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Chapter 5

Mono-to-multilayer
transition

Previous chapters have shown various examples of emergent phenomena
induced by cell growth in expanding monolayers, free or confined. In this
chapter, we will demonstrate that in-plane cell growth can also drive an
escape to the third dimension, and trigger a transition from mono- to
multilayer structure, i.e. the next step toward biofilm formation. Such
a mono-to-multilayer transition has recently drawn significant attention
in the biophysical literature, being a universal step in biofilm formation,
as well as a process where mechanical forces are likely to play a leading
role. Grant et al. explored the effects of various mechanical forces on the
mono-to-multilayer transition in E. coli colonies confined between a glass
slide and an agarose gel [56]. They measured the transition position and
the size of the colony at the onset, from both experiments and simulations,
and studied how these quantities were mediated by different mechanical
interactions. More recently, Beroz et al. [66] demonstrated that, in V.
cholerae biofilms, the transition is triggered by the mechanical instability
of individual cell. Using a mean-field calculation, they find that the critical
pressure decreases with the cell length and, consequently, the transition is
more likely to be triggered by a cell division. Similar mechanisms are also
found in confluent monolayers of eukaryotic cells [110–117, 13, 118] and
are believed to regulate cell extrusion and apoptosis. These works have
greatly contributed to shed light on the problem, however, a general under-
standing of the physical mechanisms underpinning the mono-to-multilayer
transition is still lacking, with questions far outnumbering the answers so
far: 1) Is there a well-defined critical state? 2) If so, what determines
the critical state? 3) Can we predict when and where the transition will
happen?

In this chapter we address these questions theoretically, using a com-
bination of numerical and analytical methods. We demonstrate that the
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mono-to-multilayer transition in a system of growing rod-like cells results
from a competition between the in-plane active stresses, that compress the
cells laterally, and the vertical restoring forces, owing to the cell-substrate
interactions (e.g. compression from the agarose on top or adhesion from
the substrate beneath). As the colony expands, the internal stress in-
creases until it is sufficiently large to cause extrusion of the first cell. In
the ideal case of a chain-like colony of laterally-confined non-growing cells,
being compressed from the two ends, the transition is entirely determin-
istic and the critical stress that triggers the extrusion can be calculated
analytically. Asynchronous cell division, however, renders the transition
stochastic. In this case, the critical stress is a continuously distributed
random variable and the first extrusion does not necessarily occur at the
colony center, despite this being the region of maximal stress. Upon mod-
eling the transition as a Poisson process, we can approximately calculate
the probability distribution function (PDF) of the position and time asso-
ciated with the first extrusion. Finally, we show that rate of the Poisson
process, is analogous to an order parameter and that, in this respect, the
mono-to-multilayer instability is likened to a continuous phase transition.

5.1 Simplified hard-rod model

We still use the hard-rod model introduced in section 2.1, with suit-
able simplification of mechanical interactions. Whereas cells in bacte-
rial colonies are potentially subject to a large variety of mechanical and
biochemical stimuli, here we focus on three types of forces that are im-
portant to the transition: the repulsive forces associated with cell-cell and
cell-substrate steric interactions and a vertical restoring force, represent-
ing either the mechanical compression from the agarose gel on top [56, 65],
or the attractive force due to adhesion of the cells with the glass slide or
the ECM [66]. Neighboring cells interact with the same way as shown in
section 2.1, with an exception that the forces are now Hookean instead of
Hertzian. This can greatly simplify the analysis of mechanical interactions
and make analytical treatments possible, while preserving the same phys-
ical picture. The force from the jth cell to the ith is then Fcij = kchijNij ,
with kc the elastic constant of cells. Similarly, the force from the sub-
strate is Fsiα = ks(d0/2− ziα)ẑ, where ziα is the z−coordinate of the caps,
if ziα < d0/2, or Fsiα = kali(d0/2− ziα)ẑ, if d0/2 < ziα < d0/2 + ra.
Here, ks and ka represent respectively the elasticity of the substrate and
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Figure 5.1. Snapshots of a simulated growing colony at different ages to show
the mono-to-multilayer transition. The lower image in each panel shows the side
view. In panels (c) and (d), the extruded cells are highlighted as red.

the strength of the vertical restoring force, and ra is the range of the
restoring force, beyond which the restoring force vanishes. The vertical
restoring force in general can depend on cell length in a very complicated
manner. Here, we simply set the vertical restoring force to be proportional
to the cell length, which is true in case of cell-substrate adhesion where
the number of adhesion molecules is proportional to the area of the cells
[66]. We stress that our model does not aim to accurately reproduce the
traits of a specific bacterial family, but rather to abstract the essential fea-
tures that all bacteria undergoing the mono-to-multilayer transition have
in common.

We integrate Eqs. 2.2 numerically using the following set of parameter
values: d0 = 1µm, kc = ks = 10 MPa µm, ζ = 100 Pa h and ra =
0.01 µm[62]. The division length ld varies from 3µm to 4µm and the
growth rate varies from 1µm/h to 2µm/h. The integration is performed
with a time step ∆t = 10−6 h.

Figure 5.1 shows typical configurations of our in silico colonies at
different time points. Consistent with the experimental evidence [61, 56],
the colony initially expands as a perfect monolayer (Figs. 5.1a,b) and,
once it is sufficiently large, some cells are extruded and initiate a second
layer (Figs. 5.1c,d).
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5.2 Mechanics of mono-to-multilayer transition

The mechanical interactions in the full 3D model is very complicated, for
the repulsion between neighboring cells depends on their relative position
and the relative orientation. For simplicity, we look at a simplified chain-
like colony, consisting of a row of cells confined in a channel (Fig. 5.2a).
This, in the simulation, is done by manually setting the y components of
ri and pi to be zero for all cells and at all times. The cells have identical
length l and do not grow, but are compressed by a pair of forces f applied
at the two ends of the channel. By doing so, we can manually control the
internal stress in the colony, hence can accurately determine the critical
state at which the transition happens. At the beginning of the simulation,
all cells are right on top of the substrate, i.e., zi = d0/2 and qxi = 1.
Then the compression force is increased very slowly from 0N , such that
the colony is at mechanical equilibrium for all times. In other words, all
cells are experiencing the same internal stress imposed by the compression
on the two ends.

As in the case of disk-like colonies (Fig. 5.1), cells remain perfectly
attached to the substrate for small compression forces. Once the com-
pression force exceeds a certain value, one of the cells is extruded to
the second layer. The existence of a well-defined critical force, f∗, at
which the monolayer becomes unstable, indicates that the transition is
entirely deterministic in this case. The critical force f∗ can be calcu-
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Figure 5.2. (a) Schematic diagram of the chain-like colony. (b) Schematics of
torque balance about the lower end of the cell. (c) Critical force f∗ as a function
of the cell length l, at various ka values. The dots and lines represent respectively
the simulation and analytical results as in Eq. 5.2.
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lated analytically upon balancing the torques associated with cell-cell and
cell-substrate interactions, about the lower end of the cell axis. Call-
ing p = (cos θ, 0, sin θ) the orientation of the first extruded cell and
fc = fc(− cos θ′, 0, sin θ′), with fc = f/ cos θ′, the contact force exerted
by the nearby cell (Fig. 5.2b), the lifting torque can be calculated in the
form: τc = l(pxfz − pzfx) = lf cos θ(tan θ + tan θ′). Analogously, the
restoring torque resulting from the adhesive force is τa = kal

3 sin θ cos θ.
In a perfectly horizontal monolayer, θ = θ0 = 0 and both torques vanish.
Any deviation from the equilibrium configuration will induce increases of
both torques with respect to θ, at rates

dτc
dθ
≈fl (1 + l/d0)

dτa
dθ
≈kal3,

(5.1)

respectively. Note that dτc/dθ increases linearly with the compression
force f . For a sufficiently small f vale, τa outgrows τc, hence any de-
viation from the equilibrium configuration, however small it is, will be
brought back to balance. This is why the cells are perfectly attached to
the substrate when f < f∗. In order for such a configuration to be un-
stable against slight orientational fluctuations, one should have dτc/dθ ≥
dτa/dθ. The equality then sets the critical force as:

f∗ = kal
2
(

1 +
l

d0

)−1
, (5.2)

in excellent agreement with the result of our numerical simulations (Fig.
5.2c). The existence of a well defined critical force resulting from the
competition between compression and rotation is vaguely reminiscent of
Euler’s buckling in elastic rods. However, while buckling is a system-
wide instability, the mono-to-multilayer transition is determined by torque
balance at the length scale of a single cell.

5.3 Stochastic theory
Next we study the mono-to-multilayer transition in a growing colony. Cells
are again confined in the channel for simplicity and, unlike the previous
case, they are not subject to lateral compression, but elongate and divide.
To investigate the effect of the key parameters, ka, ld, and g, we perform
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four sets of 105 simulations, starting from a single cell at the equilibrium
configuration. In the “control” set, we fix ka = 25 kPa, ld = 4 µm, and
g = 2 µm/h. In each of the remaining three sets we change one of the
parameters.
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Figure 5.3. (a) The spatial distributions of stress in growing chain-like colonies
at different ages, at the “control” parameters. (b) The maximum stress σm is
proportional to N2, while (c) the colony length L increases linearly with cell
number N . The error bars show the standard deviations of results from 10000
runs about the average values. Solid lines indicate the best fit, linear or parabolic,
to the data points.

As the colony expands, the internal stress progressively builds up. To
have a quantitative understanding of the spatial-temporal evolution of
internal stress, we measure the internal stress experienced by each cell
via the virial construction as we did in the previous chapters (see e.g.
Refs. [38, 60]). We focus on the in-plane stresses that trigger the mono-
to-multilayer transition, namely:

σi =
1
ai

Nc
i∑

j=1
(Π · rij)(Π · Fcij) , (5.3)

where ai ≈ d0(li + d0) is the area of the i-th cell and Π = I − ẑẑ, with
I the identity, is a projection operator on the xy−plane. In the case of a
chain-like colony, such as that depicted in Fig. 5.2a, the y−components of
both rij and Fcij vanish and σxx is the only nonzero component of the in-
plane stress. Because of the extensile nature of growth-induced stress, σxx
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has negative values. Nevertheless, for convenience, we neglect the sign of
σxx, and use it to indicate the magnitude of the in-plane stress, i.e. |σxx|.
While the local stress experienced by each cell is increasing with time, at
the colony scale it follows a simple parabolic profile of the form:

σxx(x) = σm

[
1−

(2x
L

)2
]

, (5.4)

where σm and L represent respectively the maximum stress and the colony
length (Fig. 5.3a). Numerically, we find that σm = aN2 and L = bN
(Figs. 5.3b and 5.3c), where N is the total number of cells and a and
b are constants depending only on the division length ld and the growth
rate g.

The stress profile shown in Eq. 5.4 can be derived analytically by
assuming an over-damped dynamics and the incompressibility of cells.
Consider a cell of length l and position x, subject to a stress difference

∆σxx = σxx(x+ l/2 + d0/2)− σxx(x− l/2− d0/2) (5.5)

on the two ends. From Eq. 5.3, the resultant force on the cell is ∆Fx =
−d0∆σxx, and the velocity

vx =− d0
ζl

∆σxx

=− d0(l+ d0)
ζl

∆σxx
l+ d0

≈− d0(l+ d0)
ζl

∂σxx
∂x

,

(5.6)

or equivalently

∂σxx
∂x

=− ζl

d0(l+ d0)
vx

≈− ζla
d0(la + d0)

vx,
(5.7)

where la = (ld + lm)/2 and lm = (ld − d0)/2 are respectively the average
and minimal lengths of cells.

Now we will get the velocity profile. Assume the cell chain is symmetric
about the point x = 0. If the amount of overlap between neighboring cells
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is reasonably small compared to the cell length, the velocity of a cell at
position x > 0 is

vx =
∑

0<xi≤x
gi ≈

xg

la + d0
. (5.8)

The last approximation is based on the Law of Large Number, where
x/(la + d0) is the average number of cells in region (0,x]. Especially,
the total number of cells, on average, is N = L/(la + d0). Hence, param-
eter b can be approximated as b ≈ (la + d0). Substitute Eq. 5.8 in Eq.
5.7, and integrate both sides of the equation from x to L/2, we have

ˆ L/2

x

∂σxx
∂x′

dx′ =−
ˆ L/2

x
dx′

ζgla
d0(la + d0)2x

′. (5.9)

By applying the boundary condition σxx(L/2) = 0, one arrives at

σxx(x) =
ζglaL

2

8d0(la + d0)2

[
1−

(2x
L

)2
]

. (5.10)

It can be demonstrated that Eq. 5.10 also applies to cells at x < 0. Since
L = (la + d0)N , σm = ζglaN

2/(8d0) and a = ζgla/(8d0). Comparison
between the simulated and analytical values of a and b can be found in
Tab. 5.1.

Parameters
[µm],[µm/h]

b [µm] a [kPa]
Simulation Analytics Simulation Analytics

ld = 3, g = 2 2.8 3.0 0.038 0.050
ld = 4, g = 2 3.5 3.7 0.052 0.068
ld = 4, g = 1 3.5 3.7 0.026 0.034

Table 5.1. Comparison between the simulated and analytical values of a and b.

Because the stress is maximal at the center of the colony, one would
expect the first extrusion to occur here. Our simulations, however, show
a dramatically different behavior. Specifically, the position of the first
extruded cell x∗ has a random value and it follows a broad distribution,
whose spread is comparable to the size of the colony itself (Fig. 5.4a).
Analogously the transition time t∗ (Fig. 5.4b) and the critical stress σ∗
experienced by cells at the verge of extrusion (Fig. 5.4c), are continuously
distributed random variables.
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Figure 5.4. (a-c) Probability densities of (a) the extrusion positions |x∗|, (b) the extrusion time t∗, and (c) the critical
stress σ∗, for chain-like colonies of asynchronously dividing cells. (d) Probability density of the extrusion position r∗ in
disk-like colonies, normalized by r∗, the distance from the point of extrusion to the centroid of the colony. (e-f) Same as
panels (b-c), but for disk-like colonies. In all panels, dots and dashed lines correspond to the simulation results and the
solid lines to the analytical predictions. In each set of simulations, one parameter is changed compared to the “control”
set, whose parameter values are indicated in the legends. The statistical results for each set of parameters are collected
from 10000 runs for chain-like colonies, and 2000 runs for disk-like colonies.

83



The lack of well defined critical stress is in stark contrast with the
classical buckling scenario, but shares some similarity with the onset of
fracture in heterogeneous media [119], i.e., the weakest point dominates.
In the following, we demonstrate that, in growing bacterial colonies, this
behavior results from the combined inherent randomness of cell length and
the dependence of critical force on the cell length. According to Eq. 5.2, a
cell is unstable to extrusion if subject to a critical stress, whose magnitude
increases with the cell length. In a growing colony of desynchronized divi-
sion, however, cells have different lengths, hence require different critical
stresses. In addition, each cell is also experiencing different local stress.
This means that the transition can happen to any cell as long as the local
stress exceeds the critical stress demanded by the local cell length. As
a consequence, there is no unique critical state in a growing colony, but
rather an ensemble of them, each corresponding to a specific combina-
tion of cell length and the corresponding critical stress. Furthermore, the
desynchronization of cell division makes it impossible to predict which
critical state to appear first. This is the origin of stochasticity of the
mono-to-multilayer transition in a growing bacterial colony.

The stochasticity of the transition demands that the problem can only
be tackled with statistical methods. In principle, one can work out the
time evolution of the statistical distribution of the critical states, from
which the probability distributions of the transition position and time can
then be obtained. In practice, we find that the transition is mostly trig-
gered by cell division. This is understandable: a division event introduces
a sudden drop in the cell length and this can, in turn, trigger an extru-
sion instability, as long as the cell is subject to a stress larger than that
required to extrude a cell of minimal length lm = (ld − d0)/2. A similar
phenomenon was found in [66]. We denote such a minimal critical stress
σ∗m. As the stress is spatially inhomogeneous and increasing in time, there
will be a whole region, symmetric with respect to the center of the colony
and whose length increases in time, where the local stress exceeds σ∗m and
cell division can trigger the first extrusion. We call this region the P-zone.
The probability associated with the first extrusion is then equal to the
probability of having a division within the P-zone. This can be calculated
as follows.

Let us consider a colony of n cells with growth rate g and assume
that, at an arbitrary time, their lengths are independent and uniformly
distributed in the interval lm ≤ l ≤ ld. After a time t, the probability that
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no division has yet occurred equates the probability that none of the cells
is initially longer than ld − gt:

P (t) =
(
ld − gt− lm
ld − lm

)n
≈ e−λ(n)t , (5.11)

where λ(n) = ng/(ld− lm) and the approximation holds for large n values
(n & 5). Equation 5.11 defines a Poisson process of rate λ(n) [120]. In
the case where the cell growth rate is also a random variable uniformly
distributed in the interval g/2 ≤ gi ≤ 3g/2, as we have in our hard-rod
model, one can prove the rate to become

λ(n) =
1

ld − lm

n∑
i=1

gi . (5.12)

For sufficiently large n values, by the law of large number, we have
∑n
i=1 gi ≈

ng so that:
λ(n) ≈ ng

ld − lm
. (5.13)

Furthermore, if n is time-dependent, the process becomes inhomogeneous,
but the probability preserves the same structure, with λ(t) ≡ λ[n(t)] and
P (t) = e−

´ t
0 dt λ(t) [120]. The PDF associated with observing the first

division at time t is then:

f(t) =
d
dt [1− P (t)] = λ(t)e−

´ t
0 dt′ λ(t′) . (5.14)

In our case, n represents the number of cells within the P-zone. Given
the length of the P-zone L∗, the total number of cells in it is a random
variable because of the random growth rate. Approximating

∑n
i=1 li ≈ nla

(again, law of large number), with la = (ld+ lm)/2 the average cell length,
we have n = L∗/(la + d0). L∗ can be calculated by solving σxx(L∗/2) =
σ∗m (red dashed line in Fig. 5.3a). This yields:

L∗ = b
√
N2(t)−N2

0 , (5.15)

where N0 =
√
σ∗m/a is the minimal number of cells required for the P-zone

to exist. From this and Eq. 5.13, we can calculate the rate λ(t) as:

λ(t) =
gb

(ld − lm)(la + d0)

√
N2(t)−N2

0 ∼ [N(t)−N0]1/2 . (5.16)
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Figure 5.5. Relation between cell number N and time t, at ld = 4µm and
g = 2µm/h. (a) The time t taken by the colony to attain a given population N
is a random variable of the form t = t̄+ ∆t, with ∆t Gaussianly distributed (the
solid line shows the best Gaussian fit). (b) N increases exponentially with the
average time t̄. The black dots represent the average t̄ and the horizontal error
bars show the standard deviation of 104 data samples about the average value t̄.

Equation 5.16 highlights the role of λ as an order parameter for the mono-
to-multilayer transition. For N(t) < N0, λ is imaginary and the proba-
bility of observing an extrusion vanishes identically. On the other hand,
for N(t) > N0, λ is real and the probability of observing an extrusion
increases in time. The transition is continuous in this case, but other
scenarios are likely possible.

To make the time-dependence explicit in Eq. 5.16, we need to calculate
N(t). Evidently, the average number of cells in the colony grows expo-
nentially in time. Because of the random growth rate, the time t taken for
the colony to attain a given population N is a random variable of the form
t = t̄+ ∆t. Numerically, we find that ∆t follows a Gaussian distribution
N (0, δ2

∆t) with a zero mean and a variance δ2
∆t (Fig. 5.5a). In addition,

N(t̄) ∼ exp(ωt̄) (Fig. 5.5b), as a consequence of the exponential growth,
or equivalently t̄ = ω−1 log(N). We can then express t = ω−1 log(N) + ∆t
and N(t) = exp[ω(t− ∆t)]. Replacing this in Eq. 5.16 yields:

λ(t, ∆t) =
gb

(ld − lm)(la + d0)

√
e2ω(t−∆t) −N2

0 . (5.17)

As shown in Fig. 5.6, at fixed ∆t = 0, λ(t, 0) ∼
√
t− t0 for t & t0,

where t0 = ω−1 log(N0) is the average time at which the P-zone first
appears. Because of the exponential decreasing of f(t) with increasing λ,
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Figure 5.6. (a) Rate λ(t, 0) (i.e. Eq. 5.17) of the Poisson process at the
“control” parameters. (b) Same as panel (a), but in a Log-Log scale. The red
dashed lines in both panels show the plots of λ(t, 0) = kλ

√
t− t0.

most extrusions happen in this time region. This yields, for nonzero ∆t
and t > t0 + ∆t,

λ(t, ∆t) ≈ kλ
√
t− t0 − ∆t, (5.18)

where

kλ =
gbN0

√
2ω

(ld − lm)(la + d0)
, (5.19)

which can be obtained by Taylor-expanding λ(t, ∆t) about t0 + ∆t.
The probability distribution function (PDF) associated with observing

the first extrusion at time t, given its offset ∆t from the average t̄, can
then be expressed as a conditional PDF of the form:

f(t|∆t) =λ(t, ∆t)e−
´ t

0 λ(t′,∆t)dt′

=kλ(t− t0 − ∆t)1/2e−
2
3kλ(t−t0−∆t)3/2 ,

(5.20)

which is a Weibull distribution and can be approximated as a Gaussian
distribution of the same mean and variance [121]:

f(t|∆t) ≈ N
[
t0 + ∆t+ Γ

(5
3

)( 3
2kλ

) 2
3

,
( 3

2kλ

) 4
3
[
Γ
(7

3

)
− Γ2

(5
3

)]]
.

(5.21)
The PDF of the extrusion time t∗ can be found, therefore, upon integrating
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over ∆t:

p(t∗) =
ˆ ∞
−∞

d∆t f(t∗|∆t)N (0, δ2
∆t)

=N
[
t0 + Γ

(5
3

)( 3
2kλ

) 2
3

,
( 3

2kλ

) 4
3
[
Γ
(7

3

)
− Γ2

(5
3

)]
+ δ2

∆t

]
.

(5.22)

As demonstrated by Fig. 5.4b, the analytical results are in good agreement
with those obtained from the numerical simulations.

Since cell division occurs uniformly in the P-zone, the PDF associated
with observing an extrusion at time t and position x is given by:

f(x, t|∆t) =
f(t|∆t)
L∗

=
λ(t, ∆t)
L∗

e−
´ t

0 λ(t′,∆t)dt′ ,
(5.23)

for −L∗/2 < x < L∗/2. From Eqs. 5.15 and 5.16, λ/L∗ = g/[(ld −
lm)(la + d0)]. Substituting this in Eq. 5.23 gives

f(x, t|∆t) =
g

(ld − lm)(la + d0)
e−
´ t

0 λ(t′,∆t)dt′

=
g

(ld − lm)(la + d0)
e−

2
3kλ(t−t0−∆t)3/2 (5.24)

Thus, the conditional PDF associated with observing an extrusion at po-
sition x, given the offset ∆t, is:

f(x|∆t) =
ˆ ∞
tp(x)+∆t

dt f(x, t|∆t)

=
ˆ ∞
tp(x)

dt′ f(x, t′|0)

=f(x|0),

(5.25)

where we have used the transformation t′ = t− ∆t and by virtue of Eq.
5.17, f(t, |∆t) depends on t and ∆t only via the combination t−∆t. Here,
tp(x) is the average time at which position x first enters the P-zone. From
Eq. 5.25, f(x|∆t) is independent of ∆t. The PDF associated with observ-
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ing the first extrusion at position |x∗| is then:

p(|x∗|) = 2
ˆ ∞
tp(x∗)

dt f(x, t|0)

=
2g

(ld − lm)(la + d0)

ˆ ∞
tp(x∗)

dt e−
2
3kλ(t−t0)3/2

=
2g

(ld − lm)(la + d0)

(2
3

) 1
3
k
− 2

3
λ Γ

[2
3, 2

3kλ (tp(x∗)− t0)
3
2

]
,

(5.26)

where Γ[s,x] is the incomplete Gamma function. It can be demonstrated
that [tp(x)− t0]1/2 = kxx, where kx = 2/(bN0

√
2ω). Substitute this in

Eq. 5.26, we have

p(|x∗|) =
2g

(ld − lm)(la + d0)

(2
3

) 1
3
k
− 2

3
λ Γ

[2
3, 2

3kλk
3
xx
∗3
]

=
(2

3kλk
3
x

) 1
3

Γ
[2

3, 2
3kλk

3
xx
∗3
]

,
(5.27)

which again agrees well with the simulations (Fig. 5.4a).
Finally, let us go back to the original disk-like colonies. In a disk-like

colony, the emergence of nematic domains makes the stress anisotropic,
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Figure 5.7. Critical stress in a disk-like colony at the “control” parameters. (a)
The probability distributions of different components of the critical stress. (b)
The two normal components of the critical stress σ∗‖ and σ∗⊥ are anti-correlated
(i.e. σ∗⊥ ∼ −σ∗‖) and fall above a line of minimal critical stress σ∗m (in red). The
black line shows a linear fit to the data points: |σ∗⊥| ∼ −c|σ∗‖ |.
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as discussed in chapter 3. The in-plane stress tensor can, nevertheless, be
decomposed into longitudinal and transverse components, namely:

σi = σi‖p
‖
i p‖i + σi⊥p⊥i p⊥i + τi(p‖i p⊥i + p⊥i p‖i ) , (5.28)

where p‖i = [pix, piy] and p⊥i = [−piy, pix]. To encode the anisotropy
of the stress tensor in the transition, we measure the critical stresses of
the extruded cells, and extract the three components, whose probability
densities are shown in Fig. 5.7a. The shear component τ∗ is always
negligible, whereas both normal stresses affect the stability of the planar
configuration. Specifically, plotting σ∗‖ against σ∗⊥, we find that the two
critical normal stresses are linearly related to each other (Fig. 5.7b),
namely: σ∗⊥ ∼ −cσ∗‖, with c a positive constant. In addition, all data
points fall above a line with the same slope (red line in Fig. 5.7b). These
results indicate that in a planar colony the two normal stresses are working
together to extrude cells. In addition, a σ⊥ can trigger the transition as
easily as a σ‖ = σ⊥/c, and the fact that c < 1 means that the amount
of contributions from the two normal stresses to the instability of cells
are different. The cause for this correlation is still unknown, and requires
further investigations of mechanical interactions in the full 3D scenario,
which is beyond the scope of this thesis. Nevertheless, based on the results
shown in Fig. 5.7, we can define an effective stress σ = σ⊥ + cσ‖ for each
cell, as well as a minimal effective critical stress σ∗m as indicated in Fig.
5.7b. Whenever σ > σ∗m, a cell division can always trigger a mono-to-
multilayer transition. Figures 5.4d-e show the probability distributions of
the extrusion position, the extrusion time, and the effective critical stress
σ∗ ≡ σ∗⊥ + cσ∗‖ for the original disk-like colonies (e.g. Fig. 5.1). Despite
the mechanical interactions being more complex in disk-like colonies, the
physical picture emerging from the simulations is nearly identical to that
discussed for chain-like colonies.

5.4 Discussion and conclusion

The enormous variety of physical and biochemical mechanisms observed
in cellular systems defeats the notion of universality, despite this, biofilms
and tissues feature traits that are consistently found across several mor-
photypes and species, such as the capability of transitioning from simple
monolayers to more complex multilayered structures [56, 65, 66, 110, 111,
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116, 13]. Whereas this transition manifests itself in a multitude of possible
variants, depending upon the nature of the environmental and intercellu-
lar forces, it robustly relies on a limited number of fundamental principles,
which most cellular systems have in common. First, the interplay between
steric interactions and active motion or growth, drives the formation of
coherent structures on the plane, such as nematic domains [122], topolog-
ical defects [13] or large groups of collectively moving cells [30]. Second,
the extensile stresses arising from the in-plane spatial organization and
the lack of vertical confinement, drives the cellular layer to be unstable to
extrusion. Because intercellular forces are mainly repulsive, this process
occurs at the scale of individual cells, in spite of the collective origin of
the in-plane stresses driving the instability. Third, the transition is both
deterministic and stochastic. For a given configuration of the colony, there
is well defined critical stress, related with the cells local arrangment (e.g.
cell length and nematic order). But, as this is inherently random, so is the
critical stress and, consequently, the extrusion time and position. There-
fore, there is no uniquely defined critical state, but rather an ensemble of
them. Upon modeling cell division as a Poisson process, and under the
assumption that newly divided cells are the first to be extruded, we were
able to reconstruct the probability distribution of the extrusion time and
position for a simple laterally-confined chain-like colony, finding excellent
agreement with our numerical data. The rate λ of the Poisson process is
analogous to the order parameter in phase transitions and, as the transi-
tion depends on the details of the system uniquely via λ, we expect our
result to be generic and carry over to other systems, as long as λ can be
derived or approximated.
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