
Growth-induced self-organization in bacterial colonies
You, Z.

Citation
You, Z. (2019, June 25). Growth-induced self-organization in bacterial colonies. Retrieved from
https://hdl.handle.net/1887/74473
 
Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/74473
 
Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/74473


 
Cover Page 

 
 

 
 
 

 
 
 

The following handle holds various files of this Leiden University dissertation: 
http://hdl.handle.net/1887/74473  
 
 
Author: You, Z. 
Title: Growth-induced self-organization in bacterial colonies 
Issue Date: 2019-06-25 

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/74473
https://openaccess.leidenuniv.nl/handle/1887/1�


Chapter 3

Geometry and mechanics of
freely expanding colonies

The ability of forming biofilms is a robust and widely observed property
across different bacterial species [50]. Despite the extraordinary diversity
within prokaryotic microorganisms, nearly all bacteria, either as single
species or in a community, possess the necessary biomolecular “toolkit”
to colonize a range of natural or synthetic surfaces through autonomous
production of extracellular matrix (ECM) [47]. Starting from a single bac-
terium, the colony gradually colonize the surroundings through a series of
well-regulated protocols. The first step is to extend its territory with a
monolayer expansion. With a solid ground, it invades the third dimension
by squeezing cells out of the monolayer, and subsequently forms a multi-
layered structure and then a mature biofilm [43–47]. In all these processes,
mechanical forces play a very important role.

In this chapter, we will explore the spatial organization and mechanical
properties in a freely expanding monolayer–the “childhood” of a biofilm.
Using molecular dynamics simulations and continuous modeling, we demon-
strate that the dynamics of the freely expanding monolayer is dominated
by the competing effects of cell slenderness and cell growth. On the one
hand, passive steric repulsion between the rod-shaped cells tends to align
the cell axes, and promotes local nematic order. On the other hand, cell
elongation along the axis generates an extensile active stress in the colony,
which can bend the director and create a distortion. The competition be-
tween the passive and growth-induced active forces results in a complex
internal dynamics as well as the emergence of coherent structures (Figs.
3.1a–d) reminiscent of those observed in active liquid crystals [29, 88–91].
Especially, the expanding colony self-organizes into a “mosaic” of nematic
microdomains, whose sizes are exponentially distributed, with a charac-
teristic length scale proportional to the square root of the ratio between
the system orientational stiffness and the magnitude of the extensile active
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stress. Both active and passive forces scale linearly with the cell density.
Therefore, despite the colony being denser in the center than at the periph-
ery, such an inherent length scale remains uniform throughout the system.
Finally, to assess the significance of our theoretical model, we compare our
predictions with experiments on freely growing E. coli microcolonies (Fig.
3.1). Whereas the statistics of our experiments are not sufficient to make
conclusive statements, we do not find obvious discrepancies with our theo-
retical model. In contrast, the agreement between theory and experiments
justifies some degree of optimism and creates promising ground for future
experimental research.

3.1 Stochastic geometry

We use the hard-rod model introduced in section 2.1 to simulate the freely
expanding monolayer. We assume the colony to be perfectly quasi-two-
dimensional, i.e. cells only move in the xy-plane, and the force components
in the third dimension have no effects on the in-plane dynamics. To do
so, we manually set zi = d0/2 and qiz = 0 for all cells and at all times.
Equations 2.1 and 2.2 have been numerically integrated using the following
set of parameter values: d0 = 1µm, Yc = 4 MPa, and ζ = 200 Pa h
[62]. The division length ld varies from 2µm to 5µm, and the growth
rate varies from 1µm/h to 10µm/h. The integration is performed with a
time step ∆t = 0.5× 10−6 h. Each simulation starts with one randomly
oriented cell and stops when the total length of the cells in the colony,
i.e., L =

∑N
i (li + d0), reaches the value 37500 d0, such that colonies with

different ld values have approximately the same colony area at the end
of the simulation. We can rescale the length by the cell diameter d0
and the time by ζ/Yc. In these units, our hard-rod model has only two
free parameters: ld/d0, which represents the cell slenderness or aspect
ratio, and the rescaled growth rate gζ/(Ycd0). In the remainder of this
chapter, all results are presented in terms of dimensionless quantities,
unless otherwise specified.

Figure 3.1 shows the typical configurations observed at the early stages
of colonization both in vitro and in silico. Along the colony boundary, cells
are predominantly tangentially aligned, as a consequence of torque bal-
ance. As the forces experienced by the peripheral cells are radial, these
cells must orient either tangentially or normally with respect to the bound-
ary in order for the torque acting on them to vanish. Normal alignment
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Figure 3.1. Growth of a bacterial colony. (a)–(d) Phase-contrast micro-
graphs at different time points capture the growth of a single cell of nonmotile
strain of Escherichia coli (strain NCM 3722 delta-motA) to a two-dimensional
colony under free boundary conditions. The scale bar corresponds to 10 µm. The
cell doubling time was 43.5± 2.2 minutes. After 12 generations (d), the colony
was observed to escape into the third dimension and form a second bacterial layer.
(e)–(h) Image analyzed snapshots of (a)–(d), capturing the emergence of local
orientational order within the growing bacterial colony, represented by differently
colored microdomains. Cells are color-coded by the orientation of the domains
they belong to, as described in the color wheel in panel (h). The inset in panel (e)
plots the area of the growing bacterial colony over time, showing the exponential
growth of cells in the colony. (i)–(l) The corresponding time points during the
growth of the bacterial colony obtained using molecular dynamics simulations.
Cells are color-coded with the same method as in panels (e)–(h). By varying the
aspect ratio of the cells (length/width) between 1.5 and 4, different physiological
states were simulated.
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is, however, unstable; therefore, most of the peripheral cells are oriented
tangentially. This tangential alignment has also been observed in several
other studies [63, 65]. In bulk of the colony, the emergence of local ne-
matic order is conspicuous throughout the system; however, this does not
propagate across the colony but remains confined to a set of microscopic
domains. These nematic domains, or “patches,” are separated from each
other by fracture lines reminiscent of grain boundaries in crystals [92, 93].
We can then use these domains to characterize the geometrical properties
of a growing bacterial colony and, hopefully can also infer the mechanical
properties of such systems.

At first glance, these nematic domains show very complicated spatial-
temporal dynamics. As the colony evolves, the domains grow, merge,
buckle, and break apart, in a complex sequence of morphological and
topological transformations. These phenomena suggest a chaotic nature
of the freely expanding monolayer. Despite the complex dynamics, these
domains exhibit very robust statistical properties. Figure 3.2 shows three
examples of proliferating colonies of cells, each with different ld values
and, hence, different cell aspect ratios. The typical domain area, as we
can see, increases with the cell aspect ratio. Although the microdomains
possess local orientational order, no preferential orientation was observed
at the scale of the colony, suggesting that the colony itself is globally
isotropic. The absence of the global orientational order can be ascribed
to the inherent instability of the domains, which continuously deform and
fracture under the effect of growth-induced stress. The typical domain
area then represents not only the coherent length scale of orientational
order but also the length scale at which the internal stresses compromise.

To quantify the emergent geometry of microdomains in a colony, we
apply a customized domain segmentation algorithm. Two cells are consid-
ered to belong in the same domain if they are in contact, and their relative
orientation differed by less than 3%. Although decomposition of a colony
depends on the chosen threshold, the overall nature of the geometry and
the emergent trends identified through different quantifiable parameters
are generally robust and independent of the chosen threshold. By using
this algorithm, we can then identify domains; measure their positions,
orientations, areas et al.; and get statistics of these quantities.

A central quantity to characterize the geometry of a colony is the
probability density of the area of these microdomains, P (A). This is
shown in Fig. 3.3a for colonies with different ld values. The frequency of
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Figure 3.2. Emergence of nematic domains in proliferating bacterial colonies. (a)–(c) Examples of nematic
microdomains in simulated bacterial colonies for various division lengths (ld = 3, 4, 5, in units of the cell diameter d0).
Cells are colored with the same method as in Fig. 3.1. Upon increasing the division length, the typical area of the
domains increases progressively. Inside a domain, the cells are highly aligned, while there is no preferential orientation
at the scale of the entire colony, as confirmed by the probability distribution of cell orientations (corresponding panels in
the lower row).
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domains with area A decreases with A and, for sufficiently large A values,
P (A) approaches the exponential distribution:

P (A) ∼ exp
(
− A

A∗

)
, (3.1)

where A∗ is a characteristic area scale proportional to the average domain
area. For small A values, the distribution slightly deviates from the expo-
nential form. This range corresponds to the boundary of the colony where,
because of the sudden drop in packing fraction, domains are very small or
consist of single cells. Although small domains seem to be outnumbered
large domains in the exponential region, they actually occupy relatively
small area in the whole colony, as can be obviously seen in Fig. 3.2. This
is because a large domain typically is as large as tens or even hundreds of
small domains altogether. For this reason, it’s fair to say that the domain
size is exponentially distributed in a growing colony.

We will now quantify the spatial dependence of the domains. First of
all, we notice that a sufficiently large colony has a rotational symmetry
about the colony center. This rotational symmetry is commonly shared
by all geometrical and mechanical quantities, which then depend exclu-
sively on r, the distance from the colony center. We calculate the average
domain area restricted to an annular strip, of width 5d0, and located at
distance r from the center of the colony, i.e., 〈A〉r (Fig. 3.3b). The local
domain area is uniform in the bulk of the colony, for a given cell aspect
ratio, before dropping to zero at the boundary, where the colony is more
disordered. In turn, the average domain area in the bulk 〈A〉 is strongly
affected by the division length ld. This is visibly conspicuous in Fig. 3.2.
Increasing ld makes the cells, on average, more slender, resulting in larger
and more stable domains, as revealed by the plot in Fig. 3.3c. More inter-
estingly, increasing the growth rate g has the opposite effect and causes a
drop in the domain area (Fig. 3.3d). All data in Fig. 3.3, as well as those
in Figs. 3.4, 3.5, 3.6, and 3.7 are obtained by averaging over 480 runs.
All simulation results in this chapter are obtained by analyzing the con-
figurations of the colonies at which the simulations stop, unless otherwise
specified. The error bars show the standard deviations of the 480 samples
with respect to the mean values.

The results reported in this section quantitatively demonstrate that
the spatial organization of the microdomains in expanding bacterial colonies
is regulated by the competing effects of the cell aspect ratio and the growth
rate. These effects can ultimately be ascribed to the mechanical proper-
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Figure 3.3. Geometry of nematic microdomains in bacterial colonies.
(a) Probability distributions of domain area, P (A), for various division length
ld. The domain area follows the exponential distribution P (A) ∼ exp(−A/A∗),
with A∗ = 54.3, 148.2, and 338.8, respectively, which increases with the division
length ld. (b) The average domain area at a distance r from the center of the
colony, showing that the area of the domains is found to be constant in the bulk
of the colony and drops to zero at the boundary. (c,d) The bulk domain area
〈A〉 (c) increases with the division length ld and (d) decreases with the growth
rate g. Here, 〈A〉 is calculated by averaging the areas of all domains within the
range 0 ≤ r ≤ R/2, with R the colony radius. All results shown in panels (a)–(c)
correspond to a fixed growth rate of g = 0.0002 (or 4µm/h in physical units),
while panel (d) represents simulation results with a fixed division length ld = 4.
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ties of the system, as we explain in the next section. We stress here that
our approach does not aim to faithfully reproduce all the experimental
details but rather to provide a conceptual key for understanding certain
geometrical and mechanical properties, with the help of a minimal model
comprising a single fitting parameter: i.e., the timescale τ = ζ/Y . Other
properties, such as the roughness of the colony edge and smoother vari-
ation in the orientation of neighboring domains, are not well captured
by our simple model and would require a more sophisticated construction,
accounting for the adhesive interaction between neighboring cells, the flex-
ibility of the cell membrane, and more specific cell-substrate interactions
[65]. Unfortunately, this would imply a cost in terms of free parameters
and reduced simplicity in the interpretation of the numerical results.

3.2 Mechanics

The domain geometry in a proliferating bacterial colony is determined
by the interplay between two competing forces: steric repulsion between
neighboring cells and the extensile stresses due to cell growth. While cell-
cell steric repulsion favors alignment, the emergent extensile stresses due
to the growth within a restricted environment (i.e., the space delimited
by the neighboring domains) tend to deform and eventually fracture a
domain. Both of these effects are due to contact forces and are, therefore,
enhanced by the local packing fraction φ.

To clarify this concept, we measure the local packing fraction φ(r, t) =∑
i ai(t)/Ar, where ai(t) is the area of the ith cell, located at time t in-

side a thin annulus of radius r, width 5d0, and area Ar, centered at the
colony center. As mentioned before, the colony has a radial symmetry;
hence, the local packing fraction depends exclusively on the distance r
from the center. Figure 3.4a shows that at any given time, the pack-
ing fraction decreases monotonically with r. As bacteria duplicate and
progressively colonize the surrounding space, the local packing fraction
increases with time throughout the system while maintaining a character-
istic spatial profile that smoothly interpolates between a time-dependent
maximum φ(0, t) = φmax(t), at the center of the colony, and a time-
independent minimum, φ(R, t) = φc, at the edge (R being the colony
radius). The quantity φc ≈ 1 is the critical packing fraction at which the
cells first start to compress each other. In close proximity of the edge of
the colony, φ < φc, and the contact forces tend to reorient the cells with-
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Figure 3.4. (a) Spatial dependence of the packing fraction for different ages
of colonies. (b) The rescaled packing fraction φ′ = [φ(r)− φ(R)]/[φ(0)− φ(R)]
versus r′2 = (r/R)2. All the curves collapse on the same line as demanded by
Eq. 3.2. The growth rate and the division length are fixed, i.e., g = 0.0002 and
ld = 4. The packing fraction φ is averaged over a thin annulus of radius r and
width 5d0, centered at the colony center. In all results presented, the length is
expressed in units of the cell width, d0, and time in units of the timescale ζ/Yc
defined in Eqs. 2.2.

out compressing them, leading to an abrupt drop in the packing fraction.
Upon rescaling the packing fraction by φ(0)−φ(R) and the distance r by
the colony radius R, the spatial dependence of the pacing fraction can be
described, at any time, by a simple quadratic law:

φ(r)− φ(R)
φ(0)− φ(R)

= 1−
(
r

R

)2
, (3.2)

as illustrated in Fig. 3.4b. As we analytically prove in section 3.3, such a
density profile originates from the balance between growth-induced pres-
sure and drag from the substrate.

The tendency of the cells to align with each other is driven by the local
steric interactions and can be conceptualized in the framework of Frank
elasticity [77], starting from the free-energy density:

fF =
1
2kF |∇n|2 . (3.3)

Here, kF is an orientational stiffness penalizing, in equal amounts, splay
and bending deformations, and n is the local nematic director correspond-
ing to the average orientation of the bacteria in a local region. Any de-
parture from the uniformly aligned configuration causes restoring forces
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proportional to the field h = −δ/δn
´

dAfF = kF∇2n [77]. As a conse-
quence of growth, each cell further acts as an extensile force dipole that
pushes away its neighbors along the ±n direction. This collectively gives
rise to an internal stress of the form

σ = −pI + α

(
nn− 1

2 I
)

, (3.4)

where p is the pressure, I the identity matrix, and α the deviatoric active
stress [94, 39]. In the most general case, the three quantities kF , p, and α,
appearing in Eqs. 3.3 and 3.4, are functions of the local packing fraction
and the nematic order parameter, in addition to the cell aspect ratio and
the growth rate.

Equations 3.3 and 3.4 identify a fundamental length scale `a =
√
kF/|α|,

proportional to the distance at which the passive restoring forces arising
in the system, in response to a local distortion, balance the active forces
that cause the nematic director to rotate [29]. This length scale plays a
pivotal role in the mechanics of active nematic liquid crystals [95–98, 78]
and, as we clarify later, determines their collective behavior and mechani-
cal properties. In the following, we demonstrate that, in a growing colony
of nonmotile cells, the inherent length scale `a determines the geometrical
properties of the microdomains in such a way that 〈A〉 ∼ `2a. For this
purpose, we measure the orientational stiffness kF and the stresses σ ex-
erted inside the colony. The stress experienced by the ith cell, σi, can be
calculated from the virial expansion [38]:

σi =
1
a′i

∑
j

rij Fij , (3.5)

where a′i = ai/φ is the effective area occupied by the ith cell. We
express the tensor in the basis of the nematic director and its normal
n⊥ = (−ny,nx), namely,

σ = σ‖nn + σ⊥n⊥n⊥ + τ (nn⊥ + n⊥n) . (3.6)

Figure 3.5a shows a plot of the various components of the stress ten-
sor versus the packing fraction, given by Eq. 3.5. As expected, the nor-
mal stresses σ‖ and σ⊥ increase with the packing fraction and, at any
finite packing fraction, are such that |σ‖| > |σ⊥|, as a consequence of
the anisotropic cell growth. The shear stress τ , on the other hand, is al-
ways negligible because of the absence of lateral friction between the cells.
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Figure 3.5. (a) Different components of the internal stress σ as functions of
packing fraction φ. The normal stress parallel to the director n, |σ‖|, is larger
than that perpendicular to it, i.e., |σ⊥|. Both |σ‖| and |σ⊥| are piecewise linear
functions of φ, while the shear component τ vanishes. The normal components
of stress can be rearranged into a hydrostatic pressure p and an extensile active
stress α, and both increase linearly with the packing fraction (inset). The simu-
lation parameters are the same as those in Fig. 3.4. Again, σ is averaged over a
thin annulus of radius r and width 5d0, centered at the colony center. (b) The
pressure is independent of growth rate g, while the active stress increases with
g. Here, ld = 4 is fixed.

Note that both σ‖ and σ⊥ are negative because of the extensile nature of
the growth-induced forces. The dependence of the normal stresses on the
packing fraction is piecewise linear: For φ < φc, the contact forces can
be relieved by rotations and repositioning of the cells, and σ‖ ≈ σ⊥ ≈ 0;
however, for φ > φc, the cells in the bulk are tightly packed, and internal
stresses build up as the packing fraction increases. Setting τ = 0 in Eq.
5.28 and taking n⊥n⊥ = I − nn, one can rearrange the stress tensor in
the form

σ = −
|σ‖ + σ⊥|

2 I + (σ‖ − σ⊥)
(

nn− 1
2 I
)

. (3.7)

Comparing this with Eq. 3.4 straightforwardly yields p = (|σ‖ + σ⊥|)/2
and α = σ‖ − σ⊥. Together with the numerical results summarized in
Figs. 3.5a–b, this implies

p = p0(φ− φc) , α = −α0|φ− φc| , (3.8)

as long as φ > φc. Not unexpectedly, the longitudinal growth of the cells
gives rise to an extensile (i.e., α < 0) active stress that decreases mono-
tonically with the distance from the center of the colony. The prefactors
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Figure 3.6. (a) The ring-shaped colony we used to measure the bending stiffness
kF . It has a radius R and a width w. Cells are colored by their orientations
according to the color wheel in Fig. 3.1. (b) Difference of energy density (energy
per unit area) between the straight channel and a ring-shaped channel of radius
R, as a function of R−2. (c) The orientational stiffness kF increases linearly with
the packing fraction at fixed ld. (d) The prefactor of the linear fit, kF0, increases
with the division length ld.

p0 and α0 are plotted in Fig. 3.5b as a function of the growth rate g.
The active stress α0 increases monotonically with g, while p0 is essentially
independent.

In order to estimate the orientational stiffness kF , we manually ar-
range our in silico bacterial colony inside an annular channel of width
w = 10d0 and radius R (Fig. 3.6a, w � R), as well as in a straight
one of the same width and lengthed 2πR. In both configurations, the
energy associated with the Hertzian contacts can be measured as: E =
(2/5) Ycd1/2

0
∑
〈ij〉 h

5/2
ij , where the summation runs over all the pairs of

cells in contact with each other. By comparing how the energy den-
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sity changes with the curvature of the channel, we can infer the ori-
entational stiffness. Figure 3.6b shows a plot of the difference ∆E =
E(φ,R)−E(φ,∞) between the energy of a bent channel with radius R
and a straight channel (both have a length 2πR), normalized by the area
2πwR of the channel, as a function of the squared curvature κ2 = 1/R2.
From Eq. 3.3, it follows that kF = ∂κ2 ∆E/(2πwR)|κ=0. As shown in
Fig. 3.6c, at fixed division length, the orientational stiffness kF increases
linearly with the packing fraction, i.e., kF = kF0(φ− φc). Furthermore,
increasing the slenderness of the cells makes the colony orientationally
stiffer (Fig. 3.6d).

Combining the measurements of the extensile active stress and the
orientational stiffness, we are finally able to formulate a scaling law for

Figure 3.7. The average domain area 〈A〉 is approximately proportional to
kF0/α0, for various combinations of growth rate and division length. We choose
three growth rates (identified by colors), and for each growth rate, we gradually
increase the division length from ld = 2 to ld = 5, corresponding to different data
points with the same color.
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the area of the nematic microdomains comprising our simulated bacterial
colonies. Namely,

〈A〉 ∼ kF
|α|

, (3.9)

in agreement with our numerical data (Fig. 3.7). In summary, bacterial
colonies freely growing on a two-dimensional frictional substrate sponta-
neously organize into a “mosaic” of microdomains consisting of highly
aligned cells. The domains are randomly oriented so that the colony is
globally isotropic and circularly symmetric at the global scale, while their
areas are exponentially distributed, as indicated in Eq. 3.1. Such a distri-
bution results from the competition between passive steric forces, which
favor local alignment, and the extensile active forces originating from the
cell growth. These forces balance at the length `a =

√
kF/|α|, resulting

in a characteristic domain area that scales as `2a. Remarkably, both the
orientational stiffness kF and the extensile active stress α scale linearly
with the packing fraction φ. Consequently, kF/α = kF0/α0, so the av-
erage domain area is uniform throughout the colony (Fig. 3.3b). Such a
cancellation of the dependence is intriguing: It is presumably specific to
the type of interactions chosen here, which we do not expect to hold in
general. Including the bending elasticity of the cells could, for instance,
change the packing fraction dependence of kF and α, resulting in a space-
dependent active length scale. Yet, the mechanism described here and
summarized by Eq. 3.9 is general and does not depend on the details of
the model.

3.3 Continuum theory

In this section, we demonstrate that much of the behavior previously
described can be quantitatively captured in the realm of continuum me-
chanics by means of a suitable extension to the hydrodynamic equations
of active nematic liquid crystals. Here, we introduce a comprehensive hy-
drodynamic framework, incorporating the density effects described in the
previous section as well as the deviatoric active stresses in the colonization
dynamics.

An expanding bacterial colony can be described in terms of the mate-
rial fields ρ, v, and Q, representing, respectively, the cell density, velocity,
and the nematic order. The dynamics of these fields is then governed by
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the following hydrodynamic equations:

Dρ

Dt
= kgρ+D∇2ρ , (3.10a)

D(ρv)
Dt

= ∇ · σ − ξρv , (3.10b)

DQ
Dt

= λSu + Q ·ω−ω ·Q + γ−1H , (3.10c)

modified from Eqs. 2.4, with an additional term kgρ (in Eq. 3.10a) rep-
resenting an exponential growth of the colony total mass at a rate kg
(proportional to the length extension rate g used in section 3.1). Further
details of the continuum theory can be found in section 2.2. The internal
stresses σ is similar to that of an active nematics:

σ = −pI + αQ− λSH + Q · H − H ·Q , (3.11)

where the second term represents the extensile active stress introduced by
the cell growth. Now, consistent with the results of our hard-rod model
presented in section 3.2, we encode a specific density dependence in the
quantities p, α, and L1 ∼ kF . We introduce the packing fraction φ = ρ/ρc,
where ρc is the density at which cells become closely packed and start to
transmit stress. Based on these considerations, we set

p = p0 (φ− 1) , α = −α0 (φ− 1) , L1 = kF0 (φ− 1) ,

where p0, α0, and kF0 are positive constants. Furthermore, we take α0 ∼
kg and keep p0 independent of kg, based on the results summarized in Fig.
3.5b. In our system of growing cells, orientational order is driven uniquely
by the steric repulsion, and the system transitions to a nematic phase for
large enough densities. We set A2 = A0(ρ∗ − ρ)/2 and A4 = A0ρ, so
the system has an equilibrium order parameter S =

√
1− ρ∗/ρ, with a

critical density ρ∗; hence, the colony is disordered for densities ρ < ρ∗,
and it is nematic for ρ > ρ∗. In the following, we assume ρc > ρ∗ to reflect
the earlier observation that, at very low density (i.e., at the boundary of
the colony), the contact forces tend to reorient cells rather than compress
them.

Equations 3.10 have been numerically solved using a finite difference
approach on a 351× 351 collocated grid. Figure 3.8 shows a typical config-
uration obtained for sufficiently large growth rates, in terms of the nematic
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Figure 3.8. Continuous Model. (a) Snapshot of a typical configuration
obtained from a numerical integration of Eqs. 3.10. Displayed here is the an-
gle between the nematic director and the x axis, colored using the same color
scheme as in Fig. 3.1. (b) Director field (lines) superimposed on a color map
of the nematic order parameter S. As for the hard-rod model, nematic order
is approximatively uniform except at the boundary of the domains. (c) Radial
and (d) tangent components of the velocity field, vr and vϕ. Along the radial
direction, the flow is predominantly expansive because of the cell growth. On the
other hand, there is no net circulation along the tangential direction.
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director and order parameter (Fig. 3.8a and 3.8b) and velocity field (Fig.
3.8c and 3.8d). As for our hard-rod models, these consist of an ensemble
of randomly oriented nematic domains, whose characteristic area remains
uniform in the bulk of the colony. In order to make a quantitative com-
parison between our discrete and continuous models, we reconstruct the
geometrical properties of the microdomains based on the following cri-
terion. Given the orientation θ = arctan(Qxy/Qxx)/2 of the nematic
director, we define Θ as the coarse-grained θ field in which all values are
sorted into bins; e.g., 2(n− 1)π/m ≤ θ < 2nπ/m =⇒ Θ = (2n− 1)π/m
for n = 1, 2, . . . , m (with n and m both integers). This divides the colony
into domains that can then be identified by labeling the connected com-
ponents of the resulting two-dimensional matrix. We use a value of m = 6
here to reflect a typical θ change between two boundaries in the hard-rod
model.

Figure 3.9 summarizes the results obtained from a numerical integra-
tion of Eqs. 3.10. As for the hard-rod model, the density decreases mono-
tonically from the center of the colony, consistent with the quadratic law
given by Eq. 3.2 (Fig. 3.9a). Here, we demonstrate that such a property
originates from the interplay between growth-induced pressure and drag
from the substrate. Under this hypothesis and assuming low Reynolds
number, from Eq. 3.10b, one can approximate the momentum density
in the Darcy-like form ρv = −µ∇ρ, where µ = p0/(ξρc) is a mobility
coefficient. Using this relation in Eq. 3.10a yields the following moving
boundary value problem for the colony density:

∂tρ = µ∇2ρ+ kgρ , |r| < |R| , (3.12a)

ρ(R, t) = ρc , (3.12b)

Ṙ = −µρ−1∇ρ|r=R , (3.12c)

where we indicate with R the position of the boundary of the colony and
with Ṙ = v(R) its velocity. Because of the circular symmetry of the colony
at long times, R = Rr̂, and Eqs. 3.12 reduce to a Stefan problem with
one spatial and one temporal variable [99]. At short times, density and
pressure are still roughly uniform across the system, and growth results
mainly in a radial expanding flow. Consistent with Eq. 3.10a, if ρ(r, t) ≈
const, then ∇ · v = kg. Thus, assuming vϕ = 0, we get vr = kgr/2 and
R(t) = R(0) exp(kgt/2). The long time dynamics, on the other hand, is
dominated by the internal diffusive currents. In this regime, ρ(0, t) � ρc
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Figure 3.9. Geometrical properties of continuous colonies. (a) Spatial
distribution of the packing fraction (φ = ρ/ρc) for colonies of different ages, given
by their generation. Similar to the hard-rod model, the inset shows that all curves
collapse to a single line when φ and r are rescaled by φ′ = [φ(r)−φ(R)]/[φ(0)−
φ(R)] and r′ = r/R. (b) Probability density of the domain area, P (A), for
various values of the orientational stiffness kF0. (c) The average domain area
at a distance r from the center of the colony. As in the hard-rod model, the
typical domain area is uniform across the colony. (d) The average domain area
for a colony scales linearly with the squared active length scale `2a = kF/|α|. The
inset shows that the radial distribution of domain areas can be rescaled by the
squared active length scale to the same value. In presenting the results, we use
l = 1/

√
ρc as our units of length. We interpret the doubling time tg = log(2)/kg

as the time per generation. The simulations were run on a 351× 351 grid with
the spacing set to 1. They start from a circle of bacteria with density ρ0 = 0.1
and radius 6 grid points and grow to a given total mass, at which point the
simulation ends. The (unscaled) parameters used were ρ∗ = 0.005, A0 = 50,
ρc = 0.1, ξ = 5, P0 = 10, λ = 0.1, and ζ = 10. The two variable parameters
are α0 = (a) 0.225, (b) 0.45, (c) 0.225, and (d) [0.225, 0.45], kF0 = (a) 0.25,
(b-c) [0.15, 0.35], with kg = α0/25− 0.0075. Results presented are based on the
average of 50 simulated colonies.
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and R�
√
µ/κg, which is the characteristic length scale associated with

Eq. 3.12a. Thus, taking ρc → 0 and R → ∞, one can find an analytical
solution of Eqs. 3.12 of the form

ρ(r, t) =
M0

4πµt exp
(
kgt−

r2

4µt

)
, (3.13)

under the assumption that ρ(r, 0) = M0δ(r). Thus, in agreement with
Eq. 3.2, we have

ρ(r, t)
ρ(0, t) ≈ 1−

(
r

R

)2
, (3.14)

where, consistently with Eq. 3.12c, we have taken R = 2
√
µt. For generic

ρc and R values, Eqs. 3.12 become analytically intractable; nonetheless,
our numerical simulations (Fig. 3.9a) indicate that even the short time
dynamics of the density ρ is ultimately dominated by a similar competition
between growth and drag.

The geometrical properties of the nematic microdomains are summa-
rized in Figs. 3.9b–d. The area of the domains is exponentially distributed
(Fig. 3.9b), and its average 〈A〉r is uniform across the colony (Fig. 3.9c)
and proportional to the squared active length scale as demanded by Eq.
3.9 (Fig. 3.9d). The agreement between our discrete and continuous mod-
els not only validates our interpretation of the results presented in Secs.
3.1 and 3.2 but also demonstrates that the a growing bacterial colony can
be described by the hydrodynamics theory of active nematics. On the
one hand, this provides an efficient method to simulate growing bacterial
colonies. Unlike discrete particle methods (including that used in section
3.1), our hydrodynamic approach does not suffer from the prohibitive
slowdown caused by the exponential increase in the particle number, and
it can be naturally generalized to other geometries and boundary condi-
tions. On the other hand, this approach offers another prototype, i.e.,
growing bacterial colonies, for the experimental and theoretical study of
active matter.

3.4 Experiment on E. Coli microcolony
To further test the significance of our results, we compare our theoret-
ical predictions with experiments on a nonmotile strain of E coli NCM
3722 delta-motA. The cell-to-colony growth was observed on a 2-mm-
thick layer of agarose gel uniformly mixed with LB, a nutritionally rich
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Figure 3.10. Lateral view of the micro-environment used in the bacterial
growth experiments. Escherichia coli was grown on an agarose layer (pale pink)
replete with Lysogeny broth (LB). The nutrient-rich agarose layer was sand-
wiched between two glass slides (grey hue) and enclosed with a 2-mm-thick neo-
prene spacer (marked as “S” in yellow). The cells (shown in blue) were imaged
from below using time-lapse phase-contrast microscopy.

medium commonly used for growing bacteria (Fig. 3.10). The nutrient
layer was sandwiched between two glass slides and enclosed within a 2-
mm-thick neoprene spacer. The cells were imaged from below using time-
lapse phase-contrast microscopy. For each experiment, we cultured the
cells overnight in the LB medium. A dilute concentration of this culture
was used to spot single bacterium on the agarose surface, which subse-
quently grew into colonies. For each experiment, E. coli was cultured
overnight in the LB medium at 25 ◦C. A dilute concentration of this cul-
ture was then used to spot single bacterium on the agarose surface, which
served as nucleating sites for subsequent colonies.

Under the given experimental conditions, the average doubling time
of bacteria was 43.5 ± 2.2 minutes (doubling time for each replicate in
minutes was 42.86, 45.89, 44.42, and 40.76). Cells in the colony were
0.9 ± 0.1 µm wide, while the average cell length varied among different
colonies. The four replicates considered here were obtained under room-
temperature conditions, which was stable at approximately 22◦ during the
course of the measurements. The variability in the cell division lengths
is frequently observed within colonies growing under similar conditions,
potentially because of the inherent variability in the probability of growth
itself (also known as phenotypic heterogeneity) [100]. Statistics were mea-
sured over four independent colonies. The nutrient-rich agarose layer was
thus sufficiently thicker than the bacterial monolayer (' 1 µm), which
ensured constant availability of nutrients during the entire duration of the
experiments.

We used time-lapse phase-contrast microscopy to visualize the growth
of two-dimensional bacterial colonies (Fig. 3.1a–d). Images were acquired

42



using an Andor iXon Ultra 897 camera (8 µm/px) coupled to an inverted
microscope (Nikon TE2000) with a 40× air objective (additional 1.5×
magnification was used in some cases). This gave us a resolution of 0.2
µm (0.13 µm with additional 1.5× magnification). For a 4-µm-long cell,
this resulted in a resolution of 20 pixels/cell. Using subpixel resolution
(achieved by Gaussian interpolation), we could further improve this by
a factor 2, which provided us with sufficient resolution to reliably detect
and segment single cells. As checks, we analyzed the correct segmentation
area over the entire segmented area (true positive rate) and, as a comple-
mentary parameter, looked at the false-positive rates. Prior to time-lapse
image acquisition, we identified and recorded multiple spots on the agarose
layer where single bacterium was present. The microscope was automated
to scan these prerecorded coordinates and to acquire, every 3 minutes, the
images of gradually growing bacterial colonies. By recording the phase-
contrast images over hours, we acquired the necessary data for quantify-
ing growing bacterial colonies. We analyzed the phase contrast images
to extract the dimensions (length and width), position (centroid), and
the orientation of each cell using intensity thresholding routines available
through open source image analysis software ImageJ. Upon extraction of
the cell dimensions, and the corresponding centroids and orientations, we
generated orientation maps of the colony using MATLAB (MathWorks).
All experiments were designed and conducted by Anupam Sengupta, while
analyses of experimental data were done by Zhihong You.

Four independent colonies were cultured under the same experimental
conditions as specified in the previous section. Despite their approxi-
mately similar doubling time, variance in their growth rates (rate of elon-
gation) was quite significant, as was the variance in their division lengths.
Figures 3.11a and 3.11b show two examples of proliferating colonies of
cells, each with different division lengths and, hence, different cell aspect
ratios. Like in the simulations, cells self-organize into nematic domains of
different sizes and shapes, and the typical domain area increases with the
cell aspect ratio. Along the colony boundary, the cells are preferentially
oriented along the tangential direction, whereas in the bulk, the domains
are isotropically oriented (insets in Fig. 3.11).

For the strain of bacteria we used, the division rate (or doubling time)
is constant at a given temperature; hence, the growth rate (rate of elonga-
tion) is approximately proportional to the cell aspect ratio [55]. It is thus
difficult to vary the growth rate and the cell aspect ratio independently
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Figure 3.11. Snapshots of two-dimensional bacterial colonies with division
lengths (a) ld = 3.4 and (b) ld = 5.1. Cells are color-coded with the same
method as in Fig. 3.1, and the scale bar corresponds to 10 µm. The insets show
the normalized frequencies of cell orientations of the corresponding colonies.
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Figure 3.12. Comparisons between the experiments and the simulations in (a)
average domain area 〈A〉 as a function of division length ld, (b) spatial distribu-
tion of domain area 〈A〉r. Data from four independent colonies in the experiment
are analyzed, each corresponding to a dot in panel (a). Magenta dots represent
results from three experimental colonies (ld = 3.4, 3.1, 3.0 and g = 3.1µm/h,
2.9µm/h, 2.8µm/h in physical units) with an average division length ld = 3.2,
and the brown dots are from one experimental colony with division length ld = 5.1
and growth rate g = 4.2µm/h in physical units. The simulation data, represented
by solid lines, are the same as those shown in Figs. 3.3a–c, i.e., with a growth
rate g = 0.0002 (or 4µm/h in physical units).

in our experiment, as done in the simulations. However, as we can see
from Figs. 3.3c and 3.3d, the variation of domain size is more sensitive to
the division length ld, if ld and g are linearly related. For this reason, we
compare the experimental results with those of a fixed growth rate from
the MD simulations.

Figure 3.12a shows the average domain sizes of the four colonies (each
represented by a dot) as a function of the division length ld. We can
see that the average domain sizes 〈A〉 in experiments fall well within the
region predicted by our simulations. The spatial distribution of domain
size, i.e., 〈A〉r, is approximately constant for ld = 3.2 (magenta dots in
Fig. 3.12b), and overlaps well with that for ld = 3.0 from the simulations.
Here, 〈A〉r for ld = 5.1 (brown dots in Fig. 3.12b) is also in the expected
region. Note that 〈A〉r drops at a smaller r/R in the experiments. This is
because the colony radius R is smaller in the experiment, and the relative
thickness of the boundary layer, which contains smaller domains, is larger.

Because of the limited statistics, our experimental results do not allows
us to formulate conclusive statements. However, the quantitative agree-

45



ment between the experiment and theory, is encouraging in suggesting
that some of the geometrical and mechanical aspects of bacterial micro-
colonies can indeed be conceptualized in the framework of active liquid
crystals.

3.5 Discussion and conclusion

Sessile bacteria communities have the extraordinary ability to colonize a
variety of surfaces, even in the presence of nonoptimal environmental con-
ditions. Such a process typically starts from a few or even a single cell
that elongates and eventually divides at a constant rate, and this gives rise
to highly complex two-dimensional and three-dimensional structures con-
sisting of tightly packed and partially ordered cells. Colonies originating
from a single bacterium initially develop in the form of a flat and circularly
symmetric monolayer and, after reaching a critical population, invade the
three-dimensional space forming stacks of concentric disk-shaped layers
[61, 56]. While in the monolayer form, bacterial colonies exhibit promi-
nent nematic order; however, this does not propagate across the colony,
and it remains confined to a set of microscopic domains of coaligned cells.
Using molecular dynamics simulations, continuous modeling and, to a lim-
ited extent, experiments on E. coli microcolonies, we have demonstrated
that these domains originate from the interplay of two competing forces.
On the one hand, the steric forces between neighboring cells favor align-
ment. On the other hand, the extensile active stresses due to growth tend
to distort the system and disrupt the local orientational order. This results
in an exponential distribution of the domain area, with a characteristic
length scale `a =

√
kF/|α|, where kF is the orientational stiffness of the

nematic domains and α the magnitude of the deviatoric active stress.
Previous studies have shown theoretically that random cell division

in cellular monolayers can potentially induce an extensile active stress
[63, 87]. By modeling the growing cellular monolayers as nematic liquid
crystals, and coupling the nematic tensor Q with the local cell concentra-
tion c, they demonstrated that random cell division could locally increase
the cell concentration and, through the Q coupling, drive a corresponding
increase in the local nematic order. Changes in the local nematic order
lead to the variations in the molecular field H, and subsequently generate
an extensile active stress of the form αQ. These results, though inter-
esting, are grounded on the specifically designed yet unjustified coupling
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between Q and the cell concentration c, as well as the fact that cell division
has to be randomized in both space and time. In addition, works on ses-
sile bacterial colony also revealed, in a qualitative picture, that cell growth
could lead to an axial compression of cells, which could trigger a buck-
ling instability of cell orientation, either in colonies confined in a straight
channel [59], or at the interface between different species [53]. Here in this
chapter, we systematically study the mechanical effects of cell growth in a
freely expanding monolayer. With quantitative measurements and math-
ematical derivations, we demonstrate that cell growth can differentiate
the normal components of the internal stress which, upon rearrangement,
contains explicitly an extensile active stress αQ. The hydrodynamic the-
ory introduced here, can then be used as a comprehensive framework to
study the interplay among mechanical stresses, cell orientation, and the
flow of cells, in growing bacterial colonies.

In addition, the present work allows an accurate description of the
chaotic dynamics with a number of experimentally testable predictions,
such as the exponential distribution of the domain area, summarized by
Eq. 3.1, and the dependence of the average domain area on the cell as-
pect ratio and growth rate (Figs. 3.3c and 3.3d). The identification of
the active length scale `a offers a coherent interpretation of the collective
behavior of the freely expanding monolayer. As active nematic liquid crys-
tals, colonies of nonmotile duplicating bacteria are expected to be found
in either an ordered or disordered state depending on the ratio between `a
and the colony size R. During the initial expansion (R� `a), the colony
develops a highly aligned state, as the restoring forces arising in response
to the elastic distortions outweigh the growth-induced active forces. Con-
sequently, the collective growth of cells along the aligned direction results
in an elongated shape of the colony (Figs. 3.1f and 3.1j). For a large
colony (R � `a), on the other hand, the system is orientationally dis-
ordered and dynamically chaotic. The absence of preferred orientation
renders the colony morphology isotropic (Figs. 3.1h and 3.1l).

Even though cell morphology is one of the most well-documented phe-
notypic traits of microorganisms, its role as a functional trait in microbial
ecology and evolution has received little attention [101]. The sponta-
neous creation of microdomains during the initial stages of colony growth
presents a remarkable setting, one in which nonmotile bacterial cells col-
lectively lead to emergent motility within the colony, as visualized in the
chaotic fracture and coarsening dynamics of the nematic domains. Con-
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sequently, this interplay between growth-induced stresses and phenotypic
stiffness of the participating cells introduces a novel angle to the trans-
port and material attributes of such biologically active matter. Future
studies on emergent motility within colonies of nonmotile cells, both in
experiments and theory, are expected to contribute to a comprehensive
biomechanical picture, highlighting the activity-driven cell-cell commu-
nications that precede biofilm formation. Finally, the results presented
here are general and can be extended beyond bacterial communities, for
instance, to study mammalian cells, many of which exist as nonmotile
elongated phenotypes [102].
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