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8. Quantum phase estimation
for noisy, small-scale
experiments

8.1. Introduction
It is known that any problem efficiently solvable on a quantum computer
can be formulated as eigenvalue sampling of a Hamiltonian or eigenvalue
sampling of a sparse unitary matrix [292]. In this sense the algorithm of
quantum phase estimation is the only quantum algorithm which can give
rise to solving problems with an exponential quantum speed-up. Despite
it being such a central component of many quantum algorithms, very little
work has been done so far to understand what quantum phase estimation
offers in the current NISQ (Noisy Intermediate Scale Quantum) era of
quantum computing [293] where quantum devices are strongly coherence-
limited. Quantum phase estimation comes in many variants, but a large
subclass of these algorithms (e.g. the semi-classical version of textbook
phase estimation [23, 294], Kitaev’s phase estimation [22], Heisenberg-
optimized versions [295]), are executed in an iterative sequential form using
controlled-Uk gates with a single ancilla qubit [296, 297] (see Fig. 8.1), or
by direct measurement of the system register itself [295]. Such circuits
are of practical interest in the near term when every additional qubit
requires a larger chip and brings in additional experimental complexity
and incoherence.

Some of the current literature on quantum phase estimation works under
limiting assumptions. The first is that one does not start in an eigenstate
of the Hamiltonian [298, 299]. A second limitation is that one does not
take into account the (high) temporal cost of running Uk [297] for large
k when optimizing phase estimation. The size and shallowness of the

The contents of this chapter has been accepted for publication as T.E. O’Brien,
B. Tarasinski and B.M. Terhal, New J. Phys. (2019), in press.
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8. Quantum phase estimation for noisy, small-scale experiments

quantum phase estimation circuit is important since, in the absence of
error correction or error mitigation, one expects entropy build-up during
computation. This means that circuits with large k may not be of any
practical interest.
The scenario where the input state is not an eigenstate of the unitary

matrix used in phase estimation is the most interesting one from the
perspective of applications, and we will consider it in this chapter. Such
an input state can be gradually projected onto an eigenstate by the phase
estimation algorithm and the corresponding eigenvalue can be inferred.
However, for coherence-limited low-depth circuits one may not be able to
evolve sufficiently long to project well onto one of the eigenstates. This
poses the question what one can still learn about eigenvalues using low-
depth circuits. An important point is that it is experimentally feasible to
repeat many relatively shallow experiments (or perform them in parallel on
different machines). Hence we ask what the spectral-resolving power of such
phase estimation circuits is, both in terms of the number of applications of
the controlled-U circuit in a single experiment, and the number of times
the experiment is repeated. Such repeated phase estimation experiments
require classical post-processing of measurement outcomes, and we study
two such algorithms for doing this. One is our adaptation of the Bayesian
estimator of [299] to the multiple-eigenvalue scenario. A second is a new
estimator based on a treatment of the observed measurements as a time-
series, and construction of the resultant time-shift operator. This latter
method is very natural for phase estimation, as one interprets the goal
of phase estimation as the reconstruction of frequencies present in the
output of a temporal sound signal. In fact, the time-series analysis that
we develop is directly related to what are called Prony-like methods in
the signal-processing literature, see e.g. [300]. The use of this classical
method in quantum signal processing, including in quantum tomography
[301], seems to hold great promise.
One can interpret our results as presenting a new hybrid classical-

quantum algorithm for quantum phase estimation. Namely, when the
number of eigenstates in an input state is small, i.e. scaling polynomially
with the number of qubits Nsys, the use of our classical post-processing
method shows that there is no need to run a quantum algorithm which
projects onto an eigenstate to learn the eigenvalues. We show that one can
extract these eigenvalues efficiently by classically post-processing the data
from experiments using a single-round quantum phase estimation circuits
(see Section 8.2) and classically handling poly(Nsys)× poly(Nsys) matrices.
This constitutes a saving in the required depth of the quantum circuits.

The spectral-resolution power of quantum phase estimation can be
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8.2. Quantum phase estimation

defined by its scaling with parameters of the experiment and the studied
system. We are able to derive analytic scaling laws for the problem of
estimating single eigenvalues with the time-series estimator. We find
these to agree with the numerically-observed scaling of both studied
estimators. For the more general situation, with multiple eigenvalues and
experimental error, we study the error in estimating the lowest eigenvalue
numerically. This is assisted by the low classical computation cost of
both estimators. We observe scaling laws for this error in terms of the
overlap between the ground and starting state (i.e. the input state of the
circuit), the gap between the ground and excited states, and the coherence
length of the system. In the presence of experimental noise we attempt
to adjust our estimators to mitigate the induced estimation error. For
depolarizing-type noise we find such compensation easy to come by, whilst
for a realistic circuit-level simulation we find smaller improvements using
similar techniques.

Even though this chapter focuses on quantum phase estimation where the
phases corresponds to eigenvalues of a unitary matrix, our post-processing
techniques may also be applicable to multi-parameter estimation problems
in quantum optical settings. In these settings the focus is on determining
an optical phase-shift [302–304] through an interferometric set-up. There is
experimental work on (silicon) quantum photonic processors [305–307] on
multiple-eigenvalue estimation for Hamiltonians which could also benefit
from using the classical post-processing techniques that we develop in this
chapter.

8.2. Quantum phase estimation

Quantum phase estimation (QPE) covers a family of quantum algorithms
which measure a system register of Nsys qubits in the eigenbasis of a
unitary operator U [22, 308]

U |φj〉 = eiφj |φj〉, (8.1)

to estimate one or many phases φj . Quantum phase estimation algorithms
assume access to a noisefree quantum circuit which implements U on our
system register conditioned on the state of an ancilla qubit. Explicitly, we
require the ability to implement

Uc = |0〉〈0| ⊗ I + |1〉〈1| ⊗ U , (8.2)
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8. Quantum phase estimation for noisy, small-scale experiments

where |0〉 and |1〉 are the computational basis states of the ancilla qubit,
and I is the identity operator on the system register.
In many problems in condensed matter physics, materials science, or

computational chemistry, the object of interest is the estimation of spec-
tral properties or the lowest eigenvalue of a Hamiltonian H. The eigen-
value estimation problem for H can be mapped to phase estimation for
a unitary Uτ = exp(−iτH) with a τ chosen such that the relevant part
of the eigenvalue spectrum induces phases within [−π, π). Much work
has been devoted to determining the most efficient implementation of
the (controlled)-exp(−iτH) operation, using exact or approximate meth-
ods [308–311]. Alternatively, one may simulate H via a quantum walk,
mapping the problem to phase estimating the unitary exp(−i arcsin(H)/λ)
for some λ, which may be implemented exactly [289–291, 312]. In this
chapter we do not consider such variations, but rather focus on the er-
ror in estimating the eigenvalue phases of the unitary U that is actually
implemented on the quantum computer. In particular, we focus on the
problem of determining the value of a single phase φ0 to high precision
(this phase could correspond, for example, to the ground state energy of
some Hamiltonian H).
Phase estimation requires the ability to prepare an input, or starting

state
|Ψ〉 =

∑
j

aj |φj〉, Aj ≡ |aj |2, (8.3)

with good overlap with the ground state; A0 � 0. Note here that the
spectrum of U may have exact degeneracies (e.g. those enforced by sym-
metry) which phase estimation does not distinguish; we count degenerate
eigenvalues as a single φj throughout this chapter. The ability to start
quantum phase estimation in a state which already has good overlap with
the ground state is a nontrivial requirement for the applicability of the
quantum phase estimation algorithm. On the other hand, it is a well-
known necessity given the QMA-completeness [313] of the lowest eigenvalue
problem ∗. For many quantum chemistry and materials science problems
it is known or expected that the Hartree-Fock state has good overlap with
the ground state, although rigorous results beyond perturbation theory

∗QMA stands for Quantum Merlin Arthur, which is a complexity class which
contains decision problems which are easy to verify on a quantum computer, though
not necessarily easy to solve. This class is the natural quantum counterpart to the
complexity class NP of problems that may be verified easily on a classical computer. A
QMA-complete problem is one of the ‘hardest possible’ such problems (in analogy with
NP-complete problems); the ability to solve these problems in polynomial time would
allow polynomial-time solving of any other problem in QMA.
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8.2. Quantum phase estimation

are far and few between (see e.g. [314]). Beyond this, either adiabatic
evolution [263, 309] or variational quantum eigensolvers [281] can provide
an approximate starting state to improve on via phase estimation.

Phase estimation is not limited to simply learning the value of φ0; it
may obtain information about all phases φj as long as Aj > 0. However,
the resources required to estimate φj are bounded below by 1/Aj . To see
this, note that the controlled-unitary Uc does not mix eigenstates, and so
there is no difference (in the absence of error) between starting with |Ψ〉
and the mixed state

ρΨ =
∑
j

Aj |φj〉〈φj |. (8.4)

The latter is then equivalent to preparing the pure state |φj〉 with probabil-
ity Aj , so if N preparations of |φj〉 are required to estimate φj to an error
ε, the same error margin requires at least N/Aj preparations of the state
|Ψ〉. As the number of eigenstates Neig with non-zero contribution to |Ψ〉
generally scales exponentially with the system size Nsys, estimating more
than the first few φj (ordered by the magnitude Aj) will be unfeasible.

Low-cost (in terms of number of qubits) quantum phase estimation
may be performed by entangling the system register with a single ancilla
qubit [22, 297, 299, 313]. In Fig. 8.1, we give the general form of the
quantum circuit to be used throughout this chapter. An experiment,
labeled by a number n = 1, . . . , N , can be split into one or multiple rounds
r = 1, . . . , Rn, following the preparation of the starting state |Ψ〉. In each
round a single ancilla qubit prepared in the |+〉 = 1√

2 (|0〉 + |1〉) state
controls Ukrc where the integer kr can vary per round. The ancilla qubit
is then rotated by Rz(βr) = exp(−iβrZ/2) (with the phase βr possibly
depending on other rounds in the same experiment) and read out in the
X-basis, returning a measurement outcome mr ∈ {0, 1}. We denote the
chosen strings of integers and phases of a single multi-round experiment by
k and β respectively. We denote the number of controlled-U iterations per
experiment as K =

∑Rn
r=1 kr. We denote the total number of controlled-U

iterations over all experiments as

Ktot =
N∑
n=1

Rn∑
r=1

kr. (8.5)

As the system register is held in memory during the entire time of the
experiment, the choice of K is dictated by the coherence time of the
underlying quantum hardware. Hence, we introduce a dimensionless
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8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.1.: Circuit for the QPE experiments described in this chapter. The
state |Ψ〉 is defined in Eq. (8.3). The probability for the ancilla qubit to return
the vector m of results in the absence of error is given by Eq. (8.10). The
single-qubit rotation equals Rz(β) = exp(−iβZ/2) while H is the Hadamard
gate.

coherence length

Kerr = Terr

NsysTU
. (8.6)

Here TU is the time required to implement a single application of controlled-
U in Eq. (8.7), and Terr is the time-to-error of a single qubit, so that
Terr/Nsys is the time-to-failure of Nsys qubits. The idea is that Kerr
bounds the maximal number of applications of U in an experiment, namely
K ≤ Kerr.

A new experiment starts with the same starting state |Ψ〉. Values of kr
and βr may be chosen independently for separate experiments n, i.e. we
drop the label n for convenience. We further drop the subscript r from
single-round experiments (with R = 1).

In the absence of error, one may calculate the action of the QPE circuit
on the starting state (defined in Eq. (8.3)). Working in the eigenbasis
of U on the system register, and the computational basis on the ancilla
qubit, we calculate the state following the controlled-rotation Uk1

c , and the
rotation Rz(β1) on the ancilla qubit to be

1√
2

∑
j

aj

(
|0〉+ ei(k1φj+β1)|1〉

)
|φj〉. (8.7)

The probability to measure the ancilla qubit in the X-basis as m1 ∈ {0, 1}
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8.3. Classical data analysis

is then ∑
j

Aj cos2
(
k1φj

2 + β1 −m1π

2

)
, (8.8)

and the unnormalized post-selected state of the system register is∑
j

aje
i
2 (k1φj+β1) cos

(
k1φj

2 + β1 −m1π

2

)
|φj〉. (8.9)

The above procedure may then be repeated for r rounds to obtain the
probability of a string m of measurement outcomes of one experiment as

Pk,β(m|φ,A) =
∑
j

Aj

R∏
r=1

cos2
(
krφj

2 + βr −mrπ

2

)
.

(8.10)

Here, φ is the vector of phases φj and A the vector of probabilities for
different eigenstates. We note that Pk,β(m|φ,A) is independent of the
order in which the rounds occur in the experiment. Furthermore, when
Neig = 1, Pk,β(m|φ) = Pk,β(m|φ,A) is equal to the product of the
single-round probabilities Pkr,βr (mr|φ), as there is no difference between
a multi-round experiment and the same rounds repeated across individual
experiments.
One can make a direct connection with parameter estimation work

by considering the single-round experiment scenario in Fig. 8.1. The
Hadamard gate putting the ancilla qubit in |+〉 and measuring the qubit
in the X-basis are, in the optical setting, realized by beam-splitters, so
that only the path denoted by the state |1〉 will pick up an unknown
phase-shift. When the induced phase-shift is not unique but depends,
say, on the state of another quantum system, we may like to estimate all
such possible phases corresponding to our scenario of wishing to estimate
multiple eigenvalues. Another physical example is a dispersively coupled
qubit-cavity mode system where the cavity mode occupation number will
determine the phase accumulation of the coupled qubit [315].

8.3. Classical data analysis
Two challenges are present in determining φ0 from QPE experiments. First,
we only ever have inexact sampling knowledge of Pk,β(m|φ,A). That is,
repeated experiments at fixed k,β do not directly determine Pk,β(m|φ,A),
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8. Quantum phase estimation for noisy, small-scale experiments

but rather sample from the multinomial distribution Pk,β(m|φ,A). From
the measurement outcomes we can try to estimate Pk,β(m|φ,A) (and
from this φ0) as a hidden variable. Secondly, when Neig > 1 determining
φ0 from Pk,β(m|φ,A) poses a non-trivial problem.

Let us first consider the case Neig = 1. Let us assume that we do
single-round experiments with a fixed k for each experiment. Naturally,
taking k = 1 would give rise to the lowest-depth experiments. If we start
these experiments with k = 1 in the eigenstate |φ0〉, then one can easily
prove that taking β = 0 or β = π

2 for half of the experiments, suffices to
estimate φ0 with variance scaling as ∼ 1/N = 1/Ktot. This result can be
derived using standard Chernoff bounds, see e.g. [316, 317], and represent
standard sampling or shot noise behavior. When Neig = 1, N K-round
experiments each with k = 1 are indistinguishable from N×K single-round
experiments with k = 1. This implies that the same scaling holds for such
multi-round experiments, i.e. the variance scales as 1/(NK) = 1/Ktot.

Once the phase φ0 is known to sufficient accuracy, performing QPE
experiments with k > 1 is instrumental in resolving φ0 in more detail, since
the probability of a single-round outcome depends on kφ0 [295]. Once
one knows with sufficient certainty that φ0 ∈ [(2m− 1)π/k, (2m+ 1)π/k)
(for integer m), one can achieve variance scaling as O( 1

k2N ) (conforming
to so-called local estimation Cramer-Rao bounds suggested in [299, 318]).
A method achieving Heisenberg scaling, where the variance scales as
∼ 1/K2

tot (see Eq. (8.5)), was analyzed in [295, 316]. This QPE method
can also be compared with the information-theoretic optimal maximum-
likelihood phase estimation method of [297] where N ∼ logK experiments
are performed, each choosing a random k ∈ {1, . . . ,K} to resolve φ0 with
error ∼ 1/K. The upshot of these previous results is that, while the
variance scaling in terms of the total number of unitaries goes like 1/Ktot
when using k = 1, clever usage of k > 1 data can lead to 1/K2

tot scaling.
However, as K is limited by Kerr in near-term experiments, this optimal
Heisenberg scaling may not be accessible.

When Neig > 1, the above challenge is complicated by the need to
resolve the phase φ0 from the other φj . This is analogous to the problem
of resolving a single note from a chord. Repeated single-round experiments
at fixed k and varying β can only give information about the value of the
function:

g(k) =
∑
j

Aje
ikφj , (8.11)
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8.3. Classical data analysis

at this fixed k, since

Pk,β(m|φ) =1
2 + 1

2 cos(β +mπ)Re[g(k)]

− 1
2 sin(β +mπ)Im[g(k)]. (8.12)

This implies that information from single-round experiments at fixed k is
insufficient to resolve φ0 when Neig > 1, as g(k) is then not an invertible
function of φ0 (Try to recover a frequency from a sound signal at a
single point in time!). In general, for multi-round experiments using a
maximum of K total applications of Uc, we may only ever recover g(k)
for k ≤ K. This can be seen from expanding Pk,β(m|φ,A) as a sum
of
∑
j Aj cosm(φj) sinn(φj) terms with m + n ≤ K, which are in turn

linear combinations of g(k) for k ≤ K. As we will show explicitly in
the next Section 8.3.1 this allows us to recover up to K φj . However,
when Neig > K, these arguments imply that we cannot recover any phases
exactly. In this case, the accuracy to which we can estimate our target φ0
is determined by the magnitude of the amplitude A0 in the inital state |Ψ〉
as well as the gap towards the other eigenvalues. For example, in the limit
A0 → 1, an unbiased estimation of φ0 using data from k = 1 would be

Arg[g(1)] = Im[ln(
∑
j

Aje
iφj )], (8.13)

and the error in such estimation is

|Arg[g(1)]− φ0| = |
1
A0

Neig−1∑
j=1

Aj sin(φj − φ0) +O(A−2
0 )|

≤ 1−A0

A0
,

with our bound being independent of Neig. We are unable to extend this
analysis beyond the k = 1 scenario, and instead we study the scaling in
this estimation numerically in Sec. 8.4. In the remainder of this section,
we present two estimators for multi-round QPE. The first is an estimator
based on a time-series analysis of the function g(k) using Prony-like [300]
methods that has a low computation overhead. The second is a Bayesian
estimator similar to that of [299], but adapted for multiple eigenphases φj .
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8. Quantum phase estimation for noisy, small-scale experiments

8.3.1. Time-series analysis
Let us assume that the function g(k) in Eq. (8.11) is a well-estimated
function at all points 0 ≤ k ≤ K, since the number of experiments N is
sufficiently large. We may extend this function to all points −K ≤ k ≤ K
using the identity g(−k) = g∗(k) to obtain a longer signal ∗. We wish to
determine the dominant frequencies φj in the signal g(k) as a function of
‘time’ k. This can be done by constructing and diagonalizing a time-shift
matrix T whose eigenvalues are the relevant frequencies in the signal, as
follows.
We first demonstrate the existence of the time-shift matrix T in the

presence of Neig < K separate frequencies. Since we may not know
Neig, let us first estimate it as l. We then define the vectors g(k) =
(g(k), g(k + 1), . . . g(k + l))T , k = −K, . . . ,K. These vectors can be
decomposed in terms of single-frequency vectors bj = (1, eiφj , . . . , eilφj )T

g(k) =
∑
j

Aje
ikφjbj . (8.14)

We can make a l ×Neig matrix B with the components bj as columns

Bk,j = eikφj . (8.15)

When Neig ≤ l, the columns of B are typically linearly independent †,
hence the non-square matrix B is invertible and has a (left)-pseudoinverse
B−1 such that B−1B = 1. Note however, when Neig > l the columns
of B are linearly-dependent, so B cannot be inverted. If B is invertible,
we can construct the shift matrix T = BDB−1 with Di,j = δi,je

iφj . By
construction, Tbj = eiφjbj (as TB = BD), and thus

Tg(k) =
∑
j

Aje
ikφjTbj

=
∑
j

Aje
i(k+1)φj = g(k + 1). (8.16)

This implies that T acts as the time-shift operator mapping g(k) to
g(k + 1). As the eigenvalues of T are precisely the required phases eiφj

∗Extending g(k) from 0 ≤ k ≤ K to −K ≤ k ≤ K is not required to perform a
time-series analysis, however numerically we observe that this obtains up to order of
magnitude improvement in estimating φ0.
†Counterexamples may exist, but are hard to construct and have not occurred in

any numerics.
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8.3. Classical data analysis

in case Neig ≤ l, constructing and diagonalizing T will obtain our desired
phases including φ0. When Neig > l, the eigen-equation for T cannot have
the solution bj since these are not linearly independent.

The above proof of existence does not give a method of constructing the
time-shift operator T, as we do not have access to the matrices B or D.
To construct T from the data that we do have access to, we construct the
l × (2K + 1− l) Hankel matrices G(0), G(1) by

G
(a)
i,j = g(i+ j + a−K), (8.17)

indexing 0 ≤ i ≤ l − 1, 0 ≤ j ≤ 2K − l. The k-th column of G(a) is the
vector g(k+ a−K), and so TG(0) = G(1). We can thus attempt to find T
as a solution of the (least-squares) problem of minimizing ||TG(0) −G(1)||.
The rank of the obtained T̃ is bounded by the rank of G(0). We have
that rank(G(0)) is at most Neig since it is a sum over rank-1 matrices.
At the same time rank(G(0)) ≤ min(l, 2K + 1− l). This implies that we
require both l ≥ Neig and 2K + 1 − l ≥ Neig to obtain a shift matrix
T with Neig eigenvalues. This is only possible when K ≥ Neig, giving
an upper bound for the number of frequencies obtainable. When G(0) is
not full rank (because Neig < l), this problem may have multiple zeros T̃.
However, when Neig < l each of these must satisfy T̃g(k) = g(k + 1) for
−K < k < K − l.
Then, as long as rank(G(0)) ≥ Neig, Eq. (8.14) is invertible by an

operator C ∑
k

Ci,kAje
ikφj = δi,j → bj =

∑
k

Cj,kg(k). (8.18)

It follows that∑
k

Cj,kg(k + 1) =
∑
k,l

Cj,kAle
ikφl(eiφlbl) = eiφjbj , (8.19)

and then

T̃bj =
∑
k

Ck,jT̃g(k) =
∑
k

Ck,jg(k + 1) = eiφjbj , (8.20)

so every T̃ obtained in this way must have eigenvalues eiφj .
The above analysis is completely independent of the coefficients Aj .

However, once the eigenvalues φj are known, the matrix B (eq. 8.15) may
be constructed, and the Aj may be recovered by a subsequent least-squares
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8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.2.: Convergence of the time-series estimator in the estimation of
Neig = 10 eigenvalues (chosen at random with equally sized amplitudes Aj =
1/10) when the exact function g(k) is known at points 0, . . . ,K. The estimator
constructs and calculates the eigenvalues of K ×K matrix which are shown as
the red plusses in the Figure. When K ≥ Neig (gray dashed line), the frequencies
are attained to within machine precision. When K < Neig, it is clear from the
Figure that the found eigenvalues provide some form of binning approximation
of the spectrum.

minimization of
||BA− g(0)||. (8.21)

This allows us to identify spurious eigenvalues if l > Neig (as these will have
a corresponding zero amplitude). Numerically, we find no disadvantage to
then choosing the largest l permitted by our data, namely l = K.
Assuming a sufficient number of repetitions N these arguments imply

that this strategy requires that K ≥ Neig to determine all eigenvalues
accurately. However, when K < Neig there still exists a least-squares
solution T̃ that minimizes ||T̃G(0) −G(1)||. When A0 � 0, we expect that
T̃ should have eigenvalues eiφ̃0 ≈ eiφ0 that we can take as the estimator
for φ0; the same is true for any other φj with sufficiently large Aj . In
Fig. 8.2 we show an example of convergence of this estimation for multiple
eigenvalues φj as K → Neig in the case where g(k) is known precisely (i.e.
in the absence of sampling noise). The error |φ̃0 − φ0| when K < Neig
depends on the eigenvalue gap above φ0, as well as the relative weights
Aj , as we will see in Section 8.4.3.

In App.8.B we derive what variance can be obtained with this time-series
method in the case ł = Neig = 1, using single-round circuits with k = 1 up
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8.3. Classical data analysis

to K. Our analysis leads to the following scaling in N and K:

Var(φ) ∝ 1
K2N

. (8.22)

We will compare these results to numerical simulations in Sec. 8.4.1.

Estimating g(k)

The function g(k) cannot be estimated directly from experiments, but
may instead be created as a linear combination of Pk,β(m|φ,A) for differ-
ent values of k and β. For single-round experiments, this combination is
simple to construct:

g(k) =Pk,0(0|φ,A)− Pk,0(1|φ,A)
− iPk,π2 (0|φ,A) + iPk,π2 (1|φ,A). (8.23)

For multi-round experiments, the combination is more complicated. In
general, Pk,β(m|φ,A) is a linear combination of real and imaginary parts of
g(l) with l < K =

∑
r kr. This combination may be constructed by writing

cos2(kφj/2 + β/2) and sin2(kφj/2 + β/2) in terms of exponentials, and
expanding. However, inverting this linear equation is a difficult task and
subject to numerical imprecision. For some fixed choices of experiments,
it is possible to provide an explicit expansion. Here we focus on K-round
k = 1 experiments with K/2 β = 0 and K/2 β = π

2 final rotations
during each experiment (choosing K even). The formula for Pk,β(m|φ,A)
is independent of the order in which these rounds occur. Let us write
P(m, n|φ,A) as the probability of seeing both m ∈ {0, . . . ,K/2} outcomes
withmr = 1 in theK/2 rounds with βr = 0 and n ∈ {0, . . . ,K/2} outcomes
with nr = 1 in the K/2 rounds with βr = π/2. In other words, m, n are
the Hamming weights of the measurement vectors split into the two types
of rounds described above. Then, one can prove that, for 0 ≤ k ≤ K/2:

g(k) =
K/2∑
m=0

K/2∑
n=0

χk(m, n)P(m, n|φ,A) (8.24)
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8. Quantum phase estimation for noisy, small-scale experiments

where

χk(m, n) =
k∑
l=0

(−i)k−l
(
k

l

)

×

bl/2c∑
p1=0

(
m

2p1

)(
K/2−m
l−2p1

)(
K/2
l

) − 1


×

b(k−l)/2c∑
p2=0

(
n

2p2

)(
K/2−n
k−l−2p2

)(
K/2
k−l
) − 1

 . (8.25)

The proof of this equality can be found in App.8.A.

Calculating g(k) from multi-round (k = 1) experiments contains an
additional cost: combinatorial factors in Eq. (8.24) relate the variance in
g(k) to the variance in P(m, n|φ,A) but the combinatorial pre-factor

(
k
l

)
can increase exponentially in k. This can be accounted for by replacing
the least squares fit used above with a weighted least squares fit, so that
one effectively relies less on the correctness of g(k) for large k. To do this,
we construct the matrix T row-wise from the rows g(1)

i of G(1). That is,
for the ith row ti we minimize

||tiG(0) − g(1)
i ||. (8.26)

This equation may be weighted by multiplying G(0) and g(1)
i by the weight

matrix
w

(i)
j,k = δj,k

1
σ
G

(1)
i,j

, (8.27)

where σ
G

(1)
i,j

is the standard deviation in our estimate of G(1)
i,j . Note that

the method of weighted least-squares is only designed to account for
error in the independent variable of a least squares fit, in our case this
is G(1). This enhanced effect of the sampling error makes the time-series
analysis unstable for large K. We can analyze how this weighting alters
the previous variance analysis when Neig = 1. If we take this into account
(see derivation in App.8.B), we find that

Var(φ) ∝ 1
KN

, (8.28)

for a time-series analysis applied to multi-round k = 1 experiments.
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Classical computation cost

In practice, the time-series analysis can be split into three calculations; (1)
estimation of Pk,β(m|φ,A) or P(m, n|φ,A), (2) calculation of g(k) from
these probabilities via Eq. (8.23) or Eq. (8.24), and (3) estimation of the
phases φ from g(k). Clearly (2) and (3) only need to be done once for the
entire set of experiments.

The estimation of the phases φ requires solving two least squares equa-
tions, with cost O(l2K) (recalling that l is the number of frequencies to
estimate, and K is the maximum known value of g(k)), and diagonalizing
the time-shift matrix T with cost O(l3). For single-round phase estimation
this is the dominant calculation, as calculating g(k) from Eq. (8.23) requires
simply K additions. As a result this estimator proves to be incredibly
fast, able to estimate one frequency from a set of N = 106 experiments
of up to K = 10000 in < 100 ms, and l = 1000 frequencies from N = 106

experiments with K = 1000 in < 1 min. However, for multi-round phase
estimation the calculation of g(k) in Eq. (8.24) scales as O(K4). This then
dominates the calculation, requiring 30 s to calculate 50 points of g(k).
(All calculations performed on a 2.4 GHz Intel i3 processor.) We note that
all the above times are small fractions of the time required to generate the
experimental data when N � K, making this a very practical estimator
for near-term experiments.

8.3.2. Efficient Bayesian analysis

When the starting state is the eigenstate |φ0〉, the problem of determining
φ0 based on the obtained multi-experiment data has a natural solution
via Bayesian methods [299, 319]. Here we extend such Bayesian methodol-
ogy to a general starting state. For computational efficiency we store a
probability distribution over phases P (φ) using a Fourier representation
of this periodic function P (φ) (see 8.C). This technique can also readily
be applied to the case of Bayesian phase estimation applied to a single
eigenstate.

A clearly information-theoretic optimal Bayesian strategy is to choose the
φ and A based on the data obtained in some N experiments [297]. After
these N experiments, leading to qubit measurement outcomes {mi}Ni=1,
one can simply choose A,φ which maximizes the posterior distribution:

Ppost(φ,A) =
P{ki},{βi}({mi}|φ,A)

P ({mi})
Pprior(φ,A), (8.29)
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In other words, one chooses

(φopt,Aopt) = arg max
φ,A

logPpost(φ,A)

= arg max
φ,A

[
logP{ki},{βi}({mi}|φ,A) + logPprior(φ,A)

]
.

A possible way of implementing this strategy is to (1) assume the prior
distribution to be independent of A and φ and (2) estimate the maximum
by assuming that the derivative with respect to A and φ vanishes at this
maximum.

Instead of this method we update our probability distribution over φ and
A after each experiment. After experiment n the posterior distribution
Pn(φ,A) via Bayes’ rule reads

Pn(φ,A) = Pk,β(m|φ,A)
P (m) Pn−1(φ,A). (8.30)

To calculate the updates we will assume that the distribution over the
phases φj and probabilities Aj are independent, that is,

Pn(φ,A) = P red
n (A)

Neig−1∏
j=0

P jn(φj). (8.31)

As prior distribution we take P0(φ,A) = Pprior(A)Pprior(φ) with a flat
prior Pprior(φ) = ( 1

2π )Neig , given the absence of a more informed choice.
We take Pprior(A) = e−(A−A0)2/2Σ2 , with A0 and Σ2 approximate mean
and covariance matrices. We need to do this to break the symmetry of
the problem, so that φ̃0 is estimating φ0 and not any of the other φs. We
numerically find that the estimator convergence is relatively independent
of our choice of A0 and Σ2.
The approximation in Eq. (8.31) allows for relatively fast calculations

of the Bayesian update of P jn(φj), and an approximation to the maximum-
likelihood estimation of P red

n (A). Details of this computational implemen-
tation are given in 8.C.1.

Classical computation cost

In contrast to the time-series estimator, the Bayesian estimator incurs a
computational cost in processing the data from each individual experiment.
On the other hand, obtaining the estimate φ̃0 for φ0 is simple, once one
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has the probability distribution P j=0(φ):

φ̃0 = arg(
∫
dφP j=0(φ)eiφ).

A key parameter here is the number of frequencies #freq stored in the
Fourier representation of P (φ); each update requires multiplying a vector of
length Nfreq by a sparse matrix. Our approximation scheme for calculating
the update to A makes this multiplication the dominant time cost of the
estimation. As we argue in 8.C.1 one requires #freq ≥ Ktot to store a fully
accurate representation of the probability vector. For the single-round
scenario with kr = 1, hence Ktot = N , we find a large truncation error
when #freq � N , and so the computation cost scales as N2. In practice we
find that processing the data from N < 104 experiments takes seconds on
a classical computer, but processing more than 105 experiments becomes
rapidly unfeasible.

8.3.3. Experiment design
Based on the considerations above we seek to compare some choices for
the meta-parameters in each experiment, namely the number of rounds,
and the input parameters kr and βr for each round.
Previous work [299, 320], which took as a starting state the eigenstate
|φ0〉, formulated a choice of k and β, using single-round experiments and
Bayesian processing, namely

k = min
(⌈

1.25
σP j=0

n (φ0)

⌉
,Kerr

)
, β ∼ P j=0

n (φ0 = β), (8.32)

Roughly, this heuristic adapts to the expected noise in the circuit by
not using any k such that the implementation of Uk takes longer than
Terr/Nsys. It also adapts k to the standard-deviation of the current pos-
terior probability distribution over φ0: a small standard-deviation after
the nth experiment implies that k should be chosen large to resolve the
remaining bits in the binary expansion of φ0

∗.
In this chapter we use a starting state which is not an eigenstate, and

as such we must adjust the choice in Eq. (8.32). As noted in Sec. 8.3, to

∗Note that this strategy is the opposite of textbook phase estimation in which one
necessarily learns the least-significant bit of φ0 first by choosing the largest k. One
chooses the next smallest k and β so that the next measurement outcome gives the
next more-significant bit etc.
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separate different frequency contributions to g(k) we need good accuracy
beyond that at a single value of k. The optimal choice of the number
of frequencies to estimate depends on the distribution of the Aj , which
may not be well known in advance. Following the inspiration of [299], we
choose for the Bayesian estimator

k ∈ {1, . . . ,K}

K = min
(⌈

1.25
σP j=0

n (φ0)

⌉
,Kerr

)
. (8.33)

We thus similarly bound K depending how well one has already converged
to a value for φ0 which constitutes some saving of resources. At large N
we numerically find little difference between choosing k at random from
{1, . . . ,K} and cycling through k = 1, . . . ,K in order. For this Bayesian
estimator we draw β at random from a uniform distribution [0, 2π). We
find that the choice of β has no effect on the final estimation (as long
as it is not chosen to be a single number) For the time-series estimator
applied to single-round experiments, we choose to cycle over k = 1, . . . ,K
so that it obtains a complete estimate of g(k) as soon as possible, taking
an equal number of experiments with final rotation β = 0 and β = π/2
at each k. Here again K ≤ Kerr, so that we choose the same number
of experiments for each k ≤ K. For the time-series estimator applied to
multi-round experiments, we choose an equal number of rounds with β = 0
and β = π/2, taking the total number of rounds equal to R = K.

8.4. Results without experimental noise
We first focus on the performance of our estimators in the absence of
experimental noise, to compare their relative performance and check the
analytic predictions in Sec. 8.3.1. Although with a noiseless experiment
our limit for K is technically infinite, we limit it to a make connection
with the noisy results of the following section. Throughout this section
we generate results directly by calculating the function Pk,β(m|φ,A) and
sampling from it. Note that Pk,β(m|φ,A) only depends on Neig and not
on the number of qubits in the system.

8.4.1. Single eigenvalues
To confirm that our estimators achieve the scaling bounds discussed pre-
viously, we first test them on the single eigenvalue scenario Neig = 1. In
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Figure 8.3.: Estimator performance for single eigenvalues with single and
multi-round k = 1 QPE schemes. Plots show scaling of the mean absolute
error (Eq. (8.34)) with (top) the number of experiments (at fixed K = 50), with
(middle)K for a fixed total number of experiments (N = 106), and (bottom) with
K with a fixed number (100) of experiments per k = 1, . . . ,K (i.e. N = 200K).
Data is averaged over 200-500 QPE simulations, with a new eigenvalue chosen
for each simulation. Shaded regions (top) and error bars (middle, bottom) give
95% confidence intervals. Dashed lines show the scaling laws of Eq. (8.22) (fitted
by eye). The top-right legend labeling the different estimation schemes is valid
for all three plots.
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Fig. 8.3, we plot the scaling of the average absolute error in an estima-
tion φ̃ of a single eigenvalue φ ∈ [−π, π), defined so as to respect the
2π-periodicity of the phase:

ε :=
〈
min

(
|φ− φ̃|, 2π − |φ− φ̃|

)〉
=
〈∣∣∣Arg

(
ei(φ−φ̃)

)∣∣∣〉 , (8.34)

as a function of varying N and K. Here 〈〉 represents an average over
repeated QPE simulations, and the Arg function is defined using the range
[−π, π) (otherwise the equality does not hold).
We see that both estimators achieve the previously-derived bounds

in 8.3.1 (overlayed as dashed lines), and both estimators achieve almost
identical convergence rates. The results for the Bayesian estimation match
the scaling observed in Ref. [299]. Due to the worse scaling in K, the
multi-round k = 1 estimation significantly underperforms single-round
phase estimation. This is a key observation of this chapter, showing that
if the goal is to estimate a phase rather than to project onto an eigenstate,
it is preferable to do single-round experiments.

8.4.2. Example behaviour with multiple eigenvalues
The performance of quantum phase estimation is dependent on both the
estimation technique and the system being estimated. Before studying
the system dependence, we first demonstrate that our estimators continue
to perform at all in the presence of multiple eigenvalues. In Fig. 8.4,
we demonstrate the convergence of both the Bayesian and time-series
estimators in the estimation of a single eigenvalue φ0 = −0.5 of a fixed
unitary U , given a starting state |Ψ0〉 which is a linear combination of 10
eigenstates |φj〉. We fix |〈φ0|Ψ0〉|2 = 0.5, and draw other eigenvalues and
amplitudes at random from [0, π] (making the minimium gap φj−φ0 equal
to 0.5). We perform 2000 QPE simulations with K = 50, and calculate the
mean absolute error ε (Eq. (8.34), solid), Holevo variance

∣∣∣〈eiφ̃〉∣∣∣−2
− 1

(dashed), and root mean squared error εRMS (dotted), given by

ε2RMS :=
〈

min
(
|φ− φ̃|, 2π − |φ− φ̃|

)2〉 =
〈∣∣∣Arg

(
ei(φ−φ̃)

)∣∣∣2〉 . (8.35)

We observe that both estimators retain their expected ε ∝ N−1/2, with
one important exception. The Bayesian estimator occasionally (10% of
simulations) estimates multiple eigenvalues near φ0. When this occurs, the
estimations tend to repulse each other, making neither a good estimation
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Figure 8.4.: Scaling of error for time-series (dark green) and Bayesian (red)
estimators with the number of experiments performed for a single shot of a
unitary with randomly drawn eigenphases (parameters given in text). Three
error metrics are used as marked (described in text - note that the mean squared
error and Holevo variance completely overlap for the time-series estimator). Data
is averaged over 2000 simulations. The peak near N = 3000 comes from deviation
in a single simulation and is not of particular interest. With this exception, error
bars are approximately equal to width of the lines used. (Inset) histogram of the
estimated phases after N = 104 experiments. Blue bars correspond to Bayesian
estimates that were rejected (rejection method described in text). These have
been magnified 10× to be made visible.

of the target. This is easily diagnosable without knowledge of the true
value of φ0 by inspecting the gap between estimated eigenvalues. While
using this data to improve estimation is a clear target for future research,
for now we have opted to reject simulations where such clustering occurs
(in particular, we have rejected datapoints where min(φ̄0 − φ̄j) < 0.05).
That this is required is entirely system-dependent: we find the physical
Hamiltonians studied later in this text to not experience this effect. We
attribute this difference to the distribution of the amplitudes Aj - physical
Hamiltonians tend to have a few large Aj , whilst in this simulation the
Aj were distributed uniformly.

In the inset to Fig. 8.4, we plot a histogram of the estimated eigenphases
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after N = 104 experiments. For the Bayesian estimator, we show both the
selected (green) and rejected (blue) eigenphases. We see that regardless of
whether rejection is used, the distribution appears symmetric about the
target phase φ0. This suggests that in the absence of experimental noise,
both estimators are unbiased. Proving this definitively for any class of
systems is difficult, but we expect both estimators to be unbiased provided
A0 � 1/K. When A0 ≤ 1/K, one can easily construct systems for which
no phase estimation can provide an unbiased estimation of φ0 (following
the arguments of Sec. 8.3). We further see that the scaling of the RMS
error εRMS and the Holevo variance match the behaviour of the mean
absolute error ε, implying that our results are not biased by the choice of
estimator used.

8.4.3. Estimator scaling with two eigenvalues
The ability of QPE to resolve separate eigenvalues at small K can be
tested in a simple scenario of two eigenvalues, φ0 and φ1. The input to
the QPE procedure is then entirely characterized by the overlap A0 with
the target state |φ0〉, and the gap δ = |φ0 − φ1|.
In Fig. 8.5, we study the performance of our time-series estimator

in estimating φ0 after N = 106 experiments with K = 50, measured
again by the mean error ε (Eq. (8.34)). We show a two-dimensional plot
(averaged over 500 simulations at each point A0, δ) and log-log plots of one-
dimensional vertical (lower left) and horizontal (lower right) cuts through
this surface. Due to computational costs, we are unable to perform this
analysis with the Bayesian estimator, or for the multi-round scenario. We
expect the Bayesian estimator to have similar performance to the time-
series estimator (given their close comparison in Sec. 8.4.1 and Sec. 8.4.2).
We also expect the error in multi-round QPE to follow similar scaling
laws in A0 and δ as single-round QPE (i.e. multi-round QPE should be
suboptimal only in its scaling in K).
The ability of our estimator to estimate φ0 in the presence of two

eigenvalues can be split into three regions (marked as (a), (b), (c) on the
surface plot). In region (a), we have performed insufficient sampling to
resolve the eigenvalues φ0 and φ1, and QPE instead estimates the weighted
average phase A0φ0 +A1φ1. The error in the estimation of φ0 then scales
by how far it is from the average, and how well the average is resolved

ε ∝ (1−A0)δK−1N−1/2. (8.36)

In region (b), we begin to separate φ0, from the unwanted frequency φ1,
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Figure 8.5.: Performance of the time-series estimator in the presence of two
eigenvalues. (top) Surface plot of the error after N = 106 experiments for
K = 50, as a function of the overlap A0 with the target state |φ0〉, and the gap
|φ0 − φ1|. Plot is divided by hand into three labeled regions where different
scaling laws are observed. Each point is averaged over 500 QPE simulations.
(bottom) log-log plots of vertical (bottom left) and horizontal (bottom right)
cuts through the surface, at the labeled positions. Dashed lines in both plots
are fits (by eye) to the observed scaling laws. Each point is averaged over 2000
QPE simulations, and error bars give 95% confidence intervals.

and our convergence halts,

ε ∝ A−1
0 δ−2. (8.37)

In region (c), the gap is sufficiently well resolved and our estimation returns
to scaling well with N and K

ε ∝ A−1
0 K−1N−1/2. (8.38)

The scaling laws in all three regions can be observed in the various cuts
in the lower plots of Fig. 8.5. We note that the transition between the
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three regions is not sharp (boundaries estimated by hand), and is K and
N -dependent.

8.4.4. Many eigenvalues

To show that our observed scaling is applicable beyond the toy 2-eigenvalue
system, we now shift to studying systems of random eigenvalues with
Neig > 1. In keeping with our insight from the previous section, in Fig. 8.6
we fix φ0 = 0, and study the error ε as a function of the gap

δ = min
j>1

(|φj − φ0|). (8.39)

We fix A0 = 0.5, and draw the other parameters for the system from a
uniform distribution: φj ∼ [δ, π], Aj ∼ [0, 0.5] (fixing

∑Neig
j=1 Aj = 1−A0).

We plot both the average error ε (line) and the upper 47.5% confidence
interval [ε, ε+ 2σε] (shaded region) for various choices of Neig. We observe
that increasing the number of spurious eigenvalues does not critically affect
the error in estimation; indeed the error generally decreases as a function
of the number of eigenvalues. This makes sense; at large Neig the majority
of eigenvalues sit in region (c) of Fig. 8.5, and we do not expect these to
combine to distort the estimation. Then, the nearest eigenvalue minj 6=0 φj
has on average an overlap Aj ∝ 1/Neig, and its average contribution to the
error in estimating φ0 (inasmuch as this can be split into contributions)
scales accordingly. We further note that the worst-case error remains
that of two eigenvalues at the crossover between regions (a) and (b). In
App.8.D we study the effect of confining the spurious eigenvalues to a
region [δ, φmax]. We observe that when most eigenvalues are confined to
regions (a) and (b), the scaling laws observed in the previous section break
down, however the worst-case behaviour remains that of a single spurious
eigenvalue. This implies that sufficiently long K is not a requirement for
QPE, even in the presence of large systems or small gaps δ; it can be
substituted by sufficient repetition of experiments. However, we do require
that the ground state is guaranteed to have sufficient overlap with the
starting state - A0 > 1/K (as argued in Sec. 8.3). As QPE performance
scales better with K than it does with N , a quantum computer with
coherence time 2T is still preferable to two quantum computers with
coherence time T (assuming no coherent link between the two).
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Figure 8.6.: Performance of the time-series estimator in the presence of multiple
eigenvalues. Error bars show 95% confidence intervals (data points binned from
4× 106 simulations). Shaded regions show upper 2σ interval of data for each
bin.

8.5. The effect of experimental noise

Experimental noise currently poses the largest impediment to useful compu-
tation on current quantum devices. As we suggested before, experimental
noise limits K so that for K & Kerr the circuit is unlikely to produce
reliable results. However, noise on quantum devices comes in various
flavours, which can have different corrupting effects on the computation.
Some of these corrupting effects (in particular, systematic errors) may be
compensated for with good knowledge of the noise model. For example,
if we knew that our system applied U = e−iH(t+ε) instead of U = e−iHt,
one could divide φ̃0 by (t+ ε)/t to precisely cancel out this effect. In this
study we have limited ourselves to studying and attempting to correct
two types of noise: depolarizing noise, and circuit-level simulations of
superconducting qubits. Given the different effects observed, extending
our results to other noise channels is a clear direction for future research.
In this section we do not study multi-round QPE, so each experiment
consists of a single round. A clear advantage of the single-round method
is that the only relevant effect of any noise in a single-round experiment is
to change the outcome of the ancilla qubit, independent of the number of
system qubits Nsys.
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8.5.1. Depolarizing noise

A very simple noise model is that of depolarizing noise, where the outcome
of each experiment is either correct with some probability p or gives a
completely random bit with probability 1− p. We expect this probability
p to depend on the circuit time and thus the choice of k ≥ 0, i.e.

p = p(k) = e−k/Kerr . (8.40)

We can simulate this noise by directly applying it to the calculated proba-
bilities Pk,β(m|φ) for a single round

Pk,β(m|φ)→ Pk,β(m|φ)p(k) + 1− p(k)
2 . (8.41)

In Fig. 8.7, we plot the convergence of the time-series (blue) and Bayesian
(green) estimators as used in the previous section as a function of the
number of experiments, with fixed K = 50 = Kerr/2 fixed, A0 = 0.5,
Neig = 10 and δ = 0.5. We see that both estimators obey N−1/2 scaling
for some portion of the experiment, however this convergence is unstable,
and stops beyond some critical point.
Both the Bayesian and time-series estimator can be adapted rather

easily to compensate for this depolarizing channel. To adapt the time-
series analysis, we note that the effect of depolarizing noise is to send
g(k) → g(k)p(k) when k > 0, via Eq. (8.23) and Eq. (8.41). Our time-
series analysis was previously performed over the range k = −K, . . . ,K
(getting g(−k) = g∗(k) for free), and over this range

g(k)→ g(k)p(|k|). (8.42)

g(k) is no longer a sum of exponential functions over our interval [−K,K],
as it is not differentiable at k = 0, which is the reason for the failure of
our time-series analysis. However, over the interval [0,K] this is not an
issue, and the time-series analysis may still be performed. If we construct
a shift operator T using g(k) from k = 0, . . . ,K, this operator will have
eigenvalues eiφj−1/Kerr . This then implies that the translation operator T
can be calculated using g(k) with k > 0, and the complex argument of the
eigenvalues of T give the correct phases φj . We see that this is indeed the
case in Fig. 8.7 (orange line). Halving the range of g(k) that we use to
estimate φ0 decreases the estimator performance by a constant factor, but
this can be compensated for by increasing N .

Adapting the Bayesian estimator requires simply that we use the correct
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Figure 8.7.: Convergence of Bayesian and time-series estimators in the presence
of depolarizing noise and multiple eigenvalues, both with and without noise
compensation techniques (described in text). Fixed parameters for all plots are
given in text. Shaded regions denote a 95% confidence interval (data estimated
over 200 QPE simulations). The black dashed line shows the N−1/2 convergence
expected in the absence of sampling noise. Data for the Bayesian estimator was
not obtained beyond N = 104 due to computational constraints.

conditional probability, Eq. (8.41). This in turn requires that we either have
prior knowledge of the error rate Kerr, or estimate it alongside the phases
φj . For simplicity, we opt to choose the former. In an experiment Kerr
can be estimated via standard QCVV techniques, and we do not observe
significant changes in estimator performance when it is detuned. Our
Fourier representation of the probability distribution of φ0 can be easily
adjusted to this change. The results obtained using this compensation are
shown in Fig. 8.7: we observe that the data follows a N−1/2 scaling again.

8.5.2. Realistic circuit-level noise

Errors in real quantum computers occur at a circuit-level, where individual
gates or qubits get corrupted via various error channels. To make connec-
tion to current experiments, we investigate our estimation performance
on an error model of superconducting qubits. Full simulation details
can be found in App.8.E. Our error model is primarily dominated by
T1 and T2 decoherence, incoherent two-qubit flux noise, and dephasing

199



8. Quantum phase estimation for noisy, small-scale experiments

during single-qubit gates. We treat the decoherence time Terr = T1 = T2
as a free scale parameter to adjust throughout our simulations, whilst
keeping all other error parameters tied to this single scale parameter for
simplicity. In order to apply circuit-level noise we must run quantum
circuit simulations, for which we use the quantumsim density matrix sim-
ulator first introduced in [212]. We then choose to simulate estimating
the ground state energy of four hydrogen atoms in varying rectangular
geometries, with Hamiltonian H taken in the STO-3G basis calculated
via psi4 [321], requiring Nsys = 8 qubits. We make this estimation via
a lowest-order Suzuki-Trotter approximation [322] to the time-evolution
operator e−iHt. To prevent energy eigenvalues wrapping around the circle
we fix t = 1/

√
Trace[H†H]/(2Nsys) ∗. The resultant 9-qubit circuit is made

using the OpenFermion package [298].
In lieu of any circuit optimizations (e.g. [264, 290]), the resulting circuit

has a temporal length per unitary of TU = 42 µs (with single- (two-) qubit
gate times 20 ns (40 ns)). This makes the circuit unrealistic to operate
at current decoherence times for superconducting circuits, and we focus
on decoherence times 1− 2 orders of magnitude above what is currently
feasible, i.e. Terr = 5− 50 ms. However one may anticipate that the ratio
TU/Terr can be enlarged by circuit optimization or qubit improvement.
Naturally, choosing a smaller system, less than 8 qubits, or using error
mitigation techniques could also be useful.
We observe realistic noise to have a somewhat different effect on both

estimators than a depolarizing channel. Compared to the depolarizing
noise, the noise may (1) be biased towards 0 or 1 and/or (2) its dependence
on k may not have the form of Eq. (8.40).

In Fig. 8.8, we plot the performance of both estimators at four different
noise levels (and a noiseless simulation to compare), in the absence of
any attempts to compensate for the noise. Unlike for the depolarizing
channel, where a N−1/2 convergence was observed for some time before
the estimator became unstable, here we see both instabilities and a loss
of the N−1/2 decay to begin with. Despite this, we note that reasonable
convergence (to within 1−2%) is achieved, even at relatively low coherence
times such as Kerr = 10. Regardless, the lack of eventual convergence to
zero error is worrying, and we now shift to investigating how well it can

∗This normalization is not good for large systems since it makes t exponentially
small in system size. A scalable choice for normalization is to first determine upper
and lower bounds on the eigenvalues of H present in the starting state, assume that
they occur in a some numerical window W . Given W (which is at most poly(Nsys)),
one sets U = exp(−iπH/W ). The implementation of this U in Trotterized form with
sufficient accuracy determines TU .
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8.5. The effect of experimental noise

be improved for either estimator.

Figure 8.8.: Performance of Bayesian (solid) and time-series (dashed) esti-
mators in the presence of realistic noise without any compensation techniques.
Shaded regions denote 95% confidence intervals (averaged over 100− 500 QPE
simulations). The time-series analysis requires N > 2K experiments in order to
produce an estimate, and so its performance is not plotted for N < 100.

Adjusting the time-series estimator to use only g(k) for positive k gives
approximately 1−2 orders of magnitude improvement. In Fig. 8.9, we plot
the estimator convergence with this method. We observe that the estimator
is no longer unstable, but the N−1/2 convergence is never properly regained.
We may study this convergence in greater deal for this estimator, as we
may extract g(k) directly from our density-matrix simulations, and thus
investigate the estimator performance in the absence of sampling noise
(crosses on screen). We note that similar extrapolations in the absence of
noise, or in the presence of depolarizing noise (when compensated) give an
error rate of around 10−10, which we associate to fixed-point error in the
solution to the least squares problem (this is also observed in the curve
without noise in Fig. 8.9). Plotting this error as a function of Kerr shows
a power-law decay - ε ∝ K−αerr ∝ T−αerr with α = 1.9 ≈ 2. We do not have a
good understanding of the source of the obtained power law.
The same compensation techniques that restored the performance of

the Bayesian estimator in the presence of depolarizing noise do not work
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8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.9.: Performance of time-series estimator with compensation techniques
(described in text). Shaded regions denote 95% confidence intervals (averaged
over 200 QPE simulations). Final crosses show the performance in the absence
of any sampling noise (teal cross is at approximately 10−10), i.e. in the limit
N → ∞; dashed lines are present to demonstrate this limit. (inset) Plot of
error without sampling noise as a function of the decoherence time Terr. Y-axis
corresponds to y-axis on main plot (as color-coded).

nearly as well for realistic noise. Most likely this is due to the fact that the
actual noise is not captured by a k-dependent depolarizing probability. In
Fig. 8.10 we plot the results of using a Bayesian estimator when attempting
to compensate for circuit-level noise by approximating it as a depolarizing
channel with a decay rate (Eq. 8.40) of Kerr = Terr/TUNsys. This can
be compared with the results of Fig. 8.8 where this compensation is not
attempted. We observe a factor 2 improvement at low Terr, however
the N−1/2 scaling is not regained, and indeed the estimator performance
appears to saturate at roughly this point. Furthermore, at Terr = 50 ms,
the compensation techniques do not improve the estimator, and indeed
appear to make it more unstable.
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8.6. Discussion

Time-series estimator Bayesian estimator

Speed (scaling) O(K) O(N2)

Speed (timing) Processes large datasets
in milliseconds

Takes hours to process
105 experiments

Accuracy ε ∝ N−1/2K−1A−1
0 δ−2

demonstrated.

ε ∝ N−1/2K−1

demonstrated
ε ∝ A−1

0 δ−2 expected.
Number of eigenvalues

estimated
100− 200 with
relative ease Limited to 2− 5

Improve accuracy
via classical

approximation
Not obvious

Can get speedup via
choice of prior (not

attempted in this chapter)
Account for error Limited ability Limited ability

Table 8.1.: Table comparing metrics of interest between the two studied esti-
mators. All metrics are implementation-specific, and may be improvable.

To investigate this further, in Fig. 8.10 (inset) we plot a Bayes Factor
analysis of the Bayesian estimators with and without compensation tech-
niques. The Bayes Factor analysis is obtained by calculating the Bayes
Factors

F =
∏

expt n

P (mn|M)
P (mn|M0) , (8.43)

where M is the chosen Bayesian model (including the prior knowledge),
and M0 is a reference model, and P (m|M) is the probability of observing
measurement m given model M . As a reference model we take that of
random noise - P (m|M0) = 0.5. We observe that at large Terr the Bayes
factor with compensation falls below that without, implying that the
compensation techniques make the model worse. We also observe that at
very small Terr, the estimator makes worse predictions than random noise
(log(F ) < 0). Despite our best efforts we have been unable to further
improve the Bayesian estimator in noisy single-round QPE experiments.

8.6. Discussion
In this chapter, we have presented and studied the performance of two
estimators for quantum phase estimation at low K for different experiment
protocols, different systems (in particular those with one vs many eigenval-
ues), and under simplistic and realistic noise conditions. These findings are
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8. Quantum phase estimation for noisy, small-scale experiments

Figure 8.10.: Performance of single-round Bayesian QPE with four sets of
realistic noise using a compensation technique described in the text. Shaded
regions are 95% confidence intervals over 200 − 500 QPE simulations. (inset)
a Bayes factor analysis for the data below. Line color and style matches the
legend of the main figure.

summarized in Table 8.1. From our numerical studies, we observe scaling
laws for our time-series estimator; we find it first-order sensitive to the
overlap A0 between starting state and ground state, second-order sensitive
to the gap between the ground state and the nearest eigenstates, and
second-order sensitive to the coherence time of the system. The Bayesian
estimator appears to perform comparably to the time-series estimator in
all circumstances, and thus should obey similar scaling laws.

We further observe that realistic noise has a worse effect on QPE than
a depolarizing channel, for which the effects can largely be mitigated. We
have numerically explored (but not reported) multi-round QPE in the
presence of noise. Since each experiment has multiple outputs, it is harder
to adapt the classical data analysis to the presence of noise and our results
for realistic noise have not been convincing so far. Since the performance
of multi-round noiseless QPE is already inferior to single-round noiseless
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8.6. Discussion

QPE, we do not advocate it as a near-term solution, although, for noiseless
long circuits it does have the ability to project onto a single eigenstate,
which single-round QPE certainly does not.

Despite our slightly pessimistic view of the effect of errors on the per-
formance of QPE, we should note that the obtained error of 10−3 at
Terr ≈ 13NsysTU or Kerr = 13 would be sufficient to achieve chemical
accuracy in a small system. However, as the energy of a system scales
with the number of particles, if we require a Hamiltonian’s spectrum to
fit in [−π, π), we will need a higher resolution for QPE, making error
rates of 10−3 potentially too large. This could potentially be improved by
improving the compensation techniques described in the text, applying
error mitigation techniques to effectively increase Terr, or by using more
well-informed prior distributions in the Bayesian estimator to improve accu-
racy. All of the above are obvious directions for future work in optimizing
QPE for the NISQ era. Another possible direction is to investigate QPE
performance in other error models than the two studied here. Following
Ref. [295], we expect SPAM errors to be as innocuous as depolarizing
noise. However, coherent errors can be particularly worrying as they
imitate alterations to the unitary U . The time-series estimator is a clear
candidate for such a study, due to its ease in processing a large number of
experiments and its ability to be studied in the absence of sampling noise.
We also expect that it is possible to combine the time-series estimator
with the Heisenberg-limited scaling methods of Refs. [295, 316] so as to
extend these optimal methods to the multiple-eigenvalue scenario with
Neig > 1 eigenvalues, and that these methods could be extended to analog
or ancilla-free QPE settings such as described in Ref. [295].

In this chapter we do not compare the performance of quantum phase
estimation with purely classical methods. Let’s assume that we have
a classical efficient representation of the starting state Ψ and one can
efficiently calculate TrHk|Ψ〉〈Ψ| for k = 1, . . . ,K with K = O(1) (for
fermionic Gaussian starting states and fermionic Hamiltonians this is
possible as a single fermionic term in Hk can be estimated as the Pfaffian
of some matrix). Then, if there are at most K = O(1) eigenstates in
this initial state, the time-series method would allow us to extract these
eigenvalues efficiently. Thus in this setting and under these assumptions
quantum phase estimation would not offer an exponential computational
advantage.
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8. Quantum phase estimation for noisy, small-scale experiments

8.A. Derivation of the identity in Eq. (8.25)
One first writes for 0 ≤ k ≤ K/2:∑

j

Aj exp(ikφj) =
∑
m,n

Πk
i=1[(−1)mi − i(−1)ni ]×

P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A) (8.44)

where P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A) is the probability for a specific
series of outcomes m1, . . . ,mK/2 for β = 0 and n1, . . . , nK/2 for β = π/2.
To see that the above is true, note that it is quickly true for Neig = 1 by
using Eq. (8.23) for g(1). By linearity on the left and right hand side it
then holds generally.
Since the order of the outcomes of the rounds does not matter, i.e.

P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A) only depends on the Hamming weights
m = |m| and n = |n|, we can symmetrize the coefficient over per-
mutations of the rounds and replace P(m1, . . . ,mK/2, n1, . . . nK/2|φ,A)
by P(m, n|φ,A)/(

(
K/2
m

)(
K/2
n

)
). This gives the following expression for

χk(m,n):

χk(m, n) = 1
((K/2)!)2

∑
π1∈SK/2,π2∈SK/2

k∏
i=1

((−1)mπ1(i) − i(−1)nπ2(i)),

wheremi is the ith bit of a bitstring with Hamming weight m (and similarly
ni), and SK/2 is the symmetric group of permutations. We can expand
this last expression as

χk(m, n) =
l∑

k=0

(
k

l

)
(−i)k−lρ(l,m)ρ(k − l, n)

ρ(l,m) = 1
(K/2)!

∑
π

(−1)mπ(1) . . . (−1)mπ(l)

= −1 + 2
(K/2)!

∑
π:mπ(1)...mπ(l)is even

1

The sum
∑
π:mπ(1)...mπ(l)is even can be written as a sum over permutations

such that mπ(1) . . .mπ(l) has Hamming weight 2p with p = 0, 1, . . . bl/2c.
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8.B. Variance calculations for time-series estimator

Then one counts the number of permutations of a K/2-bitstring of Ham-
ming weight m such that some segment of length l has Hamming weight 2p
which equals

(
m
2p
)(
K/2−m
l−2p

)
l! (K/2− l)!. All together this leads to χk(m, n)

in Eq. (8.25). It is not clear whether one can simplify this equality or verify
it directly using other combinatorial identities or (Chebyshev) polynomials.

8.B. Variance calculations for time-series
estimator

For the case of estimating a single eigenvalue using single-round QPE
with the time-series estimator, one can directly calculate the error in the
estimation. In this situation, our matrices G0 and G1 are column vectors,

GT0 = (g(−K), g(−K + 1), . . . , g(K − 1)), (8.45)
GT1 = (g(−K + 1), g(−K + 2), . . . , g(K)). (8.46)

The least-squares solution for T is then

T = (G†0G0)−1G†0G1 =
∑K−1
k=−K g

∗(k)g(k + 1)∑K−1
k=−K g

∗(k)g(k)
. (8.47)

For a single frequency, g(k) = eikφ, and immediately T = eiφ. However,
we estimate the real and imaginary components of g(k) separately. Let us
write in terms of our independent components

T = Tr + iTi, g(k) = g0
k + ig1

k, (8.48)

remembering that g0
k = g0

−k and g1
k = −g1

−k (i.e. the variables are corre-
lated). Our target angle φ = tan−1 Ti/Tr, and so we can calculate

Var(φ) =
∑
a,k

[
∂φ

∂gak

]2
Var[gak ]

=
[

1
T2
r + T2

i

]2∑
a,k

[
Tr
∂Ti
∂gak
− Ti

∂Tr
∂gak

]2
Var[gak ]. (8.49)
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8. Quantum phase estimation for noisy, small-scale experiments

Let us expand out our real and imaginary components of T:

Tr =
∑K−1
k=−K(g0

kg
0
k+1 + g1

kg
1
k+1)∑K−1

k=−K(g0
k)2 + (g1

k)2
, (8.50)

Ti =
∑K−1
k=−K(g0

kg
1
k+1 − g0

kg
1
k+1)∑K−1

k=−K(g0
k)2 + (g1

k)2
(8.51)

Then, we can calculate their derivatives as (recalling again that g0
k = g0

−k
and g1

k = g1
−k)

∂Tr
∂gak

= 2
1 + δk,0

[
(1− δk,K)gak+1 + gak−1 − 2Trgak∑k+1

k=−K((g0
k)2 + (g1

k)2)

]
(8.52)

∂Ti
∂gak

= 2(−1)a

1 + δk,0

[
(1− δk,K)g1−a

k+1 − g
1−a
k−1 − 2Tigak∑k+1

k=−K((g0
k)2 + (g1

k)2)

]
. (8.53)

Substituting in for gak , we find that everything precisely cancels when
k 6= K!

∂Tr
∂g0

k

= −∂Ti
∂g1

k

= −2δk,K
cos((K + 1)φ)∑k+1

k=−K((g0
k)2 + (g1

k)2)
(8.54)

∂Ti
∂g0

k

= ∂Tr
∂g1

k

= −2δk,K
sin((K + 1)φ)∑k+1

k=−K((g0
k)2 + (g1

k)2)
. (8.55)

Our variance is then

Var(φ) =
[

2
(T2
r + T2

i )
∑k+1
k=−K((g0

k)2 + (g1
k)2)

]2

×{
Var[g0

K ] (− cos(φ) sin((K + 1)φ) + sin(φ) cos((K + 1)φ))2

+Var[g1
K ] (cos(φ) cos((K + 1)φ) + sin(φ) sin((K + 1)φ))2

}
=
[

1
K

]2 {
Var[g0

K ] sin2(Kφ) + Var[g1
K ] cos2(Kφ)

}
. (8.56)

If gaK is estimated with N shots, we expect Var[g0
K ] = 1

N , and

Var(φ) ∝ 1
K2N

. (8.57)
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8.C. Fourier representation for Bayesian updating

As described in Sec. 8.3.1, for multi-round experiments we weight the
least-squares inversion as per Eq. (8.27). This weighting adjusts the gak
values in Eqs. (8.52,8.53) so that ∂φ

∂gA
k

is no longer zero when k < K. The
sum over k in Eq. (8.49) then lends an extra factor of K to the variance,
reducing it to

Var(φ) ∝ 1
KN

. (8.58)

8.C. Fourier representation for Bayesian
updating

For simplicity, we first consider when the starting state is a simple eigen-
state |φj〉. After each multi-round experiment we would like to update the
probability distribution P (φj = φ), i.e. Pn(φ) = Pk,β(m|φ)

P (m) Pn−1(φ). We
will represent the 2π-periodic probability distribution Pn(φ) by a Fourier
series with a small number of Fourier coefficients Nfreq which are updated
after each experiment, that is, we write

P (φ) = p0 +
Nfreq−1∑
j=1

(p2j−1 sin(jφ) + p2j cos(jφ)) ≡ p. (8.59)

We thus collect the coefficients as a Nfreq-component vector p. The
Fourier representation has the advantage that integration is trivial i.e.∫ π
−π P (φ)dφ = 2πp0 so that the probability distribution is easily normalized.
In addition, the current estimate φ̃ is easy to obtain:

φ̃ = arg(〈eiφ〉P ) = arg(p2 + ip1). (8.60)

Another observation is that the Holevo phase variance is easily obtained
from this Fourier representation as

Var(P (φ)) = 1
|〈eiφ〉P |2

− 1 = 1
π2(p2

2 + p2
1) − 1. (8.61)

Note that this is the Holevo phase variance of the posterior distribution of
a single simulation instance. By comparison, in Fig. 8.4 we have calculated
the same quantity over repeat simulations. However, in general we find
the two to be equivalent.

The other advantage of the Fourier representation is that a single-round
in an experiment is the application of a sparse matrix on p. One has
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8. Quantum phase estimation for noisy, small-scale experiments

P (φ)→ Pkr,βr (mr|φ)P (φ) = cos2(krφ/2 +γ/2)P (φ), where γ = βr +mrπ
which is equivalent to

p→ 1
2p + 1

4 cos(γ)M0(kr)p + 1
4 sin(γ)M1(kr)p. (8.62)

The coefficients of the update matrices M0,1(kr) can be simply calculated
using the double angle formulae and employing

cos2(kφ/2 + γ/2) cos(jφ)

= 1
2 cos(jφ) + 1

4 cos(γ) (cos((j + k)φ) + cos((j − k)φ))

+ 1
4 sin(γ) (sin((j − k)φ)− sin((j + k)φ)) , (8.63)

and

cos2(kφ/2 + γ/2) sin(jφ)

= 1
2 sin(jφ) + 1

4 cos(γ) (sin((j + k)φ) + sin((j − k)φ))

+ 1
4 sin(γ) (cos((j + k)φ)− cos((j − k)φ)) . (8.64)

The matrices Ma(n) are then calculated from the above equations. When
j > k, we have

[M0(k)]2j+2k,2j = 1, [M0(k)]2j−2k,2j = 1,
[M0(k)]2j+2k−1,2j−1 = 1, [M0(k)]2j−2k−1,2j−1 = 1,
[M1(k)]2j+2k−1,2j = −1, [M1(k)]2j−2k−1,2j = 1,
[M1(k)]2j+2k,2j−1 = 1, [M1(k)]2j−2k,2j−1 = −1,

When j ≤ k, we have to account for the sign change in sin((j − k)φ):

[M0(k)]j+2k,j = 1, [M0(k)]2k−2j,2j = 1,
[M0(k)]2k−2j−1,2j−1 = −1
[M0(k)]2k,0 = −2, [M0(k)]4k−1,2k−1 = 1
[M1(k)]2j+2k−1,2j = −1, [M1(k)]2k−2j−1,2j = −1,
[M1(k)]2j+2k,2j−1 = 1, [M1(k)]2k−2j,2j−1 = −1,
[M1(k)]2k−1,0 = 2, [M1(k)]4k−1,2k = 1.
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8.C. Fourier representation for Bayesian updating

For a multi-round experiment with R rounds, one thus applies such
sparse matrices to the vector p R times. Note that each round with given
kr requires at most kr more Fourier components, hence an experiment with
at most K controlled-U applications adds at most K Fourier components.
Thus, when the total number of unitary rotations summed over all exper-
iments Ktot =

∑
n

∑
r kr > Nfreq, our representation of the distribution

is no longer accurate. When Ktot ≤ Nfreq on the other hand, it will be
accurate.

8.C.1. Bayesian updating for multi-eigenvalue
starting state

In this section we detail the method by which we store the distributions
P jn(φj) and P red

n (A) of Eq. (8.31) and perform the Bayesian update of
Eq. (8.30). We do so by representing the marginal probabilities P jn(φj)
by a Fourier series with a small number of Fourier coefficients which are
updated after each experiment as shown in the previous section. We
assume that there are most Neig coefficients Aj > 0 and thus Neig φj .

From our independence assumption, individual updates of P j(φj) may
be calculated by integrating out the other unknown variables in Eq. (8.30):

P jn(φj) =
∫ ∏

l 6=j
dφlP

l
n−1(φl)

∫ dA P red
n−1(A)Pk,β(m|φ,A)P jn−1(φj).

(8.65)
Expanding the conditional probability of Eq. (8.10) and rewriting leads to
the form

P jn(φj) = 1
Pk,β(m)

(
C +Bj

∏
r

Pkr,βr (mr|φj)
)
P jn−1(φj), (8.66)

with

C =
∑
k 6=j

Bk

∫
dφkP

k
n−1(φk)

∏
r

Pkr,βr (mr|φk),

and Bj =
∫
dA P red

n−1(A)Aj . Here we have used that
∫
dφlP

l
n−1(φl) = 1.

One can concisely write Bj as the components of a vector B. Computing
Eq. (8.30) then involves creating an ‘update’ distribution for each φj ,
calculating the integral of each distribution, and then forming the new
distribution from a weighted sum from the ‘update’ distributions.
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8. Quantum phase estimation for noisy, small-scale experiments

Calculating the distribution P red
n (A) is complicated slightly by the

restriction that
∑
j Aj = 1, Aj ≥ 0, meaning that we cannot assume

the distribution of individual Aj terms is uncorrelated. The marginal
probability distribution equals

P red
n (A) =

P red
n−1(A)
Pk,β(m)

∑
j

Aj

∫
dφjP

j
n−1(φj)

∏
r

Pkr,βr (mr|φj). (8.67)

or
P red
n (A) =

P red
n−1(A)
Pk,β(m) A · qn−1, (8.68)

where the jth component (qn−1)j is the integral

(qn−1)j =
∫
dφjP

j
n−1(φj)

∏
r

Pkr,βr (mr|φj). (8.69)

As A only enters our estimation through the vector B = (B0, . . . , BNeig),
we only need approximate this value. Assuming we know the marginal
probabilities Pn(φj) for all experiments n = 1, . . . , N , we can estimate B
after all experiments by the maximum likelihood value A(max),

A(max)
N = argmax

A
f(A)

f(A) = log
(
Pprior(A)

N∏
n=1

A · qn

)

= log(Pprior(A)) +
N∑
n=1

log(A · qn).

Evaluating this equation for up N = 1000 experiments, taking Nfreq =
10000 frequency components of Neig = 2 eigenvalues takes less than a
second on a laptop using a method such as sequential least-squares pro-
gramming [323]. However, beyond this it becomes fairly computationally
intensive. Thus, after N > 100 experiments have been performed, we
switch to a local optimization method. We determine the optimal Bn

after n experiments from its prior value Bn−1 via a single step of an
approximate Newton’s method, that is, we take

Bn = Bn−1 −Π[H−1(f(Bn−1)) (~∇f)(Bn−1)].
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8.C. Fourier representation for Bayesian updating

where ~∇f(A) is the first derivative of f at A and H is the Hessian matrix
of f , i.e. Hij = ∂Ai∂Ajf(A). Here Π[A] is the projector onto the plane∑Neig
j=0 Aj = 1 so that the update preserves the normalization. We have

∂Aif(A) = ∂AiPprior(A)
Pprior(A) +

N∑
n=1

(qn)i
A · qn

We approximate the second term for each step as coming from only from
the added term, i.e.

~∇f(Bn−1) ≈ qn
Bn−1 · qn

, (8.70)

The Hessian equals

Hij(f(A)) = −
N∑
n=1

(qn)i(qn)j
(A · qn)2 , (8.71)

but we approximate this at the nth step

H
(n)
ij (f(Bn−1)) ≈ H(n−1)

ij − (qn)i(qn)j
(Bn · qn)2 . (8.72)

This approximation allows H to be updated without summing over each
experiment.

With the above implemented, we observe that our estimator can process
data from N = 10, 000 experiments to estimate Neig = 2 eigenvalues with
N = 20, 000 Fourier components within approximately two minutes on
a laptop. Unfortunately, this method scales as N2, as the number of
frequencies required for accurate estimation grows as the total number of
unitaries applied.

As the mean, variance and integration calculations only require the first
few frequencies of the distribution, it may be possible to reduce this cost
by finding approximation techniques for higher frequency components.
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8. Quantum phase estimation for noisy, small-scale experiments

8.D. Convergence of the (noiseless)
time-series analysis in case of multiple
eigenvalues.

In this section we present an expansion of Fig. 8.6, namely Fig. 8.11, by
drawing the spurious eigenvalues φj from a range closer to the target
eigenvalue φ0. This negates the drop in estimation error observed in
Fig. 8.6 that was caused by the majority of eigenvalues lying in region
(c) of Fig. 8.5. We observe that for certain gaps δ, multiple eigenvalues
confined to a thin region [δ, φmax] can have a worse effect on our ability
to estimate φ0 than that of a single eigenvalue at δ. However, this loss in
accuracy does not get critically worse with the addition of more eigenvalues.
Neither is it worse than the worst-possible estimation with two eigenvalues.

8.E. Details of realistic simulation
In this Appendix we give details of the method for the realistic noisy circuit
simulation of Sec. 8.5.2. Our density-matrix simulator is fairly limited in
terms of qubit number, and so we opt to simulate H4 in the STO-3G basis.
This molecule has 8 spin orbitals and thus requires 9 qubits for the QPE
simulation (with the additional qubit being the ancilla). We choose 10
rectangular molecular geometries for the H4 system, parametrized by a
horizontal distance dx and a vertical distance dy (i.e. the four H atoms
are in the positions (±dx/2,±dy/2, 0)). We calculate the Hartree-Fock
and full-CI solutions to the ground state using the psi4 package [321] with
the openfermion interface [298]. This allows to calculate the true ground
state energy E0 for each geometry, and the overlap A0 between the ground
state and the Hartree-Fock state, which we choose as our starting state
|Ψ〉. Due to symmetry and particle number conservation, |Ψ〉 has non-zero
overlap with only 8 eigenstates of the full-CI solution, separated from
the ground state by a minimum gap δ. (When dx = dy, the true ground
state of H4 is actually orthogonal to the Hartree-Fock state, and so we
do not include any such geometries in our calculation.) The full error in
our calculation of the energy (at a fixed geometry) is then a combination
of three separate contributions: basis set error (i.e. from the choice of
orbitals), Trotter error, and the estimator error studied in this chapter
(which includes error from experimental noise). The Trotter error εTrotter
is reasonably large due to our use of only the first-order Suzuki-Trotter

214



8.E. Details of realistic simulation

Figure 8.11.: Variations of Fig. 8.6, but with eigenstates φj drawn from a
range [0, φmax] as labeled. Error bars are 95% confidence intervals for each point,
shaded regions denote top 2σ interval (i.e. region containing the top 2.5%− 50%
of the population).
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approximation U =
∏
i e
−iHit ≈ e−iHt. Higher-order Suzuki-Trotter

expansions require longer quantum circuits, which in turn increase the
estimator error from experimental noise. Balancing these two competing
sources of error is key to obtaining accurate calculations and a clear target
for future study. In Tab. 8.2, we list some parameters of interest for each
studied geometry. We normalize the gap and the Trotter error by the
Frobenius norm ‖H‖F =

√
Trace[H†H]/2Nsys , as we chose an evolution

time t = 1/‖H‖F , making this the relevant scale for comparison with
scaling laws and errors calculated in the text.

dx [Å] dy [Å] E0 A0 δ/‖H‖F εTrotter/‖H‖F
0.4 0.5 -0.26 0.98 0.09 3.7× 10−4

0.6 0.7 -1.46 0.94 0.17 3.1× 10−3

0.8 0.9 -1.84 0.88 0.24 0.016
1.0 1.1 -1.96 0.80 0.23 0.017
1.2 1.3 -1.98 0.71 0.18 0.013
1.6 1.7 -1.94 0.55 0.09 6.0× 10−3

0.2 1.8 0.32 0.996 0.67 2.0× 10−4

0.4 1.6 -1.80 0.993 1.14 2.6× 10−3

0.6 1.4 -2.15 0.98 1.27 0.014
0.8 1.2 -2.09 0.96 0.73 0.021

Table 8.2.: Parameters of the H4 geometries used in the text. Terms are
described in App.8.E. ||H||F =

√
Trace[H†H]/2Nsys .

8.E.1. Error model and error parameters
Throughout this chapter we simulate circuits using an error model of
superconducting qubits first introduced in Ref. [212]. This captures a range
of different error channels with parameters either observed in experimental
data or estimated via theory calculations. All error channels used are
listed in Tab. 8.3, and we will now describe them in further detail.
Transmon qubits are dominated primarily by decoherence, which is

captured via T1 and T2 channels [23]. Typical T1 and T2 times in state-of-
the-art devices are approximately 10− 100 µs. As other error parameters
are derived from experimental results on a device with T1 = T2 ≈ 30 µs,
we take these as a base set of parameters [182, 183]. Single-qubit gates in
transmon qubits incur slight additional dephasing due to inaccuracies or
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Parameter Symbol Standard Value Scaling
Qubit relaxation time T1 30 µs λ

Qubit dephasing time T2 30 µs λ

Single-qubit gate time Tsq 20 ns 1
Two-qubit gate time T2q 40 ns 1
In-axis rotation error paxis 10−4 λ−1

In-plane rotation error pplane 5× 10−4 λ−1

Incoherent flux noise A (1µΦ0)2 λ−1

Measurement time Tmeas 300 ns 1
Depletion time Tdep 300 ns 1
Readout infidelity εRO 5× 10−3 λ−1

Measurement induced decay pd,i, pd,f 0.005, 0.0015 λ−1

Table 8.3.: Standard parameters of error models used in density matrix
simulation. Table adapted from Ref. [212] with all parameters taken from
therein (with the exception of the 1/f flux noise, which is made incoherent as
described in text).

fluctuations in microwave pulses. We assume such dephasing is Markovian,
in which case it corresponds to a shrinking of the Bloch sphere along the
axis of rotation by a value 1 − paxis, and into the perpendicular plane
by a value 1 − pplane. We take typical values for these parameters as
paxis = 10−4, pplane = 5 · 10−4 [212].

Two-qubit gates in transmon qubits incur dephasing due to 1/f flux noise.
Assuming that the phase in an ideal C-Phase gate G = diag(1, 1, 1, eiφ))
is controlled by adjusting the time of application, this suggests a model
for the applied gate which is

G(δflux) =


1 0 0 0
0 1 0 0
0 0 eiδfluxφ 0
0 0 0 ei(1+δflux/2)φ

 , (8.73)

where δflux is drawn from a normal distribution around 0 with standard
deviation σflux. One can estimate σflux ≈ 0.01 rad for a typical gate length
of 40 ns [212]. The noise is in general non-Markovian, as δflux fluctuates
on longer timescale than a single gate. However, to make the simulation
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tractable, we approximate it as Markovian. The Pauli transfer matrix of
this averaged channel [324] reads

Λ[G] =
∫
dδfluxP (δflux)Λ[G(δflux)], (8.74)

where the Pauli transfer matrix of a channel G is given by Λ[G]i,j =
Tr[σiGσj ].

During qubit readout, we assume that the qubit is completely dephased
and projected into the computational basis. We then allow for a Tmeas =
300 ns period of excitation and de-excitation (including that from T1-decay),
during which the qubit state is copied onto a classical bit. This copying is
also assumed to be imperfect, with a probability εRO of returning the wrong
result. The qubit then has an additional Tdep = 300 ns waiting period
before it may participate in gates again (to allow resonator depletion [182]),
over which additional excitation and de-excitation may occur. Though
simple, this description is an accurate model of experimental results.
Typically experiments do not observe measurement-induced excitation to
the |1〉 state, but do observe measurement-induced decay [212]. Typical
values of such decay are 0.005 prior to the copy procedure, and 0.015 after.

Though reasonably accurate, this error model does fail to capture some
details of real experimental systems. In particular, we do not include
leakage to the |2〉 state, which is a dominant source of two-qubit gate error.
Furthermore, we have not included cross-talk between qubits.
To study the effect of changing noise levels while staying as true as

possible to our physically-motivated model, we scale our noise parameters
by a dimensionless parameter λ such that the contribution from each error
channel to the simulation remains constant. In Tab. 8.3 we show the
power of λ that each error term is multiplied by during this scaling. We
report Terr := T1 = T2 in the main text instead of λ to make connection
to parameters regularly reported in experimental works.
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