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7. Majorana-based fermionic
quantum computation

7.1. Introduction
Particle exchange statistics is a fundamental quantum property that distin-
guishes commuting spin or qubit degrees of freedom from anticommuting
fermions, despite single particles in both systems only having two quantum
states. Different exchange statistics cause a different set of Hamiltonian
terms to be local, or even physically possible. For example, although it
is Hermitian, the linear superposition of a fermionic creation and anni-
hilation operator c + c† never occurs as a Hamiltonian term in nature
due to violating fermion parity conservation, whilst spin systems have
no such restrictions. Despite these differences, it is possible to simulate
fermions using qubits and vice versa [47]. Such simulation necessarily
incurs overhead because of the need to transform local fermion opera-
tors into non-local qubit ones by using, for example, the Jordan-Wigner
transformation. Because quantum simulation of the electronic structure of
molecules is a promising application of quantum computation [263], much
recent work focused on minimizing this overhead of simulating fermionic
Hamiltonians with qubits [264–266].
Majorana zero modes (also Majorana modes or just Majoranas) are

non-abelian particles, with two Majoranas combining to form a single
fermion (see e.g. Refs. [267–269] for a review). Spatially separating two
Majoranas protects this fermionic degree of freedom, and provides a natural
implementation of a topological quantum computer [31, 270]. Further,
conservation of fermion parity prevents creating a superposition between
the two different parity states of two Majoranas, and therefore most of the
existing proposals combine 4 Majoranas with a fixed fermion parity into a
single qubit.

The contents of this chapter have been published in T. E. O’Brien, P. Rożek and
A.R. Akhmerov, Phys. Rev. Lett. 120 (22), 220504 (2018).
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7. Majorana-based fermionic quantum computation

Fermionic quantum computation [47] was so far not actively pursued
because of the lack of known ways to protect fermionic degrees of freedom
from dephasing. In this chapter, we observe that Majoranas naturally offer
this protection, while in addition providing a platform for implementing
quantum chemistry algorithms. We therefore show that for the problem of
simulating fermionic systems on a Majorana quantum computing architec-
ture, it is both possible and preferable to use fermions composed from pairs
of Majoranas instead of further combining pairs of these fermions to form
single qubits. Formulating fermionic quantum simulation algorithms in
terms of fermions imposes the fermion parity conservation at the hardware
level, and prohibits a large class of errors bringing the simulator out of
the physical subspace. Furthermore, working natively with fermions, we
remove the need for the Jordan-Wigner (or related) transformation to
map a fermionic problem to a spin system. When simulating a typical
quantum chemistry Hamiltonian, our approach results in a more dense
encoding of the computational degrees of freedom. The benefit from using
the fermionic degrees of freedom becomes more important in simulating
local fermionic Hamiltonians, such as the Hubbard model, allowing the
simulation of unitary time evolution in O(1) time per Trotter step, and
further reducing the cost of pre-error-correction quantum simulation [271].
Finally, we show how to apply the known magic state distillation protocol
in fermionic quantum computation. Combined with the recent realiza-
tion of the fermionic error correction [272] this provides a fault-tolerant
fermionic quantum computer.

7.2. Description of the architecture
Our approach relies on the known set of ingredients to perform universal
operations with Majorana states [273]: controllable Josephson junctions,
direct Majorana coupling, and Coulomb energy. A possible architecture
implementing a Majorana-based fermionic quantum processor is shown
in Fig. 7.1. Because our system cannot be separated into blocks with a
fixed fermion parity, the protection of the quantum degrees of freedom is
only possible if different parts of the system are connected to a common
superconducting ground ∗. Turning off some of the Josephson junctions
(these may be either flux-controlled SQUIDs or gate-controlled [274, 275])
then isolates a part of the system, and generates a Coulomb interaction
∗The need to use a common superconducting ground makes it impossible to utilize

the partial protection from quasiparticle poisoning by applying Coulomb blockade to
superconducting islands containing individual qubits [288].
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7.2. Description of the architecture

Figure 7.1.: Top: a 1D implementation of a Majorana circuit. Majoranas (blue
dots) occur at either the edge of a nanowire (black line) or as it crosses the
boundary of a superconductor (light green). Josephson junctions (red crossed
lines) connect superconducting islands to a common base, allowing for parallel
joint parity measurements. Fully-tunable T-junctions (valve symbols) allow for
a computational Majorana to be shifted from one end of any coupled set of
itself and two braiding ancillas (prepared in a known state) to another end.
Bottom: an implementation of a weight-four Majorana rotation (Eq. 7.6) using
the labeled qubits in the design. The operation of individual circuit elements
is listen in Table. 7.1. The highlighted parity measurement is performed by
isolating the highlighted area of the architecture via tunable Josephson junctions,
and measuring the total charge parity. This requires a separate preparation of
the Majoranas γa0 and γb0 (dashed red box) in the iγa0γb0 = 1 state (which is also
required to use these as spare sites for braiding).

[276, 277]

HC = iN/2EC

N∏
k

γk, (7.1)

that couples all the Majorana modes γi belonging to the isolated part of
the system with the charging energy EC . An example of such coupling
acting on 8 Majorana modes is shown by a red box in Fig. 7.1. Finally,
gate-controlled T-junctions exert the interaction

HM = iEMγjγk, (7.2)
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7. Majorana-based fermionic quantum computation

on any two Majorana modes coupled by a T-junction, with EM the
Majorana coupling energy.
Controllable pairwise interactions between Majorana modes [278, 279]

or two-Majorana parity measurements [280] allow the implementation of
braiding, while the joint readout of the fermionic parity of more than 2
Majorana modes generates the rest of the Clifford group [273]. Finally,
a diabatic pulse of a two-Majorana coupling implements an unprotected
phase gate eθγiγj . We summarize these elementary gates that serve as
a basis of our protocol in Table 7.1. This gate set is computationally
universal within a fixed fermion parity sector [47].

Name Element Operation

Preparation Prepare
(

1
0

)

Braiding

(
eiπ/4 0

0 e−iπ/4

)

Braiding


1 0 0 −i
0 1 −i 0
0 −i 1 0
−i 0 0 1


Rotation

(
eiφ 0
0 e−iφ

)

Measurement
∑
P (φ)=m |φ〉〈φ|

Table 7.1.: Basic circuit elements we allow in our computation scheme. The
above is sufficient to generate universal quantum computation in the single-parity
sector. Computational degrees of freedom are formed by two Majoranas, and are
therefore represented as a double line. Preparation, braiding, and measurement
gates are assumed to be topologically protected. The Rz(θ) rotation is not
topologically protected, but may be distilled via our magic state distillation
protocol. The measurement projects our system onto a state of definite parity
P (φ), being the sum

∑
i,j

1
2 (1 + iγiγj) of the pairs of Majoranas γi, γj on islands

connected to ground via Josephson junctions.
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7.3. Quantum algorithms

7.3. Quantum algorithms

Figure 7.2.: A 2d Majorana architecture to implement the Hubbard model on
a square lattice. (a) A schematic description of the initial layout of the fermions
(each of which is made of two Majoranas). Lines denote fermions separated
by ancilla Majoranas only. Our scheme groups the 11 Trotter steps into three
stages as numbered, which are performed in series. (b) A physical architecture to
support the schematic of (a). Wires on superconducting islands and T-junction
symbols from Fig. 7.1 have been removed to prevent cluttering; it is still assumed
that all T-junctions are fully tunable. Majoranas are colored according to their
designation; blue for system fermions, red for control ancillas, and white for
braiding and phase ancillas. An example spin-1/2 fermion supported on four
Majoranas (the minimum possible) is matched to (a)

The above gate set is sufficient to construct circuits for time evolution,
quantum phase estimation (QPE), and a variational quantum eigensolver—
the unitary coupled cluster ansatz (UCC). Most fermionic systems have
Hamiltonians constructed from twofold and fourfold fermionic terms:

H =
∑
i,j

hi,j f̂
†
i f̂j +

∑
i,j,k,l

f̂†i f̂
†
j f̂kf̂l. (7.3)
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7. Majorana-based fermionic quantum computation

Here, f̂†i (f̂i) is the creation (annihilation) operator for an electron. This
is equivalent to a sum over 2 and 4-fold Majorana terms:

H =
∑
i,j

igi,jγiγj +
∑
i,j,k,l

gi,j,k,lγiγjγkγl. (7.4)

Time evolution is performed by applying the Trotter expansion of the
evolution operator eiHt ∗:

eiH∆t ≈
∆t→0

∏
i,j

e−gi,jγiγj∆t
∏
i,j,k,l

eigi,j,k,lγiγjγkγl∆t, (7.5)

and thus requires consecutive application of the unitary operators eθγiγj
and eiθγiγjγkγl . We therefore introduce the weight-2N Majorana rotation
operator

exp
{
iθ

N∏
n=1

iγ2n−1γ2n

}
, (7.6)

that forms the basis of all the algorithms we consider.
A Majorana rotation may be performed using a generic circuit with

an additional four-Majorana ancilla qubit. To demonstrate, the circuit
of Fig. 7.1 applies a Majorana rotation eiθγiγjγkγl . The same scheme
implements weight-two Majorana rotations by removing Majoranas γk
and γl, and higher weight-2N Majorana rotations by adding 2N − 4 more
Majoranas to the correlated parity check and conditional final braiding.
The ancillary Majoranas γa0 and γb0 used for the braiding begin in the parity
eigenstate iγa0γb0 = 1. The eight-Majorana charge parity measurement
γiγjγkγlγ

a
0γ

b
0γ2γ1 (implemented by isolating the circled superconducting

islands in Fig. 7.1) therefore reduces to the 6-Majorana measurement
highlighted in the circuit. The unprotected rotation by the angle α = θ+ π

2
both corrects an unwanted phase from the braiding of γ2 and γ3, and
applies the non-Clifford rotation by θ.
Quantum phase estimation requires the unitary evolution of a state

(prepared across a set of system qubits) conditional on a set of ancilla qubits,
which then have the eigenphases of the unitary operator encoded upon
them [22]. For the purposes of simulating quantum chemistry, a common
choice of this operator is the time evolution operator, approximated by the
∗We have not discussed post-Trotter methods such as [289–291] in this chapter.

However, these methods still require the Jordan-Wigner transformation or equivalent to
represent a fermionic Hamiltonian on a qubit architecture. As such, they gain a similar
advantage to the studied Trotterized evolution of eiHt from a Majorana-based fermion
implementation.
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7.3. Quantum algorithms

Trotter expansion. In App. 7.A, we show how to encode the ancilla qubit
non-locally across an array of fermions, each of those controlling the unitary
evolution of a local Hamiltonian term. This reduces the requirements for
QPE to consecutive operations of weight-four and weight-six Majorana
rotations, with two Majoranas in each rotation belonging to an ancilla
fermion. In App. 7.B we show how this circuit is used to execute a single
Trotter step for a fully-connected fourth-order Hamiltonian in O(N3) time.

Variational quantum eigensolvers prepare a trial state |ψ(~θ)〉 from a
circuit depending on a set of variational parameters ~θ, which are then tuned
to minimize the energy 〈ψ(~θ)|H|ψ(~θ)〉 [281]. One example of such ansatz
is the UCC-2, which uses the exponential of the second order expansion of
the cluster operator:

|ψ(trp, trspq)〉 = eT
(2)−T (2)†

|Φref〉,

T (2) =
∑
p,r

trpf̂
†
p f̂r +

∑
p,q,r,s

trspq f̂
†
p f̂
†
q f̂rf̂s.

After Trotterizing, this requires only weight-two or -four Majorana rotations
to prepare.

When the Hamiltonian contains a small fraction of all possible second- or
fourth-order terms, the lack of Jordan-Wigner strings gives our fermionic
architecture an advantage over qubit-based implementations. As an exam-
ple, we consider the Hubbard model on a square lattice, with Hamiltonian

H = −t
∑
〈i,j〉,σ

f̂†i,σ f̂jσ + U
∑
i

n̂i↑n̂i↓ − µ
∑
iσ

n̂iσ. (7.7)

Here σ is a spin index, and the first sum is goes over the pairs of nearest
neighbor lattice sites, while t, µ, and U are the model parameters [282].
Rewriting the Hubbard model Hamiltonian in terms of Majorana operators
f̂†iσ = 1

2 (γiσ,1 + iγiσ,2) gives:

H = t

2
∑
〈i,j〉,σ

iγiσ,1γ
j
σ,2 +N(U4 − µ)

+ i

4(U − 2µ)
∑
i,σ

γiσ,1γ
i
σ,2 −

U

4
∑
i

γi↑,1γ
i
↑,2γ

i
↓,1γ

i
↓,2. (7.8)

This gives in total 11 terms per site i that need to be simulated for
quantum phase estimation or unitary time evolution. In Fig. 7.2 we show
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7. Majorana-based fermionic quantum computation

Figure 7.3.: Circuits for magic state distillation of a non-Clifford fermionic
gate, following the scheme of [48]. (a) A noisy ρT state is prepared with a single
non-topologically protected gate. (b) 5 such-prepared states are distilled to give
a single state with higher fidelity. (c) Two |T 〉 states are consumed to perform a
non-Clifford rotation of Φ = π

12 on a single fermion, restoring universal quantum
computation. This requires that the first measurement returns a value of m = 1,
otherwise a new pair of |T 〉 states must be used. (d) To perform the state
distillation protocol, we split the multi-qubit conditional gates into two-qubit
controlled gates, and then into conditional-Z gates on the underlying fermions
by braiding. (e) controlled Z gate: it may be performed by a circuit requiring
braiding and correlated readout with a four-Majorana ancilla.

164



7.4. Conclusion

a 2d architecture that implements parallel application of Trotter steps
across the entire lattice. For unitary evolution, this scheme is 33% dense,
with 12 Majoranas used per site with 2 fermions. For parallel QPE we use
an additional ancilla per site (following App. 7.A), making the scheme 50%
dense. We detail the computation scheme for QPE in App. 7.C, achieving
a O(1) circuit depth per controlled unitary evolution step. This should
be compared first to the O(N1/2) circuit depth in the case of a qubit
implementation via a parallelized Jordan-Wigner transformation [283].
This circuit depth can be reduced to O(log(N)) if the Bravyi-Kitaev
transformation [47] is used instead, but at the cost of requiring dense qubit
connectivity. Separate encodings [284, 285] also exist to reduce the circuit
depth to O(1), at a cost of doubling the required number of qubits. It
is likewise possible to achieve a similar O(1) circuit depth, assuming the
ability to couple a global resonator to every qubit in a superconducting
architecture [286].

The required ingredient for universal fermionic quantum computation—a
Majorana rotation by an arbitrary angle θ—is most simply implemented
using an unprotected coupling between two Majoranas. In a scalable
architecture this gate needs to have increasingly higher fidelity so that it
may be applied an arbitrary number of times without failure. In Fig. 7.3 we
develop a high fidelity Majorana rotation using the magic state distillation
protocol of [48] to perform fermionic gates. In this procedure, we generate
5 low-fidelity |T 〉 = cos(β)|0〉 + eiπ/4 sin(β)|1〉 states (cos(2β) = 1√

3 ) on
four-Majorana qubits, then combine them to obtain a single higher fidelity
|T 〉 state on a qubit (assuming topologically-protected Clifford gates). We
then use an average of 3 distilled |T 〉 states to perform a θ = ± π

12 Majorana
rotation. On average, this procedure requires 15 noisy |T 〉 states, 225
braidings and 66 measurements. We furthermore use 20 Majoranas to
make the 5 noisy |T 〉 qubit states, due to the |T 〉 state of a single fermion
breaking parity conservation.

7.4. Conclusion
In summary, we have demonstrated a Majorana-based scheme for fermionic
quantum computation. We then adapted this scheme to simulate inter-
acting fermionic Hamiltonians using both the QPE and VQC algorithms,
and modified it to simulate the Hubbard model using a constant-depth
circuit per time-evolution step. While our fermionic scheme has advan-
tages compared to using qubits, finding optimal circuit layouts for both
a general purpose fermionic quantum computation and problem-specific
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7. Majorana-based fermionic quantum computation

ones, like the Hubbard model simulator remain an obvious point for further
research. Further, our implementation of magic state distillation is a direct
translation of the original scheme, and it should be possible to find a
smaller circuit operating only on fermions, for example using the minimal
fermionic error correcting circuit of [287]. A final open direction of further
research is combining our circuits with quantum error correction [272, 287],
which would enable fault-tolerant fermionic quantum computation.

7.A. Preparing extended ancilla qubits for
quantum phase estimation

The QPE algorithm requires the application of a unitary operator condi-
tional on an ancilla qubit, which naively would require each Trotter step
to be performed in series as the ancilla qubit is passed through the system.
The following method parallelizes the QPE algorithm at a cost of O(N)
ancilla qubits and a constant depth preparation circuit, which may well be
preferable. We make this trade by preparing a large cat state on 4n Majo-
ranas by the circuit in Fig. 7.4. First, we prepare n× 4 Majoranas in the
1
2 (|00〉+ |11〉) state on Majoranas γ4jγ4j+1γ4j+2γ4j+3 for j = 0, . . . , n− 1.
Then, making the joint parity measurements γ4j+2γ4j+3γ4j+4γ4j+5 for
j = 0, . . . , n− 2 forces our system into an equal superposition of

1√
2

∣∣∣∣∣∣
n−1∏
j=0

x2jx2j+1

〉
+

∣∣∣∣∣∣
n−1∏
j=0

x̄2j x̄2j+1

〉 , (7.9)

where xj ∈ {0, 1} is the parity on the jth fermion (x̄ = 1 − x), and
x2j ⊕ x2j−1 is determined by the outcome of the joint parity measurement.
This can then be converted to the GHZ state 1√

2 (|00 . . . 0〉+ |11 . . . 1〉) by
braiding (or the value of xj can be stored and used to decide whether to
rotate by θ or −θ). The rotations to be performed for QPE may then be
controlled by any of the pairs of Majoranas defining a single fermion, and
so we may spread this correlated ancilla over our system as required to
perform rotations. As the interaction between ancilla qubits and system
qubits is limited to a single joint parity measurement per Trotter step,
we expect that although n should scale as O(N) to allow for parallelizing
the circuit, the prefactor will be quite small. At the end of the QPE
circuit, we recover the required phase by rotating exp(iπ4 γ4j+1γ4j+2) for
j = 0, . . . , n − 1 and reading out the parity of all Fermions individually.
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7.B. Algorithm to perform Trotter steps in O(N3) time

Starting from the state

1√
2
(
|00 . . . 0〉+ eiφ|11 . . . 1〉

)
, (7.10)

this prescription yields a cos2(φ/2) probability for the sum of all parities
to be 0 mod 4.

Figure 7.4.: Circuit for preparing an extended cat state on a set of ancilla
qubits with constant depth. The circuit need only be as local as the weight-four
parity checks allow. Afterwards, any pair {γ2j , γ2j+1} of Majoranas may be used
equivalently to perform a conditional Trotter step in QPE.

7.B. An algorithm to perform a Trotter step
for a fully-connected fourth-order
Hamiltonian in O(N 3) time.

We showed in the main text a compact circuit for a four-Majorana Trotter
step that does not require Jordan-Wigner strings, and in App. 7.A we
suggested a method to perform conditional evolution in parallel by using a
large GHZ state for an ancilla qubit. Assuming a Fermionic Hamiltonian
on N spin-orbitals with 4th order terms, this would imply an O(N3)
circuit depth for our QPE algorithm per Trotter step. However, there
is an additional complication; we need to ensure that we do not gain
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7. Majorana-based fermionic quantum computation

additional circuit depth from the requirement to bring sets of 4 Majoranas
close enough to perform this conditional evolution. To show this, we
consider a line of N Majoranas γ1, . . . γN . We allow ourselves at each
timestep t to swap a Majorana with its neighbour on the left or the right.
(Note that this is a simplification from our architecture where we may
not directly swap initialized Majoranas, but this brings only an additional
constant time cost.) We wish to give an algorithm of length O(N3) such
that for any set of four Majoranas {γi, γj , γk, γl}, there exists a timestep
t where these are placed consecutively along the line. As demonstrated
in [265], inverting the line by a bubblesort solves the equivalent problem
for pairs {γi, γj} in O(N) time, and this may be quickly extended to the
case of sets of four. Let us consider the problem of forming all groups of
3 Majoranas. We divide our line into the sets Γ0 = {γi, i ≤ N/2}, and
Γ1 = {γi, i > N/2}. We then group neighboring pairs of elements in Γ1 to
form subsets, which we then pair with all elements in Γ0 in O(N) time by
a reverse bubblesort. Then, upon restoring to our previous position, we fix
the position of elements of Γ0, and perform a single iteration of the reverse
bubblesort on the elements of Γ1 to form new subsets of pairs. Repeating
this procedure until the second bubblesort has finished generates all subsets
consisting of 2 Majoranas in Γ1 and 1 from Γ0 in O(N2) time. All groups
of 2 Majoranas from Γ0 and 1 from Γ1 may be given in the same manner.
Then, we may split the line in 2, and reapply the above method on Γ0
and Γ1 separately to obtain all groups consisting of 3 Majoranas within.
This final step takes O((N/2)2 + (N/4)2 + (N/8)2 + . . .) = O(N2) time.
From here, it is clear how to proceed for groups of 4. We again divide our
line into the sets Γ0 and Γ1, and split our problem into that of making all
groups of (m, 4−m) Majoranas, where the first index denotes the number
from Γ0 and the second from Γ1. For 1 ≤ m ≤ 3, we have an O(Nm−1)
circuit to prepare all groups of m Majoranas in Γ0, a O(N3−m) circuit
to prepare groups of 4−m Majoranas in Γ1, and an O(N) bubblesort to
pair all groups from Γ0 and Γ1. These three steps must be looped within
each other, giving a total time of O(Nm−1N3−mN) = O(N3). Finally,
we perform the m = 0 and m = 4 case simultaneously by repeating this
procedure on the sets Γ0, which takes again O(N3) time by the arguments
above.
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7.C. Details of parallel circuit for Hubbard model

7.C. Details of parallel circuit for Hubbard
model

In this section we expand upon the proposal in Fig. 7.2 to perform QPE
for the Hubbard model in constant time. This is a key feature of proposals
for pre-error correcting quantum simulation [271], and as such bears
further detail. There are 11 terms in equation 7.8 per site of our lattice,
corresponding to 11 Trotter steps that must be performed in series (as each
circuit piece requires accessing a prepared ancilla and additional Majoranas
for the controlled braiding). As part of these Trotter steps, we must move
Majoranas to their appropriate islands for parity measurements, and leave
sufficient space for the preparation of the controlled rotation gate. We split
the 11 Trotter steps into 3 stages, as indicated in Fig. 7.2(a). In the first
stage, the Trotter steps corresponding to hopping terms between nearest
neighbour fermions of the same spin are implemented, but only for those
neighbours that are directly connected on the graph of Fig. 7.2(a) (i.e. those
separated by a single braiding ancilla fermion). In the second stage, the
steps for onsite two and four fermion interactions are implemented. From
stage 2, as the qubits are being brought back to their resting position, the
spin up and spin down fermions on each site have their locations exchanged.
This allows for the final two Trotter steps to be applied between fermions
that are now locally connected, without the large overhead of bringing
distant fermions together and then apart. At the end of the unitary, the
system is in a spin-rotated version of itself, and the order of Trotter steps
for a second unitary evolution should be changed slightly to minimize
braiding overhead. In Table 7.2, we detail these three stages further. In
particular, we focus on the 10 terms involving the fermion f1,1

↑ , and the
onsite interaction term for the fermion f1,1

↓ . For each term, we specify
the location of all involved system Majoranas, parking spots for unused
system Majoranas, the control ancilla, three braiding ancillas (for the
implementation of the phase gate of Fig. 7.1), and which islands are
involved in the parity measurement. Each such set of operations should
then be tessellated across the lattice by a translation of a unit cell and
a spin rotation to generate 10 parallelized Trotter steps for all fermions.
(For example, the hopping steps involving f1,1

↓ or f1,2
↑ are implemented

in the operations from neighboring cells, and the hopping steps of f1,2
σ

are reflected compared to those of f1,1
σ , but those of f2,1

σ are not). One
should be careful then that this tessellation does not self-intersect, that
all required qubits are connected to an island being measured, that the
three braiding ancillas are connected in a way that allows for braiding, and
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7. Majorana-based fermionic quantum computation

that the measurement circuit does not isolate individual islands (which
would cause them to dephase). We assume that the conditional braidings
on system Majoranas is performed as they move between configurations
(or potentially cancelled), and so we do not account for these. We also
assume that our finite-sized lattice is surrounded by a common ground,
and so parallel lines of coupled islands will maintain a common phase by
connecting to this. We have further found paths to hop Majoranas between
their needed configurations and costed them in terms of the number of
hoppings. We make no claim that the found arrangement is optimal, and
invite any interested readers to attempt to beat our score for an optimal
braiding pattern.
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7.C. Details of parallel circuit for Hubbard model

Stage Hamiltonian System Parking Control
term fermions sites ancilla

1a it
2 γ

1,1
↑,1γ

0,1
↑,2 f1,0

b,1 f1,0
b,0 f1,1

↑

1b it
2 γ

0,1
↑,1γ

1,1
↑,2 f1,0

b,0 f1,0
b,1 f1,1

↑

1c it
2 γ

1,1
↑,1γ

1,2
↑,2 f1,1

↑ f1,1
b,1 f1,2

c

1d it
2 γ

1,2
↑,1γ

1,1
↑,2 f1,1

b,1 f1,1
↑ f1,2

c

1e it
2 γ

1,1
↑,1γ

1,0
↑,2 f1,0

b,1 f1,0
↑ f1,1

c

1f it
2 γ

1,0
↑,1γ

1,1
↑,2 f1,0

↑ f1,0
b,1 f1,1

c

2a i
4 (U − 2µ)γ1,1

↑,1γ
1,1
↑,2 f1,1

c f1,1
b,2 f1,1

↓

2b i
4 (U − 2µ)γ1,1

↓,1γ
1,1
↓,2 f1,1

b,2 f1,1
c f1,1

↓

2c −U4 γ
1,1
↑,1γ

1,1
↑,2γ

1,1
↓,1γ

1,1
↓,2 f1,1

b,2 , f
1,1
c f1,1

↓

3a it
2 γ

1,1
↑,1γ

2,1
↑,2 f1,0

b,1 f1,0
b,0 f1,1

↑

3b it
2 γ

2,1
↑,1γ

1,1
↑,2 f2,0

b,0 f1,0
b,2 f1,1

↓

Table 7.2.: (split with Table 7.3) A three-stage implementation of QPE on
the Hubbard model (Eq. (7.8)), using the architecture in Fig. 7.2. We specify
a translatable layout for each Trotter step to be performed simultaneously, by
specifying which sites should be used to store system fermions, control ancilla
fermions, braiding ancilla fermions (on Table 7.3), and any additional fermions
not used in this rotation (parking sites). We further specify the island to be
used for any joint parity readout (on Table 7.3), and the cost of shuffling the
Majoranas around the layout (on Table 7.3).
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7. Majorana-based fermionic quantum computation

Stage Braiding Measurement Cost
ancillas island

1a f0,1
↑ , f0,1

c , f0,0
b,2 I1,1

L (11)

1b f0,1
↑ , f0,1

c , f0,0
b,2 I1,1

L 0

1c f1,1
b,2 , f

2,1
b,0 , f

1,1
↓ I1,1

C 11+7

1d f1,1
b,2 , f

2,1
b,0 , f

1,1
↓ I1,1

C 0

1e f1,0
b,2 , f

2,0
b,0 , f

1,0
↓ I1,0

C 7+7

1f f1,0
b,2 , f

2,0
b,0 , f

1,0
↓ I1,0

C 0

2a f1,1
b,1 , f

1,1
b,0 , f

1,1
↑ I1,1

C 7+6

2b f1,1
b,1 , f

1,1
b,0 , f

1,1
↑ I1,1

C 0

2c f1,1
b,1 , f

1,1
b,0 , f

1,1
↑ I1,1

C 0

3a f0,1
↑ , f0,1

c , f0,0
b,2 I2,1

L 28+11

3b f2,1
↓ , f2,1

c , f2,0
b,1 I2,1

L 0 (+11)

Table 7.3.: (Split with Table 7.2) A three-stage implementation of QPE on
the Hubbard model (Eq. (7.8)), using the architecture in Fig. 7.2. Description
of the Hamiltonian term to be simulated, and the use of each Majorana given
in Table 7.2. For each Trotter step we have costed the number of Majorana
hoppings required to rearrange the system from its previous state. When these
are written as a sum, the first term refers to restoring the configuration of
Fig. 7.2 from the configuration required for the previous step, and the second to
obtaining the configuration needed for the current step. Some steps require the
same configuration as the previous step, and as such incur a 0 rearrangement
cost. The cost in brackets for the final step is the requirement to return the
system to its shifted initial state (where up-spins and down-spins have been
swapped). This may not be required, especially as the configuration for the final
step and the initial steps are the same (modulo the swapping of the spins), and
so repeated unitary evolution would not need this nor the rearrangement cost
of the first step. This reduces the total rearrangement cost of the circuit to 85
Majorana hoppings.
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