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4. Density-matrix simulation
of small surface codes under
current and projected
experimental noise

4.1. Introduction
Recent experimental demonstrations of small quantum simulations [164–
166] and quantum error correction (QEC) [167–170] position supercon-
ducting circuits for targeting quantum supremacy [171] and quantum fault
tolerance [172], two outstanding challenges for all quantum information
processing platforms. On the theoretical side, much modeling of QEC
codes has been made to determine fault-tolerance threshold rates in various
models [173–175] with different error decoders [176–178]. However, the
need for computational efficiency has constrained many previous studies
to oversimplified noise models, such as depolarizing and bit-flip noise chan-
nels. This discrepancy between theoretical descriptions and experimental
reality compromises the ability to predict the performance of near-term
QEC implementations, and offers limited guidance to the experimentalist
through the maze of parameter choices and trade-offs. In the planar circuit
quantum electrodynamics (cQED) [179] architecture, the major contribu-
tions to error are transmon qubit relaxation, dephasing from flux noise
and resonator photons leftover from measurement, and leakage from the
computational space, none of which are well-approximated by depolarizing
or bit-flip channels. Simulations with more complex error models are now
essential to accurately pinpoint the leading contributions to the logical
error rate in the small-distance surface codes [173, 176, 180] currently
pursued by several groups worldwide.

The contents of this chapter have been published in T. E. O’Brien, B. Tarasinski
and L. DiCarlo, npj Quant. Inf. 3, 27 (2017)
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4. Density-matrix simulation of small surface codes

In this chapter, we perform a density-matrix simulation of the distance-3
surface code named Surface-17, using the concrete quantum circuit recently
proposed in [181] and the measured performance of current experimental
multi-transmon cQED platforms [182–185]. For this purpose, we have
developed an open-source density-matrix simulation package named quan-
tumsim ∗. We use quantumsim to extract the logical error rate per QEC
cycle, εL. This metric allows us to optimize and trade off between QEC
cycle parameters, assess the merits of feedback control, predict gains from
future improvements in physical qubit performance, and quantify decoder
performance. We compare an algorithmic decoder using minimum-weight
perfect matching (MWPM) with homemade weight calculation to a simple
look-up table (LT) decoder, and weigh both against an upper bound (UB)
for decoder performance obtainable from the density-matrix simulation.
Finally, we make a low-order approximation to extend our predictions to
the distance-5 Surface-49. The combination of results for Surface-17 and
-49 allows us to make statements about code scaling and to predict the
code size and physical qubit performance required to achieve break-even
points for memory and computational performance.

4.2. Results
4.2.1. Error rates for Surface-17 under current

experimental conditions
To quantify the performance of the logical qubit, we first define a test
experiment to simulate. Inspired by the recent experimental demonstration
of distance-3 and -5 repetition codes [167], we first focus on the performance
of the logical qubit as a quantum memory. Specifically, we quantify the
ability to hold a logical |0〉 state, by initializing this state, holding it for
k ∈ {1, . . . , 20} cycles, performing error correction, and determining a final
logical state (see Fig. 4.6 for details). The logical fidelity FL[k] is then
given by the probability to match the initial state. We observe identical
results when using |1〉 or |±〉 = 1√

2 (|0〉 ± |1〉) in place of |0〉.
We base our error model for the physical qubits on current typical

experimental performance for transmons in planar cQED, using param-
eters from the literature and in-house results (e.g., gate-set tomography
measurements). These are summarized in Table 4.1, and further de-
tailed in Table 4.2. We focus on the QEC cycle proposed in [181], which
pipelines the execution of X- and Z-type stabilizer measurements. Each
∗Please visit https://github.com/brianzi/quantumsim
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4.2. Results

0.7

0.8

0.9

1

Decoder upper bound

MWPM decoder
Look-up table decoder

Majority voting

Single qubit

0 5 10 15 20

0 4 8 12 16
Wall-clock time [    ]s

=0.68%
c

=1.07%
c

=1.44%
c

=1.33%
c

z x z

z x z

x

x

Surface-17

QEC cycle number 

Fi
d
e
lit

ie
s 

  
  
 a

n
d

Figure 4.1.: Logical fidelity FL[k] of Surface-17 with current experimental
parameters (Tables 4.1 and 4.2), simulated with quantumsim as described in
Fig. 4.6. The results from a MWPM decoder (green) and an implementation of
the LT decoder of [176] (blue) are compared to the decoder upper bound (red).
The labeled error rate is obtained from the best fit to Eq. (4.2) (also plotted). A
further comparison is given to majority voting (purple, dashed), which ignores
the outcome of individual stabilizer measurements, and to the fidelity Fphys
of a single transmon (black) [Eq. (4.1)]. Error bars (2 s.d.) are obtained by
bootstrapping.

stabilizer measurement consists of three parts: a coherent step (duration
τc = 2τg,1Q + 4τg,2Q), measurement (τm), and photon depletion from
readout resonators (τd), making the QEC cycle time τcycle = τc + τm + τd.

Simulating this concrete quantum circuit with the listed parameters using
quantumsim, we predict FL[k] of Surface-17 (Fig. 4.1). We show FL[k] for
both a homemade MWPM decoder (green, described in App. 4.F), and an
implementation of the LT decoder of [176] (blue, described in App. 4.G).
To isolate decoder performance, we can compare the achieved fidelity
to an upper bound extractable from the density-matrix simulation (red,
described in Sec. 4.4.1). To assess the benefit of QEC, we also compare
to a single decohering transmon, whose fidelity is calculated by averaging
over the six cardinal points of the Bloch sphere:

Fphys(t) = 1
6

(
1 + e−t/T1

)
+ 1

3

(
1 + e−t(1/2T1+1/Tφ)

)
. (4.1)
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4. Density-matrix simulation of small surface codes

The observation of FL[k] > Fphys(kτcycle) for large k would constitute a
demonstration of QEC beyond the quantum memory break-even point [170].
Equivalently, one can extract a logical error rate εL from a best fit to FL[k]
(as derived in Sec. 4.4.1 as the probability of an odd number of errors
occurring),

FL[k] = 1
2 [1 + (1− 2εL)k−k0 ]. (4.2)

Here, k0 and εL are the parameters to be fit. We compare εL to the
physical error rate

εphys = −τcycle
dFphys(t)

dt

∣∣∣∣
t=0

= τcycle

3T1
+ τcycle

3Tφ
. (4.3)

We observe εL = 1.44 %c for the LT decoder, εL = 1.07 %c for the MWPM
decoder, and εL = 0.68 %c at the decoder upper bound (%c = % per cycle).
The latter two fall below εphys = 1.33 %c. Defining the decoder efficiency
ηd = ε

(UB)
L /εL, we find η(LT)

d = 0.47 and η(MWPM)
d = 0.64.

We can also compare the multi-cycle error correction to majority voting,
in which the state declaration is based solely on the output of the final
data qubit measurements (ancilla measurements are ignored). Majority
voting corrects any single data qubit error (over the entire experiment),
and thus exhibits a quadratic decay for small k ∗. A decoder should also
be able to correct (at least) a single error, and thus should produce the
same behavior at low k, delaying the onset of exponential decay in FL[k].
In fact, a good test for the performance of a MWPM decoder is to ensure
it can outperform the majority vote at short timescales, as suboptimal
configuration will prevent this (as seen for the look-up table decoder).
With the baseline for current performance established, we next inves-

tigate εL improvements that may be achieved by two means. First, we
consider modifications to the QEC cycle at fixed physical performance.
Afterwards, we consider the effect of improving physical qubit T1 and Tφ.

4.2.2. Optimization of logical error rates with current
experimental conditions

Error sources in current cQED setups derive primarily from transmon
decoherence, as opposed to gate and measurement errors produced by
control electronics. Thus, a path to reducing εL may be to decrease

∗A distance-d code with majority voting alone should exhibit a (d + 1)/2-order
decay
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4.2. Results

τcycle. Currently, the cycle is dominated by τm + τd. At fixed readout
power, reducing τm and τd will reduce τcycle at the cost of increased
readout infidelity εRO (described in Sec. 4.4.2). We explore this trade-
off in Fig. 4.2, using a linear-dispersive readout model [186], keeping
τm = τd and assuming no leftover photons. Because of the latter, ε(MWPM)

L
reduces from 1.07 %c (Fig. 4.1) to 0.62 %c at τm = 300 ns. The minimum
ε
(MWPM)
L = 0.55 %c is achieved at around τm = 260 ns. This is perhaps
counterintuitive, as εphys reduces only 0.13 %c while εRO increases 0.5 %.
However, it reflects the different sensitivity of the code to different types of
errors. Indeed, ε(MWPM)

L is smaller for τm = 200 ns than for τm = 300 ns,
even though εRO increases to 5 %. It is interesting to note that the optimal
τm for quantum memory, which minimizes logical error per unit time,
rather than per cycle, is τm = 280 ns (Fig. 4.2 inset). This shows that
different cycle parameters might be optimal for computation and memory
applications.
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Figure 4.2.: Optimization of the logical error rate (per cycle) of Surface-17 as
a function of measurement-and-depletion time [182]. Changes in the underlying
physical error rates are shown as well. Decreasing the measurement time
causes an increase in the readout infidelity (solid black curve with dots), whilst
decreasing the single qubit decay from T1 and T2 (black dashed curve) for all
qubits. The logical rate with an MWPM decoder (green curve) is minimized
when these error rates are appropriately balanced. The logical error rate is
calculated from the best fit of Eq. (4.2). Error bars (2 s.d.) are obtained by
bootstrapping (N = 10, 000 runs). Inset: Logical error rate per unit time,
instead of per cycle.
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4. Density-matrix simulation of small surface codes

Next, we consider the possibility to reduce εL using feedback control.
Since T1 only affects qubits in the excited state, the error rate of ancillas
in Surface-17 is roughly two times higher when in the excited state. The
unmodified syndrome extraction circuit flips the ancilla if the corresponding
stabilizer value is -1, and since ancillas are not reset between cycles, they
will spend significant amounts of time in the excited state. Thus, we
consider using feedback to hold each ancilla in the ground state as much
as possible. We do not consider feedback on data qubits, as the highly
entangled logical states are equally susceptible to T1.

The feedback scheme (Inset of Fig. 3) consists of replacing the Ry(π/2)
gate at the end of the coherent step with a Ry(−π/2) gate for some of the
ancillas, depending on a classical control bit p for each ancilla. This bit
p represents an estimate of the stabilizer value, and the ancilla is held in
the ground state whenever this estimate is correct (i.e. in the absence of
errors). Figure 4.3 shows the effect of this feedback on the logical fidelity,
both for the MWPM decoder and the decoder upper bound. We observe
εL improve only 0.05 %c in both cases. Future experiments might opt not
to pursue these small gains in view of the technical challenges added by
feedback control.

4.2.3. Projected improvement with advances in
quantum hardware

We now estimate the performance increase that may result from improving
the transmon relaxation and dephasing times via materials and filtering
improvements. To model this, we return to τcycle = 800 ns, and adjust
T1 values with both Tφ = 2T1 (common in experiment) and Tφ =∞ (all
white-noise dephasing eliminated). We retain the same rates for coherent
errors, readout infidelity, and photon-induced dephasing as in Fig. 4.1.
Figure 4.4 shows the extracted εL and εphys over the T1 range covered.
For the MWPM decoder (upper bound) and Tφ = 2T1, the memory figure
of merit γm = εphys/εL increases from 1.3 (2) at T1 = 30 µs to 2 (5) at
100 µs. Completely eliminating white-noise dephasing will increase γm by
10% with MWPM and 30% at the upper bound.

A key question for any QEC code is how εL scales with code distance d.
Computing power limitations preclude similar density-matrix simulations
of the d = 5 surface code Surface-49. However, we can approximate the
error rate by summing up all lowest-order error chains (as calculated for the
MWPM decoder), and deciding individually whether or not these would be
corrected by a MWPM decoder (see App. 4.H for details). Figure 4.5 shows
the lowest-order approximation to the logical error rates of Surface-17
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Figure 4.3.: Logical fidelity of Surface-17 with (solid) and without (dashed)
an additional feedback scheme. The performance of a MWPM decoder (green)
is compared to the decoder upper bound (red). Curves are fits of Eq. (4.2) to
the data, and error bars (2 s.d.) are given by bootstrapping, with each point
averaged over 10, 000 runs. Inset: Method for implementing the feedback scheme.
For each ancilla qubit Aj , we store a parity bit pj , which decides the sign of
the Ry(π/2) rotation at the end of each coherent step. The time Aj spends in
the ground state is maximized when pj is updated each cycle t by XORing with
the measurement result from cycle t− 1, after the rotation of cycle t has been
performed.

and -49 over a range of T1 = Tφ/2. Comparing the Surface-17 lowest-
order approximation to the quantumsim result shows good agreement and
validates the approximation. We observe a lower εL for Surface-49 than
for -17, indicating quantum fault tolerance over the T1 range covered. The
fault-tolerance figure of merit defined in [172], Λt = ε

(17)
L /ε

(49)
L , increases

from 2 to 4 as T1 grows from 30 to 100 µs.
As a rough metric of computational performance, we offer to compare εL

(per cycle) to the error accrued by a physical qubit idling over τg,1Q. We
define a metric for computation performance, γc = (εphysτg,1Q)/(εLτcycle)
and γc = 1 as a computational break-even point. Clearly, using the QEC
cycle parameters of Table 4.1 and even with T1 improvements, neither
Surface-17 nor -49 can break-even computationally. However, including
the readout acceleration recently demonstrated in [185], which allows
τm = τd = 100 ns and τcycle = 400 ns, Surface-49 can cross γc = 1 by
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4. Density-matrix simulation of small surface codes
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Figure 4.4.: T1 dependence of the Surface-17 logical error rate (MWPM and
UB) and the physical error rate. We either fix Tφ = 2T1 (solid) or Tφ = ∞
(dashed). Logical error rates are extracted from a best fit of Eq. (4.2) to FL[k]
over k = 1, . . . , 20 QEC cycles, averaged over N = 50, 000 runs. Error bars (2
s.d.) are calculated by bootstrapping.

T1 = 40 µs. In view of first reports of T1 up to 80 µs emerging for planar
transmons [187, 188], this important milestone may be within grasp.

4.3. Discussion

4.3.1. Computational figure of merit

We note that our metric of computational power is not rigorous, due to
the different gate sets available to physical and logical qubits. Logical
qubits can execute multiple logical X and Z gates within one QEC cycle,
but require a few cycles for two-qubit and Hadamard gates (using the
proposals of [175, 180]), and state distillation over many cycles to perform
non-Clifford gates. As such, this metric is merely a rough benchmark
for computational competitiveness of the QEC code. However, given the
amount by which all distance-3 logical fidelities fall above this metric, we
find it unlikely that these codes will outperform a physical qubit by any
fair comparison in the near future.
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Figure 4.5.: Analytic approximation of εL for Surface-17 (green) and Surface-49
(orange) using a MWPM decoder. Details of the calculation of points and error
bars are given in App. 4.H. All plots assume Tφ = 2T1, and τcycle = 800 ns
(crosses) or 400 ns (dots). Numerical results for Surface-17 with τcycle = 800 ns
are also plotted for comparison (green, dashed). The physical-qubit computation
metric is given as the error incurred by a single qubit over the resting time of a
single-qubit gate (black, dashed).

4.3.2. Decoder performance
A practical question facing quantum error correction is how best to balance
the trade-off between decoder complexity and performance. Past proposals
for surface-code computation via lattice surgery [180] require the decoder
to provide an up-to-date estimate of the Pauli error on physical qubits
during each logical T gate. Because tracking Pauli errors through a non-
Clifford gate is inefficient, however implemented, equivalent requirements
will hold for any QEC code [66]. A decoder is thus required to process
ancilla measurements from one cycle within the next (on average). This
presents a considerable challenge for transmon-cQED implementations, as
τcycle < 1µs. This short time makes the use of computationally intensive
decoding schemes difficult, even if they provide lower εL.

The leading strategy for decoding the surface code is MWPM using the
blossom algorithm of Edmonds [173, 177, 189]. Although this algorithm
is challenging to implement, it scales linearly in code distance [189]. The
algorithm requires a set of weights (representing the probability that two
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4. Density-matrix simulation of small surface codes

given error signals are connected by a chain of errors) as input. An
important practical question (see App. 4.F) is whether these weights can
be calculated on the fly, or must be precalculated and stored. On-the-fly
weight calculation is more flexible. For example, it can take into account
the difference in error rates between an ancilla measured in the ground
and in the excited state. The main weakness of MWPM is the inability
to explicitly detect Y errors. In fact, in App. 4.C we see that MWPM is
nearly perfect in the absence of Y errors. The decoder efficiency ηd may
significantly increase by extending MWPM to account for correlations
between detected X and Z errors originating from Y errors [190, 191].
If computational limitations preclude a MWPM decoder from keeping

up with τcycle, the look-up table decoder may provide a straightforward
solution for Surface-17. However, at current physical performance, the ηd
reduction will make Surface-17 barely miss memory break-even (Fig. 4.1).
Furthermore, memory requirements make look-up table decoding already
impractical for Surface-49. Evidently, real-time algorithmic decoding by
MWPM or improved variants is an important research direction already
at low code distance.

4.3.3. Other observations
The simulation results allow some further observations. Although we
have focused on superconducting qubits, we surmise that the following
statements are fairly general.
We observe that small quasi-static qubit errors are suppressed by the

repeated measurement. In our simulations, the 1/f flux noise producing
0.01 radians of phase error per flux pulse on a qubit has a diamond norm
approximately equal to the T1 noise, but a trace distance 100 times smaller.
As the flux noise increases εL by only 0.01 %c, it appears εL is dependent
on the trace distance rather than the diamond norm of the underlying
noise components. Quasi-static qubit errors can then be easily suppressed,
but will also easily poison an experiment if unchecked.

We further observe that above a certain value, ancilla and measurement
errors have a diminished effect on εL. In our error model, the leading
sources of error for a distance d code are chains of (d−1)/2 data qubit errors
plus either a single ancilla qubit error or readout error, which together
present the same syndrome as a chain of (d+ 1)/2 data qubit errors. An
optimal decoder decides which of these chains is more likely, at which
point the less-likely chain will be wrongly corrected, completing a logical
error. This implies that if readout infidelity (εRO) or the ancilla error rate
(εanc) is below the data qubit (εphys) error rate, εL ∝ (εanc + εRO)ε(d−1)/2

phys .
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4.3. Discussion

However, if εRO (εanc) > εphys, εL becomes independent of εRO (εanc), to
lowest order. This can be seen in Fig. 4.2, where the error rate is almost
constant as εRO exponentially increases. This approximation breaks down
with large enough εanc and εRO, but presents a counterintuitive point for
experimental design; εL becomes less sensitive to measurement and ancilla
errors as these error get worse.

A final, interesting point for future surface-code computation is shown in
Fig. 4.2: the optimal cycle parameters for logical error rates per cycle and
per unit time are not the same. This implies that logical qubits functioning
as a quantum memory should be treated differently to those being used
for computation. This idea can be extended further: at any point in time,
a large quantum computer performing a computation will have a set Sm
of memory qubits which are storing part of a large entangled state, whilst
a set Sc of computation qubits containing the rest of the state undergo
operations. To minimize the probability of a logical error occurring on
qubits within both Sc and Sm, the cycle time of the qubits in Sc can be
reduced to minimize the rest time of qubits in Sm. As a simple example,
consider a single computational qubit qc and a single memory qubit qm
sharing entanglement. Operating all qubits at τcycle = 720 ns to minimize
εL would lead to a 1.09% error rate for the two qubits combined. However,
shortening the τcycle of qc reduces the time over which qm decays. If qc
operates at τcycle = 600 ns, the average error per computational cycle
drops to 1.06%, as qm completes only 5 cycles for every 6 on qc. Although
this is only a meager improvement, one can imagine that when many more
qubits are resting than performing computation, the relative gain will be
quite significant.

4.3.4. Effects not taken into account
Although we have attempted to be thorough in the detailing of the circuit,
we have neglected certain effects. We have used a simple model for C-Z gate
errors as we lack data from experimental tomography (e.g. one obtained
from two-qubit gate-set tomography [192]). Most importantly, we have
neglected leakage, where a transmon is excited out of the two lowest energy
states, i.e., out of the computational subspace. Previous experiments have
reduced the leakage probability per C-Z gate to ∼ 0.3% [193], and per
single-qubit gate to ∼ 0.001% [194]. Schemes have also been developed to
reduce the accumulation of leakage [195]. Extending quantumsim to include
and investigate leakage is a next target. However, the representation of the
additional quantum state can increase the simulation effort significantly
[by a factor of (9/4)10 ≈ 3000]. To still achieve this goal, some further
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4. Density-matrix simulation of small surface codes

approximations or modifications to the simulation will be necessary. Future
simulations will also investigate the effect of spread in qubit parameters,
both in space (i.e., variation of physical error rates between qubits) and
time (e.g., T1 fluctuations), and cross-talk effects such as residual couplings
between nearest and next-nearest neighbor transmons, qubit cross-driving,
and qubit dephasing by measurement pulses targeting other qubits.

4.4. Methods

4.4.1. Simulated experimental procedure

Surface-17 basics

A QEC code can be defined by listing the data qubits and the stabilizer
measurements that are repeatedly performed upon them [68]. In this way,
Surface-17 is defined by a 3× 3 grid of data qubits {D0, . . . D8}. In order
to stabilize a single logical qubit, 9− 1 = 8 commuting measurements are
performed. The stabilizers are the weight-two and weight-four X- and
Z-type parity operators X2X1, Z3Z0, X4X3X1X0, Z5Z4Z2Z1, Z7Z6Z4Z3,
X8X7X5X4, Z8Z5, and X7X6, where Xj (Zj) denotes the X (Z) Pauli
operator acting on data qubit Dj . Their measurement is realized indirectly
using nearest-neighbor interactions between data and ancilla qubits ar-
ranged in a square lattices, followed by ancilla measurements [Fig. 4.6(a)].
This leads to a total of 17 physical qubits when a separate ancilla is used
for each individual measurement. We follow the circuit realization of
this code described in [181], for which we give a schematic description in
Fig. 4.6(b) (see App. 4.A for a full circuit diagram).

In an experimental realization of this circuit, qubits will regularly accu-
mulate errors. Multiple errors that occur within a short period of time
(e.g., one cycle) form error ‘chains’ that spread across the surface. Errors
on single qubits, or correlated errors within a small subregion of Surface-17,
fail to commute with the stabilizer measurements, creating error signals
that allow diagnosis and correction of the error via a decoder. However,
errors that spread across more than half the surface in a short enough
period of time are misdiagnosed, causing an error on the logical qubit
when wrongly corrected [173]. The rate at which these logical errors arise
is the main focus of this chapter.
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4.4. Methods

Protocol for measurement of logical error rates

As the performance measure of Surface-17, we study the fidelity of the
logical qubit as a quantum memory. We describe our protocol with an
example ‘run’ in Fig. 4.6. We initialize all qubits in |0〉 and perform
k = 1, 2, . . . , 20 QEC cycles [Fig. 4.6(b)]. Although this initial state is not
a stabilizer eigenstate, the first QEC cycle projects the system into one of
the 16 overlapping eigenstates within the +1 eigenspace for Z stabilizers,
which form the logical |0〉 state [173]. This implies that, in the absence
of errors, the first measurement of the Z stabilizers will be +1, whilst
that of the X stabilizers will be random. In the following cycles, ancilla
measurements of each run [Fig. 4.6(c)] are processed using a classical
decoding algorithm. The decoder computes a Pauli update after each
QEC cycle [Fig. 4.6(d)]. This is a best estimate of the Pauli operators
that must be applied to the data qubits to transform the logical qubit
back to the logical |0〉 state. The run ends with a final measurement of all
data qubits in the computational basis. From this 9-bit outcome, a logical
measurement result is declared [Fig. 4.6(e)]. First, the four Z-type parities
are calculated from the 9 data-qubit measurement outcomes and presented
to the decoder as a final set of parity measurements. This ensures that
the final computed Pauli update will transform the measurement results
into a set that measures +1 for all Z stabilizers. This results in one of 32
final measurements, from which the value of a logical Z operator can be
calculated to give the measurement result (any choice of logical operator
gives the same result). The logical fidelity FL[k] after k QEC cycles is
defined as the probability of this declared result matching the initial +1
state.

At long times and with low error rates, Surface codes have a constant
logical error rate εL. The fidelity FL[k] is obtained by counting the
probability of an odd number of errors having occurred in total (as two
σx errors cancel)∗ [183]:

FL[k] = 1−
∑
l odd

(
k

l

)
εlL(1− εL)k−l. (4.4)

Here, the combinatorial factor counts the number of combinations of l
errors in k rounds, given an εL chance of error per round. This can be

∗We thank Barbara Terhal for providing this derivation.
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Figure 4.6.: Schematic overview of the simulated experiment. (a) 17 qubits
are arranged in a surface code layout (legend top-right). The red data qubits
are initialized in the ground state |0〉, and projected into an eigenstate of the
measured X- (blue) and Z- (green) type stabilizer operators. (b) A section of
the quantum circuit depicting the four-bit parity measurement implemented
by the A3 ancilla qubit (+/− refer to Ry(±π/2) single-qubit rotations). The
ancilla qubit (green line, middle) is entangled with the four data qubits (red
lines) to measure Z1Z2Z4Z5. Ancillas are not reset between cycles. Instead, the
implementation relies on the quantum non-demolition nature of measurements.
The stabilizer is then the product of the ancilla measurement results of successive
cycles. This circuit is performed for all ancillas and repeated k times before a final
measurement of all (data and ancilla) qubits. (c) All syndrome measurements
of the k cycles are processed by the decoder. (d) After each cycle, the decoder
updates its internal state to represent the most likely set of errors that occurred.
(e) After the final measurement, the decoder uses the readout from the data
qubits, along with previous syndrome measurements, to declare a final logical
state. To this end, the decoder processes the Z-stabilizers obtained directly from
the data qubits, finalizing its prediction of most likely errors. The logical parity
is then determined as the product of all data qubit parities (

∏8
j=0 Dj) once the

declared errors are corrected. The logical fidelity FL is the probability that this
declaration is the same as the initial state (|0〉).
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simplified to

FL[k] = 1− 1
2
∑
l

(
k

l

)
εlL(1− εL)k−l(1− (−1)l)

= 1− 1
2
[
(1− εL + εL)k − (1− εL − εL)k

]
= 1

2[1 + (1− 2εL)k]. (4.5)

However, at small k, the decay is dominated by the majority vote, for
which εL ∝ (kεphys)(d+1)/2. For example, for all the Surface-17 decay
curves, we observe a quadratic error rate at small k, as opposed to the
linear slope predicted by Eq. (4.5). In order to correct for this, we shift the
above equation in k by a free parameter k0, resulting in Eq. (4.2). This
function fits well to data with k ≥ 3 in all plots, and thus allows accurate
determination of εL.

The quantumsim simulation package

Quantumsim performs calculations on density matrices utilizing a graphics
processing unit in a standard desktop computer. Ancillas are measured
at the end of each cycle, and thus not entangled with the rest of the
system. As such, it is possible to obtain the effect of the QEC cycle on the
system without explicitly representing the density matrix of all 17 qubits
simultaneously. The simulation is set up as follows: the density matrix
of the nine data qubits is allocated in memory with all qubits initialized
to |0〉. One- and two-qubit gates are applied to the density matrix as
completely positive, trace preserving maps represented by Pauli transfer
matrices. When a gate involving an ancilla qubit must be performed, the
density matrix of the system is dynamically enlarged to include that one
ancilla.

Qubit measurements are simulated as projective and following the Born
rule, with projection probabilities given by the squared overlap of the
input state with the measurement basis states. In order to capture empiri-
cal measurement errors, we implement a black-box measurement model
(Sec. 4.4.2) by sandwiching the measurement between idling processes.
The measurement projects the system to a product state of the ancilla
and the projected sub-block of the density matrix. We can therefore
remove the ancilla from the density matrix and only store its state right
after projection, and continue the calculation with the partial density
matrix of the other qubits. Making use of the specific arrangement of the
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interactions between ancillas and data qubits in Surface-17, it is possible
to apply all operations to the density matrix in such an order (shown in
App. 4.A) that the total size of the density matrix never exceeds 210 × 210

(nine data qubits plus one ancilla), which allows relatively fast simulation.
We emphasize that with the choice of error model in this chapter, this
approach gives the same result as a full simulation on a 17-qubit density
matrix. Only the introduction of residual entangling interactions between
data and ancilla qubits (which we do not consider in this chapter) would
make the latter necessary. On our hardware (see App. 4.E), simulating
one QEC cycle of Surface-17 with quantumsim takes 25 ms.
We highlight an important advantage of doing density-matrix calcu-

lations with quantumsim. We do not perform projective measurements
of the data qubits. Instead, after each cycle, we extract the diagonal of
the data-qubit density matrix, which represents the probability distribu-
tion if a final measurement were performed. We leave the density matrix
undisturbed and continue simulation up to k = 20. This is a very useful
property of the density-matrix approach, because having a probability
distribution of all final readout events greatly reduces sampling noise.
Our measurement model includes a declaration error probability (see

Sec. 4.4.2), where the projected state of the ancilla after measurement is
not the state reported to the decoder. Before decoding, we thus apply
errors to the outcomes of the ancilla projections, and smear the probability
distribution of the data qubit measurement. To then determine the fidelity
averaged over this probability distribution, we present all 16 possible
final Z-type parities to the decoder. This results in 16 different final
Pauli updates, allowing us to determine correctness of the decoder for all
512 possible measurement outcomes. These are then averaged over the
simulated probability distribution. This produces good results after about
∼ 104 simulated runs.
A second highlight of quantumsim is the possibility to quantify the

sub-optimality of the decoder. The fidelity of the logical qubit obtained
in these numerical simulations is a combination of the error rates of the
physical qubits and the approximations made by the decoder. Full density-
matrix simulations make it possible to disentangle these two contributions.
Namely, the fidelity is obtained by assigning correctness to each of the 512
possible readouts according to 16 outputs of the decoder, and summing
the corresponding probabilities accordingly. If the probabilities are known,
it is easy to determine the 16 results that a decoder should output in order
to maximize fidelity (i.e., the output of the best-possible decoder). This
allows placing a decoder upper bound Fmax

L on logical fidelity as limited by
the physical qubits independent of the decoder. Conversely, it also allows
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quantifying sub-optimality in the decoder used. In fact, we can make the
following reverse statement: if our measurement model did not include
a declaration error, then we could use the simulation to find the final
density matrix of the system conditioned on a syndrome measurement.
From this, the simulation could output exactly the 16 results that give
Fmax

L , so that quantumsim could thus be used as a maximum-likelihood
decoder. In this situation, Fmax

L would not only be an upper bound, but
indeed the performance of the best-possible decoder. However, as we add
the declaration errors after simulation, we can only refer to Fmax

L as the
decoder upper bound.

4.4.2. Error models

We now describe the error model used in the simulations. Our motivation
for the development of this error model is to provide a limited number of
free parameters to study, whilst remaining as close to known experimental
data as possible. As such, we have taken well-established theoretical
models as a base, and used experimental tomography to provide fixed
parameters for observed noise beyond these models. The parameters of
the error model are provided in App. 4.B.

Parameter Symbol Value Reference
Qubit relaxation time T1 30 µs [182]
Qubit dephasing time (white noise) Tφ 60 µs [182, 184]
Single-qubit gate time τg,1Q 20 ns [182, 184]
Two-qubit gate time τg,2Q 40 ns [168]
Coherent step time τc 200 ns [181]
Measurement time τm 300 ns [182]
Depletion time τd 300 ns [182]
Fast measurement time τ

(fast)
m 100 ns [185]

Fast depletion time τ
(fast)
d 100 ns [185]

Table 4.1.: Standard simulation parameters: Summary of standard times used
in all density-matrix simulations, unless otherwise indicated. The two-qubit gate
is a conditional phase gate (C-Z). Other error rates and parameters are given in
Table 4.2.
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Idling qubits

While idling for a time τ , a transmon in |1〉 can relax to |0〉. Furthermore,
a transmon in superposition can acquire random quantum phase shifts
between |0〉 and |1〉 due to 1/f noise sources (e.g., flux noise) and broadband
ones (e.g., photon shot noise [196] and quasiparticle tunneling [197]). These
combined effects can be parametrized by probabilities p1 = exp(−τ/T1)
for relaxation, and pφ = exp(−τ/Tφ) for pure dephasing. The combined
effects of relaxation and pure dephasing lead to decay of the off-diagonal
elements of the qubit density matrix. We model dephasing from broadband
sources in this way, taking for Tφ the value extracted from the decay time
T2 of standard echo experiments:

1
T2

= 1
Tφ

+ 1
2T1

. (4.6)

We model 1/f sources differently, as discussed below.

Dephasing from photon noise

The dominant broadband dephasing source is the shot noise due to photons
in the readout resonator. This dephasing is present whenever the coupled
qubit is brought into superposition before the readout resonator has
returned to the vacuum state following the last measurement. This leads
to an additional, time-dependent pure dephasing (rates given in Table 4.2).

One-qubit Y rotations

We model y-axis rotations as instantaneous rotations sandwiched by idling
periods of duration τg,1Q/2. The errors in the instantaneous gates are
modeled from process matrices measured by gate-set tomography [192, 198]
in a recent experiment [183]. In this experiment, the GST analysis of
single-qubit gates also showed that the errors can mostly be attributed to
Markovian noise. For simplicity, we thus model these errors as Markovian.

Dephasing of flux-pulsed qubits

During the coherent step, transmons are repeatedly moved in frequency
away from their sweetspot using flux pulses, either to implement a C-Z gate
or to avoid one. Away from the sweetspot, transmons become first-order
sensitive to flux noise, which causes an additional random phase shift. As
this noise typically has a 1/f power spectrum, the largest contribution
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comes from low-frequency components that are essentially static for a
single run, but fluctuating between different runs. In our simulation, we
approximate the effect of this noise through ensemble averaging, with
quasi-static phase error added to a transmon whenever it is flux pulsed.
Gaussian phase errors with the variance (calculated in App. 4.B.4) are
drawn independently for each qubit and for each run.

C-Z gate error

The C-Z gate is achieved by flux pulsing a transmon into the |11〉 ↔ |02〉
avoided crossing with another, where the 2 denotes the second-excited
state of the fluxed transmon. Holding the transmons here for τg,2Q causes
the probability amplitudes of |01〉 and |11〉 to acquire phases [199]. Careful
tuning allows the phase φ01 acquired by |01〉 (the single-qubit phase φ1Q)
to be an even multiple of 2π, and the phase φ11 acquired by |11〉 to
be π extra. This extra phase acquired by |11〉 is the two-qubit phase
φ2Q. Single- and two-qubit phases are affected by flux noise because the
qubit is first-order sensitive during the gate. Previously, we discussed the
single-qubit phase error. In App. 4.B.5, we calculate the corresponding
two-qubit phase error δφ2Q. Our full (but simplistic) model of the C-Z
gate consists of an instantaneous C-Z gate with single-qubit phase error
δφ1Q and two-qubit phase error δφ2Q = δφ1Q/2, sandwiched by idling
intervals of duration τg,2Q/2.

Measurement

We model qubit measurement with a black-box description using parame-
ters obtained from experiment. This description consists of the eight proba-
bilities for transitions from an input state |i〉 ∈ {|0〉 , |1〉} into pairs (m,|o〉)
of measurement outcome m ∈ {+1,−1} and final state |o〉 ∈ {|0〉 , |1〉}. By
final state we mean the qubit state following the photon-depletion period.
Input superposition states in the computational bases are first projected
to |0〉 and |1〉 following the Born rule. The probability tree (the butterfly)
is then used to obtain an output pair (m, |o〉). These experimental param-
eters can be described by a six-parameter model (described in detail in
App. 4.B.6), consisting of periods of enhanced noise before and after a point
at which the qubit is perfectly projected, and two probabilities ε|i〉RO for
wrongly declaring the result of this projective measurement. In App. 4.B.6,
a scheme for measuring these butterfly parameters and mapping them to
the six-parameter model is described. In experiment, we find that the
readout errors ε|i〉RO are almost independent of the qubit state |i〉, and so we
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describe them with a single readout error parameter εRO in this chapter.

Figure 4.7.: The quantum circuit for Surface-17 syndrome measurement used
in all simulations. (a) Outline of the timing of the standard circuit, including
the time shift between X- and Z-type stabilizer measurements described by [181].
Qubit labels correspond to the position in Fig. 6. (b) Full quantum circuit of
the QEC cycle. The C-Z gates within each group are slightly offset horizontally
for visibility (in reality they are performed simultaneously).

4.A. Full circuit diagram for Surface-17
implementation

The quantum circuit [181] (Fig. 4.7) consists of Ry(π/2) (“+”) and
Ry(−π/2) (“−”) rotations, C-Z gates, and ancilla measurements. The
coherent steps of the X and Z ancillas are pipelined (shifted in time with
respect to each other) to prevent transmon-transmon avoided crossings.
As long as τm + τd ≥ τc, no time is lost due to this separation.
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In a simulation of the given circuit, gates on different qubits commute
and may be applied to the density matrix in any order, regardless of the
times at which they are performed in an experiment. As described in
Sec. IV A 3, by simulating gates in a specific order (Fig. 4.8), one can
ensure that only one ancilla is ancilla is entangled with the data qubits at
any point in the simulation. This allows a reduction in the maximum size
of the density matrix from 217 × 217 to 210 × 210.

4.B. Parameters of error models

Parameter Symbol Value Reference
In-axis rotation error paxis 10−4 [183]
In-plane rotation error pplane 5× 10−4 [183]
1/f flux noise. A (1µΦ0)2 [200, 201]
Readout infidelity εRO 5× 10−3 [182]
Photon relaxation time 1/κ 250 ns [182]
Dispersive shift χ/π −2.6 MHz [182]
photon # post-measurement n0 0.8 photons [182]

Table 4.2.: Standard parameters of error models used in quantumsim, unless
indicated otherwise.

This appendix provides mathematical details of the sources of error
described in the main text. Standard values for the parameters used
throughout the text are given in Table 4.2.

In the quantumsim module, all gates are applied in the Pauli transfer
matrix representation [324]. These are given in the form

(RΛ)ij = 1
2Tr (σiΛσj) , (4.7)

where matrices σi are the Pauli operators: σ0 = I, σ1 = X, σ2 = Y and
σ3 = Z.
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4.B.1. Qubit idling

Idling qubits are described by the amplitude-phase damping model [23],
corresponding to the transfer matrices

RΛT1
=


1 0 0 0
0
√

1− p1 0 0
0 0

√
1− p1 0

p1 0 0 1− p1

 (4.8)

RΛTφ =


1 0 0 0
0
√

1− pφ 0 0
0 0

√
1− pφ 0

0 0 0 1

 . (4.9)

Idling for a duration t is thus described by

RAP (t) = RΛT1
RΛTφ (4.10)

with p1 = 1− e−t/T1 and pφ = 1− e−t/Tφ .

4.B.2. Photon decay

In the presence of photons in a readout resonator, the coupled qubit is
affected according to the effective stochastic master equation [186]:

dρ

dt
= −iB2 [σz, ρ] + Γd

2 D[σz]ρ.

Here, ρ is the qubit density matrix, D[X] is the Lindblad operator D[X]ρ =
XρX†− 1

2X
†Xρ− 1

2ρX
†X, B = 2χRe(αgα∗e) is the measurement-induced

detuning (Stark shift), and Γd = 2χIm(αgα∗e) is the measurement-induced
dephasing, with αi the qubit-state-dependent photon field in the resonator
and 2χ the qubit frequency shift per photon. At time t− tg after the qubit
superposition is created,

αgα
∗
e = α(tm) exp (−κ (t− tm)) exp (2iχ (t− tg)) ,
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with t − tm the time since the end of measurement excitation pulse.
Integrating over the interval [t1, t2] gives a dephasing term with coefficient

pφ,photon = exp
(
−
∫ t2
t1

Γd(t)dt
)

= exp
(

2χα(0) exp(κ(tm − tg))

×
[

e−κt

4χ2+κ2 [−κ sin(2χt)− 2χ cos(2χt)]
]t2−tg
t1−tg

)
.

This dephasing is then implemented via the same Pauli transfer matrix
as (4.9).

4.B.3. Single-qubit Ry(π/2) rotations
Single-qubit rotations are modeled by sandwiching an instantaneous Pauli
transfer matrix, representing the rotation, with periods of duration τg,1Q/2
of amplitude and phase damping. This allows to model the gate for different
T1 and Tφ. However, comparison of this model with Pauli transfer matrices
obtained from gate-set tomography experiments shows that actual gates are
more accurately described when adding a phenomenological depolarizing
noise to the instantaneous part. In the Bloch sphere, this decay corresponds
to shrinking toward the origin, with factor 1− paxis along the y axis and
1− pplane along the x- and z-axes. We thus model

RRy(π/2) = RAP (τg,1Q/2)R
′
Ry(π/2)RdepRAP (τg,1Q/2), (4.11)

where

Rdep =


1 0 0 0
0 1− pplane 0 0
0 0 1− paxis 0
0 0 0 1− pplane

 ,

and R′Ry(π/2) is the Pauli transfer matrix describing a perfect π/2 rotation
around the y axis.

4.B.4. Flux noise
Shifting the transmon from its sweetspot fq,max to a lower frequency

fq(t) = (fq,max + EC)
√
|cos (πΦ(t)/Φ0)| − EC

107



4. Density-matrix simulation of small surface codes

+depletion

+depletion

+depletion

+depletion

D0

D1

D2

D3

D4

D5

D6

D7

D8

A0

A1

A2

A3

A4

A5

A6

A7

+depletion

+depletion

+depletion

+depletion

-
-

-
-
-
-
-
-
-

-

-

-

-

+

-

-
-

-

+
+
+
+
+
+
+
+
+

+

+
+

+

+

+

+

1 2 3 4 5 6 7 8

Figure 4.8.: Isolation of ancilla interactions in the Surface-17 circuit given in
Fig. 4.7. Throughout a simulation, quantumsim stores the density matrix of all
data qubits. Each error correction cycle is split up into 8 steps as labeled. In each
step, a single ancilla qubit is added to the density matrix, the correspondingly
colored pieces of the circuit are executed, and the ancilla is read out and removed
from the density matrix. This scheme is only possible because on each data
qubit all gates are executed in order. Note that steps after the final C-Z gate on
a data qubit are executed during the next cycle.

makes it first-order sensitive to flux noise, with sensitivity

∂fq

∂Φ = −π2Φ0
(fq + EC) tan

(
πΦ
Φ0

)
.

Here, Φ is the flux bias and Φ0 = h/2e is the flux quantum. For a deviation
of δΦ, the pulsed transmon incurs a phase error

δφ = −2πτg,2Q
∂fq

∂Φ δΦ.

Flux noise has a characteristic (single-sided) spectral density

SΦ(f) ≈ A/f,

where A ≈ (1 µΦ0)2 with f in Hz. We model this noise as quasi-static
over the duration (1/fmin ∼ 20 µs, or 20 QEC cycles) of individual runs,
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but fluctuating between subsequent runs (1/fmax ∼ 20 sec, or 105 runs
at 200 µs intervals). The root-mean-square (rms) fluctuations of flux are
therefore

δΦrms =
(∫ fmax

fmin
SΦ(f) df

)1/2

= A(ln (fmax/fmin))1/2

≈ 4 µΦ0.

For our quantum circuit based on [181], we estimate the corresponding
rms phase error induced in a pulsed transmon to be

δφrms ≈ 0.01 rad.

4.B.5. C-Z gates

We now focus on the two-qubit phase error. For an adiabatic gate,

φ2Q = φ11 − φ01 = −2π
∫ t2

t1

ζ(t)dt,

with t1 and t2 = t1 + τg,2Q the start and end of the gate and ζ the time-
dependent frequency deviation of the lower branch of the |11〉 ↔ |02〉
avoided crossing from the sum of frequencies for |01〉 and |10〉. Near the
flux center Φc of the |11〉 − |02〉 avoided crossing,

ζ ≈ β(Φ− Φc)−
√
β2(Φ− Φc)2 + (2J/2π)2

,

where 2J/2π ∼ 50 MHz is the minimum splitting between |11〉 and |02〉,
and

β = 1
2
∂fq

∂Φ |Φ=Φc .

Differentiating with respect to Φ at Φc gives

∂ζ

∂Φ |Φ=Φc = β.

To estimate the δφ2Q error, we make the following simplification: we replace
the exact trajectory created by the flux pulse by a shift to Φ = Φc + δΦ
with duration τg,2Q. For a deviation of δΦ,

δφ2Q ≈ −2πτg,2Q
∂ζ

∂Φ |Φ=ΦcδΦ.
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Probability Value Probability Value
ε+1,0
0 0.9985 ε+1,0

1 0.0050
ε+1,1
0 0.0000 ε+1,1

1 0.0015
ε−1,0
0 0.0015 ε−1,0

1 0.0149
ε−1,1
0 0.000 ε−1,1

1 0.9786

Table 4.3.: Measurement butterfly matching a recent characteristic experi-
ment [182] using a Josephson parametric amplifier [203] in phase-preserving
mode as the front end of the readout amplification chain.

Note that this two-qubit phase error is correlated with the single-qubit
phase error on the fluxed transmon. The former is smaller by a factor ≈ 2.

4.B.6. Measurement
The probabilities εm,oi are calibrated using the statistics of outcomes in
back-to-back measurements (a followed by b) with the qubit initialized in
|i〉.

P(ma = +1)i = ε+1,0
i + ε+1,1

i ,

P(ma = +1)i = ε−1,0
i + ε−1,1

i ,

P(mb = ma = +1)i =
(
ε+1,0
0 + ε+1,1

0

)
ε+1,0
i

+
(
ε+1,0
1 + ε+1,1

1

)
ε+1,1
i ,

P(mb = −ma = +1)i =
(
ε+1,0
0 + ε+1,1

0

)
ε−1,0
i

+
(
ε+1,0
1 + ε+1,1

1

)
ε−1,1
i ,

P(−mb = ma = +1)i =
(
ε−1,0
0 + ε−1,1

0

)
ε+1,0
i

+
(
ε−1,0
1 + ε−1,1

1

)
ε+1,1
i ,

P(−mb = −ma = +1)i =
(
ε−1,0
0 + ε−1,1

0

)
ε−1,0
i

+
(
ε−1,0
1 + ε−1,1

1

)
ε−1,1
i .

We obtain the six free parameters of the black-box description from these 12
equations, using experimental values on the left-hand side [202]. Table 4.3
shows the values used, achieved in a recent experiment [182]. For the
simulation, we reproduce this behaviour of the measurement process by
a model with several steps. The qubit undergoes dephasing, followed by
periods of decay or excitation between which the measurement result is
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Figure 4.9.: The model for measurements consists of a dephasing of the qubit
followed by a period of decay and excitation with probability p

(1)
↓/↑. At this

point, the qubit state is sampled. The sampling result is subject to a declaration
error εRO, and the qubit state is subject to further decay or excitation with
probabilities p(2)

↓/↑ before the end of the measurement block.

sampled. This measurement result is further subject to a state-dependent
declaration error εRO before reported to the decoder (see Fig.4.9). The
six parameters of this model are in a one-to-one correspondence with the
butterfly parameters described above, and can be mapped by solving the
corresponding system of equations. The experimental results in Tab.4.3
are very well explained by assuming unmodified amplitude-phase damping
(withe zero excitation probabilities) during the measurement period, and
an outcome-independent declaration error of εRO = ε1RO = ε0RO = 0.15%.
We use this result to extrapolate measurement performance to different
values of T1.

Reduction of measurement time is expected to reduce assignment fidelity.
For the results presented in Fig. 2, we do not rely on experimental results,
but assume a simplified model for measurement, following Ref. 186. A
constant drive pulse of amplitude ε and tuned to the bare resonator
frequency, ∆r = 0, excites the readout resonator for time τm. The dynamics
of the resonator is dependent on the transmon state (we approximate
linear behavior), and the transmitted signal is amplified and detected in a
homodyne measurement as a noisy transient. This transient is processed by
a linear classifier, which declares the measurement outcome. For resonator
depletion, we use a two-step clearing pulse with amplitude εc1 and εc2,
each active for τd/2 and chosen (by numerical minimization) so that, at the
end of the depletion pulse, the transients for both transmon states return
to zero. While the resonator dynamics is easily found if the transmon is
in the ground state, amplitude damping of the transmon in the excited
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state leads to non-deterministic behavior. We thus numerically obtain an
ensemble of noisy transients for each input qubit state, and optimize the
decision boundary of the linear classifier for this ensemble. Generating a
second verification ensemble, the “butterfly” of the measurement setup is
estimated.

The dynamics of the resonator is determined by the resonator linewidth
κ as well as the dispersive shift χ. We chose the parameters of the setup
used in [182], 1/κ = 250 ns and χ/π = −2.6MHz. The signal-to-noise ratio
of the detected transient is reduced by the quantum efficiency η = 12.5%.
The driving strength ε is chosen to approximate the “butterfly” used in
most of the main text, and corresponds to a steady-state average photon
population of about n̄ = 15. We then keep ε constant while changing
the measurement time, keeping τm = τd, to obtain the butterflies used in
the density matrix simulation. We ignore effects leading to measurement-
induced mixing and non-linearity of the readout resonator. Finally, since
these simulations do not allow to make a realistic prediction about residual
photon numbers achievable in experiments, we ignore this effect when
using these results.

4.C. Effect of over-rotations and two-qubit
phase noise on logical error rate

In this section we provide additional numerical data showing the effect of
some common noise sources on the logical error rate. In Fig. 4.10 we show
the effect of a coherent over-rotation, whereby the R′Y (π/2) operator in
Eq. 4.11 is replaced by R′Y (π/2 + δφ). This can be caused by inaccurate
calibration of the flux pulse used to perform the gate. In Fig. 4.11 we show
the effect of an increase in the two-qubit flux noise δφrms as described in
Sec. 4.B.4.

4.D. Calculation of decoder upper bound
We provide a detailed description how the decoder upper bound is obtained
from the simulation results. As described in the main text, after each
cycle of simulation, the diagonal of the reduced density matrix of the data
qubits in the Z basis is stored. It contains the probability distribution for
the 29 = 512 different possible measurement outcomes of the data qubits.
In the quantum memory experiment described in the main text, each of
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Figure 4.10.: Logical error rate for Surface-17 as a function of single-qubit
over-rotation, using the MWPM decoder. Other parameters are as given in the
main text.

these outcomes are passed to the decoder, which then declares a logical
measurement outcome.
It is evident that any decoder must declare opposite logical outcomes

if two of the 512 possible measurements m and m’ are related by the
application of a logical X operator. Thus, any decoder can give the
correct result only for half of the measurement outcomes. Subject to this
constraint, we can find the set of 256 declarations which maximize the
probability that the declaration is correct. It immediately follows that
no decoder can achieve a declaration fidelity larger than this maximal
probability. We thus refer to it as the decoder upper bound.

In practice, the upper bound is found according to the following approach.
Since declarations are opposite if two outcomes differ by a logical X
operator, they must be equal if they differ by the application of one or
more X stabilizers (applying two different logical X operators amounts to
the application of a product of X stabilizers). We thus group the outcomes
in 32 cosets which are related by the application of X-stabilizers. (There
are 4 X-stabilizers in Surface-17, so there are 512/24 = 32 cosets). For
outcomes from the same coset, the declaration from a decoder must be
the same. We obtain the probability of a final measurement falling within
each coset by summing the probabilities from the density matrix diagonal.
We further group the 32 cosets to 16 pairs, which differ by the application
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4. Density-matrix simulation of small surface codes

of a logical operator. The upper bound is then obtained by selecting
the more probable coset from each pair and summing the corresponding
probabilities. This upper bound can also be interpreted as the internal
decoherence of the logical qubit: it represents the maximal overlap of the
final state with the initial state, under any possible correction of errors.
We finally emphasize that the this upper bound can be found only

because we have access to the complete probability distribution of outcomes
(for a given result of syndrome measurements), a major advantage of the
density matrix simulation. However, we do not expect that any decoder
can actually achieve this upper bound: This is because we add syndrome
measurement events independently after the situation, which will decrease
the logical error rate further.
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Figure 4.11.: Logical error rate for Surface-17 as a function of two-qubit phase
error, using the MWPM decoder. Other parameters are as given in the main
text.

4.E. Hardware requirements of simulation
The simulations are performed using the quantumsim package ∗, which
were developed by the authors for this chapter. The package is accelerated
by performing the density matrix manipulations on a GPU (graphics
∗The quantumsim package can be found at http://github.com/brianzi/

quantumsim
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card). The simulations for this chapter were performed on a NVidia Tesla
K40 GPU, on which we observed runtimes of about 0.5 seconds for the
simulation of a run of k=20 cycles (25 ms per QEC cycle). We also had the
opportunity to test the software on a more modern GPU (NVidia Tesla
P100), observing about 15 ms per cycle, and on a consumer-grade GPU
(NVidia Quadro M2000), observing about 40 ms per cycle. By comparison,
the CPU is mostly idle during the simulation, except for handling of input
and output. The memory requirements are modest for both CPU and
GPU RAM. They are dominated by the storage of the density matrices
and amount to a few ten megabytes.

4.F. Homemade MWPM decoder with
asymmetric weight calculation

Every QEC code requires a decoder to track the most likely errors consistent
with a given set of stabilizer measurements. The MWPM decoder has
gained popularity since it was shown to have threshold values above
1% [177]. The motivation behind MWPM is that single X or Z errors
on data qubits in the bulk of a surface-code fabric cause changes of two
stabilizers in the code. These signals can then be considered vertices on a
graph, with the error the edge connecting them. Errors in measurement,
or errors on a single ancilla qubit, behave as changes in the stabilizer that
are separated in time. Multiple errors that would join the same vertices
create longer paths in the graph, of which an experiment only records the
endpoints. Thus, the problem becomes that of finding the most likely set
of generating errors given the error signals that mark their ends. This
is made slightly simpler, as in the surface code any chain of errors that
forms a closed loop does not change the logical state. This implies that
all paths that connect two points are equivalent, and can be considered
together. The problem then is to join error signals, either in pairs, or to
a ‘boundary’ vertex. The latter corresponds to errors on data qubits at
the boundary, which belong to only one X or Z stabilizer. This pairing P
should be chosen as the most likely combination of single-qubit errors that
could generate the measured error signals. This has then been reduced to
the problem of minimum-weight perfect matching on a graph, which can
be solved in polynomial time by the blossom algorithm [173, 209].

The MWPM decoder we use differs from previous methods by its weight
calculation. As part of the decoding process, it is required to calculate
to some degree of accuracy [204] the probability pe1,e2 of two measured
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error signals e1 and e2 being connected by a chain of individual logical
errors. This is then converted to a weight we1,e2 = − log(pe1,e2), which
form the input to the blossom algorithm of Edmonds to find the most
likely matching of error signals [173, 209]. An exact calculation of pe1,e2
requires a sum over all such chains between e1 and e2 that do not cross
the boundary (these are equivalent modulo stabilizer operators that do
not change the logical state). In this appendix we detail a method of
computing this sum, and approximations to make it viable within the
runtime of the experiment.
Let us define the ancilla graph GA = (VA, EA) containing a vertex

v ∈ VA for every ancilla measurement, and an edge e ∈ EA connecting
v, u ∈ VA if a single component (gate, single-qubit rest period, or faulty
measurement) in the simulation can cause the u and v measurements to
return an error. We include a special ‘boundary’ vertex vB, to which we
connect another vertex v if single components can cause errors on v alone.
Then, to each edge e we associate a probability pe, being the sum of the
probabilities of each component causing this error signal. These error
rates can be obtained directly from quantumsim, by cutting the circuit at
each C-Z gate and measuring the decay of single qubits between. Then,
for a given experiment with given syndrome measurements, let us define
the syndrome graph GS = (VS , ES) containing a vertex v ∈ VS for each
syndrome measurement that records an error, and an edge λu,v ∈ ES
connecting u, v ∈ VS if u and v are either both X ancilla qubits or both Z
ancilla qubits. To each edge λu,v we associate a probability pu,v given by
the sum of the probabilities of a chain of errors causing error signals solely
on u and v.

If we assume that single-qubit errors are uncorrelated, we have to lowest
order

pu,v ≈
∑

paths (e1,e2,...,en) between u and v

n∏
j=1

pej , (4.12)

Let AA be the adjacency matrix on GA weighted by the probabilities pe
(i.e., (AA)u,v = pe with e connecting u and v), and AS the same for GS .
Then, the above becomes

AS = AA +A2
A +A3

A + · · · = 1
1−AA

− 1, (4.13)

noting that AS contains a subset of the indices that are used to construct
AA.
The boundary must be treated specially in the above calculation. For
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the purposes of the surface code, the boundary can be described as a
single vertex which has no limit on the number of other vertices it may
pair to [173]. For the purposes of weight calculation, any path that passes
through the boundary is already counted by pairing both end vertices to
the boundary. This can be treated by making GA directed, and breaking
the symmetry ATA = AA. In particular, either (AA)vB ,u = 0 for all u or
(AA)u,vB = 0 for all u.

The above calculation requires inversion of a Nmat × Nmat matrix,
with Nmat the total number of ancilla measurements per experiment.
Furthermore, as ancilla error rates depend upon the previous ancilla
state, elements in AA are not completely known until the previous cycle.
This implies that in an actual computation with runtime decoding, this
inversion would need to be completed within a few microseconds (with a
transmon-cQED architecture), which is practically unfeasible. We suggest
two approximations that can be made to shorten the decoding time. The
first is to average all errors over the ancilla population, ignoring any
asymmetry in the system. The adjacency matrix is now the same for any
experiment, and can be precalculated and stored as a look-up table for
the run-time decoder. We call this the decoder with symmetrized weights.
The size of such a look-up table scales poorly with the number of qubits
and the number of cycles. However, (AS)u,v is approximately invariant
under simultaneous translation of u and v (excluding boundary effects).
This implies that a precalculated AS can be vastly compressed, making
this method feasible.

The second approximation to the full AS calculation is to perform it
iteratively. We divide our graph GA (GS) by time steps; let GtA (GtS) be
the subgraph of GA (GS) containing only ancillas measured before time
step t, and let ∂GtA (∂GtS) be the subgraph of GA (GS) containing only
ancillas measured during time step t. Then, if we assume we have an
approximation to the matrix AtS (being the adjacency matrix of GtS), we
can approximate

At+1
S ≈

(
AtS Ct+1

S

(Ct+1
S )T (1− ∂At+1

A )−1

)
(4.14)

to lowest order in physical errors. Here, ∂At+1
A is the weighted adjacency

matrix on ∂Gt+1
A , and the coupling matrix Ct+1

S is approximated by

Ct+1
S = AtSC

t+1
A (1− ∂At+1

A )−1
, (4.15)
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with Ct+1
A the adjacency matrix containing only edges between ∂Gt+1

A

and GtA. This procedure corresponds to a sum over all paths that are
made by moving within ∂Gt+1

A , shifting back in time to GtA, and then
taking any precalculated path in GtA. Ct+1

A and (1− ∂At+1
A )−1 can be

precalculated, and so the runtime computation requirement is reduced to
the product in Eq. (4.15). This in turn can be sparsified, as Ct+1

A only
contains connections to vertices in GtA close to the time boundary, and
we can delete all terms in AtS that do not connect from these vertices to
errors.

We have used the second method for our MWPM decoder, as we expect
the error from neglecting higher-order combinations of errors to be small.
In order to check this assumption, in Fig. 4.12 we repeat our simulation
protocol with a modified physical error model that excludes all Y and
measurement errors. We see that in the absence of these errors, the MWPM
decoder performs within the error margin of the decoder upper bound.
Note that a small deviation is expected from the discrepancy between
a MWPM decoder and a maximum-likelihood decoder [178]. With the
parameters used in this chapter, we do not observe any loss of fidelity when
we stop accounting for the difference in error rates between ancilla states.
We account this to the large error contribution from photon noise and gate
infidelity on the ancilla qubits, which do not have this asymmetry. We
further note that we operate in a regime of large ancilla error; as described
in the text this makes the system counter-intuitively less sensitive to ancilla
noise. In systems where this is not the case, it could be that accounting
for ancilla asymmetry provides a useful computational method to improve
εL.

4.G. Implementation of a look-up table
decoder

In [176], the authors describe a decoding scheme specific to Surface-17,
which is optimized to be implementable with limited computational re-
sources in a short cycle time. This decoding scheme works by using a short
decision tree to connect errors to each other in a style similar to blossom.
Indeed, this scheme is equivalent to a blossom decoder with all horizontal,
vertical and diagonal weights equal [176]. As such, we have implemented
the new weights in the blossom decoder rather than utilizing the exact
method given.
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MWPM decoder
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Figure 4.12.: Simulation of the experimental protocol used throughout the
chapter, but using an error model that has Y errors and readout infidelity
removed. With these errors absent, the MWPM decoder achieves the decoder
upper bound within simulation error. The look-up table approach (blue) retains
some inaccuracy beyond this.

4.H. Details of lowest-order approximation

We detail the approximation made to study Surface-49 in Sec. II C. Note
that this calculation is only for X errors, which are measured by the Z
ancillas. This implies that our approximation should attempt to realize
the result of blossom, rather than the decoder upper bound.
We begin with the GA graph defined in App. 4.F. In the absence of

correlated errors that cause more than two error signals, any experiment
can be approximately described by choosing a set S ⊂ EA of edges on
the graph and assuming the errors that correspond to these edges have
occurred. Each ancilla measurement corresponds to a vertex in GA, which
records an error if an odd number of edges in S point to the vertex. Each
combination Ma of ancilla measurements can be generated by multiple
error sets S.
Formally, let us write M for the set of all combinations of ancilla

measurements and S for the set of all combinations of errors (so S = 2EA).
We then define a function φ : S →M that takes a combination of errors
to the resultant measurement outcomes. Let us fix a logical Z operator
ZL on the surface-code fabric. Then to each S ∈ S we can assign a parity
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p(S) = ±1 depending on whether the product of all errors in S commute
with Z or not. A decoding then consists of a choice of parity pd(M) for each
M ∈M. Such a decoding correctly decodes S ∈ S if pd(φ(S)) = p(S), and
creates a logical error otherwise. The source of logical errors in a perfect
decoder is then precisely the fact that we can have two error combinations
S1, S2 ∈ S such that φ(S1) = φ(S2) but p(S1) 6= p(S2).
The above suggests a method by which a perfect decoder can be con-

structed. As defined, φ−1(M) ⊂ S is the set of error combinations S
that return a measurement M∈M. For each error combination S, we can
calculate the probability of this occurring:

r(S) =
∏
e∈S

pe
∏
e/∈S

(1− pe). (4.16)

The optimal choice of pd(Ma) is the one maximizing∑
S∈φ−1(M),p(S)=pd(M)

r(S), (4.17)

and the fidelity of such a decoder (over the entire experiment) can be
calculated as

FL = 1−
∑
M∈M

min

 ∑
S∈φ−1(M)

δp(S),+1 r(S) ,

∑
S∈φ−1(M)

δp(S),−1 r(S)

 . (4.18)

At this point the only approximation that has been made is to neglect
the T1 asymmetry in the system, which we have shown previously in this
chapter to be negligible. Unfortunately, the above function cannot be
evaluated exactly; the number of error combinations S is approximately
2200 for 4 cycles of Surface-49. Our goal instead is to approximate this to
the lowest order in the physical qubit error rate.

Let us make the approximation that our error combinations S can be split
into small, well-separated pieces of errors containing separate correctable
and non-correctable parts, S = ∪iSi. To each Si we can assign a time
step t(Si), being the earliest time of the first error measurement observed
(in φ(Si)). The error rate per round, εL, can be determined by summing
Eq. 4.18 over all pieces Si of all combinations S such that t(Si) = T (with
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arbitrary T ), as the effect of repeated errors from Si, Sj ⊂ S is taken into
account during the derivation of the logical fidelity equation (Eq. 2 in the
main text).

εL =
∑
M∈M

min

 ∑
S∈φ−1(M)

∑
t(Si)=T

δp(Si),+1 r(S) ,

∑
S∈φ−1(M)

∑
t(Si)=T

δp(Si),−1 r(S)

 . (4.19)

Let us also extend the above division of S to a division of M into separate
pieces Ma, and rewrite our sum slightly,

εL =
∑
Ma

min

 ∑
Si∈φ−1(Ma),t(Si)=T

δp(Si),+1r̄(Si) ,

∑
Si∈φ−1(Ma),t(Si)=T

δp(Si),−1 r̄(Si)

 , (4.20)

Where here we have brought the sum over the global combinations of
syndromes and measurements inside a new function r̄

r̄(Si) =
∏
e∈Si

pe
∑

M⊃Ma

∑
(S⊃Si,S∈φ−1(M))∏

f∈S/Si
pf
∏
g/∈Si

(1− pg)

=
∏
e∈Si

pe
∑
S⊃Si

∏
f∈S/Si

pf
∏
g/∈Si

(1− pg) (4.21)

If we took this approximation literally and considered the sum over every
possible combination S containing Si, the final sum in Eq. 4.21 would
reduce to

r̄(u)(Si) =
∏
e∈Si

pe. (4.22)

However, this includes error combinations S that cannot be easily separated
into Si and ‘something else’, i.e. they contain other errors e that cannot
be separated from Si. Eq. 4.22 is then equivalent to assuming that if Si is
an uncorrectable logical error, no nearby combination of physical errors
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S′ can be combined such that Si ∪ S′ is correctable unless S′ itself is an
uncorrectable logical error. Such combinations would serve to reduce the
calculated εL, and so r̄(u) gives an upper bound for εL in Eq. 4.20. For a
lower bound, we approximate that for any uncorrectable error combination
Si, approximately one rounds-worth of single errors would undo the logical
error, leading to the approximation

r̄(l)(Si) =
∏
e∈Si

pe
∏

t({e})=T

(1− pe). (4.23)

We now make one further approximation, and sum Eq. 4.20 only over
the shortest Si that can be expected to contribute to the final error rate.
That is, we sum over those Si with |Si| ≤ (d + 1)/2, and that spread
directly across the chain. The error incurred from this approximation is
roughly proportional to the largest single error, which is no more than 5%
throughout our study. We use r̄(u) and r̄(l) to give the error bars shown
in Fig. 5. Points in the plot are taken as a log average of the upper and
lower bounds, and thus have no particular relevance themselves. We see
that the numerical calculation falls within the corresponding error bars for
almost the entire dataset, giving verification for our method, save a slight
deviation at one point where it falls below. Moreover, as the simulated
Surface-17 error rate lies above the upper bound found for the Surface-49
error rate (with the standard set of parameters from the main text), our
claim that Surface-17 will operate below the fault-tolerant threshold is
quite strong.
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