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1. Introduction

CHAPTER 1
Introduction

The present thesis consists of two parts. Part I focusses on random walks on dynamic
configuration models, Part II focusses on union complexity of random disk regions.
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1. Introduction

§1.1 Introduction to Part I

The theory of random graphs provides abstract mathematical tools for studying real-
world problems related to complex networks. Questions concerning the formation,
structure and functionality of real-world networks have been studied via random graph
models. Many questions involve also a random process on the network. Mathematical
notions for modelling random processes on networks include random walks, percola-
tion and interacting particle systems. These notions have been studied extensively in
the context of static random graphs. However, many real-world networks are dynamic
in nature: their structure changes over time. Thus, it is natural to extend static set-
tings to dynamic settings. Part I of the thesis contains our work in this direction: it
studies mixing properties of random walks on dynamic random graphs.

In Section 1.1.1, we give an overview of random graph theory in the context of
complex networks. We start by discussing the historical development of the study
of complex networks. After that, we review two basic random graph models, the
Erdős-Rényi Random Graph model and the configuration model, which are among
the most widely studied models. We close Section 1.1.1 by discussing, very briefly,
other random graph models that were invented in the context of complex networks.
In Section 1.1.2, we give a review of the theory of random walks on static random
graphs, with a focus on mixing times. We introduce the notion of mixing times in
the more general framework of Markov chains and discuss several aspects. We close
Section 1.1.2 by reviewing the literature on mixing times of random walks on random
graphs. In Section 1.1.3, we review the modest literature on random walks on dynamic
random graphs that has accumulated so far and list our contributions.

§1.1.1 Complex networks and random graphs
Since 1999, there has been a surge of interest in the study of real-world networks,
and network science has emerged as an independent academic discipline. A number
of journals are devoted to the field, and many universities offer courses and special
programs on network science and complex networks. The term ‘complex networks’
was used by Steven Strogatz in his 2001 paper [90] to refer to networks with non-
trivial topological features, unlike regular networks such as chains, grids, lattices and
fully-connected graphs. Many real-world networks are complex in this sense.

The research on complex networks was pioneered in a series of papers by Barabási
and co-authors [14, 15, 3], Watts and Strogatz [98], and Newman and Watts [76, 77].
Their aim was to explain the mechanisms behind the formation of networks that
give rise to certain statistical features that are observed in real-world networks, but
cannot be explained by randomness alone. Empirical studies of real-world networks
have shown that many real-world networks have certain key features in common, such
as:

• Sparsity: the average number of links per node does not grow too large with
the network size.

• Power-law degrees: the empirical distribution of the number of edges per ver-
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§1.1. Introduction to Part I

tex follows a power-law distribution. In a power-law distribution, the frequency
of vertices with k edges is roughly proportional to k−γ for some γ > 2 and for
large k.

• Small-world phenomenon: the distance between typical vertex pairs does
not grow too fast with the size of the network.

• High clustering: if two vertices are connected to a third vertex, then it is
likely that these two vertices are connected to each other as well.

The above properties are observed in networks in many different settings, such as
the World Wide Web, social networks and biological networks. For a review of early
studies on real-world networks and their statistical properties, see [2, 78].

Why is it that different networks have so many features in common and how do
these features affect the functionality of the network, for example, the vulnerability
of a computer network or the spread of a disease in a population? The mathematical
tools that can tackle these problems are provided by the mathematical theory of
random graphs. Before going into details, we review two random graph models that
are widely studied in the mathematics community.

Erdős-Rényi random graph model

The theory of random graphs was initiated by Paul Erdős and Alfred Rényi in their
seminal papers dating back to 1959–1961 [42, 43, 44]. Although Erdős and Rényi
studied random graphs for their own sake, their random graph model was motivated
by the use of the probabilistic method for solving problems in extremal graph theory;
see for example [41]. The probabilistic method can be summarised as the use of prob-
abilistic arguments to prove deterministic statements, often in the form of existence
results of combinatorial structures with certain properties. The basic principle is as
follows: if a random combinatorial structure has a certain property with a positive
probability, then there exists at least one deterministic structure with that property.
The canonical reference for the probabilistic method is Alon and Spencer’s textbook
on the subject [8].

The remarkable discovery of Erdős and Rényi was the threshold phenomenon (also
called phase transition) exhibited by random graphs. Their goal was to determine the
number of edges a random graph must have in order to acquire a certain property,
such as containing a set of given subgraphs, containing a ‘giant’ component or being
connected. They showed that these properties emerge rather suddenly and formalised
this emergence in mathematical terms. Let us denote by ERn(m) the random graph
distributed uniformly over the set of graphs on n vertices with m edges. In the formal
setting, one considers a family of random graphs whose number of vertices n tends
to infinity and whose number of edges m = m(n) depends on the number of vertices.
In [43], Erdős and Rényi showed that ERn(m) acquires certain properties, with high
probability, only when the number of edges m grows faster than some threshold
function A(n), and they call this threshold phenomenon.

The line of research initiated by Erdős and Rényi was later continued by others.
The body of results with a similar flavor and of techniques used for proving these
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1. Introduction

results make up the core of the monograph entitled Random Graphs by Bollobás [25].
In fact, the majority of the works study a different but related model. For p ∈ [0, 1],
let ERn(p) be the random graph on n vertices where each of the

(
n
2

)
edges is present

with probability p, independently of each other. Although, in their original papers,
Erdős and Rényi studied ERn(m), the model with ERn(p) is referred to as the Erdős-
Rényi Random Graph (ERRG) model. The two models are practically interchangeable
when m is close to p

(
n
2

)
(see [25, Theorem 2.2]), and ERn(p) also exhibits threshold

phenomena for many properties. One particular feature of ERn(p) in the sparse
regime (where p = λ/n for some λ ∈ (0,∞)) is that the local neighborhoods of the
vertices are tree-like in the following sense: the neighborhood of a uniformly chosen
vertex in ERn(p) can be coupled to the family tree of a branching process with a
Poisson offspring distribution. This can be used to prove the phase transition for the
emergence of a giant component in ERn(p) (see [93, Chapter 4]).

While the ERRG model exhibits many mathematically interesting phenomena, it
fails to capture many features exhibited by real-world networks. When p = λ/n for
some λ ∈ (0,∞), ERn(p) is sparse, the average degree converges in probability to λ as
n tends to∞, and the distribution of the degree of a fixed vertex is close to a Poisson
distribution with parameter λ for large n. Most real-world networks have power-law
degree distributions, thus the ERRG model cannot capture the scale-free property of
real-world networks. Another drawback of the model is that it is completely sym-
metric, in the sense that the vertices have the same degree distribution. To remedy
these shortcomings, generalisations of ERRG model have been suggested, such as the
generalised random graph model [29], the inhomogeneous random graph model [26],
the Chung-Lu model [33] and the Norros-Reittu model [79]. For an extensive review,
see [93, Chapter 6].

Configuration model

One of the problems with the ERRG model and its generalisations is that the res-
ulting graph contains isolated vertices with positive probability in the sparse regime,
which makes them impractical in many cases for the study of real-world networks.
One possible solution is to fix the degrees of the graph beforehand and generate a
random graph with the prescribed degree sequence. The configuration model is one
such model. Let d = (d1, . . . , dn) be the given degree sequence on n vertices. The
configuration model is constructed by attaching di half-edges to vertex vi for each
i ∈ [n] := {1, . . . , n} and then pairing these half-edges uniformly at random. A pair-
ing of the half-edges is called a configuration and a uniformly distributed configuration
is denoted by Confn(d). The resulting graph is denoted by CMn(d), which need not
be simple. A simple graph is a graph that does not contain any loop (an edge with
the same vertex at both ends) or multiple edges between any pair of vertices. For
graphs that are not necessarily simple, the term multi -graph is used. In the rest of
this section, we use the term graph to refer to multi-graphs.

In the configuration model, each configuration is identified with a graph, and a
graph can be obtained via several distinct configurations. Letting `n =

∑
i∈[n] di, we

see that there are (`n− 1)!! := (`− 1)× (`− 3)× · · · × 3× 1 distinct configurations in
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§1.1. Introduction to Part I

total, so each configuration has probability 1
(`n−1)!! . We can identify a graph G with

a matrix (Xij)i,j∈[n], where Xij denotes the number of edges between vertices vi and
vj for i 6= j and Xii the number of self-loops at vi. This gives

di = Xii +
∑
j∈[n]

Xij , i ∈ [n].

The distribution of CMn(d) is given by the following proposition:

Proposition ([93, Proposition 7.7]). Let G = (xij)i,j∈[n] be a graph on n vertices
such that

di = xii +
∑
j∈[n]

xij for i ∈ [n].

Then

P(CMn(d) = G) =
1

(`n − 1)!!

∏
i∈[n] di!∏

i∈[n] 2xii
∏

1≤i≤j≤n xij !
.

From this, we see that CMn(d) is not distributed uniformly over the set of graphs
on n vertices with degree sequence d. However, when G is a simple graph, i.e. when
xii = 0 for all i ∈ [n] and xij ∈ {0, 1} for all i, j ∈ [n], we have

P(CMn(d) = G) =

∏
i∈[n] di!

(`n − 1)!!
. (1.1)

This shows that the distribution of CMn(d) conditionally on being simple is uniform
on the set of simple graphs on n vertices with degree sequence d.

The configuration model was introduced by Bollobás [24] to count labelled simple
regular graphs. This work was inspired by ideas introduced by Bender and Canfield
[17]. To count the labelled simple graphs, we can use the configuration model as
follows. We know that, conditional on being simple, CMn(d) is distributed uniformly
on the set of simple graphs with degree sequence d. Letting Nn(d) denote the number
of simple graphs with degree sequence d, we see that for any simple graph G with
degree sequence d,

P(CMn(d) = G | CMn(d) is simple) =
1

Nn(d)
.

Combining this with (1.1), we see that

Nn(d) =
(`n − 1)!!∏
i∈[n] di!

P(CMn(d) is simple).

So, if we can estimate the probability that the resulting graph is simple, then we can
estimate the number of simple graphs with the given degree sequence. This is exactly
how Bollobás obtained his result on the number of simple regular graphs.

The configuration model and uniform simple graphs with given degree sequences
were later studied by others. Łuczak showed that when the minimum degree is three,
the resulting graph is connected with a probability tending to 1 as n tends to infinity

5



1. Introduction

[68]. Molloy and Reed studied the emergence of a giant component and its size for
sparse random graphs with nonregular degree sequences [72, 73]. They established
the phase transition for the giant component, similar to that of the ERRG model. In
fact, some results for ERn(p) and ERn(m) can be obtained through the results for
uniform random graph with a given degree sequence, by noting that the latter has
the same distribution as the former conditioned on the degree sequence. Fernholz and
Ramachandran [48] established that the diameter of the uniform random graph with
a given degree sequence on n vertices is c log n + o(log n), for some c > 0 depending
on the degree sequence, under certain sparsity conditions. Using this result and the
above observation, they refined earlier results on the diameter of the ERn(p) [32, 26].
The diameter and typical distances for the configuration model, especially for the
scale-free degree sequences, was also studied by van der Hofstad and co-authors (see
for example [31, 95, 96]).

When studying the configuration model, one typically considers fixed degree se-
quences indexed by the number of vertices n, i.e. (dn = (dni )i∈[n])n∈N with certain
statistical properties, and studies properties of CMn(dn) as n tends to infinity. A typ-
ical condition on the degrees is the convergence of the empirical degree distribution to
a deterministic limit distribution. Let Dn be the random variable whose distribution
function is given by

Fn(x) =

n∑
i=1

1{dni ≤x},

i.e., Dn is the degree of a uniformly chosen vertex on the graph with n vertices whose
degree sequence is given by dn = (dni )i∈[n] and Fn is the empirical distibution of the
degrees. The following regularity conditions on the degrees are common:

Condition 1.1.1 (Regularity of the degrees). There exists an integer-valued random
variable D with P(D > 0) = 1 such that

(a) Dn
d−→ D as n→∞, where d−→ denotes convergence in distribution,

(b) limn→∞ E[Dn] = E[D] <∞,

(c) limn→∞ E[D2
n] = E[D2] <∞.

In the context of complex networks, the limiting degree distribution D is usually
assumed to follow a power-law distribution. Conditions 1.1.1(a)-(b) ensure that the
degree sequences are sparse. Condition 1.1.1(c) controls the variance of the degrees
and the maximum degree. Under Conditions 1.1.1(a)-(c), the asymptotics of the
probability that CMn(dn) is a simple graph is given by the following theorem:

Theorem 1.1.2 ([93, Theorem 7.12]). Assume that the sequence of degree sequences
(dn)n∈N satisfies Conditions 1.1.1(a)-(c). Then the probability that CMn(dn) is
simple converges to

e−ν/2−ν
2/4,

where ν = E[D(D − 1)]/E[D].

Using this result and the above arguments about the number of simple graphs with
a given degree sequence, we see that, under Conditions 1.1.1(a)-(c), Nn(dn) grows

6



§1.1. Introduction to Part I

asymptotically as
(`n − 1)!!∏
i∈[n] d

n
i !

e−ν/2−ν
2/4.

As in the ERRG model, one of the characteristics of the configuration model is its
tree-like structure. The neighborhood of a uniformly chosen vertex can be coupled to
the family tree of a branching process whose offspring distribution is related to the
degree sequence. Again, this can be used to prove results about the phase transition
for the giant component, typical distances and the diameter (see [94, Chapters 3
and 6]). The tree-like structure is best formalized in the framework of local weak
convergence, which was developed in [20, 6, 5]. Under certain regularity conditions,
local weak limits of configuration models and Erdős-Rényi Random Graph models are
unimodular Galton-Watson trees [94]. We emphasize the tree-like structure, since it
is also important for the study of random walks on these graphs. As we will see later,
it plays a crucial role in the analysis of the mixing time of random walks.

Apart from the counting perspective, early studies on the configuration model also
focused on the problem of uniformly sampling a graph with a given degree sequence.
The simplest approach is to repeatedly sample from the configuration model until
the resulting graph is simple. In [100], the author adopts this approach to generate
a uniform simple regular graph. However, when the degrees are large this method
is prohibitively inefficient, as is evident from Theorem 1.1.2, because ν is large. A
sampling procedure is considered to be efficient when the expected running time of
the underlying algorithm is polynomial in the size of the graph. Later, McKay and
Wormald [71] relaxed the degree constraints by incorporating a switching mechanism
into this procedure, and Gao and Wormald [52] relaxed the degree constraints further.
If one is content with approximately uniform samples, then Markov Chain Monte Carlo
methods are a fallback option. We will discuss this approach later in more detail, in
the context of dynamic random graphs.

While the configuration model provides great flexibility in terms of degree se-
quences, particularly in the study of scale-free complex networks, it exhibits a low
clustering compared to many real-world networks. This is mainly due to its tree-like
structure. To overcome this shortcoming, extensions of the configuration model were
proposed in which clustering information can be incorporated. Examples of these
models include the configuration model with household structure [92], and the hier-
archical configuration model [97]. For a more thorough discussion of these extensions,
see [93, Chapter 7].

Complex networks and random graphs

A big leap in the study of random graphs came with the works on complex networks
appearing in the physics literature in late 1990’s. The small-world model of Watts
and Strogatz [98] and the preferential attachment model of Barabási and Albert [14]
led to an explosion of research in the field of random graphs. The study of complex
networks within the physics community was largely based on the empirical study
of real-world networks and on simulation of random graph models. These studues
usually lack mathematical rigour. However, mathematicians were quick to fill in
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1. Introduction

the gaps and push the theory forward. For example, Bollobás, Riordan, Spencer
and Tusnády [27] showed that the preferential attachment mechanism suggested by
Barabási and Albert [14] indeed gives rise to a power-law degree sequence, as they
predicted using simulations and a heuristic argument. There have been many works
on this theme since 2000, on many different aspects of random graph models related
to the phenomena occuring in real-world networks. For a detailed account of these,
we refer to the book by Durrett [38] on random graph dynamics and the two books
by van der Hofstad [93, 94] on random graphs and complex networks.

§1.1.2 Random walks on static random graphs

In this section, we give an overview of the study of random walks on static random
graphs. The classical theory of random walks focuses on random walks on infinite
graphs with a simple structure, such as Zd. The canonical example is the nearest-
neighbour simple random walk on Zd, in which jumps to neighbouring vertices occur
with equal probability at each time unit. Results on this type of random walks go back
almost a hundred years. In a classical result for the nearest-neighbour simple random
walk on Zd [84], Pólya established that when d ≤ 2 the random walk comes back to
its initial position infinitely many times with probability one, i.e., the random walk is
recurrent, while when d ≥ 3 the random walk visits every vertex at most finitely many
times with probability one, i.e., the random walk is transient. Also random walks in
random environments have been considered. In this setting, the jump probabilities
are themselves random. This line of research mostly focuses on qualitative behaviour
of the random walk, such as recurrence versus transience, or laws of large numbers,
central limit theorems and large deviation principles.

The study of random walks on more general but finite graphs has attracted much
attention more recently. In contrast to the classical theory of random walks, this line
of research focuses on the asymptotics of the finite-time behaviour of the random walk
when the size of the graph tends to infinity. Within this framework, the main objects
of study are hitting times, mixing times and cover times. The simplest example
is again the simple random walk, in which jumps to neighbouring vertices occur
with equal probabilities, as in the case of the simple random walk on Zd. However,
since the degrees need not be the same for all vertices, the jump probabilities are
inhomogeneous. These inhomogeneities make it harder to study random walks on
general graphs in detail. In a more complicated setting, the underlying graph is
also random. While random walks on random graphs can be viewed as an example
of random walks in random environments, the research focuses on different settings
and different questions, and the mathematical techniques used in the two areas differ
greatly. One of the main reasons for this is that the natural questions in finite and
infinite graph settings are vastly different.

In this thesis, we concentrate on the mixing time of random walks on random
graphs. We first review the mixing time of general Markov chains.

8



§1.1. Introduction to Part I

Mixing time of general Markov chains

Let (Xt)t∈N0
be a time-homogeneous, irreducible and aperiodic Markov chain on a

finite state space S of size n, whose transition probabilities are given by a n×n matrix
P whose rows and columns are indexed by the elements of S, i.e.,

P(Xt = y | Xt−1 = x) = P (x, y) for all t ∈ N and x, y ∈ S.

Then there exists a unique probability measure π on S, called the stationary distri-
bution, which solves the equation

πP = π,

where π is viewed as a row vector of length n. Moreover, t-step transition probabilities
converge to π as t→∞, in the following sense:

lim
t→∞

P t(x, y) = π(y) for any x, y ∈ S.

In practice, one is interested in the speed of convergence towards π. The usual way
of measuring how far the distribution of the Markov chain is from the stationary
distribution is the total variation distance. The total variation distance between two
probability measures µ and ν on a countable state space S is defined as

‖µ− ν‖TV :=
1

2

∑
x∈S
|µ(x)− ν(x)|.

In the literature, convergence to stationarity is usually studied in the worst-case set-
ting as we explain next. Let

Dx(t) := ‖P t(x, ·)− π(·)‖TV and D(t) = max
x∈S
Dx(t).

It is easy to see that both Dx(t), for all x ∈ S, and D(t), are non-decreasing in t. A
classical result states that the convergence to the stationary distribution measured in
total variation distance happens exponentially fast:

Theorem (Theorem 4.9 in [65]). Suppose that P is the matrix of transition prob-
abilities of an irreducible and aperiodic Markov chain on a finite state space S with
stationary distribution π. Then there exist two constants α ∈ (0, 1) and C > 0 such
that

D(t) ≤ Cαt.
Using this theorem, we see that the asymptotic rate of exponential convergence

can be bounded from above
lim sup
t→∞

D(t)1/t ≤ α.

When the Markov chain is also time-reversible, i.e., if the detailed balance condition

π(x)P (x, y) = π(y)P (y, x), x, y ∈ S,

holds, then the asymptotic rate of exponential convergence is given by

lim
t→∞

D(t)1/t = λ∗,

9



1. Introduction

where
λ∗ = max{|λ| : λ is an eigenvalue of P and λ 6= 1}

For a proof of this, see for example [65, Corollary 12.7].
While the above setting describes the asymptotic convergence properties of a fixed

Markov chain P as t→∞, research in the past few decades has focused on the finite-
time asymptotics of a family of Markov chains indexed by the size of the state space
in the limit as the size tends to infinity. In this setting, a precision level ε is fixed and
one usually looks at the first time when the distance to the stationary distribution
falls below ε. The ε-mixing time is defined as

tmix(ε) := min{t ∈ N : D(t) ≤ ε}.

In fact, mixing times at different precision levels can be related to each other by using
the sub-multiplicativity of D(t). Indeed, for all s, t ∈ N, D(s + t) ≤ D(s)D(t), and
therefore it is possible to show that (see [65, Section 4.5])

tmix(ε) ≤ dlog2 ε
−1etmix(1/4).

The techniques used to study mixing times vary greatly, and in specific examples
one has to come up with ad hoc methods. However, there are a few techniques that
can be used in more general settings. One such method is coupling. A coupling of two
probability distributions µ and ν on state spaces S1 and S2, respectively, is a pair of
random variables (X,Y ) ∈ S1 ×S2 such that the marginal distribution of X is µ and
the marginal distribution of Y is ν, i.e., P(X ∈ ·) = µ(·) and P(Y ∈ ·) = ν(·). The
notion of coupling is related to total variation distance via the following relation (see
[91, Chapter 1]):

‖µ− ν‖TV = inf{P(X 6= Y ) : (X,Y ) is a coupling of µ and ν}. (1.2)

To see how this can be used in the context of mixing times of Markov chains, we need
to define another notion of distance to stationarity. Let D(t) = maxx,y∈S ‖P t(x, ·)−
P t(y, ·)‖TV. Although the definition of this quantity does not involve the stationary
distribution directly, it satisfies the inequalities (see [65, Lemma 4.10])

D(t) ≤ D(t) ≤ 2D(t). (1.3)

Given a Markov chain on state space S with transition matrix P , a Markovian
coupling of two copies of the same Markov chain is a Markov chain (Xt, Yt)t∈N0

on
S × S such that, for all x, y, x′, y′ ∈ S and t ∈ N,

P(Xt = x′ | Xt−1 = x, Yt−1 = y) = P (x, x′),

P(Yt = y′ | Xt−1 = x, Yt−1 = y) = P (y, y′).

Consider a Markovian coupling of two copies of the Markov chain given by P , with
the additional property

if Xt = Yt, then Xs = Ys for all s ≥ t,

10
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so that whenever the two components meet they stick together. Let τcouple be the
first time the two components meet. Then {Xt 6= Yt} ⊂ {τcouple > t} and hence
P(Xt 6= Yt) ≤ P(τcouple > t). Using (1.2) and the first inequality of (1.3), we see that

D(t) ≤ P(τcouple > t).

For examples of how to obtain upper bounds on mixing times via coupling, see [65,
Chapter 5] and references therein.

Another useful tool to obtain upper bounds on mixing times is the notion of
strong stationary times. A strong stationary time for a Markov chain on state space
S starting from state x ∈ S with stationary distribution π is a randomised stopping
time τ such that, for all t ∈ N0 and y ∈ S,

Px(Xt = y, τ = t) = π(y)Px(τ = t),

or equivalently,
Px(Xt = y, τ ≤ t) = π(y)Px(τ ≤ t),

where Px denotes the law of the Markov chain starting from x ∈ S. In words, Xτ has
distribution π and is independent of τ . The total variation distance to the stationary
distribution can be bounded by the tail probability of the strong stationary time (see
[65, Proposition 6.11]):

Dx(t) ≤ Px(τ > t).

In fact, strong stationary times may be optimal in some sense. To explain this, we
need another notion of distance to stationarity, called the separation distance, defined
by

sx(t) := max
y∈S

[
1− P t(x, y)

π(y)

]
.

Let s(t) = maxx∈S sx(t). The total variation distance to the stationary distribution
can be bounded by the separation distance (see [65, Lemma 6.16])

Dx(t) ≤ sx(t).

If the Markov chain is reversible, then (see [65, Lemma 6.17])

s(2t) ≤ 1− (1− D̄(t))2 ≤ 2D̄(t) ≤ 4D(t).

There are strong stationary times that are optimal in the following sense:

Proposition ([65, Proposition 6.21]). For every starting state x ∈ S, there exists a
strong stationary time τ such that, for all t ∈ N0

sx(t) = Px(τ > t).

For examples of how to obtain upper bounds on mixing times via strong stationary
times, see [65, Chapter 6] and references therein. In our proofs in Chapters 2,3 and
4, we use a randomised stopping time that is not a strong stationary time, but very
close to one.

11
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The usual setting in recent works on mixing times of Markov chains involves a
family of Markov chains P (n), n ∈ N, where P (n) is a Markov chain on a state space
S(n) and the size of the state space tends to infinity as n tends to infinity. Letting
t
(n)
mix(ε) denote the ε-mixing time of the Markov chain P (n), one is usually interested in
finding an expression for t(n)

mix(ε) as a function of n. Within this setting, a remarkable
phenomenon observed for many different families of Markov chains is the so-called
cutoff phenomenon, in which t(n)

mix(ε) virtually does not depend on ε. More precisely,
a family of Markov chains is said to exhibit a cutoff phenomenon if, for all ε > 0,

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1.

In this case, the distance to the stationary distribution stays near 1 for awhile and
subsequently drops to near 0 in a relatively short time window. The notion of cutoff
window is formalised in the following way. A family of Markov chains is said to have
cutoff with a window of size O(wn) if wn = o(t

(n)
mix( 1

4 )) and

lim
α→−∞

lim inf
n→∞

D(n)(t
(n)
mix( 1

4 ) + αwn) = 1,

lim
α→∞

lim sup
n→∞

D(n)(t
(n)
mix( 1

4 ) + αwn) = 0.

In early works, Diaconis and Shahshahani [36] established cutoff for uniform trans-
position random walks on permutation groups, and Aldous [7] for random walks on
hypercubes. Later, cutoff was observed for many other Markov chains, including
random walks on groups, random walks on random graphs, and interacting particle
systems. For a more detailed discussion of the cutoff phenomenon, we refer to [65,
Chapter 18].

Mixing times of random walks on static random graphs

The study of mixing times of random walks on random graphs has received consid-
erable attention in last few decades. While these studies are interesting in their own
right, they are motivated by problems in combinatorics and computer science [35]. A
Markov chain on a state space of size n is said to be rapidly mixing if the mixing time
is polynomial in log n. Rapid mixing is especially useful in algorithmic applications,
where one usually deals with very large state spaces, typically exponential in the sys-
tem size. In such cases, rapid mixing is used to obtain polynomial time algorithms.
Many examples of random walks on random graphs have been shown to be rapidly
mixing.

In an early work on mixing times of random walks on random graphs [56], Hilde-
brand studied simple random walks on random regular graphs with degrees d =

(log n)a for some a ≥ 2 and on ERn(p) with p = d/n, and showed that the mixing
time is log n/ log d in both cases. Later, Benjamini and Mossel [19] studied simple
random walk on the part of the infinite cluster of supercritical percolation on Zd within
the box [−n, n]d. Using the average conductance method developed by Lovász and
Kannan [66], they showed that the mixing time is of order n2. In [51], Fountoulakis
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and Reed improved the conductance method of Lovász and Kannan. Using improved
estimates, they showed that the mixing time of simple random walk on the giant
component of the supercritical Erdős-Rényi random graph is of order log2 n [50].

Benjamini, Kozma and Wormald [18] obtained the same result on the mixing time
of simple random walk on the giant component by using different techniques, namely,
via expansion properties of the giant component. Nachmias and Peres [75] showed
that the mixing time of simple random walk on the largest component of ERn(p)

is of order n within the critical window, i.e., when p = (1 + λn−1/3)/n with λ ∈ R.
Ding, Lubetzky and Peres [37] studied the near-critical case, where p = (1+ε)/n with
n−1/3 � ε � 1, and showed that the mixing time is of order ε−3 log2(ε3n), which
interpolates between the critical and the supercritical case.

In 2010, Lubetzky and Sly [67] established cutoff for simple random walk and
nonbacktracking random walk on d-regular graphs with d ≥ 3, and derived precise
asymptotics of the total variation distance, via path counting arguments. Nonback-
tracking random walk is the same as simple random walk, except that it cannot
traverse the same edge twice in a row.

Theorem (Lubetzky and Sly [67]). Let G be a uniformly random d-regular graph on
n vertices with d ≥ 3. Then, for all ε ∈ (0, 1), with high probability:

(a) the mixing time of nonbacktracking random walk on G satisfies

t
(n)
mix(ε) = logd−1(dn) +OP(1).

(b) the mixing time of simple random walk on G satisfies

t
(n)
mix(ε) =

d

d− 2
logd−1 n+ (Λ + oP(1))Φ−1(ε)

√
logd−1 n,

where Λ =
2
√
d(d−1)

(d−2)3/2
and Φ(x) = 1

2π

∫∞
x

exp(−u2/2)du, x ∈ R.

Here, with high probability refers to the randomness of the underlying graph and
means that the asymptotics holds with a probability that tends to 1 as n tends to
infinity. A crucial ingredient in the proof in [67] is the locally tree-like structure of
random regular graphs.

Extensions to the configuration model with non-regular degrees were later obtained
by Berestycki, Lubetzky, Peres and Sly [21] (for simple and nonbacktracking random
walks), and by Ben-Hamou and Salez [16] (for nonbacktracking random walks). In
[21], the authors study the mixing time of random walks starting from a typical po-
sition, instead of a worst-case position. As in [67], they use the locally tree-like
structure of the configuration model, but the presence of inhomogeneities in the de-
grees of vertices requires a more sophisticated approach. In [16], the authors obtain
finer asymptotics for the mixing time of nonbacktracking random walk compared to
[21], under less restrictive conditions, including the exact order of the cutoff window.
The results of [16] are of special interest to us, since we use them in our works on
random walks on dynamic random graphs that are presented in Chapters 3 and 4.
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§1.1.3 Random walks on dynamic random graphs

The study of random walks on dynamic random graphs involves random walks on
graphs that change over time in a random fashion. While this line of research can
be considered to be part of the more general framework of random walks in dynamic
random environments, the problems and techniques considered are very different. The
typical setting in the study of random walks in dynamic random environments involves
random walks on Zd with the jump probabilities of the random walk changing over
time in a random fashion. For a review, see [11, 23] and references therein. Another
line of research focuses on random walks on general graphs in which edge or vertex
weights change over time, rather than the graph structure itself, such as reinforced
random walks (see [63, 81]). Our interest in this thesis lies mainly in models of random
walks on graphs whose structure changes over time. For examples of such models see
[9, 30, 49, 57, 86].

Mixing times of random walks on dynamic random graphs have been studied only
very recently. In [83], Peres, Stauffer and Steif studied the mixing time of random
walk on dynamical percolation on Zd in the subcritical regime. In the dynamical
percolation model, which was introduced by Häggström, Peres and Steif [80], each edge
of Zd gets refreshed independently at random times, given by exponential clocks, and
when refreshed an edge becomes open with probability p and closed with probability
1 − p independently of the state it had before. Peres, Stauffer and Steif considered
the case p < pc(Zd), where pc(Zd) is the critical probability for bond percolation on
Zd, and looked at the problem on the discrete torus with side length n and on the
lattice Zd. By using a regeneration time argument, they estimated the mixing time
for the joint Markov chain of the random walk and dynamical percolation.

More recently, Peres, Sousi and Steif [82] considered the same model in the super-
critical regime p > pc(Zd). Using the evolving sets method developed by Morris and
Peres [74], they obtain an upper bound for the mixing time of the random walk on
a quenched realisation of dynamical percolation with the additional constraint that
θ(p) > 1/2, where θ(p) is the probability that the origin belongs to the infinite cluster
in bond percolation on Zd with probability p. In [89], Sousi and Thomas considered
random walk on a dynamical Erdős-Rényi graph in the supercritical regime p = λ/n

with λ > 1. The dynamical Erdős-Rényi graph is the same as dynamical percolation,
except that the underlying graph is the complete graph on n vertices Kn, instead of
Zd. They showed that the joint Markov chain exhibits cutoff, by showing that the
random walk component mixes much faster than the dynamic graph component. The
proof was based on a regeneration time argument. More sophisticated variations of
the dynamical Erdős-Rényi graph, without the random walk, was also studied very
recently in different contexts. In [101], the authors study a variation of the dynamical
Erdős-Rényi graph, in which the edge refresh rates also randomly change over time,
in the context of complex networks. In [70], the authors study a similar but more
complicated model. In particular, they consider the evolution of the number of edges,
with explicit results for the corresponding moments, functional central limit theorems
and large deviations asymptotics.

The main subject of this thesis is random walks on dynamic random graphs in
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which the degrees do not change over time, but the edges are rewired randomly. Such
dynamic random graph models, without the random walk, were studied earlier in the
context of approximate uniform sampling of graphs with given degree sequences. As
we have pointed out earlier, one method for sampling graphs is the Markov Chain
Monte Carlo (MCMC) method. In MCMC, an ergodic Markov chain, whose sta-
tionary distribution is the target sampling distribution, is constructed and run for a
sufficiently long time, i.e., longer than the mixing time, so that the resulting sample
will be approximately distributed as the target distribution. In order to decide how
long MCMC the must run, we need good estimates of mixing times.

The study of MCMC methods and their mixing times in the context of sampling
graphs with given degree sequences goes back to the 1990’s. In [60], Jerrum and
Sinclair gave an algorithm for sampling regular graphs that is based on a Markov
chain whose mixing time is polynomial in the number of vertices. Their algorithm
works for a large class of degree sequences, in particular, for regular graphs. In [61],
Kannan, Tetali and Vempala studied a Markov chain for sampling bipartite graphs and
tournaments. Their Markov chain involved a switch mechanism, in which endpoints
of two randomly chosen edges are switched, provided that the switch results in a
simple graph. Using the canonical paths method of Jerrum and Sinclair [88], they
showed that the mixing time is polynomial in the number of vertices.

In [34], Cooper, Dyer and Greenhill adapted the switch chain of Kannan et al.
to the case of random regular graphs and gave an upper bound for the mixing time
that is polynomial in the number of vertices. In [54], Greenhill studied the switch
chain for non-regular degree sequences and, in [53], Greenhill and Sfragara studied
the switch chain for non-regular simple graphs and directed graphs. They obtained
upper bounds for the mixing time via the multicommodity flow argument of Sinclair
[87]. In [69], Mahlmann and Schindelhauer introduced a variant of the switch chain,
which they called flip chain, for sampling regular graphs. Their algorithm is more
local, in the sense that the random choice of switching edges is made locally, namely,
they have to be incident to the same edge. In [46], Feder, Guetz, Mihail and Saberi
obtained an upper bound for the mixing time of the flip chain on regular graphs by
using a Markov chain comparison argument.

Our contribution

The three chapters of Part I of this thesis are based on our three papers on the mixing
time of random walks on dynamic random graphs. In Chapter 2, we present our work
on the mixing time of random walks on dynamic configuration models. The dynamic
configuration model is a dynamic version the configuration model, in which dynamic
random graphs with a fixed degree sequences are generated. A fraction αn of the
edges is rewired at each unit of time, where n is the number of vertices. This model
was introduced in [12], which forms the basis of Chapter 2. In Chapter 2, we study the
mixing time of the random walk without backtracking on the dynamic configuration
model in the supercritical regime. By supercritical we mean limn→∞ αn(log n)2 =∞.
We show that, under some regularity conditions on the degree sequence, the mixing
time is of order α−1/2

n , which is of order o(log n) and hence is much smaller than
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the mixing time of the random walk on the static configuration model. To prove
our main result, we use a randomised stopping time argument. We consider the first
time τ at which the random walk crosses an edge that was rewired before, and show
that τ behaves like a strong stationary time. The key part of the proof involves an
exploitation of the tree-like structure of the configuration model.

In Chapter 3 of the thesis, we present our work on the extension of the results of [12]
to the critical and the subcritical regimes, which correspond to limn→∞ αn(log n)2 ∈
(0,∞) and limn→∞ αn(log n)2 = 0, respectively. The mixing time was analysed in
[13], which forms the basis of Chapter 3. Together with the main result of [12],
we see that there is trichotomy for the mixing time of random walks on dynamic
configuration models:

• limn→∞ αn(log n)2 = ∞: the mixing time is of order α−1/2
n and there is no

cutoff,

• limn→∞ αn(log n)2 ∈ (0,∞): the mixing time is of order log n and there is
one-sided cutoff,

• limn→∞ αn(log n)2 = 0: the mixing time is of order log n and there is two-sided
cutoff.

The latter regime includes the random walk on the static configuration model.
We again use the randomised stopping time argument from [12]. However, because

the distances over which the random walk can travel are now of order log n, we cannot
rely on the tree-like structure of the configuration model only. Instead, we show
that the random walk path is with high probability self-avoiding, which in fact is a
consequence of the locally tree-like structure of the configuration model, and this in
turn ensures that the randomised stopping time τ behaves like a strong stationary
time.

In Chapter 4 of the thesis, we present our work on the mixing time of random walks
on more general dynamically rewired random graphs. We consider a more general
setting where the vertices and vertex degrees are fixed as before, but the edges are
rewired according to a more general prescribed rule. This setting includes the dynamic
configuration model as a special case. We show that, under some conditions on the
graph dynamics, the total variation distance for the random walk on the dynamically
rewired random graph can be linked to the total variation distance for the random
walk on the static configuration model. We also introduce a specific model that we call
the random walk with local rewirings. In this model, the rewiring occurs only along
the random walk path, with probability αn for each time unit. Using our result for
the general framework, we show that this random walk exhibits the same trichotomy
as the random walk on the dynamic configuration model, but on a different time scale.
More precisely, we identify three regimes:

• limn→∞ αn log n =∞: the mixing time is of order α−1
n and there is no cutoff,

• limn→∞ αn log n ∈ (0,∞): the mixing time is of order log n and there is one-
sided cutoff,
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• limn→∞ αn log n = 0: the mixing time is of order log n and there is two-sided
cutoff.

Again, the latter regime includes the random walk on the static configuration model.
To prove the above result, we show that the random walk on the dynamically

rewired random graph can be coupled to a modified random walk on the static con-
figuration model. While this coupling was implicit in the proof used in [13], we show
that the same argument can be used in a more general setting. We show that the
total variation distance for the modified random walk can be expressed in terms of
the tail probability of the randomised stopping time τ (the first time the random
walk crosses an edge that was rewired before) and the total variation distance for the
random walk on the static configuration model.
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§1.2 Introduction to Part II

In Part II of the thesis, we study the problem of union complexity of random disk
regions. We have a collection of disks, whose centers are distributed randomly within
a region of the plane, and we are interested in the expected number of boundary arcs.
Formally, let D = {D1, . . . , Dn} be a set of n disks in R2. The set of boundary disks
of D, denoted by BD(D), is the set of disks in D whose boundaries are not completely
covered by other disks, i.e.,

BD(D) = {D ∈ D : ∂D \ ∪D′∈D\{D}D′ 6= ∅},

where ∂D denotes the boundary of D. A boundary arc of a boundary disk D is a
connected component of the set ∂D \ ∪D′∈D\{D}D′ and union complexity of D is the
total number of boundary arcs of the boundary disks of D. It was shown that, when
D consists of disks, the total number of boundary arcs of D is bounded from above by
6|BD(D)|−12 [62]. Hence, we study the union complexity by focusing on the number
of boundary disks and we state our results in terms of the number of boundary disks.

The union complexity of geometric regions is important in several combinatorial
and algorithmic problems in different fields ranging from linear programming and
robotics to molecular modeling and geographic information systems [1]. A special
case of the union-complexity problem is motivated by an algorithm to compute a
conflict-free colouring for unit disks. Besides, the union-complexity problem is similar
to the problem of the complexity of the convex hull, when the number of vertices of
the convex hull of a random point set is studied. In Section 1.2.1, we motivate the
union complexity problem in the context of conflict-free colouring of unit disk regions.
In Section 1.2.2, we introduce the convex hull problem, review the relevant literature,
and show its relation to the union complexity problem. In Section 1.2.3, we briefly
report our contribution.

§1.2.1 Conflict-free colouring
The problem of conflict-free colouring was introduced by Even et al. [45] for simple
geometric regions . In the general setting, we are given a set D of regions in the plane.
The coverage area of D is defined as Cov(D) := ∪D∈DD. For a point p ∈ Cov(D), we
let D(p) := {D ∈ D : p ∈ D}, i.e., the set of regions that contain p. A colouring of D
is a function χ : D → N. A conflict-free (CF) colouring is defined as follows:

Definition 1.2.1. A conflict-free colouring of D is a colouring χ of D such that
for every p ∈ Cov(D), there exists a D ∈ D(p) with χ(D) 6= χ(D′) for any other
D′ ∈ D(p), i.e., for each point in the coverage area there is a region with a unique
colour among the regions containing that point. A minimum CF colouring of D is
a CF colouring of D that uses a minimum number of colours among all possible CF
colourings of D (see Figure 1.1).

Even et al. [45] show that when D consists of n unit disks (disks with unit radius),
it is always possible to achieve a conflict-free colouring with O(log n) colours by giving
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Figure 1.1: A minimum conflict-free colouring of three disks. Two outer disks are coloured
blue and the middle disk is coloured red.

an algorithm that uses O(log n) colours for any set of unit disks in the plane. They
also show that when the centres of the disks lie on a straight line and every pair
of disks intersects, the minimum number of colours required is Ω(log n). So, in the
worst-case scenario, minimum CF colourings of unit disks in the plane use Θ(log n)

colours. In Chapter 5, we consider the average-case scenario for disks in the plane. We
take the average over all possible configurations of disks whose centres are uniformly
distributed in a convex compact region.

Figure 1.2: Disks whose centres lie at least 3 squares apart do not intersect.

Lev-Tov and Peleg [64] give a constant-factor approximation algorithm for the
minimum CF colouring of a set of unit disks in the plane, i.e., an algorithm that
achieves a solution that uses, for any given input, at most a constant times more
colours than the minimum number of colours needed for that input. The algorithm
proceeds by dividing the plane into squares and treating the disks whose centers lie
in each square separately. The diagonals of the squares are of length 1, so if a square
contains a disk center, then it is completely covered by that disk. Another useful
property of the algorithm is that two disks whose centres lie in squares that are 3
squares apart do not intersect (see Figure 1.2). Hence the disks of every fourth square
in a row and in a column can be coloured by using the same colour set.

The algorithm given by Lev-Tov and Peleg [64] relies on CF colourings of chains
of regions. A chain is a set of regions that can be ordered in a natural way. The
formal definition is as follows:
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Figure 1.3: A chain of five disks whose centers are marked by crosses.

Definition 1.2.2. A set D of n regions is called a chain if there exists an indexing
of the regions D = {D1, . . . , Dn} such that, for every pair i, j ∈ [n] with i < j, the set
∩k∈[i,j]Dk\ ∪k 6∈[i,j] Dk is non-empty and for every p ∈ Cov(D) there exist i, j ∈ [n]

with i < j such that p ∈ ∩k∈[i,j]Dk\ ∪k 6∈[i,j] Dk (see Figure 1.3).

A collection of disks whose centres lie on a line and for which every pair of disks
intersect is an example of a chain. It is proven by Even et al. [45] that, for a chain of
length n, minimum CF colourings always use Θ(log n) colours.

`

Figure 1.4: Lower boundary diks of five disks highlighted in grap.

In the algorithm given by Lev-Tov and Peleg [64], CF colourings of disks whose
centers lie in a square involves CF colourings of chains. For a square Q, let DQ
denote the set of disks whose centres lie in Q. Let ` be the line passing through the
lower side of Q. Let B be the intersection of the half plane below ` and Cov(DQ),
and let DQlower be the set of disk whose bounding arcs appear on the boundary of
B. Disks in DQlower are called lower boundary disks (see Figure 1.4). Upper, left and
right boundary segments are defined similarly, and they are denoted by DQupper, DQleft,
DQright, respectively. A crucial observation is that each of these sets forms a chain
(see [64, Lemma 2.5]) and their union covers Cov(DQ) entirely (since the diagonal of
the square is 1). So the problem of minimum CF colourings of DQ reduces to the
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problem of minimum CF colourings of DQbound = DQlower∩DQupper∩DQleft∩D
Q
right, the set

of boundary disks. Thus, it is important to estimate the average number of boundary
disks for the average-case analysis of the algorithm.

§1.2.2 Complexity of the convex hull of random point
sets

Let X = {X1, . . . , Xn} be a set of n independently sampled random points in the
plane. The convex hull of X, denoted as CH(X), is the smallest convex set that
contains X, which is also the set of all possible convex combinations of points of X,
i.e.,

CH(X) = {x ∈ R2 : x =

n∑
i=1

αiXi with
n∑
i=1

αi = 1 and αi ≥ 0 for all i = 1, . . . , n}.

Let V (X) be the set of vertices of CH(X), i.e., the set of points of X that are at
the boundary of its convex hull (note that, contrary to standard terminology, we also
call a point from X a vertex when it lies in the interior of an edge of CH(X)). The
study of convex hulls of random point sets goes back to 1960’s. Rényi and Sulanke
[85] showed that, as n tends to infinity, the expectation of |V (X)|, where X is a set of
n randomly sampled points, scales like

√
log n if the points are sampled according to

the normal distribution, like log n if the points are sampled uniformly in a polygon,
and like n1/3 if the points are sampled uniformly in a convex compact region with a
smooth boundary. Later studies focused on exact asymptotics for the expectation of
|V (X)| and its variance, on limit theorems and on generalization to higher dimensions.
For a survey of results on convex hull problems, see [99].

The usual proof strategy involves computing the probability of two fixed points
forming an edge of the convex hull and multiplying this probability by

(
n
2

)
. This

gives the expected number of edges of the convex hull, which is the same as the
number of vertices. Two points of X form an edge if all the other points fall on
the same side of the line passing through these two points. Efron [39] devised a
different approach that exploits the relation between the area of the convex hull and
the number of vertices. Using this approach, Har-Peled [55] presented a simple proof
for the asymptotic scaling of |V (X)|. His arguments can be viewed as a discretization
of the classical arguments of Rényi and Sulanke in [85].

The convex-hull problem is directly related to the union-complexity problem. Let
D(X, r) = {D1, . . . , Dn}, where Di is the disk with radius r centered at Xi. Let us
use the shorthand notation BD(X, r) = BD(D(X, r)) for the set of boundary disks
of D(X, r). Although we do not need the following proposition in the proofs of The-
orem 5.1.1 below, we state the connection between the convex hull and the boundary
disks.

Proposition 1.2.3. Suppose that X = {X1, . . . , Xn} is a set of n points in R2. Then,
for i = 1, . . . , n, the point Xi is a vertex of the convex hull of X, i.e. Xi ∈ V (X), if
and only if for any r > 0 the disk with radius r centered at Xi is a boundary disk of
D(X, r), i.e. Di ∈ BD(X, r).
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Xi`

p

r

CH(Xi)

Figure 1.5: Illustration of the first part of the proof of Proposition 1.2.3.

Proof. Fix i ∈ [n]. First assume that Xi ∈ V (X) and fix r > 0. Let ` be a line
through Xi that is tangent to CH(Xi) where Xi := X \ {Xi}. Let h+ denote the
closed half-plane bounded by ` such that CH(X) ⊂ h+(`), and let h− be the opposite
half-plane. Finally, let p ∈ h− be the point at distance r from Xi such that the
segment pXi is perpendicular to ` (see Figure 1.5). Clearly, p ∈ ∂Di and all other
points in X have distance greater than r to p. Hence, Di is a boundary disk.

Xj Xk

Xi

p

CH(Xi)

Figure 1.6: Illustration of the second part of the proof of Proposition 1.2.3. Dotted lines are
perpendicular bisectors of the triangle XiXjXk.

Next assume that Xi 6∈ V (X). Then Xi is in the interior of CH(Xi). For distinct
j, k ∈ [n] with j, k 6= i, let rj,k denote the radius of the circumscribed circle of the
points Xi, Xj and Xk. Set r = maxj,k∈[n] rj,k + diam(X), where diam(X) is the
diameter of X. Then the boundary of the disk Di with radius r centered at Xi is not
a boundary disk of D(X, r). Indeed, fix any point on the boundary of Di, say p. If
p ∈ CH(X), then p is covered by all the other disks, since r > diam(X). If p 6∈ CH(X),
then consider the line segment between the points p and Xi. Suppose that this line
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segment passes through the edgeXjXk of the convex hull for some j, k ∈ [n]. Consider
the perpendicular bisector `1 of the line segment XiXj and the perpendicular bisector
`2 of the line segment XiXk. Assume without loss of generality that Xi lies to the
right of `1 and to the left of `2. Since r > rj,k, p lies to the left of `1 or to the right
of `2. Then, min{d(p,Xj), d(p,Xk)} < d(p,Xi) = r and at least one of the disks Dj

and Dk contains p (see Figure 1.6). So any point on the boundary of Di is covered
by some other disk in D(X, r), and hence Di is not a boundary disk of D(X, r).

§1.2.3 Our contribution
In Chapter 5, we study the average-case union complexity for disks whose centers are
sampled uniformly and independently at random in a region S in R2 and whose radii
are greater than the diameter of S. We obtain union-complexity results by bounding
the number of boundary disks. We consider two cases: the case where S is a square
and the case where S is a disk. We show that, in both cases, the expected number of
boundary disks scales like n1/3 as n, the number of random disks, tends to infinity.
Our proof is an adaptation of the proof of Har-Peled [55] for the convex hull problem.

Our result for the square case is important in the context of the average-case
analysis of Lev-Tov and Peleg’s algorithm [64] for the conflict-free colouring of disk
regions [64], since their colouring scheme relies on the colouring of the boundary
disks. Considering the connection between the union complexity and the convex-hull
complexity, our results are surprising. For the convex-hull problem, the order of the
expected number of vertices of the convex hull is different for the two cases: it is log n

for the square case and n1/3 for the disk case. However, for the union-complexity
problem, the order of the number of boundary disks is n1/3 in both cases.

23





PART I

RANDOM WALKS ON DYNAMIC
RANDOM GRAPHS

25



26



2. Mixing times of RWs on DCMs

CHAPTER 2
Mixing times of random walks on

dynamic configuration models

This chapter is based on a joint article with Luca Avena, Remco van der Hofstad and
Frank den Hollander [12].

Abstract

The mixing time of a random walk, with or without backtracking, on a random
graph generated according to the configuration model on n vertices, is known to be
of order log n. In this paper we investigate what happens when the random graph
becomes dynamic, namely, at each unit of time a fraction αn of the edges is randomly
rewired. Under mild conditions on the degree sequence, guaranteeing that the graph
is locally tree-like, we show that for every ε ∈ (0, 1) the ε-mixing time of random walk
without backtracking grows like

√
2 log(1/ε)/ log(1/(1− αn)) as n → ∞, provided

that limn→∞ αn(log n)2 = ∞. The latter condition corresponds to a regime of fast
enough graph dynamics. Our proof is based on a randomised stopping time argument,
in combination with coupling techniques and combinatorial estimates. The stopping
time of interest is the first time that the walk moves along an edge that was rewired
before, which turns out to be close to a strong stationary time.
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2. Mixing times of RWs on DCMs

§2.1 Introduction and main result

§2.1.1 Motivation and background
The mixing time of a Markov chain is the time it needs to approach its stationary
distribution. For random walks on finite graphs, the characterisation of the mixing
time has been the subject of intensive study. One of the main motivations is the
fact that the mixing time gives information about the geometry of the graph (see the
books by Aldous and Fill [4] and by Levin, Peres and Wilmer [65] for an overview
and for applications). Typically, the random walk is assumed to be ‘simple’, meaning
that steps are along edges and are drawn uniformly at random from a set of allowed
edges, e.g. with or without backtracking.

In the last decade, much attention has been devoted to the analysis of mixing times
for random walks on finite random graphs. Random graphs are used as models for
real-world networks. Three main models have been in the focus of attention: (1) the
Erdős-Rényi random graph (Benjamini, Kozma and Wormald [18], Ding, Lubetzky
and Peres [37], Fountoulakis and Reed [50], Nachmias and Peres [75]); (2) the config-
uration model (Ben-Hamou and Salez [16], Berestycki, Lubetzky, Peres and Sly [21],
Bordenave, Caputo and Salez [28], Lubetzky and Sly [67]); (3) percolation clusters
(Benjamini and Mossel [19]).

Many real-world networks are dynamic in nature. It is therefore natural to study
random walks on dynamic finite random graphs. This line of research was initiated
recently by Peres, Stauffer and Steif [83] and by Peres, Sousi and Steif [82], who
characterised the mixing time of a simple random walk on a dynamical percolation
cluster on a d-dimensional discrete torus, in various regimes. The goal of the present
paper is to study the mixing time of a random walk without backtracking on a dynamic
version of the configuration model.

The static configuration model is a random graph with a prescribed degree se-
quence (possibly random). It is popular because of its mathematical tractability and
its flexibility in modeling real-world networks (see van der Hofstad [93, Chapter 7] for
an overview). For random walk on the static configuration model, with or without
backtracking, the asymptotics of the associated mixing time, and related properties
such as the presence of the so-called cutoff phenomenon, were derived recently by
Berestycki, Lubetzky, Peres and Sly [21], and by Ben-Hamou and Salez [16]. In par-
ticular, under mild assumptions on the degree sequence, guaranteeing that the graph
is an expander with high probability, the mixing time was shown to be of order log n,
with n the number of vertices.

In the present paper we consider a discrete-time dynamic version of the config-
uration model, where at each unit of time a fraction αn of the edges is sampled
and rewired uniformly at random. [A different dynamic version of the configuration
model was considered in the context of graph sampling. See Greenhill [54] and ref-
erences therein.] Our dynamics preserves the degrees of the vertices. Consequently,
when considering a random walk on this dynamic configuration model, its station-
ary distribution remains constant over time and the analysis of its mixing time is a
well-posed question. It is natural to expect that, due to the graph dynamics, the
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random walk mixes faster than the log n order known for the static model. In our
main theorem we will make this precise under mild assumptions on the prescribed
degree sequence stated in Condition 2.1.2 and Remark 2.1.3 below. By requiring that
limn→∞ αn(log n)2 =∞, which corresponds to a regime of fast enough graph dynam-
ics, we find in Theorem 2.1.7 below that for every ε ∈ (0, 1) the ε-mixing time for
random walk without backtracking grows like

√
2 log(1/ε)/ log(1/(1− αn)) as n→∞,

with high probability in the sense of Definition 2.1.5 below. Note that this mixing
time is o(log n), so that the dynamics indeed speeds up the mixing.

§2.1.2 Model
We start by defining the model and setting up the notation. The set of vertices
is denoted by V and the degree of a vertex v ∈ V by d(v). Each vertex v ∈ V

is thought of as being incident to d(v) half-edges (see Fig. 2.1). We write H for
the set of half-edges, and assume that each half-edge is associated to a vertex via
incidence. We denote by v(x) ∈ V the vertex to which x ∈ H is incident and by
H(v) := {x ∈ H : v(x) = v} ⊂ H the set of half-edges incident to v ∈ V . If
x, y ∈ H(v) with x 6= y, then we write x ∼ y and say that x and y are siblings of each
other. The degree of a half-edge x ∈ H is defined as

deg(x) := d(v(x))− 1. (2.1)

We consider graphs on n vertices, i.e., |V | = n, with m edges, so that |H| =∑
v∈V deg(v) = 2m =: `.

Figure 2.1: Vertices with half-edges.

The edges of the graph will be given by a configuration that is a pairing of half-
edges. We denote by η(x) the half-edge paired to x ∈ H in the configuration η. A
configuration η will be viewed as a bijection of H without fixed points and with the
property that η(η(x)) = x for all x ∈ H (also called an involution). With a slight
abuse of notation, we will use the same symbol η to denote the set of pairs of half-
edges in η, so {x, y} ∈ η means that η(x) = y and η(y) = x. Each pair of half-edges
in η will also be called an edge. The set of all configurations on H will be denoted by
ConfH .

We note that each configuration gives rise to a graph that may contain self-loops
(edges having the same vertex on both ends) or multiple edges (between the same
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2. Mixing times of RWs on DCMs

pair of vertices). On the other hand, a graph can be obtained via several distinct
configurations.

We will consider asymptotic statements in the sense of |V | = n → ∞. Thus,
quantities like V,H, d, deg and ` all depend on n. In order to lighten the notation, we
often suppress n from the notation.

Configuration model

We recall the definition of the configuration model, phrased in our notation. Inspired
by Bender and Canfield [17], the configuration model was introduced by Bollobás [24]
to study the number of regular graphs of a given size (see also Bollobás [25]). Mol-
loy and Reed [72], [73] introduced the configuration model with general prescribed
degrees.

The configuration model on V with degree sequence (d(v))v∈V is the uniform
distribution on ConfH . We sometimes write dn = (d(v))v∈V when we wish to stress
the n-dependence of the degree sequence. Identify H with the set

[1, `] := {1, . . . , `}.

A sample η from the configuration model can be generated by the following sampling
algorithm:

1. Initialize U = H, η = ∅, where U denotes the set of unpaired half-edges.

2. Pick a half-edge, say x, uniformly at random from U \ {minU}.

3. Update η → η ∪ {{x,minU}} and U → U \ {x,minU}.

4. If U 6= ∅, then continue from step 2. Else return η.

The resulting configuration η gives rise to a graph on V with degree sequence (d(v))v∈V .

Remark 2.1.1. Note that in the above algorithm two half-edges that belong to the
same vertex can be paired, which creates a self-loop, or two half-edges that belong to
vertices that already have an edge between them can be paired, which creates multiple
edges. However, if the degrees are not too large (as in Condition 2.1.2 below), then
as n→∞ the number of self-loops and the number of multiple edges converge to two
independent Poisson random variables (see Janson [58], [59], Angel, van der Hofstad
and Holmgren [10]). Consequently, convergence in probability for the configuration
model implies convergence in probability for the configuration model conditioned on
being simple.

Let Un be uniformly distributed on [1, n]. Then

Dn = d(Un) (2.2)

is the degree of a random vertex on the graph of size n. Write Pn to denote the law
of Dn. Throughout the sequel, we impose the following mild regularity conditions on
the degree sequence:
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§2.1. Introduction and main result

Condition 2.1.2. (Regularity of degrees)

(R1) Let ` = |H|. Then ` is even and of order n, i.e., ` = Θ(n) as n→∞.

(R2) Let

νn :=

∑
z∈H deg(z)

`
=

∑
v∈V d(v)[d(v)− 1]∑

v∈V d(v)
=

En(Dn(Dn − 1))

En(Dn)
(2.3)

denote the expected degree of a uniformly chosen half-edge. Then lim supn→∞ νn
<∞.

(R3) Pn(Dn ≥ 2) = 1 for all n ∈ N.

Remark 2.1.3. Conditions (R1) and (R2) are minimal requirements to guarantee
that the graph is locally tree-like (in the sense of Lemma 2.4.2 below). They also
ensure that the probability of the graph being simple has a strictly positive limit.
Conditioned on being simple, the configuration model generates a random graph that
is uniformly distributed among all the simple graphs with the given degree sequence
(see van der Hofstad [93, Chapter 7], [94, Chapters 3 and 6]). Condition (R3) ensures
that the random walk without backtracking is well-defined because it cannot get stuck
on a dead-end.

Dynamic configuration model

We begin by describing the random graph process. It is convenient to take as the
state space the set of configurations ConfH . For a fixed initial configuration η and
fixed 2 ≤ k ≤ m = `/2, the graph evolves as follows (see Fig. 2.2):

(a) At each time t ∈ N, pick k edges (pairs of half-edges) from Ct−1 uniformly at
random without replacement. Cut these edges to get 2k half-edges and denote
this set of half-edges by Rt.

(b) Generate a uniform pairing of these half-edges to obtain k new edges. Replace
the k edges chosen in step 1 by the k new edges to get the configuration Ct at
time t.

This process rewires k edges at each step by applying the configuration model sampling
algorithm in Section 2.1.2 restriced to k uniformly chosen edges. Since half-edges are
not created or destroyed, the degree sequence of the graph given by Ct is the same
for all t ∈ N0. This gives us a Markov chain on the set of configurations ConfH . For
η, ζ ∈ ConfH , the transition probabilities for this Markov chain are given by

Q(η, ζ) = Q(ζ, η) :=

 1
(2k−1)!!

(m−dHam(η,ζ)

k−dHam(η,ζ))
(mk )

if dHam(η, ζ) ≤ k,
0 otherwise,

(2.4)

where dHam(η, ζ) := |η \ ζ| = |ζ \ η| is the Hamming distance between configura-
tions η and ζ, which is the number of edges that appear in η but not in ζ. The
factor 1/(2k − 1)!! comes from the uniform pairing of the half-edges, while the factor
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(
m−dHam(η,ζ)
k−dHam(η,ζ)

)
/
(
m
k

)
comes from choosing uniformly at random a set of k edges in η that

contains the edges in η \ ζ. It is easy to see that this Markov chain is irreducible and
aperiodic, with stationary distribution the uniform distribution on ConfH , denoted
by ConfH , which is the distribution of the configuration model.

→

Figure 2.2: One move of the dynamic configuration model. Bold edges on the left are the
ones chosen to be rewired. Bold edges on the right are the newly formed edges.

Random walk without backtracking

On top of the random graph process we define the random walk without backtracking,
i.e., the walk cannot traverse the same edge twice in a row. As in Ben-Hamou and
Salez [16], we define it as a random walk on the set of half-edges H, which is more
convenient in the dynamic setting because the edges change over time while the half-
edges do not. For a fixed configuration η and half-edges x, y ∈ H, the transition
probabilities of the random walk are given by (recall (2.1))

Pη(x, y) :=

{
1

deg(y) if η(x) ∼ y and η(x) 6= y,

0 otherwise.
(2.5)

When the random walk is at half-edge x in configuration η, it jumps to one of the
siblings of the half-edge it is paired to uniformly at random (see Fig. 2.3). The
transition probabilities are symmetric with respect to the pairing given by η, i.e.,
Pη(x, y) = Pη(η(y), η(x)), in particular, they are doubly stochastic, and so the uniform
distribution on H, denoted by UH , is stationary for Pη for any η ∈ ConfH .

Xt X
t+

1

Figure 2.3: The random walk moves from half-edge Xt to half-edge Xt+1, one of the siblings
of the half-edge that Xt is paired to.

Random walk on dynamic configuration model

The random walk without backtracking on the dynamic configuration model is the
joint Markov chain (Mt)t∈N0 = (Ct, Xt)t∈N0 in which (Ct)t∈N0 is the Markov chain
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on the set of configurations ConfH as described in (2.4), and (Xt)t∈N0
is the random

walk that at each time step t jumps according to the transition probabilities PCt(·, ·)
as in (2.5).

Formally, for initial configuration η and half-edge x, the one-step evolution of the
joint Markov chain is given by the conditional probabilities

Pη,x
(
Ct = ζ,Xt = z | Ct−1 = ξ,Xt−1 = y

)
= Q(ξ, ζ)Pζ(y, z), t ∈ N, (2.6)

with

Pη,x(C0 = η,X0 = x) = 1. (2.7)

It is easy to see that if d(v) > 1 for all v ∈ V , then this Markov chain is irreducible
and aperiodic, and has the unique stationary distribution ConfH × UH .

While the graph process (Ct)t∈N0 and the joint process (Mt)t∈N0 are Markovian,
the random walk (Xt)t∈N0 is not. However, UH is still the stationary distribution of
(Xt)t∈N0 . Indeed, for any η ∈ ConfH and y ∈ H we have∑

x∈H
UH(x)Pη,x(Xt = y) =

∑
x∈H

1

`
Pη,x(Xt = y) =

1

`
= UH(y). (2.8)

The next to last equality uses that
∑
x∈H Pη,x(Xt = y) = 1 for every y ∈ H, which

can be seen by conditioning on the graph process and using that the space-time
inhomogeneous random walk has a doubly stochastic transition matrix (recall the
remarks made below (2.5)).

§2.1.3 Main theorem
We are interested in the behaviour of the total variation distance between the distri-
bution of Xt and the uniform distribution

Dη,x(t) := ‖Pη,x(Xt ∈ · )− UH(·)‖TV. (2.9)

[We recall that the total variation distance of two probability measures µ1, µ2 on a
finite state space S is given by the following equivalent expressions:

‖µ1 − µ2‖TV :=
∑
x∈S
|µ1(x)− µ2(x)| =

∑
x∈S

[µ1(x)− µ2(x)]+ = sup
A⊆S

[µ1(A)− µ2(A)],

(2.10)
where [a]+ := max{a, 0} for a ∈ R.] Since (Xt)t∈N0 is not Markovian, it is not clear
whether t 7→ Dη,x(t) is decreasing or not. On the other hand,

Dη,x(t) ≤ ‖Pη,x(Mt ∈ · )− (UH × ConfH)(·)‖TV, (2.11)

and since the right-hand side converges to 0 as t→∞, so does Dη,x(t). Therefore the
following definition is well-posed:

Definition 2.1.4 (Mixing time of the random walk). For ε ∈ (0, 1), the ε-mixing
time of the random walk is defined as

tnmix(ε; η, x) := inf
{
t ∈ N0 : Dη,x(t) ≤ ε

}
. (2.12)
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Note that tnmix(ε; η, x) depends on the initial configuration η and half-edge x.
We will prove statements that hold for typical choices of (η, x) under the uniform
distribution µn (recall that H depends on the number of vertices n) given by

µn := ConfH × UH on ConfH ×H, (2.13)

where typical is made precise through the following definition:

Definition 2.1.5 (With high probability). A statement that depends on the initial
configuration η and half-edge x is said to hold with high probability (whp) in η and
x if the µn-measure of the set of pairs (η, x) for which the statement holds tends to 1

as n→∞.

Below we sometimes write whp with respect to some probability measure other than
µn, but it will always be clear from the context which probability measure we are
referring to.

Throughout the paper we assume the following condition on

αn := k/m, n ∈ N, (2.14)

denoting the proportion of edges involved in the rewiring at each time step of the
graph dynamics defined in Section 2.1.2:

Condition 2.1.6 (Fast graph dynamics). The ratio αn in (2.14) is subject to the
constraint

lim
n→∞

αn(log n)2 =∞. (2.15)

We can now state our main result.

Theorem 2.1.7 (Sharp mixing time asymptotics). Suppose that Conditions 2.1.2
and 2.1.6 hold. Then, for every ε > 0, whp in η and x,

tnmix(ε; η, x) = [1 + o(1)]

√
2 log(1/ε)

log(1/(1− αn))
. (2.16)

Note that Condition 2.1.6 allows for limn→∞ αn = 0. In that case (2.16) simplifies to

tnmix(ε; η, x) = [1 + o(1)]

√
2 log(1/ε)

αn
. (2.17)

§2.1.4 Discussion
1. Theorem 2.1.7 gives the sharp asymptotics of the mixing time in the regime
where the dynamics is fast enough (as specified by Condition 2.1.6). Note that if
limn→∞ αn = α ∈ (0, 1], then tnmix(ε; η, x) is of order one: at every step the random
walk has a non-vanishing probability to traverse a rewired edge, and so it is qual-
itatively similar to a random walk on a complete graph. On the other hand, when
limn→∞ αn = 0 the mixing time is of order 1/

√
αn = o(log n), which shows that the
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dynamics still speeds up the mixing. The regime αn = Θ(1/(log n)2), which is not
captured by Theorem 2.1.7, corresponds to 1/

√
αn = Θ(log n), and we expect the

mixing time to be comparable to that of the static configuration model. In the regime
αn = o(1/(log n)2) we expect the mixing time to be the same as that of the static
configuration model. In a future paper we plan to provide a comparative analysis of
the three regimes.

2. In the static model the ε-mixing time is known to scale like [1 + o(1)] c log n

for some c ∈ (0,∞) that is independent of ε ∈ (0, 1) (Ben-Hamou and Salez [16]).
Consequently, there is cutoff, i.e., the total variation distance drops from 1 to 0 in
a time window of width o(log n). In contrast, in the regime of fast graph dynamics
there is no cutoff, i.e., the total variation distance drops from 1 to 0 gradually on
scale 1/

√
αn.

3. Our proof is robust and can be easily extended to variants of our model where, for
example, (kn)n∈N is random with kn having a first moment that tends to infinity as
n→∞, or where time is continuous and pairs of edges are randomly rewired at rate
αn.

4. Theorem 2.1.7 can be compared to the analogous result for the static configuration
model only when Pn(Dn ≥ 3) = 1 for all n ∈ N. In fact, only under the latter condition
does the probability of having a connected graph tend to one (see Luczak [68], Federico
and van der Hofstad [47]). If (R3) holds, then on the dynamic graph the walk mixes
on the whole of H, while on the static graph it mixes on the subset of H corresponding
to the giant component.

5. We are not able to characterise the mixing time of the joint process of dynamic
random graph and random walk. Clearly, the mixing time of the joint process is at
least as large as the mixing time of each process separately. While the graph process
helps the random walk to mix, the converse is not true because the graph process does
not depend on the random walk. Observe that once the graph process has mixed it
has an almost uniform configuration, and the random walk ought to have mixed
already. This observation suggests that if the mixing times of the graph process and
the random walk are not of the same order, then the mixing time of the joint process
will have the same order as the mixing time of the graph process. Intuitively, we may
expect that the mixing time of the graph corresponds to the time at which all edges
are rewired at least once, which should be of order (n/k) log n = (1/αn) log n by a
coupon collector argument. In our setting the latter is much larger than 1/

√
αn.

6. We emphasize that we look at the mixing times for ‘typical’ initial conditions
and we look at the distribution of the random walk averaged over the trajectories of
the graph process: the ‘annealed’ model. It would be interesting to look at different
setups, such as ‘worst-case’ mixing, in which the maximum of the mixing times over all
initial conditions is considered, or the ‘quenched’ model, in which the entire trajectory
of the graph process is fixed instead of just the initial configuration. In such setups the
results can be drastically different. For example, if we consider the quenched model
for d-regular graphs, then we see that for any time t and any fixed realization of
configurations up to time t, the walk without backtracking can reach at most (d− 1)t
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half-edges. This gives us a lower bound of order log n for the mixing time in the
quenched model, which contrasts with the o(log n) mixing time in our setup.

7. It would be of interest to extend our results to random walk with backtracking,
which is harder. Indeed, because the configuration model is locally tree-like and
random walk without backtracking on a tree is the same as self-avoiding walk, in
our proof we can exploit the fact that typical walk trajectories are self-avoiding. In
contrast, for the random walk with backtracking, after it jumps over a rewired edge,
which in our model serves as a randomized stopping time, it may jump back over the
same edge, in which case it has not mixed. This problem remains to be resolved.

§2.1.5 Outline
The remainder of this paper is organised as follows. Section 2.2 gives the main idea
behind the proof, namely, we introduce a randomised stopping time τ = τn, the
first time the walk moves along an edge that was rewired before, and we state a key
proposition, Proposition 2.2.1 below, which says that this time is close to a strong
stationary time and characterises its tail distribution. As shown at the end of Sec-
tion 2.2, Theorem 2.1.7 follows from Proposition 2.2.1, whose proof consists of three
main steps. The first step in Section 2.3 consists of a careful combinatorial analysis of
the distribution of the walk given the history of the rewiring of the half-edges in the
underlying evolving graph. The second step in Section 2.4 uses a classical exploration
procedure of the static random graph from a uniform vertex to unveil the locally tree-
like structure in large enough balls. The third step in Section 2.5 settles the closeness
to stationarity and provides control on the tail of the randomized stopping time τ .

§2.2 Stopping time decomposition

We employ a randomised stopping time argument to get bounds on the total variation
distance. We define the randomised stopping time τ = τn to be the first time the
walker makes a move through an edge that was rewired before. Recall from Sec-
tion 2.1.2 that Rt is the set of half-edges involved in the rewiring at time step t.
Letting R≤t = ∪ts=1Rs, we set

τ := min{t ∈ N : Xt−1 ∈ R≤t}. (2.18)

As we will see later, τ behaves like a strong stationary time. We obtain our main result
by deriving bounds on Dη,x(t) in terms of conditional distributions of the random
walk involving τ and in terms of tail probabilities of τ . In particular, by the triangle
inequality, for any t ∈ N0, η ∈ ConfH and x ∈ H,

Dη,x(t) ≤ Pη,x(τ > t) ‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV

+ Pη,x(τ ≤ t) ‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV (2.19)
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and

Dη,x(t) ≥ Pη,x(τ > t) ‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV

− Pη,x(τ ≤ t) ‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV. (2.20)

With these in hand, we only need to find bounds for Pη,x(τ > t), ‖Pη,x(Xt ∈ · | τ >
t)− UH(·)‖TV and ‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV.

The key result for the proof of our main theorem is the following proposition:

Proposition 2.2.1 (Closeness to stationarity and tail behavior of stopping
time).
Suppose that Conditions 2.1.2 and 2.1.6 hold. For t = t(n) = o(log n), whp in x and
η,

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV = o(1), (2.21)
‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV = 1− o(1), (2.22)

Pη,x(τ > t) = (1− αn)t(t+1)/2 + o(1). (2.23)

We close this section by showing how Theorem 2.1.7 follows from Proposition 2.2.1:

Proof. By Condition 2.1.6,√
2 log(1/ε)

log(1/(1− αn))
= O(α−1/2

n ) = o(log n). (2.24)

Using the bounds in (2.19)–(2.20), together with (2.21)–(2.23) in Proposition 2.2.1,
we see that for t = o(log n),

(1− αn)t(t+1)/2 + o(1) ≤ Dη,x(t) ≤ (1− αn)t(t+1)/2 + o(1). (2.25)

Choosing t as in (2.16) we obtain Dη,x(t) = ε+ o(1), which is the desired result.

The remainder of the paper is devoted to the proof of Proposition 2.2.1.

§2.3 Pathwise probabilities

In order to prove (2.21) of Proposition 2.2.1, we will show in (2.69) in Section 2.5 that
the following crucial bound holds for most y ∈ H:

Pη,x(Xt = y | τ ≤ t) ≥ 1− o(1)

`
. (2.26)

By most we mean that the number of y such that this inequality holds is ` − o(`)
whp in η and x. To prove (2.26) we will look at Pη,x(Xt = y, τ ≤ t) by partitioning
according to all possible paths taken by the walk and all possible rewiring patterns
that occur on these paths. For a time interval [s, t] := {s, s+ 1, . . . , t} with s ≤ t, we
define

x[s,t] := xs · · ·xt. (2.27)
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2. Mixing times of RWs on DCMs

In particular, for any y ∈ H,

Pη,x(Xt = y, τ ≤ t) (2.28)

=
∑

T⊆[1,t]

∑
x1,...,xt−1∈H

Pη,x
(
X[1,t] =x[1,t], xi−1 ∈ R≤i ∀ i ∈ T,

xj−1 6∈ R≤j ∀ j ∈ [1, t] \ T
)

with x0 = x and xt = y. Here, r is the number of steps at which the walk moves
along a previously rewired edge, and T is the set of times at which this occurs.

For a fixed sequence of half-edges x[0,t] with x0 = x and a fixed set of times
T ⊆ [1, t] with |T | = r, we will use the short-hand notation

A(x[0,t];T ) :=
{
xi−1 ∈ R≤i ∀ i ∈ T, xj−1 6∈ R≤j ∀ j ∈ [1, t] \ T

}
. (2.29)

Writing T = {t1, . . . , tr} with 1 ≤ t1 < t2 < · · · < tr ≤ t, we note that the conditional
probability Pη,x(X[1,t] = x[1,t] | A(x[0,t];T )) can be non-zero only if each subsequence
x[ti−1,ti−1] induces a non-backtracking path in η for i ∈ [2, r + 1] with t0 = 0 and
tr+1 = t+ 1. The last sum in (2.28) is taken over such sequences in H, which we call
segmented paths (see Fig. 2.4). For each i ∈ [1, r + 1] the subsequence x[ti−1,ti−1] of
length ti − ti−1 that forms a non-backtracking path in η is called a segment.

x

xt1−1

xt1 xt2−1 xt2

xt3−1
xt3

y

η

Figure 2.4: An example of a segmented path with 4 segments. Solid lines represent the
segments, consisting of a path of half-edges in η, dashed lines indicate the succession of the
segments. The latter do not necessarily correspond to a pair in η, and will later correspond
to rewired edges in the graph dynamics.

We will restrict the last sum in (2.28) to the set of self-avoiding segmented paths.
These are the paths where no two half-edges are siblings, which means that the vertices
v(xi) visited by the half-edges xi are distinct for all i ∈ [0, t], so that if the random
walk takes this path, then it does not see the same vertex twice. We will denote by
SPηt (x, y;T ) the set of self-avoiding segmented paths in η of length t+ 1 that start at
x and end at y, where T gives the positions of the ends of the segments (see Fig. 2.5).
Segmented paths x[0,t] have the nice property that the probability Pη,x(A(x[0,t];T ))

is the same for all x[0,t] that are isomorphic, as stated in the next lemma:

Lemma 2.3.1 (Isomorphic segmented path are equally likely). Fix t ∈ N,
T ⊆ [1, t] and η ∈ ConfH . Suppose that x[0,t] and y[0,t] are two segmented paths in η
of length t+ 1 with |x[s,s′]| = |y[s,s′]| for any 0 ≤ s < s′ ≤ t, where |x[s,s′]| denotes the
number of distinct half-edges in x[s,s′]. Then

Pη,x
(
A(x[0,t];T )

)
= Pη,x

(
A(y[0,t];T )

)
. (2.30)
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x
xt1−1

xt1

xt2−1

xt2xt3−1

xt3
y

η

Figure 2.5: An element of SPηt (x, y;T ) with T = {t1, t2, t3}.

Proof. Fix x, y ∈ H. Consider the coupling ((Cxt )t∈N0
, (Cyt )t∈N0

) of two dynamic con-
figuration models with parameter k starting from η, defined as follows. Let f : H → H

be such that

f(x) =



yi if x = xi for some i ∈ [0, t],

xi if x = yi for some i ∈ [0, t],

η(yi) if x = η(xi) for some i ∈ [0, t],

η(xi) if x = η(yi) for some i ∈ [0, t],

x otherwise.

(2.31)

This is a one-to-one function because |x[s,s′]| = |y[s,s′]| for any 0 ≤ s < s′ ≤ t. What
f does is to map the half-edges of x[0,t] and their pairs in η to the half-edges of y[0,t]

and their pairs in η, and vice versa, while preserving the order in the path. For the
coupling, at each time t ∈ N we rewire the edges of Cxt−1 and Cyt−1 as follows:

(a) Choose k edges from Cxt−1 uniformly at random without replacement, say {z1, z2},
. . . , {z2k−1, z2k}. Choose the edges {f(z1), f(z2)}, . . . , {f(z2k−1), f(z2k)} from
Cyt−1.

(b) Rewire the half-edges z1, . . . , z2k uniformly at random to obtain Cxt . Set C
y
t (f(zi))

= f(Cxt (zi)).

Step 2 and the definition of f ensure that in Step 1 {f(z1), f(z2)}, . . . , {f(z2k−1),

f(z2k)} are in Cyt−1. Since under the coupling the event A(x[0,t];T ) is the same as the
event A(y[0,t];T ), we get the desired result.

In order to prove the lower bound in (2.26), we will need two key facts. The
first, stated in Lemma 2.3.2 below, gives a lower bound on the probability of a walk
trajectory given the rewiring history. The second, stated in Lemma 2.4.3 below, is a
lower bound on the number of relevant self-avoiding segmented paths, and exploits
the locally tree-like structure of the configuration model.

Lemma 2.3.2 (Paths estimate given rewiring history). Suppose that t = t(n) =

o(log n) and T = {t1, . . . , tr} ⊆ [1, t]. Let x0 · · ·xt ∈ SPηt (x, y;T ) be a self-avoiding
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2. Mixing times of RWs on DCMs

segmented path in η that starts at x and ends at y. Then

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`r

∏
i∈[1,t]\T

1

deg(xi)
. (2.32)

Proof. In order to deal with the dependencies introduced by conditioning on the event
A(x[0,t];T )), we will go through a series of conditionings. First we note that for the
random walk to follow a specific path, the half-edges it traverses should be rewired
correctly at the right times. Conditioning on A(x[0,t];T ) accomplishes part of the job:
since we have xi−1 6∈ R≤i for i ∈ [1, t] \ T and x[0,t] ∈ SPηt (x, y;T ), we know that, at
time i, xi−1 is paired to a sibling of xi in Ci, and so the random walk can jump from
xi−1 to xi with probability 1/ deg(xi) at time i for i ∈ [1, t] \ T .

Let us call the path x[0,t] open if Ci(xi−1) ∼ xi for i ∈ [1, t], i.e., if xi−1 is paired
to a sibling of xi in Ci for i ∈ [1, t]. Then

Pη,x(X[1,t] = x[1,t] | x[0,t] is open) =

t∏
i=1

1

deg(xi)
, (2.33)

and
Pη,x

(
X[1,t] = x[1,t] | x[0,t] is not open

)
= 0. (2.34)

Using these observations, we can treat the random walk and the rewiring process
separately, since the event {x[0,t] is open} depends only on the rewirings. Our goal is
to compute the probability

Pη,x
(
x[0,t] is open | A(x[0,t];T )

)
. (2.35)

Note that, by conditioning on A(x[0,t];T ), the part of the path within segments
is already open, so we only need to deal with the times the walk jumps from one
segment to another. To have x[0,t] open, each xtj−1 should be paired to one of the
siblings of xtj for j ∈ [1, r]. Hence

Pη,x
(
x[0,t] is open | A(x[0,t];T )

)
=

∑
z1,...,zr∈H

zj∼xtj ∀ j∈[1,r]

Pη,x
(
Ctj (xtj−1) = zj ∀ j ∈ [1, r] | A(x[0,t];T )

)
. (2.36)

Fix z1, . . . , zr ∈ H with zj ∼ xtj , and let yj = xtj−1 for j ∈ [1, r]. We will look at the
probability

Pη,x
(
Ctj (yj) = zj ∀ j ∈ [1, r] | A(x[0,t];T )

)
. (2.37)

Conditioning on the event A(x[0,t];T ) we impose that each yj is rewired at some
time before tj , but do not specify at which time this happens. Let us refine our
conditioning one step further by specifying these times. Fix s1, . . . , sr ∈ [1, t] such
that sj ≤ tj for each j ∈ [1, r] (the sj need not be distinct). Let Â be the event that
xi−1 6∈ R≤i for i ∈ [1, t] \ T and yj is rewired at time sj for the last time before time
tj for j ∈ [1, r]. Then Â ⊆ A(x[0,t];T ). Since sj is the last time before tj at which
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yj is rewired, the event Ctj (yj) = zj is the same as the event Csj (yj) = zj when we
condition on Â. We look at the probability

Pη,x
(
Csj (yj) = zj ∀ j ∈ [1, r] | Â

)
. (2.38)

Let s′1 < · · · < s′r′ ∈ [1, t] be the distinct times such that s′i = sj for some j ∈ [1, r],
and nyi the number of j’s for which sj = s′i for i ∈ [1, r′], so that by condition-
ing on Â we rewire nyi half-edges yj at time s′i. Letting also Di = {Cs′i(yj) =

zj , for j such that sj = s′i}, we can write the above conditional probability as

r′∏
i=1

Pη,x
(
Di | Â, ∩i−1

j=1Dj

)
. (2.39)

We next compute these conditional probabilities.
Fix i ∈ [1, r′] and η′ ∈ ConfH . We do one more conditioning and look at the

probability
Pη,x

(
Di | Â, ∩i−1

j=1Dj , Cs′i−1 = η′
)
. (2.40)

The rewiring process at time s′i consists of two steps: (1) pick k edges uniformly at
random; (2) do a uniform rewiring. Concerning (1), by conditioning on Â, we see
that the yj ’s for which sj = s′i are already chosen. In order to pair these to zj ’s with
sj = s′i, the zj ’s should be chosen as well. If some of the zj ’s are already paired to
some yj ’s already chosen, then they will be automatically included in the rewiring
process. Let m′i be m minus the number of half-edges in {x0, . . . , xt} ∪ {z1, . . . , zr},
for which the conditioning on Â implies that they cannot be in Rs′i . Then

Pη,x
(
zj ∈ Rs′i for j such that sj = s′i

∣∣∣ Â, ∩i−1
j=1Dj , Cs′i−1 = η′

)
≥
(m′i−2nyi
k−2nyi

)
(m′i−nyi
k−nyi

) =

∏nyi−1
j=0 (k − nyi − j)∏nyi−1
j=0 (m′i − nyi − j)

≥
∏nyi−1
j=0 (k − nyi − j)

mnyi
. (2.41)

Concerning (2), conditioned on the relevant zj ’s already chosen in (1), the probability
that they will be paired to correct yj ’s is

1∏nyi
j=1(2k − 2j + 1)

. (2.42)

Since the last two statements hold for any η′ with Pη,x(Cs′i−1 = η′ | Â, ∩i−1
j=1Dj) > 0,

combining these we get

Pη,x
(
Di | Â, ∩i−1

j=1Dj

)
≥

∏nyi−1
j=0 (k − nyi − j)

mnyi
∏nyi
j=1(2k − 2j + 1)

=

(
1−O(nyi /k)

2m

)nyi
. (2.43)

Since
∑r′

i=1 n
y
i = r, substituting (2.43) into (2.39) and rolling back all the condition-

ings we did so far, we get

Pη,x
(
Ctj (xtj−1) = zj ∀ j ∈ [1, r] | A(x[0,t];T )

)
≥ 1−O(r2/k)

`r
=

1− o(1)

`r
, (2.44)
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2. Mixing times of RWs on DCMs

where we use that r2/k → 0 since r = o(log n) and k = αnn with (log n)2αn → ∞.
Now sum over z1, . . . , zr in (2.36), to obtain

Pη,x
(
x[0,t] is open | A(x[0,t];T )

)
≥

(1− o(1))
∏r
j=1 deg(xtj )

`r
, (2.45)

and multiply with (2.33) to get the desired result.

§2.4 Tree-like structure of the configuration model

In this section we look at the structure of the neighborhood of a half-edge chosen
uniformly at random in the configuration model. Since we will work with different
probability spaces, we will denote by P a generic probability measure whose meaning
will be clear from the context.

For fixed t ∈ N, x ∈ H and η ∈ ConfH , we denote by Bηt (x) := {y ∈ H : distη(x, y)

≤ t} the t-neighborhood of x in η, where distη(x, y) is the length of the shortest non-
backtracking path from x to y. We start by estimating the mean of |Bηt (x)|, the
number of half-edges in Bηt (x).

Lemma 2.4.1 (Average size of balls of relevant radius). Let νn be as in Con-
dition 2.1.2 and suppose that t = t(n) = o(log n). Then, for any δ > 0,

E(|Bηt (x)|) = [1 + o(1)] νt+1
n = o(nδ), (2.46)

where the expectation is w.r.t. µn in (2.13).

Proof. We have
|Bηt (x)| =

∑
y∈H

1{distη(x,y)≤t}. (2.47)

Putting this into the expectation, we get

E(|Bηt (x)|) =
1

`

∑
x,y∈H

P(distη(x, y) ≤ t). (2.48)

For fixed x, y ∈ H,

P(distη(x, y) ≤ t) ≤
t∑

d=1

∑
x1,...,xd−1∈H

P(xx1 · · ·xd−1y forms a self-avoiding path in η)

≤
t∑

d=1

∑
x1,...,xd−1∈H

d−1∏
j=1

deg(xj)

`− 2j + 1

 deg(y)

`− 2d+ 1

=
deg(y)

`

t∑
d=1

(
d∏
i=1

`

`− 2i+ 1

) ∑
x1,...,xd−1∈H

(
d−1∏
i=1

deg(xi)

`

)

=
deg(y)

`

t∑
d=1

(
d∏
i=1

`

`− 2i+ 1

)(∑
z∈H

deg(z)

`

)d−1

. (2.49)

42



§2.4. Tree-like structure of the configuration model

Since t = o(log n) and ` = Θ(n), we have

P(distη(x, y) ≤ t) ≤ [1 + o(1)]
deg(y)

`
(νn)t. (2.50)

Substituting this into (2.48), we get

E(|Bηt (x)|) ≤ 1 + o(1)

`

∑
x,y∈H

deg(y)

`
(νn)t = [1 + o(1)] (νn)t+1 = o(nδ), (2.51)

where the last equality follows from (R2) in Condition 2.1.2 and the fact that t =

o(log n).

For the next result we will use an exploration process to build the neighborhood
of a uniformly chosen half-edge. (Similar exploration processes have been used in
[16],[21] and [67].) We explore the graph by starting from a uniformly chosen half-
edge x and building up the graph by successive uniform pairings, as explained in
the procedure below. Let G(s) denote the thorny graph obtained after s pairings
as follows (in our context, a thorny graph is a graph in which half-edges are not
necessarily paired to form edges, as shown in Fig. 2.6). We set G(0) to consist of x,
its siblings, and the incident vertex v(x). Along the way we keep track of the set of
unpaired half-edges at each time s, denoted by U(s) ⊂ H, and the so-called active
half-edges, A(s) ⊂ U(s). We initialize U(0) = H and A(0) = {x}. We build up the
sequence of graphs (G(s))s∈N0

as follows:

(a) At each time s ∈ N, take the next unpaired half-edge in A(s−1), say y. Sample
a half-edge uniformly at random from H, say z. If z is already paired or z = y,
then reject and sample again. Pair y and z.

(b) Add the newly formed edge {y, z}, the incident vertex v(z) of z, and its siblings
to G(s− 1), to obtain G(s).

(c) Set U(s) = U(s−1)\{y, z}, i.e., remove y, z from the set of unpaired half-edges,
and set A(s) = A(s− 1)∪ {H(v(z))} \ {y, z}, i.e., add siblings of z to the set of
active half-edges and remove the active half-edges just paired.

This procedure stops when A(s) is empty. We think of A(s) as a first-in first-out
queue. So, when we say that we pick the next half-edge in Step 1, we refer to
the half-edge on top of the queue, which ensures that we maintain the breadth-first
order. The rejection sampling used in Step 1 ensures that the resulting graph is
distributed according to the configuration model. This procedure eventually gives us
the connected component of x in η, the part of the graph that can be reached from x

by a non-backtracking walk, where η is distributed uniformly on ConfH .

Lemma 2.4.2 (Tree-like neighborhoods). Suppose that s = s(n) = o(n(1−2δ)/2)

for some δ ∈ (0, 1
2 ). Then G(s) is a tree with probability 1− o(n−δ).

Proof. Let F be the first time the uniform sampling of z in Step 1 fails at the first
attempt, or z is a sibling of x, or z is in A(s− 1). Thus, at time F we either choose
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x

G(1)

x

G(3)

Figure 2.6: Example snapshots of G(s) at times s = 1 and s = 3.

an already paired half-edge or we form a cycle by pairing to some half-edge already
present in the graph. We have

P(G(s) is not a tree) ≤ P(F ≤ s). (2.52)

Let Yi, i ∈ N, be i.i.d. random variables whose distribution is the same as the distri-
bution of the degree of a uniformly chosen half-edge. When we form an edge before
time F , we use one of the unpaired half-edges of the graph, and add new unpaired
half-edges whose number is distributed as Y1. Hence the number of unpaired half-
edges in G(u) is stochastically dominated by

∑u+1
i=1 Yi−u, with one of the Yi’s coming

from x and the other ones coming from the formation of each edge. Therefore the
probability that one of the conditions of F will be met at step u is stochastically
dominated by (

∑u
i=1 Yi+u−2)/`. We either choose an unpaired half-edge in G(u) or

we choose a half-edge belonging to an edge in G(u), and by the union bound we have

P(G(s) is not a tree | (Yi)i∈[1,s]) ≤ P(F ≤ s | (Yi)i∈[1,s])

≤
∑s
u=1

∑u
i=1(Yi + u− 2)

`
=

∑s
i=1(s− i+ 1)Yi + s(s− 1)/2

`
. (2.53)

Since E(Y1) = νn = O(1) and s = o(n(1−2δ)/2), via the Markov inequality we get that,
with probability at least 1− o(n−δ),

s

s∑
i=1

Yi < n1−δ. (2.54)

Combining this with the bound given above and the fact that ` = Θ(n), we arrive at

P(G(s) is not a tree) = o(n−δ). (2.55)

To further prepare for the proof of the lower bound in (2.26) and Proposition 2.2.1
in Section 2.5, we introduce one last ingredient. For x ∈ H and η ∈ ConfH , we denote
by B̄ηt (x) the set of half-edges from which there is a non-backtracking path to x of
length at most t. For fixed t ∈ N, T = {t1, . . . , tr} ⊆ [1, t] and η ∈ ConfH , we say
that an (r+ 1)-tuple (x0, x1, . . . , xr) is good for T in η if it satisfies the following two
properties:
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(a) Bηtj−tj−1
(xj) is a tree for j ∈ [1, r] with t0 = 0, and B̄ηt−tr (xr) is a tree.

(b) The trees Bηtj−tj−1
(xj) for j ∈ [1, r] and B̄ηt−tr (xr) are all disjoint.

For a good (r + 1)-tuple all the segmented paths, such that the ith segment starts
from xi−1 and is of length ti − ti−1 for i ∈ [1, r] and the (r+ 1)st segment ends at xr
and is of length t− tr, are self-avoiding by the tree property. The next lemma states
that whp in η almost all (r + 1)-tuples are good. We denote by Nη

t (T ) the set of
(r+ 1)-tuples that are good for T in η, and let Nη

t (T )c be the complement of Nη
t (T ).

We have the following estimate on |Nη
t (T )|:

Lemma 2.4.3 (Estimate on good paths). Suppose that t = t(n) = o(log n). Then
there exist δ̄ > 0 such that whp in η for all T ⊆ [1, t],

|Nη
t (T )| = (1− n−δ̄)`|T |+1. (2.56)

Proof. Fix ε > 0 and T ⊆ [1, t] with |T | = r. We want to show that whp |Nη
t (T )c| ≤

ε`r+1. By the Markov inequality, we have

P(|Nη
t (T )c| > ε`r+1) ≤ E(|Nη

t (T )c|)
ε`r+1

=
P(Z[0,r] ∈ Nη

t (T )c)

ε
, (2.57)

where Z0, . . . , Zr are i.i.d. uniform half-edges and we use that 1/`r+1 is the uniform
probability over a collection of r+1 half-edges. Let Bi−1 = Bηti−ti−1

(Zi−1) for i ∈ [1, r]

and Br = Bηt−tr (Zr). By the union bound,

P
(
Z[0,r] ∈ Nη

t (T )c
)
≤

r∑
i=0

P(Bi is not a tree) +

r∑
i,j=0

P(Bi ∩Bj 6= ∅). (2.58)

By Lemma 2.4.1 and since t = o(log n), for any 0 < δ < 1
2 we have E|Bi| = o(nδ),

and so by the Markov inequality |Bi| = o(n(1−2δ)/2) with probability 1 − o(n−δ).
Hence, by Lemma 2.4.2 and since ` = Θ(n), for i ∈ [1, r], we have

P(Bi−1 is not a tree) = o(n−δ). (2.59)

Again using Lemma 2.4.1, we see that for any i, j ∈ [1, r],

P(Bi ∩Bj 6= ∅) ≤ P(Zj ∈ Bηt (Zi)) =
E(|Bηt (Zi)|)

`
≤ o(nδ−1). (2.60)

Since r ≤ t = o(log n), setting δ̄ = 2δ/3 and taking ε = n−δ, we get

P(|Nη
t (T )c| > ε`r+1) ≤ rn−δ̄ + r2nδ̄−1

ε
= o(n−δ/4) (2.61)

uniformly in T ⊆ [1, t]. Since there are 2t different T ⊆ [1, t] and 2t = 2o(logn) =

o(nδ/8), taking the union bound we see that (2.56) holds for all T ⊆ [1, t] with
probability 1− o(n−δ/8).
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§2.5 Closeness to stationarity and tail behavior of
stopping time

We are now ready to prove the lower bound in (2.26) and Proposition 2.2.1. Before
giving these proofs, we need one more lemma, for which we introduce some new
notation. For fixed t ∈ N, T ⊆ [1, t] with |T | = r > 0, η ∈ ConfH and x, y ∈ H, let
Nη
t (x, y;T ) denote the set of (r − 1)-tuples such that (x, x1, . . . , xr−1, y) is good for

T in η. Furthermore, for a given (r+ 1)-tuple x = (x, x1, . . . , xr−1, y) that is good for
T in η, let SPηt (x;T ) denote the set of all segmented paths in which the ith segment
starts at xi−1 and is of length ti − ti−1 for i ∈ [1, r] with x0 = x and t0 = 0, and the
(r+ 1)st segment ends at y and is of length t− tr. By the definition of a good tuple,
these paths are self-avoiding, and hence SPηt (x;T ) ⊂ SPηt (x, y;T ).

Lemma 2.5.1 (Total mass of relevant paths). Suppose that t = t(n) = o(log n).
Then whp in η and x, y for all T ⊆ [1, t],∑

x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`
. (2.62)

Proof. By Lemma 2.4.3, the number of pairs of half-edges x, y for which |Nη
t (x, y;T )| ≥

(1−n−δ̄)`|T |−1 = [1−o(1)] `|T |−1 for all T ∈ [1, t] is at least (1−2tn−δ̄)`2 = [1−o(1)] `2

whp in η. Take such a pair x, y ∈ H, and let r = |T |. By Lemma 2.3.2 and the last
observation before the statement of Lemma 2.5.1, we have∑

x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥

∑
x∈Nηt (x,y;T )

∑
y0...yt∈SPηt (x,T )

1− o(1)

`r

∏
i∈[1,t]\T

1

deg(yi)
. (2.63)

We analyze at the second sum by inspecting the contributions coming from each
segment separately. For fixed x ∈ Nη

t (x, y;T ), when we sum over the segmented paths
in SPηt (x, T ), we sum over all paths that go out of xi−1 of length ti− ti−1 for i ∈ [1, r].
Since

∏ti−1
j=ti−1+1

1
deg(yj)

is the probability that the random walk without backtracking
follows this path on the static graph given by η starting from xi−1, when we sum over
all such paths the contribution from these terms sums up to 1 for each i ∈ [1, r], i.e.,
the contributions of the first r segments coming from the products of inverse degrees
sum up to 1. For the last segment we sum, over all paths going into y, the probability
that the random walk without backtracking on the static graph given by η follows
the path. Since the uniform distribution is stationary for this random walk, the sum
over the last segment of the probabilities 1

`

∏t
j=tr+1

1
deg(yj)

gives us 1/`. With this
observation, using that |Nη

t (x, y;T )| ≥ (1− o(1))`r−1, we get∑
x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`

∑
x∈Nηt (x,y;T )

1− o(1)

`r−1
=

1− o(1)

`
, (2.64)
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§2.5. Closeness to stationarity and tail behavior of stopping time

which is the desired result.

• Proof of (2.21). For any self-avoiding segmented path x0 · · ·xt, we have |x[s,s′]| =

s′ − s + 1 for all 1 ≤ s < s′ ≤ t. By Lemma 2.3.1, the probability Pη,x(A(x[0,t];T ))

depends on η and T only, and we can write Pη,x(A(x[0,t];T )) = pηt (T ) for any
xx1 · · ·xt−1y ∈ SPηt (x, y;T ). Applying Lemma 2.5.1, we get

Pη,x(Xt = y, τ ≤ t) (2.65)

≥
t∑

r=1

∑
T⊆[1,t]
|T |=r

∑
x[0,t]∈SPηt (x,y;T )

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
Pη,x

(
A(x[0,t];T )

)

≥ 1− o(1)

`

t∑
r=1

∑
T⊆[1,t]
|T |=r

pηt (T ).

If the t-neighborhood of x in η is a tree, then all t-step non-backtracking paths
starting at x are self-avoiding. (Here is a place where the non-backtracking nature
of our walk is crucially used!) In particular, for any such path xx1 · · ·xt we have
Pη,x(A(x[0,t];∅)) = pηt (∅). Denoting by Γηt (x) the set of paths in η of length t that
start from x, we also have

Pη,x(τ > t) =
∑

x0···xt∈Γηt (x)

Pη,x
(
X[1,t] = x[1,t], A(x[0,t];∅)

)
=

∑
x0···xt∈Γηt (x)

t∏
i=1

1

deg(xi)
pηt (∅) = pηt (∅), (2.66)

since the product
∏t
i=1

1
deg(xi)

is the probability that a random walk without back-
tracking in the static η follows the path x0x1 · · ·xt, and we take the sum over all
paths going out of x.

For a fixed path x0x1 · · ·xt, we have

t∑
r=1

∑
T⊆[1,t]
|T |=r

Pη,x
(
A(x[0,t];T )

)
= 1− Pη,x

(
A(x[0,t];∅)

)
. (2.67)

So, when the t-neighborhood of x in η is a tree, we have

t∑
r=1

∑
T⊆[1,t]
|T |=r

pηt (T ) = 1− pηt (∅) = 1− Pη,x(τ > t) = Pη,x(τ ≤ t), (2.68)

which gives

Pη,x(Xt = y, τ ≤ t) ≥ 1− o(1)

`
Pη,x(τ ≤ t) (2.69)

and settles the lower bound (2.26). Since the latter holds whp in η and x, y, we have
that the number of y for which this holds is [1− o(1)] ` whp in η and x. Denoting the
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2. Mixing times of RWs on DCMs

set of y ∈ H for which the lower bound in (2.26) holds by Nη
t (x), we get that whp in

η and x,

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV =
∑
y∈H

[
1

`
− Pη,x(Xt = y | τ ≤ t)

]+

≤
∑

y∈Nηt (x)

[
1

`
− 1− o(1)

`

]+

+
∑

y 6∈Nηt (x)

1

`
= o(1),

(2.70)

which is (2.21).

• Proof of (2.22). First note that Pη,x(Xt ∈ Bηt (x) | τ > t) = 1. On the other hand,
using Lemma 2.4.1 and the Markov inequality, we see that UH(Bηt (x)) = |Bηt (x)|/` =

o(1) whp in η and x, and so we get

‖Pη,x(Xt ∈ · | τ > t)−UH(·)‖TV ≥ Pη,x(Xt ∈ Bηt (x) | τ > t)−UH(Bηt (x)) = 1− o(1).

(2.71)

• Proof of (2.23). Taking T = ∅ in Lemma 2.4.3, we see that Bηt (x) is a tree whp in
η and x, so each path in η of length t that goes out of x is self-avoiding. By looking
at pathwise probabilities, we see that

Pη,x(τ > t) =
∑

x0···xt∈Γηt (x)

Pη,x
(
X[1,t] = x[1,t], xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
. (2.72)

Since the event {xi−1 6∈ R≤i ∀ i ∈ [1, t]} implies that the edge involving xi−1 is open
a time i,

Pη,x
(
X[1,t] = x[1,t] | xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
=

t∏
i=1

1

deg(xi)
. (2.73)

Next, let us look at the probability Pη,x(xi 6∈ R≤i ∀ i ∈ [1, t]). By rearranging and
conditioning, we get

Pη,x
(
xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
= Pη,x

(
xj 6∈ Ri ∀ j ∈ [i− 1, t− 1]∀ i ∈ [1, t]

)
=

t∏
i=1

Pη,x
(
xj 6∈ Ri ∀j ∈ [i− 1, t− 1]

∣∣∣ xk 6∈ Rj ∀ k ∈ [j − 1, t− 1]∀ j ∈ [1, i− 1]
)
.

(2.74)

Observe that, on the event {xk 6∈ Rj ∀ k ∈ [j − 1, t − 1 ∀ j ∈ [1, i − 1]}, the path
xi−1 · · ·xt−1 has not rewired until time i − 1, and so the number of edges given by
these half-edges is t− i+ 1, since it was originally a self-avoiding path. With this we
see that for any i ∈ [1, t],

Pη,x
(
xj 6∈ Ri ∀j ∈ [i−1, t−1]

∣∣∣ xk 6∈ Rj ∀ k ∈ [j−1, t−1] ∀ j ∈ [1, i−1]
)

=

(
m−t+i−1

k

)(
m
k

) ,

(2.75)
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and hence

Pη,x
(
xi−1 6∈ R≤i ∀ i ∈ [1, t]

)
=

t∏
i=1

(
m−t+i−1

k

)(
m
k

) =

t∏
i=1

(
m−i
k

)(
m
k

)
=

t∏
i=1

i−1∏
j=0

(
1− k

m− j

)
=

t∏
j=1

(
1− k

m− j + 1

)t−j+1

.

(2.76)

Since j ≤ t = o(log n), m = Θ(n) and n/ log2 n = o(k), we have

Pη,x
(
xi−1 6∈ R≤i for all i ∈ [1, t]

)
= [1+o(1)] (1−k/m)t(t+1)/2 = (1−αn)t(t+1)/2+o(1).

(2.77)
Putting this together with (2.73) and inserting it into (2.72), we get

Pη,x(τ > t) = [(1− αn)t(t+1)/2 + o(1)]
∑

x0···xt∈Γηt (x)

t∏
i=1

1

deg(xi)

= (1− αn)t(t+1)/2 + o(1), (2.78)

since, for each path x0 · · ·xt, the product
∏t
i=1

1
deg(xi)

is the probability that the
random walk without backtracking on the static graph given by η follows the path,
and we sum over all paths starting from x.
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3. Random walks on dynamic configuration models: a trichotomy

CHAPTER 3
Random walks on dynamic

configuration models: a trichotomy

This chapter is based on a joint article with Luca Avena, Remco van der Hofstad and
Frank den Hollander [13].

Abstract

We consider a dynamic random graph on n vertices that is obtained by starting
from a random graph generated according to the configuration model with a pre-
scribed degree sequence and at each unit of time randomly rewiring a fraction αn of
the edges. We are interested in the mixing time of a random walk without backtrack-
ing on this dynamic random graph in the limit as n → ∞, when αn is chosen such
that limn→∞ αn(log n)2 = β ∈ [0,∞]. In [12] we found that, under mild regularity
conditions on the degree sequence, the mixing time is of order 1/

√
αn when β = ∞.

In the present paper we investigate what happens when β ∈ [0,∞). It turns out that
the mixing time is of order log n, with the scaled mixing time exhibiting a one-sided
cutoff when β ∈ (0,∞) and a two-sided cutoff when β = 0. The occurrence of a
one-sided cutoff is a rare phenomenon. In our setting it comes from a competition
between the time scales of mixing on the static graph, as identified by Ben-Hamou
and Salez [16], and the regeneration time of first stepping across a rewired edge.
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§3.1 Introduction

§3.1.1 Background
The goal of the present paper is to study the mixing time of a random walk without
backtracking on a dynamic version of the configuration model. The static configura-
tion model is a random graph with a prescribed degree sequence. For random walk on
the static configuration model, with or without backtracking, the asymptotics of the
associated mixing time, and related properties such as the presence of the so-called
cutoff phenomenon, were derived recently by Berestycki, Lubetzky, Peres and Sly [21],
and by Ben-Hamou and Salez [16]. In particular, under mild assumptions on the de-
gree sequence, guaranteeing that the graph is an expander with high probability, the
mixing time was shown to be of order log n, with n the number of vertices.

In an earlier paper [12], we consider a discrete-time dynamic version of the con-
figuration model, where at each unit of time a fraction αn of the edges is sampled
and rewired uniformly at random. Our dynamics preserves the degrees of the ver-
tices. Consequently, when considering a random walk on this dynamic configuration
model, its stationary distribution remains constant over time and the analysis of its
mixing time is a well-posed question. It is natural to expect that, due to the graph
dynamics, the random walk mixes faster than the log n order known for the static
model. Under very mild assumptions on the prescribed degree sequence (Condi-
tion 3.1.2 below), we have shown that this is indeed the case when (αn)n∈N satisfies
limn→∞ αn(log n)2 = ∞, which corresponds to a regime of ‘fast enough’ graph dy-
namics. In particular, we have shown that for every ε ∈ (0, 1) the ε-mixing time grows
like

√
2 log(1/ε)/αn as n→∞ (when also limn→∞ αn = 0), with high probability (in

the sense of Definition 3.1.1 below).
In the present paper we look at a slower dynamics, namely, (αn)n∈N satisfying

limn→∞ αn(log n)2 = β ∈ [0,∞). Our main result (Theorem 3.1.4 below) states
that, under somewhat stronger assumptions on the prescribed degree sequence (Con-
dition 3.1.3 below), the mixing time is of order log n, as for the static model, but that
there is an interesting difference between the cases β ∈ (0,∞) and β = 0. Our proof
builds on the strategy developed in [12] for the regime of fast dynamics. However,
the argument in [12] establishing the almost self-avoiding nature of the random walk
cannot be immediately extended to the regime of slow dynamics. This difficulty is
overcome by using a different proof, in combination with an annealing argument (see
Section 3.3).

The rest of the paper is organised as follows. In Section 3.1.2 we define the model.
This is a verbatim repetition of what was written in [12, Section 1.2], in which we
introduce notation and set the stage. In Section 3.1.3 we state our main theorem,
which is a trichotomy for the cases β = ∞, β ∈ (0,∞) and β = 0. In Section 3.1.4
we place this theorem in its proper context.

Throughout the sequel we use standard notations for the asymptotic compar-
ison of functions f, g : N → [0,∞): f(n) = O(g(n)) or g(n) = Ω(f(n)) when
lim supn→∞ f(n)/g(n) < ∞; f(n) = o(g(n)) or g(n) = ω(f(n)) when limn→∞
f(n)/g(n) = 0; f(n) = Θ(g(n)) when both f(n) = O(g(n)) and g(n) = O(f(n)).
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§3.1.2 Model
Since this section was a verbatim repetition of Section 2.1.2, we remove it and refer
to Section 2.1.2 whenever necessary.

§3.1.3 A trichotomy
We are interested in the behaviour of the total variation distance between the distri-
bution of Xt and the uniform distribution

Dη,x(t) := ‖Pη,x(Xt ∈ · )− UH(·)‖TV. (3.1)

Note that Dη,x(t) depends on the initial configuration η and half-edge x. We will
prove statements that hold for typical choices of (η, x) under the uniform distribution
µn (recall that H depends on the number of vertices n) given by

µn := ConfH × UH on ConfH ×H, (3.2)

where typical is made precise through the following definition:

Definition 3.1.1 (With high probability). A statement that depends on the initial
configuration η and initial half-edge x is said to hold with high probability (whp) in η
and x if the µn-measure of the set of pairs (η, x) for which the statement holds tends
to 1 as n→∞.

Regularity conditions

In Theorem 3.1.4 below we use two sets of regularity conditions on the degree sequence:

Condition 3.1.2. (Regularity of degrees)

(R1) ` is even and ` = Θ(n) as n→∞.

(R2) lim supn→∞ νn <∞, where

νn :=

∑
z∈H deg(z)

`
=

∑
v∈V d(v)[d(v)− 1]∑

v∈V d(v)
(3.3)

denotes the expected forward degree of a uniformly chosen half-edge.

(R3) d(v) ≥ 2 for all v ∈ V .

Condition 3.1.3. (Regularity of degrees (Cont.))

(R1*) dmax = `o(1) as n→∞, where

dmax := max
v∈V

d(v). (3.4)
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(R2*) As n→∞,

λ2

λ3
1

= ω

(
(log log `)2

log `

)
,

λ
3/2
2

λ3

√
λ1

= ω

(
1√
log `

)
, (3.5)

where

λ1 :=
1

`

∑
z∈H

log(deg(z)), λm :=
1

`

∑
z∈H
| log(deg(z))− λ1|m, m = 2, 3.

(3.6)

(R3*) d(v) ≥ 3 for all v ∈ V .

Condition 3.1.2 was used in [12] to deal with the regime of ‘fast graph dynamics’.
Conditions (R1) and (R2) are minimal requirements to guarantee that the graph is
locally tree-like. Condition (R3) ensures that the random walk without backtracking
is well-defined. Condition 3.1.3 was used in [16] to deal with the regime of no graph
dynamics, i.e., the static graph. Condition (R1*) provides control on the large degrees.
Condition (R2*) is technical and states that the degrees vary neither too little nor
too much. Condition (R3*) ensures that the graph is connected with high probability
and that there are no nodes where the random walk without backtracking moves
deterministically.

Below, we will work under the Conditions (R1)–(R3) as well as (R1*)–(R3*). If
Dn = d(Vn) denotes the degree of a random vertex, then Condition (R2*) is implied by
the often used condition that Dn → D in distribution (when P(D ≥ 3) > 0), together
with E[Dn]→ E[D] (see e.g. van der Hofstad [93, Chapter 7]). Thus, Condition (R2*)
is rather mild. Condition (R1*) excludes vertices with a degree that is a positive power
of n, which is claimed to be realistic for real-world networks (see e.g. [93, Chapter 1]
for an extensive introduction). We have a truncation argument, along the lines of the
one in Berestycki, van der Hofstad and Salez [22], showing that the degrees can be
truncated and the random walk is unlikely to notice this truncation. However, the
truncated graph may have vertices of degree 2, so that it is not clear how to apply
the results in Ben-Hamou and Salez [16]. Furthermore, we believe that Condition
(R3*) is unnecessary for our results. We state it here because we rely on the work
of [16], which considers random walk without backtracking started from the worst-
possible starting point. When there is a positive proportion of vertices of degree 2,
the configuration model is bound to contain a long path of such vertices. On such
a stretch, the walk moves deterministically, but it slows down the mixing because it
takes time ω(log n) to leave the stretch. Thus, mixing would occur at a time that is
ω(log n) larger than that when the walk starts from a uniform vertex, which makes
worst-case and average-case mixing different. Still, since our walk starts from the
uniform measure on half-edges, it is unlikely to encounter such a stretch. We refrain
from investigating this issue further.

Main theorem

Define the proportion of rewired edges per unit of time as

αn := k/m, n ∈ N, (3.7)
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where m = `/2 is the total number of edges and k is the number of edges that get
rewired per unit of time. For the static model (αn ≡ 0), under Condition 3.1.3, the
ε-mixing time inf{t ∈ N0 : Dη,x(t) ≤ ε} is known to scale like [1 + o(1)] cn,stat log n

for all ε ∈ (0, 1), with cn,stat = 1/λ1 ∈ (0,∞) (Ben-Hamou and Salez [16]). If
Condition 3.1.2 holds too, then n 7→ cn,stat is bounded away from 0 and ∞. If also
the degree distribution tends to a limit, then limn→∞ cn,stat = cstat ∈ (0,∞).

Our main theorem shows that the above behaviour turns into a trichotomy for the
dynamic model:

Theorem 3.1.4 (Scaled mixing profiles). Suppose that limn→∞ αn(log n)2 = β ∈
[0,∞]. The following hold whp in η and x:

(1) Subject to Condition 3.1.2, if β =∞, then

Dη,x
(
cα−1/2

n

)
= e−c

2/2 + o(1), c ∈ [0,∞). (3.8)

(2) Subject to Condition 3.1.2(R1) and Condition 3.1.3, if β ∈ (0,∞), then

Dη,x
(
c log n

)
=

{
e−βc

2/2 + o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(3.9)

(3) Subject to Condition 3.1.2(R1) and Condition 3.1.3, if β = 0, then

Dη,x
(
c log n

)
=

{
1− o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(3.10)

The proof of Theorem 3.1.4 is organised as follows. Theorem 3.1.4(1) was already
proved in [12]. In Section 3.2 we show that Theorems 3.1.4(2)–(3) follow from a
key proposition (Proposition 3.2.1 below), which will be proved in Sections 3.3–3.4.
In Section 3.3 we show that on scale log n with high probability the random walk
is self-avoiding, i.e., does not visit the same vertex twice, and that the same holds
for a version of the random walk with random resets. In Section 3.4 we compute
probabilities of rewiring histories and of self-avoiding paths conditional on rewiring
histories.

§3.1.4 Discussion
1. Theorem 3.1.4 gives the sharp asymptotics of the mixing profiles in three regimes,
which we refer to as supercritical (β = ∞), critical (β ∈ (0,∞)) and subcritical
(β = 0). The latter includes the case of the static configuration model. While in the
supercritical regime the mixing time is of order 1/

√
αn = o(log n), in the critical and

the subcritical regime it is of order log n (see Fig. 3.1). Note that for β = ∞ the
scaling does not depend on the degrees, while for β ∈ [0,∞) it does via the constant
cn,stat.

2. For the static model, because the scaling of the ε-mixing time does not depend on
ε ∈ (0, 1) (Ben-Hamou and Salez [16]) there is two-sided cutoff, i.e., the total variation
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3. Random walks on dynamic configuration models: a trichotomy

1 t
√
αn

D(t)

1 t/cn,stat log n

D(t)

1 t/cn,stat log n

D(t)

Figure 3.1: Plot of D(t) on time scale 1/
√
αn for β = ∞, respectively, on time scale

cn,stat logn for β ∈ (0,∞) and β = 0. Because the scaling holds whp in η and x, we
have suppressed these indices.

distance drops from 1 to 0 in a time window of width o(log n). Theorem 3.1.4 shows
that this behaviour persists throughout the subcritical regime, but that in the critical
regime the drop is not from height 1 but from height < 1, i.e., there is one-sided cut-
off. In contrast, in the supercritical regime there is no cutoff, i.e., the total variation
distance drops from 1 to 0 gradually on scale 1/

√
αn.

3. We emphasize that we look at the mixing times for ‘typical’ initial conditions and
at the distribution of the random walk averaged over the trajectories of the graph
process: the ‘annealed’ model. It would be interesting to investigate different setups,
such as ‘worst-case’ mixing, in which the maximum of the mixing time over all initial
conditions is considered, or the ‘quenched’ model, in which the entire trajectory of
the graph process is fixed instead of just the initial configuration. In such setups
the results can be drastically different. For example, we might consider an initial
configuration in which every vertex has a maximal number of self-loops, which would
give a maximal component size of 2, and the initial position is a half-edge of an
isolated vertex with small degree. In such a situation, we have to wait at least until
one of the half-edges of the isolated vertex is rewired, and this time can be of order of
1/αn, which is much larger than 1/

√
αn. Another interesting example is to consider

a uniformly sampled initial configuration, with a worst-case starting location for the
random walk. We may expect our results to carry over because the mixing-time
estimates of Ben-Hamou and Salez [16] hold for worst-case initial positions. However,
to show that this is true we would require more sophisticated techniques, since the
underlying graph changes at each step of the dynamics.
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§3.2. Stopping time decomposition

4. It would be of interest to extend our results to random walk with backtracking.
This is much harder. Indeed, because the configuration model is locally tree-like and
random walk without backtracking on a tree is the same as self-avoiding walk, in
our proof we can exploit the fact that typical walk trajectories are self-avoiding. In
contrast, for the random walk with backtracking, after it jumps over a rewired edge,
which in our model serves as a randomized stopping time, it may jump back over the
same edge, in which case it has not mixed. This problem remains to be resolved.

§3.2 Stopping time decomposition

As in [12], the proof is based on a randomized stopping time argument. Let

τ := min{t ∈ N : Xt−1 ∈ R≤t}. (3.11)

where R≤t := ∪ts=1Rs is the set of rewired edges up to time t. By the triangle
inequality, we have

Dη,x(t) ≤ Pη,x(τ > t)‖Pη,x(Xt ∈ · | τ > t)− UH‖TV

+ Pη,x(τ ≤ t)‖Pη,x(Xt ∈ · | τ ≤ t)− UH‖TV (3.12)

and

Dη,x(t) ≥ Pη,x(τ > t)‖Pη,x(Xt ∈ · | τ > t)− UH‖TV

− Pη,x(τ ≤ t)‖Pη,x(Xt ∈ · | τ ≤ t)− UH‖TV. (3.13)

Proposition 3.2.1 (Closeness to stationarity and stopping time tails).
Suppose that Condition 3.1.2(R1) and Condition 3.1.3 hold and that β ∈ [0,∞). If
t = t(n) = [1 + o(1)] c log n for some c ∈ (0,∞), then whp in η and x,

‖Pη,x(Xt ∈ · | τ > t)− UH(·)‖TV =

{
1− o(1), c ∈ [0, cn,stat),

o(1), c ∈ (cn,stat,∞),
(3.14)

Pη,x(τ > t) = (1− αn)t(t+1)/2 + o(1). (3.15)

If, in addition, k = k(n) = ω((log n)2), then

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV = o(1). (3.16)

We show how Theorems 3.1.4(2)–(3) follow from Proposition 3.2.1:

Proof of Theorem 3.1.4(2)–(3). First we prove (3.9). Under the condition
limn→∞ αn(log n)2 = β ∈ (0,∞), since m = Θ(n) we have k = ω((log n)2), and
so we can use all three items of Proposition 3.2.1. From (3.12), (3.13) and (3.16) it
follows that, for any t = [1 + o(1)] c log n,

Dη,x(t) = Pη,x(τ > t)‖Pη,x(Xt ∈ · | τ > t)− UH‖TV + o(1). (3.17)
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3. Random walks on dynamic configuration models: a trichotomy

Since limn→∞ αn = 0 and tαn = o(1), by (3.15) also

Pη,x(τ > t) = (1− αn)t(t+1)/2 + o(1) = exp(−αnt2/2) + o(1). (3.18)

Since αn = [1 + o(1)]β/(log n)2, (3.18) together with (3.14) gives us

Dη,x(t) =

{
exp(−βc2/2) + o(1), c ∈ [0, cn,stat),

o(1), c ∈ (cn,stat,∞).
(3.19)

Next, we prove (3.10). If limn→∞ αn(log n)2 = β = 0, then by (3.15), for any t =

[1 + o(1)] c log n,

Pη,x(τ > t) = exp(−αnt2/2) + o(1) = 1− o(1), Pη,x(τ ≤ t) = o(1). (3.20)

Inserting (3.20) into (3.12) and (3.13), we get

Dη,x(t) = [1− o(1)] ‖Pη,x(Xt ∈ · | τ > t)− UH‖TV + o(1). (3.21)

Using (3.14), we obtain

Dη,x(t) =

{
1− o(1), c ∈ [0, cn,stat),

o(1), c ∈ (cn,stat,∞).
(3.22)

§3.3 Self-avoiding trajectories

In this section, we show that the random walk trajectories are self-avoiding on the
relevant time scales with high probability. We let SAt denote the event {v(Xs) 6=
v(Xs′) for any 0 ≤ s < s′ ≤ t}, i.e., no two half-edges are incident to the same vertex
along the trajectory up to time t.

Along the way we need a random walk on the static model that is a slightly
modified version of the random walk without backtracking. This version will be
instrumental in the proof of our main theorem. For fixed t ∈ N, let [t] := {1, . . . , t}
and define the t-stepmodified random walk starting from configuration η and half-edge
x as follows:

(a) Let T be a random subset of [t] drawn according to a probability mass function
(pt(T ))T⊂[t] with pt(∅) ∈ (0, 1) for all t (to be defined later on).

(b) At each time s ∈ [t], if s 6∈ T , then the random walk makes a non-backtracking
move in configuration η, while if s ∈ T , then it jumps to a uniformly chosen
half-edge (possibly the half-edge it is on).

This is a random walk without backtracking that resets its position to a uniformly
chosen half-edge at certain random times. We denote its law by Pmod

η,x , and put
Pmod
η,x (X0 = x) = 1. Note that, although the distribution of this random walk depends

on t and on the distribution of T , we suppress these from the notation.

58



§3.3. Self-avoiding trajectories

If we condition on the event that T 6= ∅, then the modified random walk makes
a uniform jump at some time in [t] after which it becomes stationary, and so

Pmod
η,x (Xt ∈ · | T 6= ∅) = UH(·). (3.23)

On the other hand, if we condition on the event that T = ∅, then the modified random
walk is the same as the random walk without backtracking on the static graph given
by configuration η starting from x. Denoting the law of the latter by Pstat

η,x , we have

Pmod
η,x (· | T = ∅) = Pstat

η,x (·). (3.24)

The main result of this section is the following lemma:

Lemma 3.3.1. Suppose that Condition 3.1.2(R1) and Condition 3.1.3(R1*) hold and
that t = [1 + o(1)] c log n for some c ∈ (0,∞). Then whp in η and x,

Pη,x(SAt) = 1− o(1), Pmod
η,x (SAt) = 1− o(1). (3.25)

Proof. The proof uses two exploration processes on the graph with the help of the two
random walks in the annealed setting. Recall that µn = ConfH × UH . The annealed
measures for the two random walks are defined as

P(·) :=
∑
η,x

µn(η, x)Pη,x(·), Pmod(·) :=
∑
η,x

µn(η, x)Pmod
η,x (·). (3.26)

First, we describe the exploration process for the random walk on the dynamic
configuration model. To compute the probability of a self-avoiding path, we keep
track of already explored half-edges. The exploration process proceeds as follows:

(a) At time s = 0, choose x uniformly at random from H, set X0 = x and set A0

to be the set containing x and all its siblings (the set of ‘active’ half-edges at
time 0).

(b) At each time s ∈ [t], reveal the pair of Xs−1 = xs−1 in Cs, say ys−1. Denote
the edge {xs−1, ys−1} by es. Add ys−1 and all its siblings to As−1 to obtain As
(the set of ‘active’ half-edges at time s); some siblings may already have been
added in a previous step.

(c) Choose one of the siblings of ys−1 uniformly at random, say xs, and set Xs = xs.

This procedure builds up the trajectory of the random walk while ignoring what
happens in the rest of the graph. Note that we only pair the half-edges along the
trajectory, while the siblings of the half-edges along the trajectory are not paired until
they are visited by the random walk.

Under this construction, the first time the random walk is not self-avoiding is the
first time the revealed pair at step 2 is in the set of active half-edges. Hence we want
to bound the probability

P
(
Cs(xs−1) ∈ As−1 | ei ∈ Ci, i ∈ [s− 1]

)
, (3.27)

where e1, . . . , es−1 form a self-avoiding path. For any y ∈ H \ {xs−1}, if y is not
paired up to time s, then it can be paired to xs−1 through the initial pairing at
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3. Random walks on dynamic configuration models: a trichotomy

time 0 or through rewiring at later times. Since the initial pairing is uniform and
this distribution is stationary under the graph dynamics, for all such y the above
conditional probability is the same, and so we have

P
(
Cs(xs−1) = y | ei ∈ Ci, i ∈ [s− 1]

)
≤ 1

`− 2s+ 1
, (3.28)

where we note that 2(s− 1) half-edges are paired before time s. On the other hand,
if y ∈ H \ {xs−1} is already paired before time s, then it can be paired to xs−1

only through rewiring. Hence the same probability is less than it is for an unpaired
half-edge, and so we have the same upper bound. Summing over As−1, we get

P
(
Cs(xs−1) ∈ As−1 | ei ∈ Ci, i ∈ [s− 1]

)
≤ |As−1| − 1

`− 2s+ 1
≤ sdmax

`− 2s+ 1
, (3.29)

where we use that at each time we activate at most dmax = maxv∈V d(v) half-edges.
Finally, since dmax = no(1) by Condition 3.1.3(R1*), t = [1+o(1)] c log n and ` = Θ(n)

by Condition 3.1.2(R1), via a union bound and summing over s ∈ [t], we get

P(SAct) ≤
dmaxt(t+ 1)/2

`− 2t+ 1
= o(1), (3.30)

which establishes the left-hand side of (3.25). Indeed, by the Markov inequality, for
any (wn)n∈N that tends to zero arbitrarily slowly, we have

µn(Pη,x(SAct) > wn) ≤ P(SAct)

wn
, (3.31)

which implies that, with µn-probability at least 1− o(1),

Pη,x(SAt) = 1− o(1). (3.32)

Next, we describe the exploration process for the modified random walk. Again,
we let At denote the set of active half-edges. Now, instead of random rewirings, we
have a static configuration chosen randomly according to the configuration model,
and we have a set of random times T ⊂ [t] at which the random walk makes uniform
jumps. The exploration process proceeds as follows:

(a) At time s = 0, choose x uniformly at random from H, set X0 = x and let A0

be the set containing x and all its siblings. Choose also T ⊂ [t] randomly with
probabilities (pt(T ))T⊂[t].

(b) At each time s ∈ [t], we do the following:

(a) If s ∈ [t] \ T , then reveal the pair of Xs−1 = xs−1 in η, say ys−1. Add
ys−1 and all its siblings to As−1 to obtain As. Choose one of the siblings
of ys−1 uniformly at random, say xt, and set Xs = xs.

(b) If s ∈ T , then choose xs uniformly at random from H, set Xs = xs, add
xs and all its siblings to As−1 to obtain As.
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§3.4. Proof of the main proposition

Under this construction, the first time the random walk is not self-avoiding is the first
time we either have that the revealed pair at step 2(a) is in the set of active half-edges
or that the random walk jumps to an active half-edge at step 2(b). We look at the
probability

Pmod(Xs ∈ As−1 | X[0,s−1] = x[0,s−1]), (3.33)

where x[0,s−1] is a self-avoiding segmented path. We see that if s ∈ T , then this
probability is |As−1|/`. Otherwise it is at most (|As−1| − 1)/(`− 2s + 1), and so we
get

Pmod
(
Xs ∈ As−1 | X[0,s−1] = x[0,s−1]

)
≤ |As−1|
`− 2s+ 1

≤ sdmax

`− 2s+ 1
. (3.34)

This bound agrees with (3.30), so we get the same conclusion for Pmod. Hence, with
µn-probability at least 1− o(1),

Pmod
η,x (SAt) = 1− o(1). (3.35)

The proof for the modified random walk can easily be adapted to the random
walk without backtracking on the static graph, simply by removing step 2(b) in the
exploration process for the modified random walk. Hence we also have, whp in η and
x,

Pstat
η,x (SAt) = 1− o(1). (3.36)

§3.4 Proof of the main proposition

In this section, we prove Proposition 3.2.1. We use the notation introduced in [12]
and recall some of the definitions that are needed along the way.

For a fixed sequence of half-edges x[0,t] with x0 = x and a fixed set of times T ⊆ [t],
we use the short-hand notation

A(x[0,t];T ) :=
{
xi−1 ∈ R≤i ∀ i ∈ T, xj−1 6∈ R≤j ∀ j ∈ [1, t] \ T

}
, (3.37)

where R≤i denotes the set of half-edges that are rewired up to time i. This event
gives us the rewiring history for the sequence of half-edges x[0,t]. More precisely, it is
the event that, for i ∈ [t] \ T , the half-edge xi−1 in not rewired until time i, and, for
i ∈ T , the half-edge xi−1 is rewired at some time before or at time i.

We say that a sequence x[0,t] of half-edges of length t is a self-avoiding segmented
path in the configuration η with respect to T = {t1, . . . , tr} ⊂ [t] if x[0,t] is self-
avoiding, meaning that no two half-edges in x[0,t] are siblings, and each subsequence
x[ti−1,ti−1] induces a path in η for i ∈ [r+ 1] with t0 = 0 and tr+1 = t+ 1. We denote
by SPηt (x, y;T ) the set of all self-avoiding segmented paths in η with respect to T
with x0 = x and xt = y (see Fig. 3.2) and by SPηt (x;T ) the set of all self-avoiding
segmented paths in η with respect to T with x0 = x. Note that for T = ∅ these are
simply the sets of self-avoiding paths.
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x
xt1−1

xt1

xt2−1

xt2xt3−1

xt3
y

η

Figure 3.2: An element of SPηt (x, y;T ) with T = {t1, t2, t3}.

Lemmas 3.4.1 and 3.4.2 below are slight modifications of [12, Lemmas 3.1–3.2] and
will be instrumental in the proof of Proposition 3.2.1. The first lemma is concerned
with the probabilities of the rewiring histories of self-avoiding segmented paths:

Lemma 3.4.1 (Rewiring histories of self-avoiding segmented paths). Fix
t ∈ N, T ⊆ [t] and η, ζ ∈ ConfH . Suppose that x[0,t] and y[0,t] are two self-avoiding
segmented paths in η and ζ, respectively, of length t+ 1. Then

Pη,x
(
A(x[0,t];T )

)
= Pζ,y

(
A(y[0,t];T )

)
. (3.38)

Proof. The proof follows the same line of argument as in the proof of [12, Lemma 3.1]
and uses a coupling between two dynamic configuration models. Let f be a one-to-one
map from H to itself with the property that it maps xi to yi for all i ∈ [0, t], and
preserves the edges between two configuration η and ζ, i.e., f(η(x)) = ζ(f(x)) for all
x ∈ H. The Markovian coupling (Cxt , C

y
t )t∈N0 , where Cx0 = η and Cy0 = ζ, proceeds

at every step t ∈ N as follows:

(a) Choose k edges from Cxt−1 uniformly at random without replacement, say {z1, z2},
. . . , {z2k−1, z2k}. Choose the edges {f(z1), f(z2)}, . . . , {f(z2k−1), f(z2k)} from
Cyt−1.

(b) Rewire the half-edges z1, . . . , z2k uniformly at random to obtain Cxt and set
Cyt (f(zi)) = f(Cxt (zi)).

Since under the coupling the event A(x[0,t];T ) on η is the same as the event A(y[0,t];T )

on ζ, we get the desired result.

From this lemma we see that the probability of a specific rewiring history for a self-
avoiding segmented path does not depend on the path itself nor on the configuration:
it only depends on t and T . In what follows we set pt(T ) = Pη,x(A(x[0,t], T )) for
which it can be easily seen that

Pη,x(A(x[0,t], T )) > 0 and
∑
T⊂[t]

Pη,x(A(x[0,t], T )) = 1 for all T ⊂ [t].

When we refer to the modified random walk we will use these probabilities as the
distribution for the random times T .

62
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The second lemma is concerned with path probabilities for the random walk con-
ditioned on the rewiring history:

Lemma 3.4.2 (Paths estimate given rewiring history). Suppose that t = t(n) =

[1 + o(1)] c log n for some c ∈ (0,∞), k = k(n) = ω((log n)2) and T = {t1, . . . , tr} ⊆
[t]. Let x0 · · ·xt ∈ SPηt (x, y;T ) be a self-avoiding segmented path in η that starts at x
and ends at y. Then

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];T )

)
≥ 1− o(1)

`r

∏
i∈[1,t]\T

1

deg(xi)
. (3.39)

Proof. The proof follows the same line of argument as the proof of [12, Lemma 3.2].

We continue with the proof of Proposition 3.2.1. We start by proving the result
on the tail probabilities of τ , since this is easier.

B Proof of (3.15). Using (3.25), we see that whp in η and x

Pη,x(τ > t)− o(1) ≤ Pη,x(SAt, τ > t) ≤ Pη,x(τ > t). (3.40)

On the other hand, by considering all possible self-avoiding paths,

Pη,x(SAt, τ > t) =
∑

x[0,t]∈SPηt (x;∅)

Pη,x
(
X[1,t] = x[1,t], A(x[0,t];∅)

)
=

∑
x[0,t]∈SPηt (x;∅)

(
t∏
i=1

1

deg(xi)

)
Pη,x

(
A(x[0,t];∅)

)
= pt(∅)Pstat

η,x (SAt), (3.41)

where in the second line we use that

Pη,x
(
X[1,t] = x[1,t] | A(x[0,t];∅)

)
=

t∏
i=1

1

deg(xi)
(3.42)

and in the third line that these are the path probabilities for the random walk without
backtracking in the static model. By following the proof of [12, Eq. (2.6)], we also get

Pη,x
(
A(x[0,t];∅)

)
= (1− αn)t(t+1)/2 + o(1). (3.43)

Combining this with (3.36), we obtain

Pη,x(SAt, τ > t) = (1− αn)t(t+1)/2 + o(1), (3.44)

and the claim follows from (3.40).
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3. Random walks on dynamic configuration models: a trichotomy

B Proof of (3.14). Fix y ∈ H. We have

Pη,x(Xt = y,SAt, τ > t) =
∑

x[0,t]∈SPηt (x,y;∅)

Pη,x
(
X[1,t] = x[1,t], τ > t

)
=

∑
x[0,t]∈SPηt (x,y;∅)

(
t∏
i=1

1

deg(xi)

)
Pη,x

(
A(x[0,t];∅)

)
(3.45)

= pt(∅)Pstat
η,x (Xt = y,SAt).

Using the third line of (3.41), we obtain

Pη,x(Xt = y | SAt, τ > t) = Pstat
η,x (Xt = y | SAt). (3.46)

On the other hand, by partitioning according to SAt and SAct and using that Pη,x(SAt)
= 1− o(1), we obtain

‖Pη,x(Xt ∈ · | τ > t)− Pη,x(Xt ∈ · | SAt, τ > t)‖TV = o(1), (3.47)

and
‖Pstat

η,x (Xt ∈ · )− Pstat
η,x (Xt ∈ · | SAt)‖TV = o(1). (3.48)

Combining these relations with (3.46), we obtain

‖Pη,x(Xt ∈ · | τ > t)− Pstat
η,x (Xt ∈ ·)‖TV = o(1). (3.49)

Using the results of [16] for the random walk without backtracking in the static
configuration model, we see that if t = [1 + o(1)]c log n with c ∈ (0, cn,stat), then

‖Pη,x(Xt ∈ · | τ > t)− UH‖TV = 1− o(1), (3.50)

while if t = [1 + o(1)] c log n with c ∈ (cn,stat,∞), then

‖Pη,x(Xt ∈ · | τ > t)− UH‖TV = o(1). (3.51)

B Proof of (3.16). Fix y ∈ H and suppose that k = k(n) = ω((log n)2). Using
Lemmas 3.4.1 and 3.4.2,

Pη,x(Xt = y,SAt, τ ≤ t)

=

t∑
r=1

∑
T⊆[1,t]
|T |=r

∑
x[0,t]∈SP(x,y;T )

Pη,x
(
X[0,t] = x[0,t] | A(x[0,t];T )

)
Pη,x

(
A(x[0,t];T )

)

≥ [1− o(1)]

t∑
r=1

∑
T⊆[1,t]
|T |=r

pt(T )
∑

x[0,t]∈SP(x,y;T )

 ∏
i∈[t]\T

1

deg(xi)

 1

`r
. (3.52)
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We immediately note that

Pmod
η,x (Xt = y,SAt | T = T ) =

∑
x[0,t]∈SP(x,y;T )

 ∏
i∈[t]\T

1

deg(xi)

 1

`|T |
, (3.53)

and so

Pη,x(Xt = y,SAt, τ ≤ t) ≥ [1− o(1)]Pmod
η,x (Xt = y,SAt, T 6= ∅). (3.54)

Using (3.24), (3.25) and (3.41), whp in η and x, we also have

Pη,x(SAt, τ ≤ t) = Pη,x(SAt)− Pη,x(SAt, τ > t)

≤ Pmod
η,x (SAt) + o(1)− pt(∅)Pstat

η,x (SAt)

= Pmod
η,x (SAt) + o(1)− Pmod

η,x (SAt, T = ∅)

= Pmod
η,x (SAt, T 6= ∅) + o(1). (3.55)

Combining this with (3.54) we get, for any y ∈ H,

Pη,x(Xt = y | SAt, τ ≤ t) ≥ [1− o(1)]Pmod
η,x (Xt = y | SAt, T 6= ∅). (3.56)

which in turn gives

‖Pη,x(Xt ∈ · | SAt, τ ≤ t)− Pmod
η,x (Xt ∈ · | SAt, T 6= ∅)‖TV = o(1). (3.57)

On the other hand, (3.25) gives

‖Pη,x(Xt ∈ · | SAt, τ ≤ t)− Pη,x(Xt ∈ · | τ ≤ t)‖TV = o(1), (3.58)

and

‖Pmod
η,x (Xt ∈ · | SAt, T 6= ∅)− Pmod

η,x (Xt ∈ · | T 6= ∅)‖TV = o(1). (3.59)

Finally, from the latter two relations in combination with (3.23) and (3.57), we get

‖Pη,x(Xt ∈ · | τ ≤ t)− UH(·)‖TV = o(1), (3.60)

which is the desired result.
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CHAPTER 4
Mixing times of random walks with

random rewirings

Abstract

We consider a random walk without backtracking on a general class of dynamic
random graphs with n vertices, where the vertices and their degrees are fixed but
the edges are rewired according to a prescribed rule. In previous works [12, 13], we
considered the special case in which, at each unit of time, a certain fraction of the
edges, chosen uniformly and independently of the random walk, are rewired uniformly.
We showed that there are three different regimes, depending on how the fraction of
edges to be rewired decays as a function of the number of vertices. In this paper,
we show, for a general class of rewiring rules, how the mixing time of the random
walk on the dynamically rewired random graph is linked to the mixing time of the
random walk on static random graphs, drawn according to the configuration model.
Furthermore, we give an explicit example, called local rewiring, in which the edges are
rewired only along the random walk path, and using the above link, we show that,
for this model, we have the same trichotomy as in [13] but on a different time scale.
In our proof, we use a coupling argument where the random walk on the dynamically
rewired random graph is coupled to a modified version of the random walk on the
static random graph.
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4. Mixing times of random walks with random rewirings

§4.1 Introduction

We consider a random walk on a dynamic random graph in which the vertices are fixed
but the edges are randomly rewired at each unit of time according to a prescribed
rule. By rewiring we mean an operation on the graph that changes the edges while
keeping the degrees of the vertices fixed. This type of graph dynamics was considered
in the context of uniform sampling of simple graphs with given degree sequences
[34, 46, 54, 53, 69]. The main purpose of these works is to construct Markov chains
on the set of simple graphs with a given degree sequence whose stationary distribution
is uniform on this set. If the convergence to the stationary distribution of the Markov
chain is sufficiently fast, i.e. the mixing time is sufficiently small, then it is possible to
obtain approximately uniform samples in an efficient way, simply by simulating the
Markov chain.

In [34, 54, 53], the authors consider a so-called switch chain in which, at each time
unit, two edges (i, j) and (k, l), are chosen uniformly at random and their end-points
are switched to obtain the edges (i, k) and (j, l), provided that the resulting graph
is simple. In [34], the authors consider the switch chain in the context of simple
regular graphs and show that the mixing time is polynomial in the size of the graph.
Their results were later extended to the case of simple graphs with irregular degree
sequences [54] and to directed graphs [53]. In [46, 69], the authors consider a so-
called flip chain, which is a modified version of the switch chain in which a switch is
performed if the two randomly chosen edges have a common neighbor, i.e., if (i, l) is
an edge. In [46], the authors consider the flip chain in the context of simple regular
graphs and they show that the mixing time is polynomial in the size of the graph by
comparing the flip chain to a switch chain and using the results of [34].

In the present paper, we are interested in the behaviour of a random walk on a
dynamically rewired random graph, rather than in the behaviour of the random graph
dynamics itself. Namely, we study the mixing times of random walks on dynamically
rewired random graphs, where the initial graph is drawn according to the configuration
model. Our results are in the same spirit as those in [12, 13], in which random walks
on a dynamic version of the configuration model with a specific rewiring mechanism
were considered. In fact, we extend the results of [12, 13] to a more general class of
dynamically rewired versions of the configuration model, which includes the dynamic
configuration model of [12] as a special case.

The mixing times of random walks on static random graphs has been studied in the
last few decades for a wide range of random graph models. For an overview, we refer
to [12, 13] and references therein. In contrast, there are relatively few studies on the
mixing times of random walks on dynamic random graphs. This line of research was
started recently in [83], which considers random walks on dynamical percolation on Zd
in the subcritical regime. In [82], the results in [83] were extended to the supercritical
regime. In [89], the authors consider random walks on a dynamic version of Erdős-
Rényi random graph model and show that the joint chain of the random walk and
the dynamic random graph exhibits cut-off phenomenon. Since there are two layers
of randomness, the random walk and the graph dynamics, in all these works, several
distinct notions of mixing times are considered, such as the annealed case vs. the
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quenched case and the mixing time of the random walk vs. the mixing time of the
joint chain. In our work, we consider the mixing time of the random walk component
annealed over the graph dynamics, which will be made clear in the sequel.

The remainder of this paper is organised as follows. In Section 4.1.1, we intro-
duce the model and set the notation. In Section 4.1.2, we state our main theorem
(Theorem 4.1.5). Section 4.2 is devoted to the introduction of some core ingredients.
In Section 4.3, we give the proof of the main theorem. In Section 4.4, we introduce
a specific model within the framework of random walks on dynamically rewired ran-
dom graph models and show that it exhibits the same trichotomy found in [13] but
on a different time scale. In Section 4.5, we put our work in the proper context by
discussing several issues in more detail and suggesting possible extensions.

Throughout the sequel we use standard notations for the asymptotic compar-
ison of functions f, g : N → [0,∞): f(n) = O(g(n)) or g(n) = Ω(f(n)) when
lim supn→∞ f(n)/g(n) < ∞; f(n) = o(g(n)) or g(n) = ω(f(n)) when limn→∞
f(n)/g(n) = 0; f(n) = Θ(g(n)) when both f(n) = O(g(n)) and g(n) = O(f(n)).

§4.1.1 Model
We denote by V the set of vertices of the graph and by deg(v) the degree of vertex
v ∈ V . To each vertex v ∈ V we associate deg(v) half-edges and by H we denote the
set of all half-edges, i.e.,

H = {(v, i) : v ∈ V and 1 ≤ i ≤ deg(v)}.

If a half-edge x ∈ H is associated to a vertex v ∈ V , then we say that x is incident to
v. We denote by v(x) ∈ V the vertex to which x ∈ H is incident and by H(v) := {x ∈
H : v(x) = v} ⊂ H the set of half-edges incident to v ∈ V . If x, y ∈ H(v) with x 6= y,
then we write x ∼ y and say that x and y are siblings of each other. The degree of a
half-edge x ∈ H is defined as

deg(x) := deg(v(x))− 1. (4.1)

We consider graphs on n vertices, so that |V | = n, with m edges, so that |H| =∑
v∈V deg(v) = 2m =: `.
We view the set of edges as a pairing of half-edges. A pairing of half-edges ξ,

called a configuration, is a bijection of H to itself without fixed points and with the
property that ξ(ξ(x)) = x for all x ∈ H. With a slight abuse of notation, we will
use the same symbol ξ to denote the set of pairs of half-edges in ξ, so {x, y} ∈ ξ

means that ξ(x) = y and ξ(y) = x. Each pair of half-edges in ξ will also be called an
edge. The set of all configurations on H will be denoted by ConfH , and the uniform
distribution on ConfH will be denoted by ConfH .

We note that each configuration gives rise to a (multi-)graph that may contain
self-loops (edges having the same vertex on both ends) or multiple edges (between
the same pair of vertices). The distribution of the random graph corresponding to a
uniformly distributed configuration is called the configuration model (see [93, Chapter
7]). On the other hand, a graph can be obtained via several distinct configurations.
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4. Mixing times of random walks with random rewirings

We will consider asymptotic statements in the sense of |V | = n → ∞. Quantities
like V,H,deg,m and ` all depend on n. In order to lighten the notation, we often
suppress n from the notation.

The central object of this study is a Markov chain (X,C) = (Xt, Ct)t∈N0
, where

Xt ∈ H and Ct ∈ ConfH for all t ∈ N0. Here, X denotes the random walk component
and C denotes the random configuration component. The configuration component
gives rise to a graph sequence in which each graph has the same degree sequence. At
each time t ∈ N, we first update the configuration and then let the walk move.

Random walk. We consider a random walk on a dynamic random graph in which
some half-edges are rewired at each step. The random walk is not allowed to back-
track, in the sense that it cannot traverse the same edge twice in a row. Since in our
model the underlying graph is dynamic and the edges change over time, it is more
conveniently defined as a random walk on the set of half-edges H. Suppose that at
time t ∈ N we updated the configuration to Ct = ξ. Then the random walk moves,
according to the transition probabilities

Pξ(x, y) :=

{
1

deg(y) if ξ(x) ∼ y and ξ(x) 6= y,

0 otherwise.
(4.2)

In words, when the random walk is at half-edge x in configuration ξ, it jumps to
one of the siblings of the half-edge it is paired to uniformly at random (see Fig. 4.1).
The transition probabilities are symmetric with respect to the pairing given by ξ, i.e.,
Pξ(x, y) = Pξ(ξ(y), ξ(x)), in particular, the matrix of transition probabilities is doubly
stochastic, and so the uniform distribution on H, denoted by UH , is stationary for
Pξ for any ξ ∈ ConfH . In the sequel, when we use the term random walk we always
refer to this model.

Xt X
t+

1

Figure 4.1: The random walk moves from half-edge Xt to half-edge Xt+1, one of the siblings
of the half-edge that Xt is paired to.

Graph dynamics. We consider a general class of graph dynamics in which some
edges are randomly rewired at each unit of time according to a presribed rule. A subset
of edges to be rewired is chosen randomly, these edges are broken into half-edges and
the resulting half-edges are paired randomly according to a prescribed distribution.
The set of half-edges involved in the rewiring at time t ∈ N is denoted by Rt.

Suppose that Xt−1 = x and Ct−1 = ξ. Then, at time t, the above dynamics gives
rise to a distribution Qx(ξ, ·) on ConfH . In [12, 13], a specific choice of dynamics was
considered, in which Qx(ξ, ·) did not actually depend on x. In such a situation, the
configuration component forms a Markov chain itself.
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§4.1. Introduction

Joint chain. The law of the joint chain (X,C) = (Xt, Ct)t∈N0
, starting from initial

half-edge x and initial configuration ξ, is given by the conditional probabilities

Px,ξ(Xt = z, Ct = ζ | Xt−1 = y, Ct−1 = η) (4.3)
= Qy(η, ζ)Pζ(y, z), t ∈ N

with
Px,ξ(X0 = x,C0 = ξ) = 1. (4.4)

While the joint chain is Markov, the marginal chains X = (Xt)t∈N and C = (Ct)t∈N
are not necessarily Markov.

We note that when the graph dynamics does not depend on the random walk,
i.e., Qx(·, ·) = Qy(·, ·) for all x, y ∈ H, the uniform distribution UH is a stationary
distribution for the random walk, i.e., for all ξ ∈ ConfH and t ∈ N,∑

x∈H

1

`
Px,ξ(Xt ∈ ·) = UH(·).

This can be easily seen by noting that the random walk conditioned on a realization
of the graph dynamics is a time-inhomogeneous Markov chain for which UH is a
stationary distribution.

§4.1.2 Main theorem
We are interested in the behaviour of the total variation distance between the dis-
tribution of the random walk component and the uniform distribution on the set of
half-edges UH , i.e.,

Dx,ξ(t) := ‖Px,ξ(Xt ∈ ·)− UH(·)‖TV. (4.5)

The total variation distance between two probability measures µ and ν on the same
finite state space S is defined by

‖µ− ν‖TV :=
∑
x∈S
|µ(x)− ν(x)| =

∑
x∈S

[µ(x)− ν(x)]+ = sup
A⊆S

[µ(A)− ν(A)]. (4.6)

We emphasize that the marginal chain X = (Xt)t∈N is not Markov and the total
variation distance ‖Px,ξ(Xt ∈ ·) − UH(·)‖TV is not guaranteed to be decreasing in t,
even when it converges to 0.

Theorem 4.1.5 below concerns the behaviour of Dx,ξ(t) for “typical” choices of x
and ξ. We formalize the notion of typicality now:

Definition 4.1.1 (With high probability). Let µ = µn := UH × ConfH . A state-
ment that depends on the initial half-edge x and configuration ξ is said to hold with
high probability (whp) in x and ξ if the µ-measure of the set of pairs (x, ξ) for which
the statement holds tends to 1 as n→∞.

One of the key objects of our study will be a randomized stopping time, namely, the
first time the random walk steps along a previously rewired edge. Let R≤t := ∪ts=1Rs,
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4. Mixing times of random walks with random rewirings

and let It denote the indicator of the event that the random walk steps along a
previously rewired edge at time t, i.e., if Xt−1 ∈ R≤t, then It = 1, and otherwise
It = 0. We define the randomized stopping time τ as follows:

τ := min{t ∈ N : It = 1}. (4.7)

Theorem 4.1.5 below will be stated in terms of the tail probabilities of τ , written
Px,ξ(τ > t), and only holds under certain conditions. First, we give the conditions
that concerns the degree sequences of the random graphs that we deal with:

Condition 4.1.2. (Regularity of degrees)

(R1) ` is even and ` = Θ(n) as n→∞.

(R2) maxv∈V deg(v) =: dmax = o(n/(log n)2) as n→∞.

(R3) deg(v) ≥ 2 for all v ∈ V .

Condition 4.1.2(R1) ensures that the underlying graph is sparse, and together
with Condition 4.1.2(R2) ensures that random walk paths are with high probability
self-avoiding, as we will see in the proof of Lemma 4.2.2. Condition 4.1.2(R3) ensures
that random walk is well-defined. These are the minimal conditions under which
Theorem 4.1.5 is true. Next, we give additional conditions which allow us to use
results of Ben-Hamou and Salez [16] on the mixing times of random walks on static
configuration models:

Condition 4.1.3. (Additional regularity of degrees)

(R1*) maxv∈V deg(v) =: dmax = no(1) as n→∞.

(R2*)
λ2

λ3
1

= ω

(
(log log `)2

log `

)
,

λ
3/2
2

λ3

√
λ1

= ω

(
1√
log `

)
, n→∞,

where

λ1 :=
1

`

∑
z∈H

log(deg(z)), λm :=
1

`

∑
z∈H
| log(deg(z))− λ1|m, m = 2, 3.

(R3*) deg(v) ≥ 3 for all v ∈ V .

Conditions 4.1.3(R1*) and (R2*) are technical and it might be possible to relax
them via a truncation argument [22]. Condition 4.1.3(R3*) ensures that the random
walk does not behave deterministically, and under this condition the configuration
model is connected with high probability. Condition 4.1.3 will not be used in The-
orem 4.1.5 below, but will be needed to use results of Ben-Hamou and Salez [16] to
refine Theorem 4.1.5 in Corollary 4.1.6 below.

Next, we give the conditions that concern the graph dynamics. To do so we need
more notation. We define the annealed distribution by

P :=
∑
x∈H,
ξ∈Conf

µ(x, ξ)Px,ξ, (4.8)
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which is the distribution of the random walk on the dynamically rewired graph an-
nealed over the initial half-edge and the initial configuration. We will look at the
annealed distribution of the graph dynamics at time t conditional on the walk before
time t and on some partial information about the rewiring history before time t.

For t ∈ N, let [t] := {1, . . . , t}, and for s ∈ N with s < t, and let [s, t] := {s, . . . , t}.
Fix t ∈ N, let T = {t1, . . . , tr} be a subset of [t − 1]. Consider four sequences of
half-edges, x[0,t−1] = x0x1 . . . xt−1, x̄[0,t−1] = x̄0x̄1 . . . x̄t−1, x̂[r] = x̂1x̂2 . . . x̂r and
x̃[r] = x̃1x̃2 . . . x̃r, such that

• x̄s−1 ∼ xs for s ∈ [t− 1] \ T ,

• x̂i ∼ xti for i = 1, . . . , r,

• the vertices v(x0), v(x1), . . . , v(xt−1), v(x̄t1−1), . . . , v(x̄tr−1), v(x̄t−1), v(x̃1), . . . ,

v(x̃r) are all distinct.

We call such sequences dynamically self-avoiding with respect to T . We will look at:

• the set T : the times up to time t − 1 at which the random walk steps along a
previously rewired edge,

• the sequence x0 . . . xt−1: the path of the random walk up to time t− 1,

• the sequence x̄0 . . . x̄t−1: the pairs of the latter in the initial configuration,

• the sequence x̂1 . . . x̂r: the pairs of xt1−1 . . . xtr−1 at the times t1, . . . , tr respect-
ively,

• the sequence x̃1, . . . x̃r: the pairs of x̂1 . . . x̂r in the initial configuration.

For fixed t ∈ N, T = {t1, . . . , tr} ⊂ [t − 1], and fixed sequences of half-edges x[0,t−1],
x̄[0,t−1], x̂[r] and x̃[r], let H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) be the event that

• Is = 1 for s ∈ T and Is = 0 for s ∈ [t− 1] \ T ,

• C0(xs) = x̄s for s = 0, . . . , t− 1,

• Cti(xti−1) = x̂i for i = 1, . . . , r,

• C0(x̂i) = x̃i for i = 1, . . . , r,

• Xs = xs for s = 0, . . . , t− 1.

When this event occurs we say that the the history of the walk on the dynamically
rewired graph up to time t is dynamically self-avoiding.

With these definitions in hand, we can state the conditions on the graph dynamics:

Condition 4.1.4. (Regularity of graph dynamics) For all t = t(n) = O(log n) and
all T = {t1, . . . , tr} ⊂ [t− 1],

(D1) P(It = 1 | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r])) is the same for all choices of x[0,t−1],
x̄[0,t−1], x̂[r], x̃[r] that are dynamically self-avoiding with respect to T .
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4. Mixing times of random walks with random rewirings

(D2) ‖P(Ct(xt−1) ∈ · | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) ∩ {It = 1}) − UH(·)‖TV =

o(1/ log n) for all choices of x[0,t−1], x̄[0,t−1], x̂[r], x̃[r] that are dynamically self-
avoiding with respect to T .

For x ∈ H and ξ ∈ ConfH , we denote by Pstat
x,ξ (Xt ∈ ·) the law of the random walk

on the static graph given by the configuration ξ, and by Dstat
x,ξ (t) its total variation

distance to the uniform distibution UH at time t. Our main result reads as follows:

Theorem 4.1.5. Suppose that t = t(n) = O(log n). Subject to Conditions 4.1.2 and
4.1.4, the following holds for the random walk on the dynamically rewired graph whp
in x and ξ:

Dx,ξ
(
t
)

= Px,ξ(τ > t)Dstat
x,ξ (t) + o(1). (4.9)

For the static model, under Condition 4.1.3, the ε-mixing time inf{t ∈ N0 : Dstat
x,ξ (t)

≤ ε} is known to scale like tstat
mix = tstat

mix(n) := [1 + o(1)] cn,stat log n for all ε ∈ (0, 1),
with cn,stat = 1/λ1 ∈ (0,∞), where λ1 is as defined in Condition 4.1.3(R2*)(Ben-
Hamou and Salez [16]). This holds whp in ξ and uniformly in the starting position
x. Using this relation we can refine Theorem 4.1.5:

Corollary 4.1.6. Suppose t = t(n) = O(log n). Subject to Conditions 4.1.2(R1),
4.1.3 and 4.1.4, the following hold for the random walk on dynamically rewired graphs
whp in x and ξ:

Dx,ξ
(
t
)

=

{
Px,ξ(τ > t) + o(1) if lim supn→∞ t/tstat

mix < 1,

o(1) if lim infn→∞ t/tstat
mix > 1.

(4.10)

Proof. By the results in [16], whp in ξ we have

Dstat
x,ξ (t) =

{
1− o(1) if lim supn→∞ t/tstat

mix < 1,

o(1) if lim infn→∞ t/tstat
mix > 1.

Combining these with Theorem 4.1.5 we get the desired result.

The proof of Theorem 4.1.5 will be given in Section 4.3. In the next section (Sec-
tion 4.2), we introduce the key ingredients of the proof. After proving Theorem 4.1.5,
we introduce a specific example of a random walk on dynamically rewired random
graph, which we call ‘random walk with local rewiring’ and prove a mixing time result
for this model in Section 4.4, by using Corollary 4.1.6.

§4.2 Coupling to the modified random walk

We define the modified random walk, denoted by (Yt)t∈N0
, as the random walk on the

static graph that at certain random times makes uniform jumps. The distribution of
the jump times does not depend on the random walk path. More formally, we have a
sequence (Jt)t∈N of random variables adapted to a filtration (Ft)t∈N0

, taking values
in {0, 1} according to a given distribution on {0, 1}N. For fixed t ∈ N, Jt is seen as
the indicator of the event that the modified random walk makes a uniform jump at
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§4.2. Coupling to the modified random walk

time t. The law of the modified random walk (Yt)t∈N0
on ξ that starts from the initial

half-edge x, which is also adapted to (Ft)t∈N0
, is given by the conditional probabilities

Pmod
x,ξ (Yt = z | Yt−1 = y, J1 = j1, . . . , Jt = jt) (4.11)

= Pmod
x,ξ (Yt = z | Yt−1 = y, Jt = jt) =

{
Pξ(y, z) if jt = 0,
1
` if jt = 1,

t ∈ N, (4.12)

with
Pmod
x,ξ (Y0 = x) = 1. (4.13)

We note that, according to the definition, neither (Jt)t∈N nor the pair (Yt, Jt)t∈N
needs to be Markov but (Yt)t∈N0

is Markov conditional on a realisation of (Jt)t∈N.
Uniform jumps of the modified random walk can be rephrased in the following

form. Let Y ′t be a uniformly chosen half-edge, independent of the random walk path
and the jump times. If Jt = 1, then we choose a uniform sibling of Y ′t , say y, and set
Yt = y. Since Y ′t is uniform and one of its siblings is chosen uniformly at random,
the resulting half-edge is distributed uniformly on H. In the following we use this
formulation, since it makes the exposition more clear.

As an analogue of τ , we define σ to be the first time that the modified random
walk makes a uniform jump, i.e.,

σ := inf{t ∈ N : Jt = 1} (4.14)

Coupling of two random walks. We couple the law Px,ξ(Xt ∈ ·) of the random
walk on the dynamic random graph, with initial half-edge x and initial configuration
ξ, to the law Pmod

x,ξ (Yt ∈ ·) of the modified random walk. We want the coupled
random walks to stick together as much as possible. When the two random walks
make different steps, we say that the coupling of the two random walks has failed,
and we denote the first time that this happens by F . Until the coupling fails, the
times at which the random walk on the dynamically rewired graph makes a step over
a previously rewired edge correspond to the times at which the modified random walk
makes a uniform jump.

We define an auxiliary random set At, called the set of active half-edges, which is
constructed by adding half-edges at each unit of time. This set will keep track of the
half-edges traversed by the two random walks, the half-edges that are rewired at the
position of the random walk, and their pairs in the initial configuration. Note that
A0 consists of x and its siblings, i.e., A0 = H(v(x)). The coupling is as follows:

(a) At time t ∈ N, if the coupling has not failed yet and neither ξ(Xt−1) nor any
of its siblings belongs to At−1, then maximally couple the distribution of It,
conditional on the history of the random walk and the rewirings seen by the
random walker, to the distribution of Jt, conditional on the values of indicators
J1, . . . , Jt−1:

(a) If the coupling of the conditional distributions of It and Jt is successful
and It = Jt = 0, then add ξ(Xt−1) and all of its siblings to At−1 to obtain
At, let X make a random walk move, and set Yt = Xt.
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4. Mixing times of random walks with random rewirings

(b) If the coupling of the conditional distributions of It and Jt is successful and
It = Jt = 1, then maximally couple the distribution of the pair of Xt−1 in
Ct, Ct(Xt−1), conditional on the history of the random walk and the event
that It = 1, to the distribution of Y ′t :

(a) If the coupling of Ct(Xt−1) and Y ′t is succesful, and neither Ct(Xt−1)

nor any of its siblings is in At−1, then add ξ(Xt−1) and all of its
siblings, Ct(Xt−1) and all of its siblings to At−1 to obtain At, let X
make a random walk move, and set Yt = Xt.

(b) Otherwise, declare the coupling of the two random walks as failed.

(c) If the coupling of the conditional distributions of It and Jt is not succesful,
i.e., It 6= Jt, then declare the coupling of the two random walks as failed.

(b) At time t ∈ N, if the coupling has failed before, then let X and Y evolve
independently. If the coupling has not failed yet but either ξ(Xt−1) or some of
its siblings belong to At−1, then declare the coupling of the two random walks
as failed, and let X and Y evolve independently.

Remark 4.2.1. At each time t ∈ N, the random walks try to avoid stepping on the
active half-edges At−1. The coupling of the two random walks fails in three cases:

(a) if the coupling of Ct(Xt−1) and Y ′t fails, or the two random walks step over a
half-edge in At−1 in step (b),

(b) if the coupling of It and Jt fails in step (c),

(c) if the pair of Xt−1 in the starting configuration is already in At−1 as in step (b).

The second case in item 1, as well as item 3, correspond to the situation in which
the random walks are not dynamically self-avoiding. We want to avoid this situation,
since it might lead to a previously rewired half-edge that was stepped over previously.
This implies that the random walks are dynamically self-avoiding before the coupling
of the two random walks fail. The first case in item 1 corresponds to the situation in
which the conditional distribution of Ct(Xt−1) is far from the uniform distribution in
total variation distance. Item 3 corresponds to the situation in which the conditional
distribution of the times at which the random walk on the dynamically rewired graph
and the conditional distribution of the times at which the modified random walk makes
uniform jumps are far from each other in total variation distance.

The next lemma states that these events are unlikely up to logarithmic times when
Conditions 4.1.2 and 4.1.4 hold for the random walk on the dynamically rewired graph:

Lemma 4.2.2. Suppose that t = t(n) = O(log n), and that Conditions 4.1.2 and
4.1.4 hold for the random walk on the dynamically rewired graph. For all s ≤ t and
all T = {s1, . . . , sr} ⊂ [s− 1], fix a group of sequences xs,T[0,s−1], x̄

s,T
[0,t−1], x̂

s,T
[r] , x̃

s,T
[r] that

is dynamically self-avoiding with respect to T , and consider the modified random walk
fpr which the jump distribution has conditional distribution

Pmod
x,ξ (Js = 1 | Js′ = 0 for s′ ∈ [s− 1] \ T, Js′′ = 1 for s′′ ∈ T )

= P(Is = 1 | H(T, xs,T[0,s−1], x̄
s,T
[0,s−1], x̂

s,T
[r] , x̃

s,T
[r] )). (4.15)
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§4.2. Coupling to the modified random walk

Then, whp in x and ξ,

‖Px,ξ(Xt ∈ ·)− Pmod
x,ξ (Yt ∈ ·)‖TV = o(1) (4.16)

and
Px,ξ(τ > t) = Pmod

x,ξ (σ > t) + o(1). (4.17)

Proof. Let Pcouple
x,ξ denote the law of the coupling of the two random walks withX0 = x

and C0 = ξ. Since the two random walks agree up to the time the coupling fails, we
have

‖Px,ξ(Xt ∈ ·)− Pmod
x,ξ (Yt ∈ ·)‖TV ≤ Pcouple

x,ξ (F ≤ t). (4.18)

So, in order to prove our claim, it suffices to show that, whp in x and ξ,

Pcouple
x,ξ (F ≤ t) = o(1). (4.19)

To achieve this, we will use an annealing argument on the initial graph and the initial
location. Recall that µ = UH × ConfH , and let

Pcouple =
∑
x,ξ

µ(x, ξ)Pcouple
x,ξ . (4.20)

We will show that
Pcouple(F ≤ t) = o(1) (4.21)

by exploring the initial configuration through the coupled random walk paths until
time F , the time at which the coupling fails. The exploration proceeds as follows:

(a) At time s = 0, choose a half-edge uniformly at random from H, say x, set
X0 = Y0 = x and A0 = H(v(x)), the subset of H consisting of x and its
siblings.

(b) At time s ∈ N, first explore the pair ofXs−1 = Ys−1 in the initial configuration ξ,
then make the coupled random walks move until the coupling fails, and update
As accordingly.

According to this description, the exploration process explores the part of the graph
seen by the random walks, as well as the parts changed by the rewiring at the positions
of the random walks, and it stops as soon as the coupling of the two random walks
fails. Suppose that the coupling of the two random walks has not failed before time
s. Then it can fail at time s in the following three cases:

(a) if coupling of Is and Js fails in step (c),

(b) if coupling of Cs(Xs−1) and Y ′s fails in step (b),

(c) if the random walks step over a half-edge that is in As−1 in step (b) or step (b).

By (4.15), Is and Js can be coupled perfectly, so the probability of the event in case
1 is 0.

For case 2 we note that, by Remark 4.2.1, before the coupling of the two random
walks fails, the history of the random walk is dynamically self-avoiding. By Condi-
tion 4.1.4(D2), the total variation distance between the conditional distribution of
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4. Mixing times of random walks with random rewirings

Cs(Xs−1) and the uniform distribution UH is o(1/ log n). Since Y ′s is also distributed
uniformly on H, the probability of the event in case 2 is o(1/ log n).

For case 3, we first need an upper bound on the size of As−1. Each time we
explore the initial configuration, we add at most dmax half-edges to the set of active
half-edges. If, in addition, a rewiring occurs, then we add at most 2dmax half-edges
to the set of active half-edges. This gives us

|As−1| ≤ 3sdmax. (4.22)

For a fail event in step (b), we see that the probability that Cs(Xs−1) ∈ As−1 is
smaller than

|As−1|
`

+ o(1/ log n) ≤ 3sdmax

`
+ o(1/ log n), (4.23)

since the random walk is dynamically self-avoiding before the coupling of the two
random walks fails (see Remark 4.2.1), so the total variation distance between the
conditional distribution of Cs(Xs−1) and the uniform distribution UH is o(1/ log n),
by Condition 4.1.4(D2). For a fail event in step (b), we see that the probability that
C0(Xs−1) ∈ As−1 is smaller than

|As−1|
`− 4s+ 4

≤ 3sdmax

`− 4s+ 4
, (4.24)

since up to time s we form at most 2s− 2 pairs in C0, s− 1 of them on the random
walk path and an additional s− 1 if rewiring occurs at each step up to time s.

The above estimates give us

Pcouple(F = s | F > s− 1) ≤ 6sdmax

`− 4s+ 4
+ o(1/ log n). (4.25)

Taking a union bound up to time t, and using that t = O(log n), dmax = o(n/(log n)2)

and ` = Θ(n), we get

Pcouple(F ≤ t) ≤ 3t(t+ 1)dmax

`− 4t
+ o(1) = o(1), (4.26)

which in turn implies that, with µ-probability 1− o(1),

Pcouple
x,ξ (F ≤ t) = o(1). (4.27)

Indeed, letting Pcouple(F ≤ t) = pn and B = {(x, ξ) ∈ H × ConfH : Pcouple
x,ξ (F ≤ t) >

p
1/2
n }, we see that

Pcouple(F ≤ t) = pn > µ(B)p1/2
n , (4.28)

and hence µ(B) < p
1/2
n . So, with µ-probability at least 1− p1/2

n , we have Pcouple
x,ξ (F ≤

t) ≤ p1/2
n = o(1).

Since the Is’s and Js’s are perfectly coupled until the coupling of the two random
walks fails, we also have, whp in x and ξ,

|Px,ξ(τ > t)− Pmod
x,ξ (σ > t)| ≤ Pcouple

x,ξ (F ≤ t) = o(1). (4.29)
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§4.3 Link between the dynamic and the static models

In this section, we prove Theorem 4.1.5. Consider the modified random walk given
in the statement of Lemma 4.2.2 and sample uniform jump times up to time t. For
any fixed T = {t1, . . . , tr} ⊂ [t], we see that the modified random walk conditional on
the event J(T ) := {Js = 0 for s ∈ [t] \ T, Js = 1 for s ∈ T} is a time-inhomogeneous
Markov chain that makes random-walk moves at times s ∈ [t] \ T and uniform jumps
at times s ∈ T . Since this Markov chain becomes stationary when it makes a uniform
jump, for any ∅ 6= T ⊂ [t], x ∈ H and ξ ∈ ConfH ,

Pmod
x,ξ (Yt ∈ · | J(T )) = UH(·), (4.30)

which gives us

Pmod
x,ξ (Yt ∈ · | σ ≤ t) =

∑
T⊂[t],T 6=∅ Pmod

x,ξ (Yt ∈ · | J(T ))∑
T⊂[t],T 6=∅ Pmod

x,ξ (J(T ))
= UH(·). (4.31)

On the other hand, since the modified random walk up to time t conditional on the
event {σ > t} is the same as the random walk on the static graph, for any x ∈ H and
ξ ∈ ConfH we have

‖Pmod
x,ξ (Yt ∈ · | σ > t)− UH(·)‖TV = Dstat

x,ξ (t). (4.32)

Using the triangle inequality twice, we obtain

‖Pmod
x,ξ (Yt ∈ ·)− UH(·)‖TV ≤Pmod

x,ξ (σ > t)‖Pmod
x,ξ (Yt ∈ · | σ > t)− UH(·)‖TV

+ Pmod
x,ξ (σ ≤ t)‖Pmod

x,ξ (Yt ∈ · | σ ≤ t)− UH(·)‖TV (4.33)

and

‖Pmod
x,ξ (Yt ∈ ·)− UH(·)‖TV ≥Pmod

x,ξ (σ > t)‖Pmod
x,ξ (Yt ∈ · | σ > t)− UH(·)‖TV

− Pmod
x,ξ (σ ≤ t)‖Pmod

x,ξ (Yt ∈ · | σ ≤ t)− UH(·)‖TV. (4.34)

Inserting (4.31) and (4.32), we obtain

‖Pmod
x,ξ (Yt ∈ ·)− UH(·)‖TV = Pmod

x,ξ (σ > t)Dstat
x,ξ (t). (4.35)

Now using Lemma 4.2.2, we see that, whp in x and ξ,

Dx,ξ(t) = Px,ξ(τ > t)Dstat
x,ξ (t) + o(1). (4.36)

§4.4 Random walk with local rewiring

In this section, we consider a specific example of a random walk on a dynamically
rewired graph in which the graph dynamics depends on the position of the random
walk. We call this model the random walk with local rewiring. The rewiring mechan-
ism works as follows:
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4. Mixing times of random walks with random rewirings

(a) At each time t ∈ N, we draw a Bernoulli random variable Zt with parameter
α, independent of each other and independent of the random walk and the
configuration,

(b) If Zt = 0, then the configuration does not change, Ct = Ct−1, and Xt makes a
random-walk move,

(c) If Zt = 1, then we draw a half-edge uniformly at random from H \ {Xt−1}, say
y, we pair Xt−1 to y and Ct−1(Xt−1) to Ct−1(y) to obtain the new configuration
Ct, and Xt makes a random walk move on Ct.

More fomally, let

QRx (ξ, η) = QRx (η, ξ) :=

{
1
`−1 if ξ(η(x)) = η(ξ(x)) and |ξ \ η| ≤ 2,

0 otherwise.
(4.37)

Within the framework of Section 4.1.1, the above mechanism corresponds to the model
in which

Qx(ξ, η) = (1− α)I(ξ, η) + αQRx (ξ, η), (4.38)

where I(ξ, η) = 1 if η = ξ, and I(ξ, η) = 0 otherwise, i.e., I is the identity matrix.
Since QRx is symmetric for all x ∈ H, we see that the distribution ConfH is a stationary
distribution for QRx for all x ∈ H. This implies that ConfH is a stationary distribution
for Qx for all x ∈ H.

A direct calculation shows that UH × ConfH is a stationary distribution of this
dynamics:

Proposition 4.4.1. UH × ConfH is a stationary distribution for the random walk
with local rewiring with parameter α, for any α ∈ [0, 1].

Proof. Since UH is stationary for Pη for any η ∈ ConfH , and ConfH is stationary for
Qx for any x ∈ H, for any y ∈ H and η ∈ ConfH ,∑

x∈H

∑
ξ∈ConfH

UH(x)ConfH(ξ)Px,ξ(X1 = y, C1 = η)

=
∑
x∈H

∑
ξ∈ConfH

UH(x)ConfH(ξ)Qx(ξ, η)Pη(x, y)

=
∑
x∈H

UH(x)Pη(x, y)
∑

ξ∈ConfH

ConfH(ξ)Qx(ξ, η)

= ConfH(η)
∑
x∈H

UH(x)Pη(x, y) = ConfH(η)UH(y),

which shows that UH × ConfH is a stationary distribution for the random walk with
local rewiring model.

It is not easily seen that the Markov chain is irreducible and aperiodic. In Sec-
tion 4.4.1 we show that this is indeed the case when α ∈ (0, 1), and so the distribution
of the joint chain converges to UH × ConfH as t → ∞. An important implication is
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that the distribution of the random walk alone converges to UH as t → ∞. Indeed,
for any x ∈ H, ξ ∈ ConfH and t ∈ N we have

Dx,ξ(t) ≤ ‖Px,ξ((Xt, Ct) ∈ ·)− UH × ConfH(·)‖TV,

and since the right-hand side tends to 0 as t→∞, Dx,ξ(t) also tends to 0 as t→∞.
On the other hand, this argument does not automatically imply that Dx,ξ(t) is non-
increasing in t.

§4.4.1 Irreducibility and aperiodicity
In this section we show that the random walk with local rewiring model is irreducible
and aperiodic, which ensures that the total variation distance Dx,ξ(t) converges to 0

as t→∞ for fixed x ∈ H, ξ ∈ ConfH and α ∈ (0, 1). Our proof builds on the proof of
irreducibility of the switch chain on multigraphs given by Eggleton and Holton [40].

Proposition 4.4.2. The rewiring random walk (Xt, Ct)t∈N0
is irreducible and aperi-

odic for any initial state (x, ξ) ∈ H × ConfH and any choice of α ∈ (0, 1).

Proof. Let V = {v1, . . . , vn} and assume that deg(v1) ≤ deg(v2) ≤ · · · ≤ deg(vn).
Identify the set of half-edges H with [`] = {1, . . . , `} such that the half-edges 1, . . . ,

deg(v1) are associated to v1, the half-edges deg(v1) + 1, . . . ,deg(v1) + deg(v2) to v2,
and so on. Let v′1, . . . , v′2k ∈ V be the odd-degree vertices. We fix a configuration
ξ0 ∈ ConfH such that each vertex has the maximum number of self-loops, i.e., each
vertex v ∈ V with even degree has deg(v)/2 self-loops, each vertex v ∈ V with odd
degree has (deg(v)− 1)/2 self-loops, and there is exactly one edge between every pair
of odd-degree vertices v′2i−1, v

′
2i for i = 1, . . . , k (see Figure 4.2). We will show that

the pair (1, ξ0) ∈ H×ConfH is accessible from any pair (x, ξ) ∈ H×ConfH by allowed
moves in the random walk with local rewiring model.

. . .

Figure 4.2: The configuration ξ0.

First we show that, for any x ∈ H, (1, ξ0) is accessible from (x, ξ0), by considering
two different scenarios:

(a) Suppose that x is on a self-loop and ξ0(x) = x′. We first move to (1, ξ1) from
(1, ξ0) by rewiring the half-edges x, x′, 1 and 2 where ξ0 and ξ1 agree on all the
edges except that ξ1(1) = x′ and ξ1(2) = x. After that we again move to (1, ξ0)

from (1, ξ1) by rewiring 1, 2, x and x′ (see Figure 4.3).

(b) Suppose that x is not on a self-loop, i.e., it is on an edge between two odd-
degree vertices. We first move to (x′, ξ0) without rewiring, where x′ ∈ H is on
a self-loop. After that we apply the procedure in the item 1 to (x′, ξ0).
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1 2 x x′ 1

2

x′

x

1 2 x x′

Figure 4.3: Move from half-edge x on a self-loop to half-edge 1 in ξ0. The red color indicates
the position of the walk.

Next, we show that for any (x, ξ) ∈ H × ConfH with ξ 6= ξ0 we have access from
(x, ξ) to (y, ξ0), for some y ∈ H. To do this, we show that we can move from (x, ξ)

to some (y, η) ∈ H ×ConfH such that the configuration η has more edges in common
with ξ0 than ξ has, i.e., |ξ ∩ ξ0| < |η ∩ ξ0|, by considering the two scenarios:

(a) Suppose that x is on an edge that is not in ξ0, i.e., ξ(x) 6= ξ0(x). Then we move
to (y, η) by rewiring the half-edges x, ξ(x), ξ0(x) and ξ(ξ0(x)), where ξ and η

agree on all the edges except that η(x) = ξ0(x) and η(ξ(x)) = ξ(ξ0(x)) and
y ∼ ξ0(x). Since η(x) = ξ0(x), we have that |ξ ∩ ξ0| ≤ |η ∩ ξ0| − 1.

(b) Suppose that x is on an edge that is in ξ0, i.e., ξ(x) = ξ0(x). Let y ∈ H be a half-
edge such that ξ(y) 6= ξ0(y), ξ(x) = x′ and ξ(y) = y′. Since deg(v) ≥ 2 for all v ∈
V , in the graph given by ξ there is a cycle of edges {y, y′}, {y1, y

′
1}, . . . , {yK , y′K}

with v(y′) = v(y1), v(y′K) = v(y) and v(y′i) = v(yi+1) for i = 1, . . . ,K − 1. Let
η ∈ ConfH be the configuration that agrees with ξ on all the edges except that
η(x) = y′ and η(y) = x′, so that the edges {y1, y

′
1}, . . . , {yK , y′K} are present in

η as well as in ξ. First we move from (x, ξ) to (y1, η) by rewiring x, x′, y and
y′. Then we make K moves, from (yi, η) to (yi+1, η) for i = 1, . . . ,K, where
yK+1 = y without rewiring. After that we move from (y, η) to (y1, ξ) by rewiring
x, x′, y and y′, and finally we traverse the cycle again without rewiring to reach
(y, ξ) from (y1, ξ) (see Figure 4.4). Now y is on an edge that is not in ξ0, so by
applying the procedure in item 1 we can increase the number of edges we have
in common with ξ0.

By applying these procedures, we can reduce the number of edges that are not in ξ0,
so we can go from any (x, ξ) ∈ H ×ConfH to (y, ξ0) for some y ∈ H, and then apply
the above procedure to reach (1, ξ0).

y′ y

x x′

y′ y

x x′

y′ y

x x′

Figure 4.4: Moving from (x, ξ) to (y, η) by using a cycle. The red color indicates the position
of the walk.
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To show that we can access an arbitrary state (x, ξ) from (1, ξ0), we first note that
we can access (y, ξ0), for any y, from (1, ξ0) by relabelling the half-edges and using
the first argument above. Then we see that we can access (x, ξ) from (y, ξ0) for any y
using the above strategy of reducing the edges and using the cycles to move around.
Hence, the Markov chain is irreducible. Since, by traversing the self-loop without
rewiring, we can reach (1, ξ0) from itself in one step, we see that the Markov chain is
also aperiodic.

§4.4.2 The mixing time of the random walk with local
rewiring

In this section, we study the quantity Dx,ξ(t) for the random walk with local rewiring
and show that we have the same trichotomy as for the random walk on the dynamic
configuration model [13]:

Theorem 4.4.3 (Scaled mixing profiles). Suppose that limn→∞ αn = 0 and
limn→∞ αn log n = β ∈ [0,∞], and consider the rewiring random walk with para-
meter αn. Subject to Condition 4.1.2(R1) and Condition 4.1.3, the following hold
whp in x and ξ:

(1) If β =∞, then

Dx,ξ
(
bcα−1

n c
)

= e−c + o(1), c ∈ [0,∞). (4.39)

(2) If β ∈ (0,∞), then

Dx,ξ
(
bc log nc

)
=

{
e−βc + o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(4.40)

(3) If β = 0, then

Dx,ξ
(
bc log nc

)
=

{
1− o(1), c ∈ [0, cn,stat),
o(1), c ∈ (cn,stat,∞).

(4.41)

Proof. We show that Condition 4.1.4 holds and then use Corollary 4.1.6 to prove
the claim. For fixed t = O(log n), fix some T = {t1, . . . , tr} ⊂ [t − 1] and some
x[0,t−1], x̄[0,t−1], x̂[r] and x̃[r] that are dynamically self-avoiding with respect to T .
Conditioned on the event H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]), xt−1 cannot be rewired be-
fore time t. Indeed, by construction the half-edges that are rewired before time t are
xt1−1, . . . , xtr−1, x̄t1−1, . . . , x̄tr−1, x̂1, . . . , x̂r and x̃1, . . . , x̃r, and xt−1 is not equal to
any of these. So we have

P(It = 1 | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]))

= P(Zt = 1 | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r])) = αn, (4.42)
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and P(Ct(xt−1) ∈ · | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) ∩ {It = 1}) is the uniform distri-
bution on H \ {xt−1}, which gives

‖P(Ct(xt−1) ∈ · | H(T, x[0,t−1], x̄[0,t−1], x̂[r], x̃[r]) ∩ {It = 1})− UH(·)‖TV =
1

`
.

(4.43)

Since this holds for any choice of x[0,t−1], x̄[0,t−1], x̂[r] and x̃[r], Condition 4.1.4 holds.
On the other hand, the event {τ = t} is the same as the event {min{s ∈ N : Rs =

1} = t}, since when a rewiring occurs the random walk steps over a rewired edge with
probability 1. This implies that for any x and ξ, and since limn→∞ αn = 0,

Px,ξ(τ > t) = (1− αn)t = exp(−αnt) + o(1). (4.44)

So we have

Px,ξ(τ > t) = exp(−c) + o(1) when lim
n→∞

αn log n =∞ and t = bcα−1
n c, (4.45)

Px,ξ(τ > t) = exp(−βc) + o(1) when lim
n→∞

αn log n = β and t = bc log nc, (4.46)

Px,ξ(τ > t) = 1− o(1) when lim
n→∞

αn log n = 0 and t = bc log nc. (4.47)

Combining these with Corollary 4.1.6, we obtain the desired result.

§4.5 Discussion

1. Coupling between the two random walks: The core ingredient of the proof of
the main result, which is the coupling between the random walk on the dynamically
rewired graph and the modified random walk, is best visualised as follows: imagine
we are looking at the random walk on the dynamically rewired graph from the point
of view of the initial configuration. Then it looks as if the random walk performs an
ordinary random walk on the static initial graph (when it walks on the parts that
are not changed by the dynamics), with the exception that at some random times it
makes uniform jumps (when it encounters a previously rewired edge). This suggests
that the random walk on the dynamically rewired graph can be coupled to a random
walk that exactly does this.

The framework of the coupling to a modified random walk introduced in this paper
is based on the ideas developed in [13]. In fact, the coupling of the random walk on the
dynamically rewired random graph and the modified random walk is implicit in the
proof of the main theorem of [13]. There the main idea was that the path probabilities
under the two random walk models coincide for self-avoiding paths, and it was shown
that the random walk paths are with high probability self-avoiding.

The crucial observation is that the random walk paths on a typical configuration
are self-avoiding with high probability under the law of the configuration model. The
particular form of Condition 4.1.4 is motivated by this observation. This also suggests
that the same results should hold when the distribution of the initial graph is replaced
by some other distribution on graphs on which random walk paths are ‘typically’ self-
avoiding.
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2. One-sided cut-off: It is easy to construct examples of one-sided cut-off in the more
general framework of Markov chains. Suppose that P is the matrix of transition prob-
abilities of an ergodic Markov chain on a state space X with a stationary distribution
π, and let Π be the matrix whose rows are all equal to π. Fix α ∈ (0, 1] and consider
the Markov chain where at each step transitions are made according to matrix P with
probability 1 − α and according to matrix Π with probability α, and these choices
are made independently at each step. This corresponds to the Markov chain with
transition probabilities given by (1− α)P + αΠ. Note that, as soon as Π is used for
transition, the Markov chain becomes stationary. If we let σ be the first time Π is
used for a transition then σ is a strong stationary time for the Markov chain, and
hence the total variation distance can be bounded by tail probabilities of σ. In fact,
for any x ∈ X and t ∈ N we have

‖Qt(x, ·)− π‖TV = (1− α)t‖P t(x, ·)− π‖TV, (4.48)

since the probability of the event {σ > t} is (1−α)t and the Markov chain is stationary
at time t conditioned on the event {σ ≤ t}.

Now, suppose (Pn)n∈N is a sequence of ergodic Markov chains indexed by the size
n of the state space, πn is the stationary distribution and Tn is the mixing time of Pn
with Tn →∞ as n→∞. Let Πn be the matrix of transition probabilities whose rows
are all equal to πn, and consider the Markov chain whose transition probabilities are
given by the matrix Qn = (1 − αn)Pn + αnΠn. If (Pn)n∈N exhibits cut-off, then we
have the same trichotomy as in Theorem 4.4.3:

• limn→∞ αnTn =∞: the mixing time is of order α−1
n without cut-off,

• limn→∞ αnTn = β ∈ (0,∞): the mixing time is of order Tn with one-sided
cut-off,

• limn→∞ αnTn = 0: the mixing time is of order Tn with two-sided cut-off (the
same as for Pn).

3. Regularity of the graph dynamics: Simple modifications to the random walk with
local rewiring model can lead to violations of Condition 4.1.4. Let us consider a modi-
fication in which the rewiring mechanism is slightly changed: When Zt = 1 we choose
an edge, say {y, z}, uniformly at random from the set of all edges of Ct−1 except the
edge {Xt−1, Ct−1(Xt−1)}, and we pair the half-edges Xt−1, Ct−1(Xt−1), y, z uniformly
at random to obtain the new configuration Ct. In this case, the probability that Xt−1

is paired to its previous pair Ct−1(Xt−1) is 1/3, and hence Condition 4.1.4(D2) is not
satisfied. Another possibility is to let αn depend on Xt−1. Suppose that we are given
a sequence (αn,x)x∈H , and Zt = 1 with probability αn,x conditioned on Xt−1 = x. In
this case Condition 4.1.4(D1) is violated.

4. Local vs. global rewiring mechanisms: The rewiring mechanism of the random
walk with local rewiring model can be seen as a ‘local-to-global’ rewiring mechanism:
one end of the rewired edge is selected ‘locally’ at the position of the random walk,
while the other end is selected ‘globally’ from the set of all possible half-edges. On the

85



other hand, the rewiring mechanism of the random walk on the dynamic configuration
model introduced in [12], can be seen as a ‘global-to-global’ rewiring mechanism, in
the same sense. The effects of local versus global choices are best seen in the tail
probabilities of the randomised stopping time τ . In the random walk on the dynamic
configuration model, we had Px,ξ(τ > t) = (1 − α)t(t+1)/2 + o(1) whp in x and ξ,
where the t(t+ 1)/2 term comes from the cumulative effect of doing a global rewiring
at each step.

It would be interesting to study rewiring mechanisms that interpolate between
these two examples. One possibility is to consider a model in which some of the
half-edges in a neighborhood of the random walk are paired to randomly chosen half-
edges. Formally, let Brξ (x) be the set of half-edges that can be reached from x by a
random walk of at most r steps on the configuration ξ. Suppose that, at each time
t, every half-edge in BrCt−1

(Xt−1) is rewired independently with probability α. The
case r = 0 would correspond to the random walk with local rewiring model, while
the case r =∞ would correspond to a global-to-global rewiring mechanism similar to
the rewiring mechanism of the dynamic configuration model. In between these two
extremes, we expect to see that tail probabilities of τ interpolating between that of
the random walk with local rewiring model and the random walk on the dynamic
configuration model.

5. Comparison with the switch chain: The rewiring mechanism of the random walk
with local rewiring model can be seen as a variation of the switch chain of [34]. There
are two main differences:

• in the switch Markov chain, the switching edges are chosen uniformly at random
from all possible pairs, while in the random walk with local rewiring model one
of the switching edges is chosen according to the random walk,

• in the switch Markov chain, the underlying graph is forced to be simple, while
in the random walk with local rewiring model, multiple edges and self-loops are
allowed.

It would be interesting to study a variation of the random walk with local rewiring
model in which the simplicity of the graph is preserved. The main challenge would
be to deal with the combinatorial contraints that are imposed by the preservation of
the simplicity.



PART II

UNION COMPLEXITY OF
RANDOM DISK REGIONS
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5. Union complexity of random disk regions

CHAPTER 5
Union complexity of random disk

regions

This chapter is based on joint work with Mark de Berg.

Abstract

We study the union complexity of a set of n disks when disk centers are sampled
uniformly and independently at random in a convex compact region S. We consider
the case where all the disks have a common radius R = diam(S) and prove that if S
is a square or a disk, then the expected union complexity is Θ(n1/3). Our proofs are
based on the arguments used by Har-Peled [55] for the expected complexity of convex
hulls of random points. We also show a connection between the union complexity of
disk regions and the complexity of convex hull of a set of points.
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§5.1 Introduction and main results

The introduction to this chapter was given in Section 1.2. Nevertheless, we repeat
the setting and the definitions for ease of reading. Let S be a fixed convex compact
region in R2, and X = {X1, . . . , Xn} be a set of n points sampled independently and
uniformly at random from S. Let D = {D1, . . . , Dn} be a collection of n disks, where
Di is the closed disk centered at Xi with a fixed radius R such that diam(S) ≤ R <∞,
where diam(S) is the diameter of S, for i = 1, . . . , n. By choosing the radius large
enough such that any disk covers S completely, we make sure that the boundary
of the disks always lie outside of S and this makes the analysis easier. The set of
boundary disks of D, denoted by BD(D), is the set of disks in D whose boundaries
are not completely covered by other disks, i.e.,

BD(D) = {D ∈ D : ∂D \ ∪D′∈D\{D}D′ 6= ∅},

where ∂D denotes the boundary of D. We are interested in union complexity of D
which is the number of boundary arcs of D. This number is linear in the number of
disks in BD(D). Let Bn denote the number of boundary disks of D when D contains
n disks. Bn is a random variable, since disk centers are random, and we are interested
in the expected value of Bn as a function of n. We consider two cases: the case where
S is a unit square and all the disks have radius R =

√
2, and the case where S is a

unit disk and all the disks have radius R = 2.
In what follows, we use the notation for asymptotic comparison of functions f, g :

N → [0,∞): f(n) = O(g(n)) or g(n) = Ω(f(n)) when lim supn→∞ f(n)/g(n) < ∞;
f(n) = o(g(n)) or g(n) = ω(f(n)) when limn→∞ f(n)/g(n) = 0; f(n) = Θ(g(n))

when both f(n) = O(g(n)) and g(n) = O(f(n)). We denote by d(x, y) the Euclidean
distance between x, y ∈ R2, and with a slight abuse of notation we write d(x,A) =

inf{d(x, y) : y ∈ A} for x ∈ R2 and A ⊂ R2. Our main result is given in the following
theorem.

Theorem 5.1.1. Suppose that

(a) either S is the unit square [0, 1]× [0, 1] ∈ R2 and each disk has radius R =
√

2 ;

(b) or S is the unit disk {x ∈ R2 : d(x, o) ≤ 1}, where o is the origin, and each disk
has radius R = 2.

Then
E(Bn) = Θ(n1/3).

For the case of the unit square, the problem appears in the context of conflict-free
colouring as discussed in Section 1.2.1. We present the unit-disk case as a generalisa-
tion. The union-complexity problem is related to the problem of the complexity of
the convex hull, as we pointed out in Section 1.2.2. In fact, our proof follows some
ideas developed for tackling convex-hull problems [39, 55]. In Section 5.2 we give the
proof of Theorem 5.1.1 for the case of a unit square and in Section 5.3 for the case of
a unit disk. In Section 5.4, we discuss several extensions of the boundary complexity
problem.
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§5.1. Introduction and main results

Figure 5.1: The halo for a set of 6 disks with centers inside the unit square is shown as the
shaded region in the square.

Before proceeding with the proof of the Theorem 5.1.1, we introduce some further
notation and state a lemma that will be crucial. Consider the general setting: S is a
convex compact region and the disks have radius diam(S) ≤ R < ∞. Let Cov(D) :=

∪D∈DD denote the coverage area of D, i.e., the subset of R2 covered by the disks in
D. Let Halo(D) = {x ∈ S : d(x, ∂(Cov(D)) ≤ R} be the set of points in S whose
distance to the boundary of the coverage area is less than R (see Figure 5.1), and let
An = E(Area(Halo(D))) be the expected area of the halo. To compute the expected
number of boundary disks, we use the area of the halo. The two are related through
the following lemma, which is analogous to Efron’s Theorem for the convex hull [39].

Lemma 5.1.2. Suppose that S is a convex compact region in R2 with unit area, and
let D be a collection of n disks with a fixed radius R such that any single disk covers
S completely and such that the centers are sampled uniformly and independently from
S. Then E(Bn) = nAn−1, where An is the expected area of the halo of a set of n
points sampled uniformly and independently at random from S.

Proof. First we note that, for any i = 1, . . . , n, the disk Di is a boundary disk if and
only if its center falls inside the halo of Di, where Di := D \ {Di}. This gives

Bn =

n∑
i=1

1{Di∈BD(D)} =

n∑
i=1

1{Xi∈Halo(Di)},

so

E(Bn) =

n∑
i=1

P(Xi ∈ Halo(Di))

=

n∑
i=1

∫
Sn−1

P(Xi ∈ Halo(Di) | Xj = xj , j ∈ [n] \ {i})dx1 . . . dxi−1dxi+1 . . . dxn.
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Note that the conditional probability P(Xi ∈ Halo(Di) | Xj = xj , j ∈ [n] \ {i}) is
equal to Area(Halo(Di)), and so by symmetry we have

E(Bn) =

n∑
i=1

∫
Sn−1

Area(Halo(Di))dx1 . . . dxi−1dxi+1 . . . dxn

=

n∑
i=1

E(Area(Halo(Di))) = nAn−1.

§5.2 Case of the unit square

In this section we give the proof of Theorem 5.1.1 for the case of the unit square.
Thanks to Lemma 5.1.2, in order to compute the expected boundary complexity we
only need to compute the expected area of the halo An. The next proposition gives
an upper bound. The proof follows the arguments in [55] for the convex hull of a
point set sampled in the unit square.

Proposition 5.2.1. Suppose that S is the unit square [0, 1] × [0, 1] ⊂ R2. Then
An = O(n−2/3).

Proof. We divide the unit square into n rows and n columns each of width 1/n, which
gives n2 small squares of size 1/n× 1/n. We derive an upper bound for the number
of squares that intersect the halo and multiply this by n−2 to get an upper bound for
the area.

Let Si,j = [(i − 1)/n, i/n] × [(j − 1)/n, j/n] be the jth square of the ith column,
Ci = ∪nj=1Si,j be the ith column, and C(k, l) = ∪li=kCi. Let X = {X1, . . . , Xn} be
the random set of disk centres. Let m = bn2/3c and for j = m+ 1, . . . , n−m define
Yj := min{k ∈ [n] : X ∩ (∪j−1

i=j−mSi,k) 6= ∅}, i.e., Yj is the index of the lowest row that
contains a point from X in C(j−m, j− 1). Define Y ′j analogously for C(j+ 1, j+m)

(see Figure 5.2a).
The squares at the bottom of the jth column that intersect the halo stay below or

intersect the circle arc with radius
√

2 that passes through the lowest disk centers in
C(j −m, j − 1) and C(j + 1, j +m). Furthermore, this arc stays below the arc that
passes through the upper-left corner of the square Sj−m,max{Yj ,Y ′j } and the upper-right
corner of the square Sj+m,max{Yj ,Y ′j }. The latter arc has cord length (2n2/3 + 1)/n =

2n−1/3 + n−1, so the distance between the highest point of the arc and the cord is
√

2−
√

2−
(
2n−1/3 + n−1

)2
= O(n−2/3) as n tends to∞. Let Rj denote the number

of squares that stay between the chord and the highest point of the arc. Then Rj is
of order O(n1/3) (see Figure 5.2b).

Clearly, the number of small squares in Cj that intersects the halo is less than
max{Yj , Y ′j } + Rj < Yj + Y ′j + Rj . Next we compute the E(Yj) and E(Y ′j ). For
Yj , we divide the area C(j − m, j − 1) into rectangles of area 1/n, so that each
rectangle is m squares wide and n/m squares high. Let Zj be the index of the lowest
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rectangle that contains a point from X. Then Yj ≤ n1/3Zj . Now, observe that
P(Zj ≥ k) ≤ (1− (k − 1)/n)n ≤ e−(k−1). Hence

E(Zj) ≤
n2/3∑
k=1

kP(Zj = k) ≤
∞∑
k=1

P(Zj ≥ k) ≤
∞∑
k=1

ke−(k−1) = O(1). (5.1)

From this we get E(Yj) = O(n1/3) and similarly E(Y ′j ) = O(n1/3). Summing over
j = m, . . . , n−m, we see that the expected number of small squares that fall into the
halo at the bottom of the square between the columns m+ 1 and n−m is O(n4/3).
Doing the same for the upper, left and right sides, we get a total number of O(n4/3)

small squares contributing to the halo. We have not accounted for the four squares
with side length m = n2/3 at the corners, but these contain a total number of O(n2/3)

small squares. So in total the halo has O(n4/3) small squares. Since each small square
has area n−2, we get An = O(n−2/3).

Sj

1/n

1/n

1/n

1/n

1/n

1/n

Yj

Y ′
j

(a)

Yj

Y ′
j

Rj

(b)

Figure 5.2: Illustration of proof of Proposition 5.2.1

Using similar arguments, we next prove that n2/3 is the correct order for the
expected area of the halo.

Proposition 5.2.2. Suppose that S is the unit square [0, 1] × [0, 1] ⊂ R2. Then
An = Ω(n−2/3).

Proof. As in the proof of Proposition 5.2.1, consider the window of width 2m +

1 = 2bn2/3c + 1 around the jth column. Consider the arc whose endpoints are
((j − m − 1)/n, 0) and ((j + m)/n, 0) and whose center lies below the unit square.
The cord length of this arc is (2m + 1)/n, so y-coordinate of the highest point of

this arc is
√

2 −
√

2− ((2m+ 1)/n)
2

= Ω(n−2/3) and hence the latter point lies in
a row with index Ω(n1/3). The expected number of small squares on jth column
that stay in the halo is bounded from below by the minimum of the row index of the
highest point of the latter arc and E(min{Yj , Y ′j })− 1. Dividing C(j −m, j − 1) and
C(j + 1, j + m) into rectangles of area 1/n, and defining Zj and Z ′j as in the proof
of Proposition 5.2.1, we see that Yj − 1 ≥ n1/3(Zj − 1) and Y ′j − 1 ≥ n1/3(Z ′j − 1),
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pj−1

pj

pj+1

pj+2

π/n Sj

Sj+1

Sj−1

Oj+1

Oj−1

Rj

p

q

C1C2C3

r r′

Figure 5.3: Illustration of proof of Proposition 5.3.1.

so E(min{Yj , Y ′j }) − 1 ≥ n1/3E(min{Zj , Z ′j} − 1). Note that E(min{Zj , Z ′j} − 1) ≥
P(Zj > 1, Z ′j > 1) = (1 − 2/n)n ≥ e−3 for large enough n. From this we conclude
that E(min{Yj , Y ′j })−1 = Ω(n1/3), so the expected number of squares on jth column
that stay in the halo is Ω(n1/3), which gives us the desired result.

Combining the last two propositions with Lemma 5.1.2, we obtain the result of
Theorem 5.1.1 for the unit square.

§5.3 Case of the unit disk

In this section we give the proof of Theorem 5.1.1 for the case of the unit disk. As in
the case of the unit square, we obtain upper and lower bounds for the expected area of
the halo An, then we combine these bounds with Lemma 5.1.2 to obtain the result of
Theorem 5.1.1. The next proposition gives an upper bound. Again, the proof follows
the arguments in [55] for the convex hull.

Proposition 5.3.1. Suppose that S is the unit disk {x ∈ R2 : d(x, o) ≤ 1} ⊂ R2.
Then An = O(n−2/3).

Proof. Assuming without loss of generality that n = m3 for some m ∈ N, we divide
the unit disk S into n tiles of equal area as follows: divide S into m slices, S1, . . . , Sm,
by drawingm lines from the center tom equally spaced points p1, . . . , pm on ∂S. Then
divide each slice into m2 tiles of equal area as follows: consider m2 concentric rings
given by m2 concentric circles C1 = ∂S,C2, . . . , Cm2 , with radii r1 = 1, r2, . . . , rm2

respectively, such that the intersection of each slice and ring gives a tile of area π/n
(see Figure 5.3). Let Si,j be the ith outermost tile in Sj for i = 1, . . . ,m2 and
j = 1, . . . ,m, i.e., Si,j is the intersection of Sj and the ring between the circles Ci and
Ci+1. We compute the expected number of tiles that intersects the halo and multiply
the result by 1/n to get an upper bound for the expected area of the halo. We do
this by computing the expected number of tiles that intersect the halo for each slice.
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pj−1

pj

pj+1

pj+2

Sj

Sj+1

Sj−1
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Wj

Figure 5.4: Illustration of proof of Proposition 5.3.2.

Let Yj be the index of the outermost tile of the slice Sj−1 that contains a disk
center, i.e., Yj = min{i : Si,j−1 ∩ X 6= ∅}, and analogously define Y ′j for the slice
Sj+1. Let Oj−1 and Oj+1 be the outermost disk centers, that are the disk centers
furthest away from the origin, in Sj−1 and Sj+1 respectively. Consider the arc with
radius 2 that passes through Oj−1 and Oj+1 whose center lies away from the origin
relative to the line passing through Oj−1 and Oj+1. The tiles of Sj that intersect
the halo stay outside this arc. Furthermore, the latter arc stays outside the arc a
with radius 2 that passes through points p and q and whose center lies away from
the origin relative to the line passing through p and q, where p and q are the extreme
points of the arc a′ = CZj+1 ∩ (Sj−1 ∪ Sj ∪ Sj+1) and Zj = max{Yj , Y ′j }. Let r and
r′ be the midpoints of the arcs a and a′, respectively, and let Rj be the number of
tiles between r and r′ (see Figure 5.3). Then the number of tiles in Sj that intersect
the halo is bounded from above by Rj + Zj ≤ Rj + Yj + Y ′j .

The length of the line segment connecting r and r′ is

d(o, p)− d(o, p) sin

(
3π

m

)
+ 2

(
1− cos

(
arcsin

( |op|
2

sin

(
3π

m

))))
= O(m−2),

On the other hand, the radial length of every tile is greater than or equal to r1− r2 ≥
1/(2m2), so we have Rj = O(1). To compute E(Yj), we note that P(Yj ≥ k) =

(1− (k − 1)/n)n ≤ exp(−(k − 1)). This gives

E(Yj) =

∞∑
k=1

P(Yj ≥ k) ≤
∞∑
k=1

e−(k−1) = O(1). (5.2)

Thus, the expected number of tiles in Sj that intersect the halo is O(1) and the
expected total number of tiles that intersect the halo is O(m), which gives An =

O(m−2) = O(n−2/3).

The next proposition gives a lower bound for the expected area of the halo An:

Proposition 5.3.2. Suppose S is the unit disk {x ∈ R2 : d(x, o) ≤ 1} ⊂ R2. Then
An = Ω(n−2/3).
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Proof. As in the proof of Proposition 5.3.1, we divide the disk into tiles and obtain
a lower bound for the number of tiles of Sj that stay in the halo for j = 1, . . . ,m.
Let Yj and Y ′j be as defined in the proof of Proposition 5.3.1, Zj be the index of the
outermost tile of the slice Sj , andWj be the index of the innermost tile of Sj that does
not intersect the arc with radius 2 that passes through the points pj−1 and pj+2 (see
Figure 5.4). Then a lower bound for the number of tiles of Sj that stay in the halo is
min{Yj − 1, Y ′j − 1, Zj − 1,Wj}. We note that Wj is not random, and a calculation
similar to that of Rj in the proof of Proposition 5.3.1 gives thatWj > 0. We also note
that E(min{Yj , Y ′j , Zj} − 1) ≥ P(Yj > 1, Y ′j > 1, Zj > 1) = (1− 3/n)n ≥ e−4 = Ω(1)

for large enough n. So the expected number of tiles of Sj that stay in the halo is
Ω(1). Taking the sum over j = 1, . . . ,m = n1/3, we see that the expected number of
tiles that intersect the halo is Ω(n1/3) and multiplying by the area of each tile, which
is 1/n, we obtain the desired result.

§5.4 Discussion

In this section, we briefly discuss several extensions of the boundary complexity prob-
lem. One possible extension is where the radius of the random disks depends on the
number of disks n. For instance the random disks have radius rn with limn→∞ rn = 0.
In this case, the expected number of boundary disks is a function of n and rn, and its
behaviour depends on how fast rn tends to 0. For example, when rn = O(n−2), the
number of isolated disks, i.e., the disks that have no intersection with any other disk,
is of order n, which tells us that the number of boundary disks is of order n as well.
When rn = Ω(n−2), however, the problem becomes more complicated and we will ad-
dress it in future work. Another interesting regime is the case where limn→∞ rn =∞.
For example, in this case Proposition 1.2.3 suggests that if rn tends to infinity fast
enough, then the boundary complexity is the same as the complexity of the convex
hull. Also this will be the subject of future work.

Another possible extension is to replace S by an arbitrary convex polygon or
convex compact region with smooth boundary. By following the proofs in [55] for
the convex hull, the proofs for the unit square and the unit disk can be adapted to
arbitrary polygons and regions with smooth boundary, to show that the order of the
number of boundary disks is again n1/3. The leading order coefficient can be different
for different shapes and its computation requires a more detailed analysis.
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Samenvatting

Samenvatting

Dit proefschrift bestaat uit twee delen, met als gemeenschappelijk thema ‘Exploratie
op en van Netwerken’. In Deel I onderzoeken we het thema ‘exploratie op netwerken’
door random wandelingen op dynamische random grafen te bestuderen. In Deel II
onderzoeken we het thema ‘exploratie van netwerken’, door het probleem van com-
plexiteit van random schijfgebieden te bestuderen.

Deel I: Random wandelingen op dynamische random
grafen

Random grafen zijn wiskundige objecten die worden gebruikt voor het bestuderen
van netwerken. Random wandelingen op random grafen kunnen worden gezien als
een model voor exploratie op netwerken. Een bepaalde functie van een random wan-
deling, de mengtijd genoemd, kan worden beschouwd als een maat voor hoe snel het
netwerk wordt geëxploreerd door een random wandeling. De mengtijden van random
wandelingen op random grafen zijn de afgelopen decennia uitgebreid bestudeerd. Het
grootste deel van het onderzoek rond dit onderwerp heeft zich echter geconcentreerd
op statische grafen, terwijl de meeste netwerken juist in de tijd veranderen. In Deel I
van dit proefschrift bestuderen we mengtijden van random wandelingen op random
grafen wanneer de random graaf zelf ook in de tijd verandert. We concentreren ons
op een bepaald type dynamica, de zogenaamde herbedradingsdynamiek, waarin de
graden worden vastgelegd terwijl de verbindingen willekeurig worden gereorganiseerd.

In hoofdstuk 2 van het proefschrift introduceren we eerst het dynamische configur-
atiemodel en bestuderen we vervolgens de mengtijd van random wandelingen zonder
backtracking. In het dynamische configuratiemodel wordt op elke tijdseenheid een
vast deel van de lijnen uniform willekeurig gekozen en vervolgens willekeurig herbe-
draad. We laten zien, onder bepaalde regelmatigheidscondities op de gradenreeks, dat
als de fractie van de opnieuw bedrade lijnen groot genoeg is, de mengtijd veel kleiner
is dan de mengtijd op de statische graaf, en dat er geen zogenaamde cutoff is. Onze
resultaten gelden met een kans die naar 1 convergeert als het aantal knopen naar
oneindig gaat, en wel met betrekking tot een uniforme keuze van de initiële knoop en
de initiële configuratie. In onze bewijzen laten we zien dat de mengtijd gerelateerd is
aan een regeneratietijd, namelijk, de tijd dat de random wandeling langs een eerder
bedrade lijn beweegt, waarbij we de boomachtige structuur van het configuratiemodel
gebruiken.

In hoofdstuk 3 van het proefschrift breiden we de resultaten van hoofdstuk 2 uit
naar complementaire regimes. In het bijzonder identificeren we drie verschillende
regimes die superkritiek, kritiek en subkritiek worden genoemd. Het superkritieke
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regime komt overeen met de resultaten van hoofdstuk 2. In het kritieke regime, waar
de proportie van de opnieuw bedrade lijen niet al te groot en niet al te klein is, vinden
we dat de mengtijd logaritmisch groeit in het aantal knopen, zoals voor de statische
graaf, en er is eenzijdige cutoff, in tegenstelling tot wat we zien voor de mengtijd op de
statische graaf. In het subkritieke regime, waar de proportie van de opnieuw bedrade
lijnen klein is, zien we dat de mengtijd hetzelfde is als de mengtijd in de statische
graaf: die groeit logaritmisch in het aantal knopen, en er is een tweezijdige cutoff. In
onze bewijzen gebruiken we opnieuw het argument voor de regeneratietijd, maar dit
keer gebruiken we impliciet een koppelingsargument, waarbij de random wandeling
op het dynamische configuratiemodel wordt gekoppeld aan een gewijzigde random
wandeling op de statische graaf. Het bestaan van deze koppeling hangt af van de
boomachtige structuur van het configuratiemodel.

In hoofdstuk 4 van het proefschrift beschouwen we een meer algemene klasse van
dynamische random graafmodellen, die het dynamische configuratiemodel als een spe-
ciaal geval omvat. Voortbouwend op de ideeën die in hoofdstuk 3 zijn ontwikkeld,
laten we zien dat, onder bepaalde regulariteitscondities op de gradenrij en de graafdy-
namiek, de random wandeling zonder backtracking op de dynamische random graaf
kan worden gekoppeld aan een gewijzigde random wandeling op de statische graaf.
Met behulp van deze koppeling laten we een verband zien tussen de mengtijd van de
random wandeling op de dynamische graaf en de mengtijd van de random wandel-
ing op de statische graaf, en relateren we de mengtijd aan de hierboven beschreven
regeneratietijd. Verder geven we een voorbeeld van een model binnen deze klasse
van dynamische random graafmodellen, genaamd random wandeling met lokale her-
bedrading, waarbij het opnieuw bedraden plaatsvindt langs de random wandeling
zelf. Met behulp van de bovenstaande link verkrijgen we dezelfde trichotomie als in
hoofdstuk 3 voor de random wandeling met lokale herbedrading, maar op een andere
tijdschaal.

Deel II: Complexiteit van random schijfgebieden

De complexiteit van random schijfgebieden hangt nauw samen met het probleem van
conflictvrije kleuringen van schijfgebieden. Het concept van conflictvrije kleuringen is
een generalisatie van het concept van graafkleuringen en ontstaat in de context van
frequentie-toekenning in een netwerk van draadloze zenders. Elke draadloze zender
wordt verondersteld een dekkingsgebied in de vorm van een schijf te hebben en wordt
een zodanige frequentie toegekend dat een ontvanger niet wordt beïnvloed door in-
terferentie van signalen van verschillende zenders. In dit kader kan het minimale
aantal kleuren dat vereist is voor een conflictvrije kleuring van schijfgebieden worden
beschouwd als een structurele parameter van het onderliggende draadloze netwerk. In
Deel II van het proefschrift onderzoeken we de typische structuur van de netwerken
die ontstaan als een resultaat van een random proces. Om dit te doen, voeren we een
‘mean-case’ analyse uit voor de complexiteit van random schijfgebieden met behulp
van ideeën uit de geometrische waarschijnlijkheidstheorie.

In hoofdstuk 5 van het proefschrift bestuderen we de gemiddelde complexiteit van
random schijfgebieden in twee verschillende situaties, een waarin de schijfcentra uni-
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form random worden gekozen in een vierkant en een waarin de schijfcentra uniform
worden gekozen in een schijf. We laten zien dat, onder bepaalde condities op de straal
van de schijfgebieden, de gemiddelde complexiteit in beide gevallen van orde n1/3 is,
waarbij n het aantal schijfgebieden is. Onze bewijzen zijn geïnspireerd door de argu-
menten die worden gebruikt voor de gemiddelde complexiteit van convexe omhulsels
van random punten. Meer specifiek laten we zien dat de gemiddelde complexiteit
van de unie gerelateerd is aan het gemiddelde oppervlak van een zogenaamde ‘halo’
van de schijfcentra, wat analoog is aan het complement van het convexe omhulsel
van random punten, en berekenen we het gemiddelde oppervlak van de halo via een
discretiseringsargument. We laten ook een verband zien tussen de complexiteit van
schijfgebieden en de complexiteit van convexe omhulsels van een reeks punten.
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