk compared to
[21], under less restrictive conditions, including the exact order of the cutoff window.
The results of [16] are of special interest to us, since we use them in our works on
random walks on dynamic random graphs that are presented in Chapters 3 and 4.
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§1.1.3 Random walks on dynamic random graphs

The study of random walks on dynamic random graphs involves random walks on
graphs that change over time in a random fashion. While this line of research can
be considered to be part of the more general framework of random walks in dynamic
random environments, the problems and techniques considered are very different. The
typical setting in the study of random walks in dynamic random environments involves
random walks on Zd with the jump probabilities of the random walk changing over
time in a random fashion. For a review, see [11, 23] and references therein. Another
line of research focuses on random walks on general graphs in which edge or vertex
weights change over time, rather than the graph structure itself, such as reinforced
random walks (see [63, 81]). Our interest in this thesis lies mainly in models of random
walks on graphs whose structure changes over time. For examples of such models see
[9, 30, 49, 57, 86].

Mixing times of random walks on dynamic random graphs have been studied only
very recently. In [83], Peres, Stauffer and Steif studied the mixing time of random
walk on dynamical percolation on Zd in the subcritical regime. In the dynamical
percolation model, which was introduced by Häggström, Peres and Steif [80], each edge
of Zd gets refreshed independently at random times, given by exponential clocks, and
when refreshed an edge becomes open with probability p and closed with probability
1 − p independently of the state it had before. Peres, Stauffer and Steif considered
the case p < pc(Zd), where pc(Zd) is the critical probability for bond percolation on
Zd, and looked at the problem on the discrete torus with side length n and on the
lattice Zd. By using a regeneration time argument, they estimated the mixing time
for the joint Markov chain of the random walk and dynamical percolation.

More recently, Peres, Sousi and Steif [82] considered the same model in the super-
critical regime p > pc(Zd). Using the evolving sets method developed by Morris and
Peres [74], they obtain an upper bound for the mixing time of the random walk on
a quenched realisation of dynamical percolation with the additional constraint that
θ(p) > 1/2, where θ(p) is the probability that the origin belongs to the infinite cluster
in bond percolation on Zd with probability p. In [89], Sousi and Thomas considered
random walk on a dynamical Erdős-Rényi graph in the supercritical regime p = λ/n

with λ > 1. The dynamical Erdős-Rényi graph is the same as dynamical percolation,
except that the underlying graph is the complete graph on n vertices Kn, instead of
Zd. They showed that the joint Markov chain exhibits cutoff, by showing that the
random walk component mixes much faster than the dynamic graph component. The
proof was based on a regeneration time argument. More sophisticated variations of
the dynamical Erdős-Rényi graph, without the random walk, was also studied very
recently in different contexts. In [101], the authors study a variation of the dynamical
Erdős-Rényi graph, in which the edge refresh rates also randomly change over time,
in the context of complex networks. In [70], the authors study a similar but more
complicated model. In particular, they consider the evolution of the number of edges,
with explicit results for the corresponding moments, functional central limit theorems
and large deviations asymptotics.

The main subject of this thesis is random walks on dynamic random graphs in
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which the degrees do not change over time, but the edges are rewired randomly. Such
dynamic random graph models, without the random walk, were studied earlier in the
context of approximate uniform sampling of graphs with given degree sequences. As
we have pointed out earlier, one method for sampling graphs is the Markov Chain
Monte Carlo (MCMC) method. In MCMC, an ergodic Markov chain, whose sta-
tionary distribution is the target sampling distribution, is constructed and run for a
sufficiently long time, i.e., longer than the mixing time, so that the resulting sample
will be approximately distributed as the target distribution. In order to decide how
long MCMC the must run, we need good estimates of mixing times.

The study of MCMC methods and their mixing times in the context of sampling
graphs with given degree sequences goes back to the 1990’s. In [60], Jerrum and
Sinclair gave an algorithm for sampling regular graphs that is based on a Markov
chain whose mixing time is polynomial in the number of vertices. Their algorithm
works for a large class of degree sequences, in particular, for regular graphs. In [61],
Kannan, Tetali and Vempala studied a Markov chain for sampling bipartite graphs and
tournaments. Their Markov chain involved a switch mechanism, in which endpoints
of two randomly chosen edges are switched, provided that the switch results in a
simple graph. Using the canonical paths method of Jerrum and Sinclair [88], they
showed that the mixing time is polynomial in the number of vertices.

In [34], Cooper, Dyer and Greenhill adapted the switch chain of Kannan et al.
to the case of random regular graphs and gave an upper bound for the mixing time
that is polynomial in the number of vertices. In [54], Greenhill studied the switch
chain for non-regular degree sequences and, in [53], Greenhill and Sfragara studied
the switch chain for non-regular simple graphs and directed graphs. They obtained
upper bounds for the mixing time via the multicommodity flow argument of Sinclair
[87]. In [69], Mahlmann and Schindelhauer introduced a variant of the switch chain,
which they called flip chain, for sampling regular graphs. Their algorithm is more
local, in the sense that the random choice of switching edges is made locally, namely,
they have to be incident to the same edge. In [46], Feder, Guetz, Mihail and Saberi
obtained an upper bound for the mixing time of the flip chain on regular graphs by
using a Markov chain comparison argument.

Our contribution

The three chapters of Part I of this thesis are based on our three papers on the mixing
time of random walks on dynamic random graphs. In Chapter 2, we present our work
on the mixing time of random walks on dynamic configuration models. The dynamic
configuration model is a dynamic version the configuration model, in which dynamic
random graphs with a fixed degree sequences are generated. A fraction αn of the
edges is rewired at each unit of time, where n is the number of vertices. This model
was introduced in [12], which forms the basis of Chapter 2. In Chapter 2, we study the
mixing time of the random walk without backtracking on the dynamic configuration
model in the supercritical regime. By supercritical we mean limn→∞ αn(log n)2 =∞.
We show that, under some regularity conditions on the degree sequence, the mixing
time is of order α−1/2

n , which is of order o(log n) and hence is much smaller than
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the mixing time of the random walk on the static configuration model. To prove
our main result, we use a randomised stopping time argument. We consider the first
time τ at which the random walk crosses an edge that was rewired before, and show
that τ behaves like a strong stationary time. The key part of the proof involves an
exploitation of the tree-like structure of the configuration model.

In Chapter 3 of the thesis, we present our work on the extension of the results of [12]
to the critical and the subcritical regimes, which correspond to limn→∞ αn(log n)2 ∈
(0,∞) and limn→∞ αn(log n)2 = 0, respectively. The mixing time was analysed in
[13], which forms the basis of Chapter 3. Together with the main result of [12],
we see that there is trichotomy for the mixing time of random walks on dynamic
configuration models:

• limn→∞ αn(log n)2 = ∞: the mixing time is of order α−1/2
n and there is no

cutoff,

• limn→∞ αn(log n)2 ∈ (0,∞): the mixing time is of order log n and there is
one-sided cutoff,

• limn→∞ αn(log n)2 = 0: the mixing time is of order log n and there is two-sided
cutoff.

The latter regime includes the random walk on the static configuration model.
We again use the randomised stopping time argument from [12]. However, because

the distances over which the random walk can travel are now of order log n, we cannot
rely on the tree-like structure of the configuration model only. Instead, we show
that the random walk path is with high probability self-avoiding, which in fact is a
consequence of the locally tree-like structure of the configuration model, and this in
turn ensures that the randomised stopping time τ behaves like a strong stationary
time.

In Chapter 4 of the thesis, we present our work on the mixing time of random walks
on more general dynamically rewired random graphs. We consider a more general
setting where the vertices and vertex degrees are fixed as before, but the edges are
rewired according to a more general prescribed rule. This setting includes the dynamic
configuration model as a special case. We show that, under some conditions on the
graph dynamics, the total variation distance for the random walk on the dynamically
rewired random graph can be linked to the total variation distance for the random
walk on the static configuration model. We also introduce a specific model that we call
the random walk with local rewirings. In this model, the rewiring occurs only along
the random walk path, with probability αn for each time unit. Using our result for
the general framework, we show that this random walk exhibits the same trichotomy
as the random walk on the dynamic configuration model, but on a different time scale.
More precisely, we identify three regimes:

• limn→∞ αn log n =∞: the mixing time is of order α−1
n and there is no cutoff,

• limn→∞ αn log n ∈ (0,∞): the mixing time is of order log n and there is one-
sided cutoff,
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• limn→∞ αn log n = 0: the mixing time is of order log n and there is two-sided
cutoff.

Again, the latter regime includes the random walk on the static configuration model.
To prove the above result, we show that the random walk on the dynamically

rewired random graph can be coupled to a modified random walk on the static con-
figuration model. While this coupling was implicit in the proof used in [13], we show
that the same argument can be used in a more general setting. We show that the
total variation distance for the modified random walk can be expressed in terms of
the tail probability of the randomised stopping time τ (the first time the random
walk crosses an edge that was rewired before) and the total variation distance for the
random walk on the static configuration model.
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§1.2 Introduction to Part II

In Part II of the thesis, we study the problem of union complexity of random disk
regions. We have a collection of disks, whose centers are distributed randomly within
a region of the plane, and we are interested in the expected number of boundary arcs.
Formally, let D = {D1, . . . , Dn} be a set of n disks in R2. The set of boundary disks
of D, denoted by BD(D), is the set of disks in D whose boundaries are not completely
covered by other disks, i.e.,

BD(D) = {D ∈ D : ∂D \ ∪D′∈D\{D}D′ 6= ∅},

where ∂D denotes the boundary of D. A boundary arc of a boundary disk D is a
connected component of the set ∂D \ ∪D′∈D\{D}D′ and union complexity of D is the
total number of boundary arcs of the boundary disks of D. It was shown that, when
D consists of disks, the total number of boundary arcs of D is bounded from above by
6|BD(D)|−12 [62]. Hence, we study the union complexity by focusing on the number
of boundary disks and we state our results in terms of the number of boundary disks.

The union complexity of geometric regions is important in several combinatorial
and algorithmic problems in different fields ranging from linear programming and
robotics to molecular modeling and geographic information systems [1]. A special
case of the union-complexity problem is motivated by an algorithm to compute a
conflict-free colouring for unit disks. Besides, the union-complexity problem is similar
to the problem of the complexity of the convex hull, when the number of vertices of
the convex hull of a random point set is studied. In Section 1.2.1, we motivate the
union complexity problem in the context of conflict-free colouring of unit disk regions.
In Section 1.2.2, we introduce the convex hull problem, review the relevant literature,
and show its relation to the union complexity problem. In Section 1.2.3, we briefly
report our contribution.

§1.2.1 Conflict-free colouring
The problem of conflict-free colouring was introduced by Even et al. [45] for simple
geometric regions . In the general setting, we are given a set D of regions in the plane.
The coverage area of D is defined as Cov(D) := ∪D∈DD. For a point p ∈ Cov(D), we
let D(p) := {D ∈ D : p ∈ D}, i.e., the set of regions that contain p. A colouring of D
is a function χ : D → N. A conflict-free (CF) colouring is defined as follows:

Definition 1.2.1. A conflict-free colouring of D is a colouring χ of D such that
for every p ∈ Cov(D), there exists a D ∈ D(p) with χ(D) 6= χ(D′) for any other
D′ ∈ D(p), i.e., for each point in the coverage area there is a region with a unique
colour among the regions containing that point. A minimum CF colouring of D is
a CF colouring of D that uses a minimum number of colours among all possible CF
colourings of D (see Figure 1.1).

Even et al. [45] show that when D consists of n unit disks (disks with unit radius),
it is always possible to achieve a conflict-free colouring with O(log n) colours by giving
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Figure 1.1: A minimum conflict-free colouring of three disks. Two outer disks are coloured
blue and the middle disk is coloured red.

an algorithm that uses O(log n) colours for any set of unit disks in the plane. They
also show that when the centres of the disks lie on a straight line and every pair
of disks intersects, the minimum number of colours required is Ω(log n). So, in the
worst-case scenario, minimum CF colourings of unit disks in the plane use Θ(log n)

colours. In Chapter 5, we consider the average-case scenario for disks in the plane. We
take the average over all possible configurations of disks whose centres are uniformly
distributed in a convex compact region.

Figure 1.2: Disks whose centres lie at least 3 squares apart do not intersect.

Lev-Tov and Peleg [64] give a constant-factor approximation algorithm for the
minimum CF colouring of a set of unit disks in the plane, i.e., an algorithm that
achieves a solution that uses, for any given input, at most a constant times more
colours than the minimum number of colours needed for that input. The algorithm
proceeds by dividing the plane into squares and treating the disks whose centers lie
in each square separately. The diagonals of the squares are of length 1, so if a square
contains a disk center, then it is completely covered by that disk. Another useful
property of the algorithm is that two disks whose centres lie in squares that are 3
squares apart do not intersect (see Figure 1.2). Hence the disks of every fourth square
in a row and in a column can be coloured by using the same colour set.

The algorithm given by Lev-Tov and Peleg [64] relies on CF colourings of chains
of regions. A chain is a set of regions that can be ordered in a natural way. The
formal definition is as follows:
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Figure 1.3: A chain of five disks whose centers are marked by crosses.

Definition 1.2.2. A set D of n regions is called a chain if there exists an indexing
of the regions D = {D1, . . . , Dn} such that, for every pair i, j ∈ [n] with i < j, the set
∩k∈[i,j]Dk\ ∪k 6∈[i,j] Dk is non-empty and for every p ∈ Cov(D) there exist i, j ∈ [n]

with i < j such that p ∈ ∩k∈[i,j]Dk\ ∪k 6∈[i,j] Dk (see Figure 1.3).

A collection of disks whose centres lie on a line and for which every pair of disks
intersect is an example of a chain. It is proven by Even et al. [45] that, for a chain of
length n, minimum CF colourings always use Θ(log n) colours.

`

Figure 1.4: Lower boundary diks of five disks highlighted in grap.

In the algorithm given by Lev-Tov and Peleg [64], CF colourings of disks whose
centers lie in a square involves CF colourings of chains. For a square Q, let DQ
denote the set of disks whose centres lie in Q. Let ` be the line passing through the
lower side of Q. Let B be the intersection of the half plane below ` and Cov(DQ),
and let DQlower be the set of disk whose bounding arcs appear on the boundary of
B. Disks in DQlower are called lower boundary disks (see Figure 1.4). Upper, left and
right boundary segments are defined similarly, and they are denoted by DQupper, DQleft,
DQright, respectively. A crucial observation is that each of these sets forms a chain
(see [64, Lemma 2.5]) and their union covers Cov(DQ) entirely (since the diagonal of
the square is 1). So the problem of minimum CF colourings of DQ reduces to the

20



§1.2. Introduction to Part II

problem of minimum CF colourings of DQbound = DQlower∩DQupper∩DQleft∩D
Q
right, the set

of boundary disks. Thus, it is important to estimate the average number of boundary
disks for the average-case analysis of the algorithm.

§1.2.2 Complexity of the convex hull of random point
sets

Let X = {X1, . . . , Xn} be a set of n independently sampled random points in the
plane. The convex hull of X, denoted as CH(X), is the smallest convex set that
contains X, which is also the set of all possible convex combinations of points of X,
i.e.,

CH(X) = {x ∈ R2 : x =

n∑
i=1

αiXi with
n∑
i=1

αi = 1 and αi ≥ 0 for all i = 1, . . . , n}.

Let V (X) be the set of vertices of CH(X), i.e., the set of points of X that are at
the boundary of its convex hull (note that, contrary to standard terminology, we also
call a point from X a vertex when it lies in the interior of an edge of CH(X)). The
study of convex hulls of random point sets goes back to 1960’s. Rényi and Sulanke
[85] showed that, as n tends to infinity, the expectation of |V (X)|, where X is a set of
n randomly sampled points, scales like

√
log n if the points are sampled according to

the normal distribution, like log n if the points are sampled uniformly in a polygon,
and like n1/3 if the points are sampled uniformly in a convex compact region with a
smooth boundary. Later studies focused on exact asymptotics for the expectation of
|V (X)| and its variance, on limit theorems and on generalization to higher dimensions.
For a survey of results on convex hull problems, see [99].

The usual proof strategy involves computing the probability of two fixed points
forming an edge of the convex hull and multiplying this probability by

(
n
2

)
. This

gives the expected number of edges of the convex hull, which is the same as the
number of vertices. Two points of X form an edge if all the other points fall on
the same side of the line passing through these two points. Efron [39] devised a
different approach that exploits the relation between the area of the convex hull and
the number of vertices. Using this approach, Har-Peled [55] presented a simple proof
for the asymptotic scaling of |V (X)|. His arguments can be viewed as a discretization
of the classical arguments of Rényi and Sulanke in [85].

The convex-hull problem is directly related to the union-complexity problem. Let
D(X, r) = {D1, . . . , Dn}, where Di is the disk with radius r centered at Xi. Let us
use the shorthand notation BD(X, r) = BD(D(X, r)) for the set of boundary disks
of D(X, r). Although we do not need the following proposition in the proofs of The-
orem 5.1.1 below, we state the connection between the convex hull and the boundary
disks.

Proposition 1.2.3. Suppose that X = {X1, . . . , Xn} is a set of n points in R2. Then,
for i = 1, . . . , n, the point Xi is a vertex of the convex hull of X, i.e. Xi ∈ V (X), if
and only if for any r > 0 the disk with radius r centered at Xi is a boundary disk of
D(X, r), i.e. Di ∈ BD(X, r).
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Xi`

p

r

CH(Xi)

Figure 1.5: Illustration of the first part of the proof of Proposition 1.2.3.

Proof. Fix i ∈ [n]. First assume that Xi ∈ V (X) and fix r > 0. Let ` be a line
through Xi that is tangent to CH(Xi) where Xi := X \ {Xi}. Let h+ denote the
closed half-plane bounded by ` such that CH(X) ⊂ h+(`), and let h− be the opposite
half-plane. Finally, let p ∈ h− be the point at distance r from Xi such that the
segment pXi is perpendicular to ` (see Figure 1.5). Clearly, p ∈ ∂Di and all other
points in X have distance greater than r to p. Hence, Di is a boundary disk.

Xj Xk

Xi

p

CH(Xi)

Figure 1.6: Illustration of the second part of the proof of Proposition 1.2.3. Dotted lines are
perpendicular bisectors of the triangle XiXjXk.

Next assume that Xi 6∈ V (X). Then Xi is in the interior of CH(Xi). For distinct
j, k ∈ [n] with j, k 6= i, let rj,k denote the radius of the circumscribed circle of the
points Xi, Xj and Xk. Set r = maxj,k∈[n] rj,k + diam(X), where diam(X) is the
diameter of X. Then the boundary of the disk Di with radius r centered at Xi is not
a boundary disk of D(X, r). Indeed, fix any point on the boundary of Di, say p. If
p ∈ CH(X), then p is covered by all the other disks, since r > diam(X). If p 6∈ CH(X),
then consider the line segment between the points p and Xi. Suppose that this line
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segment passes through the edgeXjXk of the convex hull for some j, k ∈ [n]. Consider
the perpendicular bisector `1 of the line segment XiXj and the perpendicular bisector
`2 of the line segment XiXk. Assume without loss of generality that Xi lies to the
right of `1 and to the left of `2. Since r > rj,k, p lies to the left of `1 or to the right
of `2. Then, min{d(p,Xj), d(p,Xk)} < d(p,Xi) = r and at least one of the disks Dj

and Dk contains p (see Figure 1.6). So any point on the boundary of Di is covered
by some other disk in D(X, r), and hence Di is not a boundary disk of D(X, r).

§1.2.3 Our contribution
In Chapter 5, we study the average-case union complexity for disks whose centers are
sampled uniformly and independently at random in a region S in R2 and whose radii
are greater than the diameter of S. We obtain union-complexity results by bounding
the number of boundary disks. We consider two cases: the case where S is a square
and the case where S is a disk. We show that, in both cases, the expected number of
boundary disks scales like n1/3 as n, the number of random disks, tends to infinity.
Our proof is an adaptation of the proof of Har-Peled [55] for the convex hull problem.

Our result for the square case is important in the context of the average-case
analysis of Lev-Tov and Peleg’s algorithm [64] for the conflict-free colouring of disk
regions [64], since their colouring scheme relies on the colouring of the boundary
disks. Considering the connection between the union complexity and the convex-hull
complexity, our results are surprising. For the convex-hull problem, the order of the
expected number of vertices of the convex hull is different for the two cases: it is log n

for the square case and n1/3 for the disk case. However, for the union-complexity
problem, the order of the number of boundary disks is n1/3 in both cases.
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