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Chapter 2

Models

2.1 Discrete model

A growing bacterial colony is a typical complex system. Even in a simple
setup (e.g. Fig. 1.5), there could be plenty of biochemical and mechan-
ical interactions involved. Depending on the local arrangement of cells,
mechanical interactions between neighboring cells may include steric re-
pulsion if squeezing each other, cell-cell adhesion resulting especially from
the molecular complexes known as adhesins, and frictional forces due to
the relative motion [56, 65]. Similar types of forces can be found between
cells and substrate [56, 65]. All these mechanical interactions originate
from elastic contacts between soft bodies, i.e. cells and substrates, mak-
ing it even more difficult to determine the magnitude and direction of the
forces. In addition, cell growth, as the ultimate driving force, not only
depends on the metabolic state of each cell, but also the local concentra-
tion of nutrient, which has its own spatial-temporal pattern controlled by
the diffusive dynamics [62]. Modeling the system in its full complexity,
would be far beyond the capabilities of simple models with few control
parameters.

Here, we use a minimal model including only the ingredients that are
essential to the dynamics of the system. Each bacterium is modeled as
a spherocylinder with a fixed diameter d0 and a time-dependent length l
(excluding the caps on both ends, Fig. 2.1) [62]. The model is in general
three-dimensional, but one can enforce it to be quasi-1D or quasi-2D by
suppressing specific degrees of freedom. Each cell has a position ri (the
center of mass) and an orientation pi, which is a unit vector pointing from
the cell center to either end of the cell. Although the two ends of the cell
might have different biochemical or mechanical properties [65, 70], here in
this thesis, we assume the cell to be symmetric, and hence pi = −pi.

Cell growth and division are modeled as following. The length li in-
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Figure 2.1. Schematics of the hard-rod model. (a) Each cell has a fixed diam-
eter d0 and a time-dependent length l (excluding the two caps) that increases
linearly in time as demanded in Eq. 2.1. Once they reach the division length ld,
they divide into two identical daughter cells. (b) The steric interaction between
neighboring cells is modeled as the Hertzian repulsion between two spheres of
diameter d0, centered respectively at rmi and rmi , which minimize the distance
between the cell axes (i.e. the two black dashed lines). (c) Each cell interact with
the substrate through their caps. The forces on the two caps are calculated inde-
pendently. They could be repulsive in case of penetration (left end), or attractive
in presence of gap (right end).

creases linearly in time,
dli
dt = gi, (2.1)

where gi is the growth rate of the ith cell. After it reaches the division
length ld, the cell divides into two identical daughter cells. In order to
avoid synchronization of divisions, the growth rate of each cell is randomly
drawn from a uniform distribution in the interval [g/2, 3g/2], hence g is
the average growth rate. Immediately after duplication, the daughter cells
have the same orientation as the mother cell but independent growth rates.
The rate of cell division can vary over time, with the increase of growth-
induced local pressure [71, 72]. In bacterial colonies, however, such an
effect takes place only at pressure values that are significantly larger than
those experienced by the cells in a microcolony [73, 56] and has, therefore,
been neglected in our model.
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Neighboring cells, when overlap, interact stericly through a Hertzian-
like contact force. To determine the direction and magnitude of the repul-
sion force, we first find the two points on the major axes of the two cells
(black dashed lines in Fig. 2.1b), rmi and rmj , which minimize the distance
between the two major axes, hence maximize the overlap of the two cells.
The force between the two rods is approximated as a force between two
spheres of diameter d0, centered at rmi and rmj , respectively [62]. Specifi-
cally, the force from the jth cell to the ith is Fcij = Ycd

1/2
0 h3/2

ij Nij , where Yc
is proportional to the Young’s modulus of the cell, hij = d0− |rmi − rmj | is
the overlap distance between the two cells, and Nij = (rmi − rmj )/|rmi − rmj |
the unit vector from rmj to rmi . The point of contact is assumed to be at
rij = (rmi + rmj )/2.

Mechanical forces from the substrates, including the glass slide and the
agarose gel on top, can be modeled implicitly, as if they were exerted from
an imaginary plane spanning in the x and y directions, at z = 0. From now
on, we refer to this imaginary plane as the “substrate” for convenience.
Cells interact with the substrate through their caps, at positions riα =
αlipi/2 (α = ±1) with respect to the cell center ri, and the force on
each cap from the substrate is calculated independently (Fig. 2.1c). This
force can be either repulsive or attractive, depending on the positions
of the cap centroids, in such a way to model the impenetrability of the
glass slide as well as the vertical repulsive force from the agarose gel. If
ziα < d0/2, where ziα is the z−coordinate of the caps, the cell cap overlaps
the substrate, hence is repelled with a Hertzian force Fsiα = Ysd

1/2
0 (d0/2−

ziα)3/2ẑ, where Ys is an effective elastic constant depending on the Young’s
modulus of the cell and the substrate. If on the other hand, there’s a gap
between the cell cap and the substrate, i.e. d0/2 < ziα < d0/2 + ra, a
vertical restoring force Fsiα = kali(d0/2− ziα)ẑ will be applied to the cell
cap, with ra the range of the restoring force (Fig. 2.1c). Here, the vertical
restoring force can represent either the compression force from the agarose
gel on top, or the adhesive forces from the glass/ECM, or a combination
of both [56, 65, 66]. In presence of rigid wall confinement in the lateral
direction, the repulsive force (no attractive force in this case) from the
rigid wall can be calculated in the same way, but the magnitude of the
force is proportional to Yc instead of Ys.

Since the system is highly overdamped, inertia plays a minor role here.
Hence, the motion of cells is governed by the over-damped Newton equa-
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tions for a rigid body [74], namely,

dri
dt =

1
ζli

Nc
i∑

j=1
Fcij +

∑
α=±1

Fsiα + ηi

 , (2.2a)

dpi
dt =

12
ζl3i

Mi × pi (2.2b)

Mi =
Nc
i∑

j=1
(rij × Fcij) +

∑
α=±1

(riα × Fsiα). (2.2c)

The first term on the right-hand side of Eq. 2.2a represents the repulsive
forces from neighboring cells, where the summation runs over all the cells
in contact with the ith cell. The second term on the right-hand side of Eq.
2.2a represents the forces associated with the interaction between the cell
caps and the substrate/confinement wall. ηi is a random kick to the ith
cell whose components are randomly drawn from the uniform distribution
in the interval [−10−6N, 10−6N]. Mi in Eq. 2.2c is the torque on the cell
with respect to the cell centroid. Finally, Eqs. 2.2a and 2.2b represent
respectively the displacement and rotation of the cell in response to the
forces and the torques. The constant ζ is a drag per unit length, which
is assumed to be independent of the cell orientation. Possible origins of
this drag are adhesive or frictional forces from the substrates, or from the
ECM produced by cells during the colonization [62, 65, 66].

2.2 Continuum theory

Previous studies as well as our results from the molecular dynamics simu-
lations have suggested that a growing colony exhibits orientational order
but no positional order [38, 51, 59, 63, 65], hence is a nematic liquid crys-
tal. In addition, we also find that cell growth collectively gives rise to a
deviatoric stress reminiscing the famous active nematics [7, 75]. For this
reason, we will use the continuum theory of active nematics to charac-
terize a growing bacterial colony. Detailed discussion on the connections
between growing bacterial colonies and active nematics will be shown in
chapter 3. Here, we will introduce the general hydrodynamic equations of
active nematics.

A nematic liquid crystal, or nematics, is a state of matter where the
system shows orientational order but no positional order [76, 77]. This
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Figure 2.2. Orientational orders in nematic liquid crystals. (a) Isotropic state
corresponding to an order parameter S = 0, and (b) highly aligned state with
S ≈ 1. The red arrow in (b) indicates the average orientation n of the particles.
Note that n = −n. (c) Splay and (d) bending distortions of a two dimensional
nematic liquid crystal.
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orientational order can be driven either by excluded volume interactions
between anisotropic-shaped particles, or anisotropic interactions between
particles with arbitrary shape, and the resulting nematic phases are called
lyotropic nematics and thermotropic nematics, respectively [76]. The ori-
entational state of a nematics can be characterized by the so-called ne-
matic order tensor Q, which in a two-dimensional space is of the form:

Q = S

(
nn− 1

2 I
)

. (2.3)

In Eq. 2.3, S is called the nematic order parameter, which quantifies the
degree of orientational order and has a value continuously distributed from
S = 0 (no orientational order, Fig. 2.2a) to S = 1 (perfectly aligned, Fig.
2.2b). n is a unit vector representing the average orientation of particles.
Note that n and−n represent the same orientational state. I is the identity
matrix.

In addition to Q, we can also use the density field ρ and the velocity
field v to characterize the mechanical state of a nematic liquid crystal.
The dynamics of these material fields are then governed by the following
hydrodynamic equations [76–78]:

Dρ

Dt
= D∇2ρ , (2.4a)

D(ρv)
Dt

= ∇ · σ − ξρv , (2.4b)

DQ
Dt

= λSu + Q ·ω−ω ·Q + γ−1H , (2.4c)

where D/Dt = ∂t + v · ∇+ (∇ · v) is the material derivative. Equation
2.4a describes the conservation of mass of the particles, when transported
across the system by convective currents. An additional diffusive term,
with D a small diffusion coefficient, is introduced for regularization, i.e.
to smooth the sharp gradient of ρ during the simulations. The particles’
momentum density ρv is subject to the internal elastic stresses σ as well
as the frictional force −ξρv from the substrate. The former can, in turn,
be expressed as

σ = −pI − λSH + Q · H − H ·Q , (2.5)

where the first term represents the isotropic pressure of magnitude p.
The remaining terms describe the elastic stresses arising from the aligning
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interactions between the particles. The molecular tensor field H in Eqs.
2.4c and 2.5 can be defined starting from the Landau–de Gennes free-
energy density:

fLdG =
1
2L1|∇Q|2 +

1
2A2TrQ2 +

1
4A4

(
TrQ2

)2
, (2.6)

as H = −δ/δQ
´

dAfLdG. The first term in Eq. 2.6 promotes a homoge-
neous nematic order, for any gradient of the nematic tensor Q, either from
the order parameter S or from the director n, will cost certain amount of
free energy. In a two-dimensional nematics, possible distortions of n are
splay (Fig. 2.2c) and bending (Fig. 2.2d), and L1 > 0 is an orientational
stiffness penalizing, in equal amounts of the two deformations. The last
two terms in Eq. 2.6 describe a continuous phase transition between the
isotropic (S = 0) and the nematic (S > 0) phases, where the boundary is
set by functions A2 and A4 (A4 > 0). At equilibrium, H = 0 and we have

S =
{

0, for A2 > 0,
√
−2A2/A4, for A2 < 0.

(2.7)

If the nematic tensor Q deviates from the equilibrium configuration, H 6=
0, and it will try to drive the Q tensor back to equilibrium through the
following ways. First of all, a nonzero H will generate an orientational
elastic stress as listed in the last three terms of Eq. 2.5. This stress
can cause a material flow (the so-called backflow effect), which can then
restore the Q field. Second, the molecular tensor H also plays the role of
restoring torque which, according to the last term of Eq. 2.4c, can reorient
the nematic tensor directly toward the equilibrium configuration, with a
rotational viscosity γ. Finally, the particles also rotate as a consequence
of the flow gradient. This effect is embodied in the first three terms of
Eq. 2.4c, with uij = (∂ivj + ∂jvi − δij∇ · v)/2 and ωij = (∂ivj − ∂jvi)/2
representing the strain rate and the vorticity tensor, respectively, and λ
the flow-alignment parameter [78, 79].

Equations 2.4 can also be used to described active materials, and such
systems are usually referred to as active nematics [7, 29, 75]. These have
been successfully used in the past decade to describe a variety of active
fluids, typically of biological origin, consisting of self-propelled or mutu-
ally propelled apolar building blocks, such as in vitro suspensions of mi-
crotubules and kinesin [29, 40, 80–86], microswimmers [41], and cellular
monolayers [23, 75, 87]. Recently, attempts have been made to describe
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Figure 2.3. Sketches of (a) extensile and (b) contractile active stresses. The
arrows show the stresses that the volume element exerts on the surroundings.

sessile bacteria, in the language of nematic liquid crystals [38, 63]. A
common feature of these systems is that the activity of the cells or other
building blocks collectively generates a deviatoric active stress [7, 29, 75]

σa = αQ. (2.8)

Equation 2.8 describes a force dipole of a magnitude proportional to |α|
and the nematic order parameter S, and with an axis parallel to the ne-
matic director n. The stress is called extensile if α < 0 (Fig. 2.3a), and
contractile if α > 0 (Fig. 2.3b) [7, 29, 42, 75]. In the case of extensile
active stress, the stress that a volume element exerts on its surroundings
is extensile along the director n and contractile in the perpendicular direc-
tion. The contractile active stress has the same structure, but the forces
are of the opposite directions. Experiments and simulations have shown
that the active stress can drive the system far from thermal equilibrium,
and can dramatically alter the dynamics of the system [7, 19, 29, 82, 86].
For example, the extensile active stress can destabilize a homogeneous di-
rector through bending, and lead to the proliferation of ±1/2 defect pairs
[82]. It can also propel the +1/2 defects, and this can drive the flow into
the turbulent region, creating the so-called active turbulence [7, 29, 86].
We shall see in the following chapters that the growth of bacteria will gen-
erate an extensile active stress and the colony can be well described by the
hydrodynamics equations of active nematics with suitable modifications.
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