
Applications of topology to Weyl semimetals and quantum computing
O'Brien, T.E.

Citation
O'Brien, T. E. (2019, June 20). Applications of topology to Weyl semimetals and quantum
computing. Retrieved from https://hdl.handle.net/1887/74471

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/74471

Note: To cite this publication please use the final published version (if applicable).

https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/74471

Cover Page

The following handle holds various files of this Leiden University dissertation:
http://hdl.handle.net/1887/74471

Author: O'Brien, T.E.
Title: Applications of topology to Weyl semimetals and quantum computing
Issue Date: 2019-06-20

https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/74471
https://openaccess.leidenuniv.nl/handle/1887/1�

6. Neural network decoder for
topological color codes with
circuit level noise

6.1. Introduction
In fault-tolerant quantum information processing, a topological code stores
the logical qubits nonlocally on a lattice of physical qubits, thereby pro-
tecting the data from local sources of noise [66, 205]. To ensure that this
protection is not spoiled by logical gate operations, they should act locally.
A gate where the j-th qubit in a code block interacts only with the j-th
qubit of another block is called “transversal” [219]. Transversal gates are
desirable both because they do not propagate errors within a code block,
and because they can be implemented efficiently by parallel operations.
Two families of two-dimensional (2D) topological codes have been ex-

tensively investigated, surface codes [79, 173, 207, 220] and color codes
[75, 222]. The two families are related: a color code is equivalent to multi-
ple surface codes, entangled using a local unitary operation [223, 224] that
amounts to a code concatenation [225]. There are significant differences
between these two code families in terms of their practical implementation.
On the one hand, the surface code has a favorably high threshold error
rate for fault tolerance, but only cnot, X, and Z gates can be performed
transversally [221]. On the other hand, while the color code has a smaller
threshold error rate than the surface code [174, 226], it allows for the
transversal implementation of the full Clifford group of quantum gates
(with Hadamard, π/4 phase gate, and cnot gate as generators) [227, 228].
While this is not yet computationally universal, it can be rendered universal
using gate teleportation [229] and magic state distillation [48]. Moreover,
color codes are particularly suitable for topological quantum computation

The contents of this chapter have been published in P. Baireuther, M.D. Caio, B.
Criger, C.W. J. Beenakker and T.E. O’Brien, New J. Phys. 21 (1), 013003 (2019)

135

6. Neural network decoder for topological color codes with circuit level noise

with Majorana qubits, since high-fidelity Clifford gates are accessible by
braiding [230, 231].
A drawback of color codes is that quantum error correction is more

complicated than for surface codes. The identification of errors in a surface
code (the “decoding” problem) can be mapped onto a matching problem
in a graph [232], for which there exists an efficient solution called the
“blossom” algorithm [209]. This graph-theoretic approach does not carry
over to color codes, motivating the search for decoders with performance
comparable to the blossom decoder, some of which use alternate graph-
theoretic constructions [233–237].
An additional complication of color codes is that the parity checks are

prone to “hook” errors, where single-qubit errors on the ancilla qubits
propagate to higher weight errors on data qubits, reducing the effective
distance of the code. There exist methods due to Shor [238], Steane [239],
and Knill [240] to mitigate this, but these error correction methods come
with much overhead because of the need for additional circuitry. An
alternative scheme with reduced overhead uses dedicated ancillas (“flag
qubits”) to signal the hook errors [241–245].
Here we show that a neural network can be trained to fault-tolerantly

decode a color code with high efficiency, using only measurable data as
input. No a priori knowledge of the error model is required. Machine
learning approaches have been previously shown to be successful for the
family of surface codes [211, 246–249], and applications to color codes are
now being investigated [250, 251, 253]. We adapt the recurrent neural
network of Ref. 211 to decode color codes with distances up to 7, fully
incorporating the information from flag qubits. A test on a density matrix-
based simulator of a superconducting quantum computer [212] shows that
the performance of the decoder is close to optimal, and would surpass the
quantum memory threshold under realistic experimental conditions.

6.2. Description of the problem

6.2.1. Color code
The color code belongs to the class of stabilizer codes [68], which operate by
the following general scheme. We denote by I,X, Y, Z the Pauli matrices
on a single qubit and by Πn = {I,X, Y, Z}⊗n the Pauli group on n qubits.
A set of k logical qubits is encoded as a 2k-dimensional Hilbert space HL
across n noisy physical qubits (with 2n-dimensional Hilbert space HP).
The logical Hilbert space is stabilized by the repeated measurement of

136

6.2. Description of the problem

n− k parity checks Si ∈ Πn that generate the stabilizer S(HL), defined as

S(HL) = {S ∈ B(HP), S|ψL〉 = |ψL〉∀|ψL〉 ∈ HL}, (6.1)

where B(HP) is the algebra of bounded operators on the physical Hilbert
space.

As errors accumulate in the physical hardware, an initial state |ψL(t =
0)〉 may rotate out of HL. Measurement of the stabilizers discretizes
this rotation, either projecting |ψL(t)〉 back into HL, or into an error-
detected subspace H~s(t). The syndrome ~s(t) ∈ Zn−k2 is determined by
the measurement of the parity checks: SiH~s(t) = (−1)si(t)H~s(t). It is the
job of a classical decoder to interpret the multiple syndrome cycles and
determine a correction that maps H~s(t) 7→ HL; such decoding is successful
when the combined action of error accumulation and correction leaves the
system unperturbed.
This job can be split into a computationally easy task of determining

a unitary that maps H~s(t) 7→ HL (a socalled ‘pure error’ [252]), and a
computationally difficult task of determining a logical operation within
HL to undo any unwanted logical errors. The former task (known as
‘excitation removal’ [253]) can be performed by a ‘simple decoder’ [247].
The latter task is reduced, within the stabilizer formalism, to determining
at most two parity bits per logical qubit, which is equivalent to determining
the logical parity of the qubit upon measurement at time t [211].
We implement the color code [75, 222] on an hexagonal lattice inside

a triangle, see Fig. 6.1. (This is the 6,6,6 color code of Ref. 174.) One
logical qubit is encoded by mapping vertices v to data qubits qv, and tiles
T to the stabilizers XT =

∏
v∈T Xv, ZT =

∏
v∈T Zv. The simultaneous

+1 eigenstate of all the stabilizers (the “code space”) is twofold degenerate
[228], so it can be used to define a logical qubit. The number of data
qubits that encodes one logical qubit is ndata = 7, 19, or 37 for a code with
distance d = 3, 5, or 7, respectively. (For any odd integer d, a distance-d
code can correct (d− 1)/2 errors.) Note that ndata is less than d2, being
the number of data qubits used in a surface code with the same d [79].
An X error on a data qubit switches the parity of the surrounding ZT

stabilizers, and similarly a Z error switches the parity of the surrounding
XT stabilizers. These parity switches are collected in the binary vector
of syndrome increments δ~s(t)∗, such that δsi = 1 signals some errors on
the qubits surrounding ancilla i. The syndrome increments themselves
∗The syndrome increment is usually δ~s(t) ≡ ~s(t)− ~s(t− 1) mod 2. When ancilla

qubits are not reset between QEC cycles, we use a somewhat different definition, see
App. 6.A.2 for details.

137

6. Neural network decoder for topological color codes with circuit level noise

Figure 6.1.: Schematic layout of the distance-5 triangular color code. A
hexagonal lattice inside an equilateral triangle encodes one logical qubit in 19
data qubits (one at each vertex). The code is stabilized by 6-fold X and Z
parity checks on the corners of each hexagon in the interior of the triangle, and
4-fold parity checks on the boundary. For the parity checks, the data qubits are
entangled with a pair of ancilla qubits inside each tile, resulting in a total of
3d2−1

2 qubits used to realize a distance-d code. Pauli operators on the logical
qubit can be performed along any side of the triangle, single-qubit Clifford
operations can be applied transversally, and two-qubit joint Pauli measurements
can be performed through lattice surgery to logical qubits on adjacent triangles.

are sufficient for a classical decoder to infer the errors on the physical
data qubits. Parity checks are performed by entangling ancilla qubits at
the center of each tile with the data qubits around the border, and then
measuring the ancilla qubits (see App. 6.A for the quantum circuit).

6.2.2. Error model
We consider two types of circuit-level noise models, both of which in-
corporate flag qubits to signal hook errors. Firstly, a simple Pauli error
model allows us to develop and test the codes up to distance d = 7. (For
larger d the training of the neural network becomes computationally too
expensive.) Secondly, the d = 3 code is applied to a realistic density-matrix
error model derived for superconducting qubits.

In the Pauli error model, one error correction cycle of duration tcycle =
N0tstep consists of a sequence of N0 = 20 steps of duration tstep, in which
a particular qubit is left idle, measured, or acted upon with a single-qubit
rotation gate or a two-qubit conditional-phase gate. Before the first cycle
we prepare all the qubits in an initial state, and we reset the ancilla qubits

138

6.2. Description of the problem

after each measurement. Similarly to Ref. 173, we allow for an error to
appear at each step of the circuit and during the preparation, including
the reset of the ancilla qubits, with probability perror. For the preparation
errors, idle errors, or rotation errors we introduce the possibility of an X,
Y , or Z error with probability perror/3. Upon measurement, we record the
wrong result with probability perror. Finally, after the conditional-phase
gate we apply with probability perror/15 one of the following two-qubit
errors: I ⊗ P , P ⊗ I, P ⊗ Q, with P,Q ∈ {X,Y, Z}. We assume that
perror � 1 and that all errors are independent, so that we can identify
perror ≡ εphys with the physical error rate per step.
The density matrix simulation uses the quantumsim simulator of Ref.

212. We adopt the experimental parameters from that work, which match
the state-of-the-art performance of superconducting transmon qubits. In
the density-matrix error model the qubits are not reset between cycles
of error correction. Because of this, parity checks are determined by the
difference between subsequent cycles of ancilla measurement. This error
model cannot be parametrized by a single error rate, and instead we
compare to the decay rate of a resting, unencoded superconducting qubit.

6.2.3. Fault-tolerance

The objective of quantum error correction is to arrive at a error rate
εL of the encoded logical qubit that is much smaller than the error rate
εphys of the constituting physical qubits. If error propagation through the
syndrome measurement circuit is limited, and a “good” decoder is used,
the logical error rate should exhibit the power law scaling [173]

εL = Cd ε
(d+1)/2
phys , (6.2)

with Cd a prefactor that depends on the distance d of the code but not on
the physical error rate. The so-called “pseudothreshold”∗ [254],

εpseudo = 1
C

2/(d−1)
d

(6.3)

is the physical error rate below which the logical qubit can store information
for a longer time than a single physical qubit.

∗The quantity εpseudo defined in Eq. (6.3) is called a pseudo-threshold because it is
d-dependent. In the limit d→∞ it converges to the true threshold.

139

6. Neural network decoder for topological color codes with circuit level noise

Figure 6.2.: Architecture of the recurrent neural network decoder. After a
body of recurrent layers the network branches into two heads, each of which
estimates the probability p or p′ that the parity of bit flips at time T is odd.
The upper head does this solely based on syndrome increments δ~s and flag
measurements ~sflag from the ancilla qubits, while the lower head additionally
gets the syndrome increment δ ~f from the final measurement of the data qubits.
During training both heads are active, during validation and testing only the
lower head is used. Ovals denote the two long short-term memory (LSTM)
layers and the fully connected evaluation layers, while boxes denote input and
output data. Solid arrows indicate data flow in the system (with ~h(1)

t and ~h(2)
T

the output of the first and second LSTM layer), and dashed arrows indicate the
internal memory flow of the LSTM layers.

6.2.4. Flag qubits
During the measurement of a weight-w parity check with a single ancilla
qubit, an error on the ancilla qubit may propagate to as many as w/2
errors on data qubits. This reduces the effective distance of the code in
Eq. (6.2). The surface code can be made resilient to such hook errors, but
the color code cannot: Hook errors reduce the effective distance of the
color code by a factor of two.

To avoid this degradation of the code distance, we take a similar approach
to Refs. 241–245 by adding a small number of additional ancilla qubits,
socalled “flag qubits”, to detect hook errors. For our chosen color code with
weight-6 parity checks, we opt to use one flag qubit for each ancilla qubit
used to make a stabilizer measurement. (This is a much reduced overhead
in comparison to alternative approaches [238–240].) Flag and ancilla qubits
are entangled during measurement and read out simultaneously (circuits
given in App. 6.A). Our scheme is not a priori fault-tolerant, as previous
work has required at least (d− 1)/2 flag qubits per stabilizer. Instead, we
rely on fitting our numeric results to Eq. (6.2) with d fixed to the code
distance to demonstrate that our scheme is in fact fault tolerant.

140

6.3. Neural network decoder

6.3. Neural network decoder

6.3.1. Learning mechanism
Artificial neural networks are function approximators. They span a function
space that is parametrized by variables called weights and biases. The
task of learning corresponds to finding a function in this function space
that is close to the unknown function represented by the training data.
To do this, one first defines a measure for the distance between functions
and then uses an optimization algorithm to search the function space for a
local minimum with respect to this measure. Finding the global minimum
is in general not guaranteed, but empirically it turns out that often local
minima are good approximations. For a comprehensive review see for
example Refs. 255, 256.
We use a specific class of neural networks known as recurrent neural

networks, where the “function” can represent an algorithm [257]. During
optimization the weights and biases are adjusted such that the resulting
algorithm is close to the algorithm represented by the training data.

6.3.2. Decoding algorithm
Consider a logical qubit, prepared in an arbitrary logical state |ψL〉, kept
for a certain time T , and then measured with outcome m ∈ {−1, 1}
in the logical Z-basis. Upon measurement, phase information is lost.
Hence, the only information needed in addition to m is the parity of bit
flips in the measurement basis. (A separate decoder is invoked for each
measurement basis.) If the bit flip parity is odd, we correct the error by
negating m 7→ −m. The task of decoding amounts to the estimation of
the probability p that the logical qubit has had an odd number of bit flips.
The experimentally accessible data for this estimation consists of mea-

surements of ancilla and flag qubits, contained in the vectors δ~s(t) and
~sflag(t) of syndrome increments and flag measurements, and, at the end
of the experiment, the readout of the data qubits. From this data qubit
readout a final syndrome increment vector δ ~f(T) can be calculated. De-
pending on the measurement basis, it will only contain the X or the Z
stabilizers.
Additionally, we also need to know the true bit flip parity ptrue. To

obtain this we initialize the logical qubit at |ψL〉 ≡ |0〉 (|ψL〉 ≡ |1〉 would
be an equivalent choice) and then compare the final measured logical state
to this initial logical state to obtain the true bit flip parity ptrue ∈ {0, 1}.

An efficient decoder must be able to decode an arbitrary and unspecified

141

6. Neural network decoder for topological color codes with circuit level noise

number of error correction cycles. As a feedforward neural network requires
a fixed input size, it is impractical to train such a neural network to decode
the entire syndrome data in a single step, as this would require a new
network (and new training data) for every experiment with a different
number of cycles. Instead, a neural network for quantum error correction
must be cycle-based: It must be able to parse repeated input of small
pieces of data (e.g. syndrome data from a single cycle) until called upon by
the user to provide output. Importantly, this requires the decoder to be
translationally invariant in time: It must decode late rounds of syndrome
data just as well as the early rounds. To achieve this, we follow Ref. 211
and use a recurrent neural network of long short-term memory (LSTM)
layers [258] — with one significant modification, which we now describe.
The time-translation invariance of the error propagation holds for the

ancilla qubits, but it is broken by the final measurement of the data
qubits — since any error in these qubits will not propagate forward in
time. To extract the time-translation invariant part of the training data,
in Ref. 211 two separate networks were trained in parallel, one with and
one without the final measurement input. Here, we instead use a single
network with two heads, as illustrated in Fig. 6.2. The upper head sees
only the translationally invariant data, while the lower head solves the
full decoding problem. In appendix 6.B we describe the details of the
implementation.
The switch from two parallel networks to a single network with two

heads offers several advantages: (1) The number of LSTM layers and the
computational cost is cut in half; (2) The network can be trained on a
single large error rate, then used for smaller error rates without retraining;
(3) The bit flip probability from the upper head provides a so-called Pauli
frame decoder [66].
In the training stage the bit flip probabilities p′ and p ∈ [0, 1] from

the upper and lower head are compared with the true bit flip parity
ptrue ∈ {0, 1}. By adjusting the weights of the network connections a cost
function is minimized in order to bring p′, p close to ptrue. We carry out
this machine learning procedure using the TensorFlow library [259].
After the training of the neural network has been completed we test

the decoder on a fresh dataset. Only the lower head is active during the
testing stage. If the output probability p < 0.5, the parity of bit flip errors
is predicted to be even and otherwise odd. We then compare this to ptrue
and average over the test dataset to obtain the logical fidelity F(t). Using
a two-parameter fit to [212]

F(t) = 1
2 + 1

2 (1− 2εL)(t−t0)/tstep , (6.4)

142

6.4. Neural network performance

Figure 6.3.: Decay of the logical fidelity for a distance-3 color code. The
curves correspond to different physical error rates εphys per step, from top to
bottom: 1.6 ·10−5, 2.5 ·10−5, 4.0 ·10−5, 6.3 ·10−5, 1.0 ·10−4, 1.6 ·10−4, 2.5 ·10−4,
4.0 · 10−4, 6.3 · 10−4, 1.0 · 10−3, 1.6 · 10−3, 2.5 · 10−3. Each point is averaged
over 103 samples. Error bars are obtained by bootstrapping. Dashed lines are
two-parameter fits to Eq. (6.4).

we determine the logical error rate εL per step of the decoder.

6.4. Neural network performance

6.4.1. Power law scaling of the logical error rate
Results for the distance-3 color code are shown in Fig. 6.3 (with similar
plots for distance-5 and distance-7 codes in App. 6.C). These results
demonstrate that the neural network decoder is able to decode a large
number of consecutive error correction cycles. The dashed lines are fits to
Eq. (6.4), which allow us to extract the logical error rate εL per step, for
different physical error rates εphys per step.
Figure 6.4 shows that the neural network decoder follows a power law

scaling (6.2) with d fixed to the code distance. This shows that the decoder,
once trained using a single error rate, operates equally efficiently when
the error rate is varied, and that our flag error correction scheme is indeed
fault-tolerant. The corresponding pseudothresholds (6.3) are listed in
Table 6.1.

143

6. Neural network decoder for topological color codes with circuit level noise

Figure 6.4.: In color: Log-log plot of the logical versus physical error rates
per step, for distances d = 3, 5, 7 of the color code. The dashed line through
the data points has the slope given by Eq. (6.2). Quality of fit indicates that at
least

⌊
1
2 (d+ 1)

⌋
independent physical errors must occur in a round to generate

a logical error in that round, so syndrome extraction is fault-tolerant. In gray:
Error rate of a single physical (unencoded) qubit. The error rates at which this
line intersects with the lines for the encoded qubits are the pseudothresholds.

6.4.2. Performance on realistic data

To assess the performance of the decoder in a realistic setting, we have
implemented the distance-3 color code using a density matrix based sim-
ulator of superconducting transmon qubits [212]. We have then trained
and tested the neural network decoder on data from this simulation. In
Fig. 6.5 we compare the decay of the fidelity of the logical qubit as it
results from the neural network decoder with the fidelity extracted from
the simulation [212]. The latter fidelity determines via Eq. (6.4) the logical
error rate εoptimal of an optimal decoder. For the distance-3 code we find
εL = 0.0148 and εoptimal = 0.0132 per microsecond. This can be used to
calculate the decoder efficiency [212] εoptimal/εL = 0.89, which measures
the performance of the neural network decoder separate from uncorrectable
errors. The dashed gray line is the average fidelity (following Eq. (6.4)) of a
single physical qubit at rest, corresponding to an error rate of 0.0164 [212].
This demonstrates that, even with realistic experimental parameters, a
logical qubit encoded with the color code has a longer life-time than a
physical qubit.

144

6.5. Conclusion

distance d pseudothreshold εpseudo

3 0.0034
5 0.0028
7 0.0023

Table 6.1.: Pseudothresholds calculated from the data of Fig. 6.4, giving the
physical error rate below which the logical qubit can store information for a
longer time than a single physical qubit.

6.5. Conclusion
We have presented a machine-learning based approach to quantum error
correction for the topological color code. We believe that this approach to
fault-tolerant quantum computation can be used efficiently in experiments
on near-term quantum devices with relatively high physical error rates (so
that the neural network can be trained with relatively small datasets). In
support of this, we have presented a density matrix simulation [212] of
superconducting transmon qubits (Fig. 6.5), where we obtain a decoder
efficiency of ηd = 0.89.

Independently of our investigation, three recent works have shown how
a neural network can be applied to color code decoding. Refs. 250 and 253
only consider single rounds of error correction, and cannot be extended to
a multi-round experiment or circuit-level noise. Ref. 251 uses the Steane
and Knill error correction schemes when considering color codes, which are
also fault-tolerant against circuit-level noise, but have larger physical qubit
requirements than flag error correction. None of these works includes a
test on a simulation of physical hardware.

6.A. Quantum circuits

6.A.1. Circuits for the Pauli error model
Fig. 6.6 shows the circuits for the measurements of the X and Z stabilizers
in the Pauli error model. To each stabilizer, measured with the aid of an
ancilla qubit, we associate a second “flag” ancilla qubit with the task of
spotting faults of the first ancilla [241–245]. This avoids hook errors (errors
that propagate from a single ancilla qubit onto two data qubits), which
would reduce the distance of the code. After the measurement of the X
stabilizers, all the ancillas are reset to |0〉 and reused for the measurement

145

6. Neural network decoder for topological color codes with circuit level noise

Figure 6.5.: Same as Fig. 6.3, but for a density matrix-based simulation of
an array of superconducting transmon qubits. Each point is an average over
104 samples. The density matrix-based simulation gives the performance of an
optimal decoder, with a logical error rate εoptimal = 0.0132 per microsecond.
From this, and the error rate εL = 0.0148 per microsecond obtained by the
neural network, we calculate the neural network decoder efficiency to be 0.89.
The average fidelity of an unencoded transmon qubit at rest with the same
physical parameters is plotted in gray.

of the Z stabilizers. Before finally measuring the data qubits, we allow the
circuit to run for T cycles.

6.A.2. Measurement processing for the
density-matrix error model

For the density matrix simulation, neither ancilla qubits nor flag qubits
are reset between cycles, leading to a more involved extraction process of
both δ~s(t) and ~sflag(t), as we now explain.

Let ~m(t) and ~mflag(t) be the actual ancilla and flag qubit measurements
taken in cycle t, and ~m0(t), ~m0

flag(t) be compensation vectors of ancilla and
flag measurements that would have been observed had no errors occurred
in this cycle. Then,

δ~s(t) = ~m(t) + ~m0(t) mod 2, (6.5)
~sflag(t) = ~mflag(t) + ~m0

flag(t) mod 2. (6.6)

146

6.A. Quantum circuits

Figure 6.6.: Top left: Schematic of a 6-6-6 color code with distance 3. Top
right: Stabilizer measurement circuits for a plaquette on the boundary. Bottom
left: Partial schematic of a 6-6-6 color code with distance larger than 3. Bottom
right: Stabilizer measurement circuits for a plaquette in the bulk. For the
circuits in the right panels, the dashed Hadamard gates are only present when
measuring the X stabilizers, and are replaced by idling gates for the Z stabilizer
circuits; the grayed out gates correspond to conditional-phase gates between the
considered data qubits and ancillas belonging to other plaquettes; and the data
qubits are only measured after the last round of error correction, otherwise they
idle whilst the ancillas are measured.

Calculation of the compensation vectors ~m0(t) and ~m0
flag(t) requires knowl-

edge of the stabilizer ~s(t− 1), and the initialization of the ancilla qubits
~m(t − 1) and the flag qubits ~mflag(t − 1), being the combination of the
effects of individual non-zero terms in each of these.

Note that a flag qubit being initialized in |1〉 will cause errors to prop-
agate onto nearby data qubits, but these errors can be predicted and
removed prior to decoding with the neural network. In particular, let us
concatenate ~m(t), ~mflag(t) and ~s(t) to form a vector ~d(t). The update may

147

6. Neural network decoder for topological color codes with circuit level noise

then be written as a matrix multiplication:

~m0
flag(t) = Mf

~d(t− 1) mod 2, (6.7)

Where Mf is a sparse, binary matrix. The syndromes ~s(t) may be updated
in a similar fashion

~s(t) = ~s(t− 1) + δ~s(t) +Ms
~d(t− 1) mod 2, (6.8)

where Ms is likewise sparse. Both Mf and Ms may be constructed by
modeling the stabilizer measurement circuit in the absence of errors. The
sparsity in both matrices reflect the connectivity between data and ancilla
qubits; for a topological code, both Mf and Ms are local. The calculation
of the syndrome increments δ~s(t) via Eq. (6.5) does not require prior
calculation of ~s(t).

6.B. Details of the neural network decoder

6.B.1. Architecture
The decoder consists of a double headed network, see Fig. 6.2, which
we implement using the TensorFlow library [259]∗. The network maps
a list of syndrome increments δ~s(t) and flag measurements ~sflag(t) with
t/tcycle = 1, 2, ..., T to a pair of probabilities p′, p ∈ [0, 1]. (In what follows
we measure time in units of the cycle duration tcycle = N0tstep, with
N0 = 20.) The lower head gets as additional input a single final syndrome
increment δ ~f(T). The cost function I that we seek to minimize by varying
the weight matrices w and bias vectors~b of the network is the cross-entropy

H(p1, p2) = −p1 log p2 − (1− p1) log(1− p2) (6.9)

between these output probabilities and the true final parity ptrue ∈ {0, 1}
of bit flip errors:

I = H(ptrue, p) + 1
2H(ptrue, p

′) + c||wEVAL||2. (6.10)

The term c||wEVAL||2 with c� 1 is a regularizer, where wEVAL ⊂ w are
the weights of the evaluation layer.
The body of the double headed network is a recurrent neural network,
∗The source code of the neural network decoder can be found

at https://github.com/baireuther/neural_network_decoder.

148

https://github.com/baireuther/neural_network_decoder

6.B. Details of the neural network decoder

consisting of two LSTM layers [258, 260, 261]. Each of the LSTM layers
has two internal states, representing the long-term memory ~c(i)t ∈ RN and
the short-term memory ~h(i)

t ∈ RN , where N = 32, 64, 128 for distances
d = 3, 5, 7. Internally, an LSTM layer consists of four simple neural
networks that control how the short- and long-term memory are updated
based on their current states and new input xt. Mathematically, it is
described by the following equations [260, 261]:

~it = σ(wi~xt + vi~ht−1 +~bi), (6.11a)
~ft = σ(wf~xt + vf~ht−1 +~bf), (6.11b)

~ot = σ(wo~xt + vo~ht−1 +~bo), (6.11c)

~mt = tanh(wm~xt + vm~ht−1 +~bm), (6.11d)

~ct = ~ft � ~ct−1 +~it � ~mt (6.11e)
~ht = ~ot � tanh(~ct). (6.11f)

Here w and v are weight matrices, ~b are bias vectors, σ is the sigmoid
function, and � is the element-wise product between two vectors. The
letters i, m, f , and o label the four internal neural network gates: input,
input modulation, forget, and output. The first LSTM layer gets the
syndrome increments δ~s(t) and flag measurements ~sflag(t) as input, and
outputs its short term memory states ~h(1)

t . These states are in turn the
input to the second LSTM layer.
The heads of the network consist of a single layer of rectified linear

units, whose outputs are mapped onto a single probability using a sigmoid
activation function. The input of the two heads is the last short-term
memory state of the second LSTM layer, subject to a rectified linear
activation function ReL(~h(2)

T). For the lower head we concatenate ReL(~h(2)
T)

with the final syndrome increment δ ~f(T).

6.B.2. Training and evaluation
We use three separate datasets for each code distance. The training dataset
is used by the optimizer to optimize the trainable variables of the network.
It consists of 2 · 106 sequences of lengths between T = 1 and T = 40 at a
large error rate of p = 10−3 for distances 3 and 5, and of 5 · 106 sequences
for distance 7. At the end of each sequence, it contains the final syndrome
increment δ ~f(T) and the final parity of bit flip errors ptrue. After each
training epoch, consisting of 3000 to 5000 mini-batches of size 64, we

149

6. Neural network decoder for topological color codes with circuit level noise

Figure 6.7.: Same as Fig. 6.4. The blue ellipse indicates the error rates used
during training, and the green ellipse indicates the error rates used for validation.

validate the network (using only the lower head) on a validation dataset
consisting of 103 sequences of 30 different lengths between 1 and 104 cycles.
By validating on sequences much longer than the sequences in the training
dataset, we select the instance of the decoder that generalizes best to long
sequences. The error rates of the validation datasets are chosen such that
they are the largest error rate for which the expected logical fidelity after
104 cycles is still larger than 0.6 (see Fig. 6.7), because if the logical fidelity
approaches 0.5 a meaningful prediction is no longer possible. The error
rates of the validation datasets are 1 ·10−4, 2.5 ·10−4, 4 ·10−4 for distances
3, 5, 7 respectively. To avoid unproductive fits during the early training
stages, we calculate the logical error rate with a single parameter fit to Eq.
(6.4) by setting t0 = 0 during validation. If the logical error rate reaches
a new minimum on the validation dataset, we store this instance of the
network.

We stop the training after 103 epochs. One training epoch takes about
one minute for distance 3 (network sizeN = 32) when training on sequences
up to length T = 20 and about two minutes for sequences up to length
T = 40 on an Intel(R) Xeon(R) CPU E3-1270 v5 @ 3.60GHz. For distance
5 (N = 64, T = 1, 2, ..., 40) one epoch takes about five minutes and for
distance 7 (N = 128, T = 1, 2, ..., 40) about ten minutes.

To keep the computational effort of the data generation tractable, for the
density matrix-based simulation (Fig. 6.5) we only train on 106 sequences
of lengths between T = 1 and T = 20 cycles and validate on 104 sequences

150

6.B. Details of the neural network decoder

Figure 6.8.: Same as Fig. 6.3 for a distance-5 code; the physical error rate εphys
from top to bottom is: 1.0 · 10−4, 1.6 · 10−4, 2.5 · 10−4, 4.0 · 10−4, 6.3 · 10−4,
1.0 · 10−3, 1.6 · 10−3, 2.5 · 10−3.

of lengths between T = 1 and T = 30 cycles. For the density matrix-based
simulation, all datasets have the same error rate.
We train using the Adam optimizer [262] with a learning rate of 10−3.

To avoid over-fitting and reach a better generalization of the network to
unseen data, we employ two additional regularization methods: Dropout
and weight regularization. Dropout with a keep probability of 0.8 is applied
to the output of each LSTM layer and to the output of the hidden units of
the evaluation layers. Weight regularization, with a prefactor of c = 10−5,
is only applied to the weights of the evaluation layers, but not to the biases.
The hyperparameters for training rate, dropout, and weight regularization
were taken from [211]. The network sizes were chosen by try and error to
be as small as possible without fine-tuning, restricted to powers of two
N = 2n.
After training is complete we evaluate the decoder on a test dataset

consisting of 103 (104 for the density matrix-based simulation) sequences
of lengths such that the logical fidelity decays to approximately 0.6, but
no more than T = 104 cycles. Unlike for the training and validation
datasets, for the test dataset we sample a final syndrome increment and
the corresponding final parity of bit flip errors after each cycle. We then
select an evenly distributed subset of tn = n∆T < Tmax cycles, where ∆T
is the smallest integer for which the total number of points is less than 50,

151

6. Neural network decoder for topological color codes with circuit level noise

Figure 6.9.: Same as Fig. 6.3 for a distance-7 code; the physical error rate εphys
from top to bottom is: 1.6 · 10−4, 2.5 · 10−4, 4.0 · 10−4, 6.3 · 10−4, 1.0 · 10−3,
1.6 · 10−3, 2.5 · 10−3.

for evaluation. This is done in order to reduce the needed computational
resources. The logical error rate ε per step is determined by a fit of the
fidelity to Eq. (6.4).

6.B.3. Pauli frame updater
We operate the neural network as a bit-flip decoder, but we could have
alternatively operated it as a Pauli frame updater. We briefly discuss the
connection between the two modes of operation.

Generally, a decoder executes a classical algorithm that determines the
operator P (t) ∈ Πn (the so-called Pauli frame) which transforms |ψL(t)〉
back into the logical qubit space H~0 = HL. Equivalently (with minimal
overhead), a decoder may keep track of logical parity bits ~p that determine
whether the Pauli frame of a ‘simple decoder’ [247] commutes with a set
of chosen logical operators for each logical qubit.

The second approach of bit-flip decoding has two advantages over Pauli
frame updates: Firstly, it removes the gauge degree of freedom of the Pauli
frame (SP (t) is an equivalent Pauli frame for any stabilizer S). Secondly,
the logical parity can be measured in an experiment, where no ‘true’ Pauli
frame exists (due to the gauge degree of freedom).
Note that in the scheme where flag qubits are used without reset, the

152

6.C. Results for distance-5 and distance-7 codes

errors from qubits initialized in |1〉 may be removed by the simple decoder
without any additional input required by the neural network.

6.C. Results for distance-5 and distance-7
codes

Figures 6.8 and 6.9 show the decay curves for the d = 5 and d = 7 color
codes, similar to the d = 3 decay curves shown in figure 6.3 in the main
text.

153

