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3. Superconductivity provides
access to the chiral
magnetic effect of an
unpaired Weyl cone

3.1. Introduction
Massless spin-1/2 particles, socalled Weyl fermions, remain unobserved as
elementary particles, but they have now been realized as quasiparticles in
a variety of crystals known as Weyl semimetals [116–120]. Weyl fermions
appear in pairs of left-handed and right-handed chirality, occupying a pair
of cones in the Brillouin zone. The pairing is enforced by the chiral anomaly
[64]: A magnetic field induces a current of electrons in a Weyl cone, flowing
along the field lines in the chiral zeroth Landau level. The current in the
Weyl cone of one chirality has to be canceled by a current in the Weyl
cone of opposite chirality, to ensure zero net current in equilibrium. The
generation of an electrical current density j along an applied magnetic field
B, the socalled chiral magnetic effect (CME) [63, 121], has been observed
as a dynamic, nonequilibrium phenomenon [122–126] — but it cannot be
realised in equilibrium because of the fermion doubling [65, 127–136].

Here we present a method by which single-cone physics may be accessed
in a superconducting Weyl semimetal, allowing for observation of the CME
in equilibrium. The geometry is shown in Fig. 3.1. Application of a flux
bias gaps out all but a single particle-hole conjugate pair of Weyl cones, of
a single chirality ± set by the sign of the flux bias. At nonzero chemical
potential µ, one of the two Weyl points sinks in the Cooper pair sea, the
chiral anomaly is no longer cancelled, and we find an equilibrium response

The contents of this chapter have been published in T.E. O’Brien, C.W. J.
Beenakker and İ. Adagideli, Phys. Rev. Lett. 118 (20), 207701 (2017).
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.1.: Left panel: Slab of a Weyl superconductor subject to a magnetic
field B in the plane of the slab (thickness W less than the London penetration
depth). The equilibrium chiral magnetic effect manifests itself as a current
response ∂j/∂B = ±κ(e/h)2µ along the field lines, with κ a charge renormaliza-
tion factor and µ the equilibrium chemical potential. The right panel shows the
flux-biased measurement circuit and the charge-conjugate pair of Weyl cones
responsible for the effect, of a single chirality ± determined by the sign of the
flux bias.

∂j/∂B = ±(e∗e/h2)µ, with e∗ the charge expectation value at the Weyl
point.

We stress that the CME in a superconductor is not in violation of ther-
modynamics, which only demands a vanishing heat current in equilibrium.
Indeed, in previous work on magnetically induced currents [137–139] it
was shown that the fundamental principles of Onsager symmetry and
gauge invariance forbid a linear relation between j and B in equilibrium.
However, in a superconductor the gauge symmetry is broken at a fixed
phase of the order parameter, opening the door for the CME.

3.2. Pathway to single-cone physics
We first explain the mechanism by which a superconductor provides access
to single-cone physics. A pair of Weyl cones at momenta ±k0 of opposite
chirality has Hamiltonian [93]

H = 1
2vF
∑
k

[
ψ†k(k − k0) · σψk − φ

†
k(k + k0) · σφk

]
, (3.1)
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3.3. Model Hamiltonian of a Weyl superconductor

where k · σ = kxσx + kyσy + kzσz is the sum over Pauli matrices acting
on the spinor operators ψ and φ of left-handed and right-handed Weyl
fermions. The Fermi velocity is vF and we set ~ ≡ 1 (but keep h in the
formula for the CME).

If H would be the Bogoliubov-De Gennes (BdG) Hamiltonian of a super-
conductor, particle-hole symmetry would require that φk = σyψ

†
−k. With

the help of the matrix identity σyσασy = −σ∗α and the anticommutator
ψσ∗αψ

† = −ψ†σαψ we rewrite Eq. (3.1) as

H = 1
2vF
∑
k

[
ψ†k(k − k0) · σψk − ψ

†
−k(k + k0) · σψ−k

]
= vF

∑
kψ
†
k(k − k0) · σψk, (3.2)

producing a single-cone Hamiltonian. If we then, hypothetically, impose
a magnetic field B = ∇ ×A via k 7→ k − eA, the zeroth Landau level
carries a current density j = (e/h)2µB in an energy interval µ. This is
the chiral anomaly of an unpaired Weyl cone [64].

3.3. Model Hamiltonian of a Weyl
superconductor

As a minimal model for single-cone physics we consider the BdG Hamilto-
nian [140]

H =
∑
kΨ†kH(k)Ψk, Ψk =

(
ψk, σyψ

†
−k
)
, (3.3a)

H(k) =
(
H0(k − eA) ∆0

∆∗0 −σyH∗0 (−k − eA)σy

)
, (3.3b)

H0(k) =
∑
ατzσα sin kα + τ0(βσz − µσ0) +mkτxσ0,

mk = m0 +
∑
α(1− cos kα). (3.3c)

This is a tight-binding model on a simple cubic lattice (lattice constant
a0 ≡ 1, nearest-neighbor hopping energy t0 ≡ 1, electron charge +e).
The Pauli matrices τα and σα, with α ∈ {x, y, z}, act respectively on the
orbital and spin degree of freedom. (The corresponding unit matrices are
τ0 and σ0.) Time-reversal symmetry is broken by a magnetization β in
the z-direction, µ is the chemical potential, A the vector potential, and
∆0 is the s-wave pair potential.

The single-electron Hamiltonian H0 in the upper-left block of H is the
four-band model [65, 141] of a Weyl semimetal formed from a topological
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3. Chiral magnetic effect of an unpaired Weyl cone

insulator in the Bi2Se3 family, layered in the x–y plane. For a small mass
term m0 < β it has a pair of Weyl cones centered at

(
0, 0,±

√
β2 −m2

0
)
,

displaced in the kz-direction by the magnetization. (We retain inversion
symmetry, so the Weyl points line up at the same energy.) A coupling of
this pair of electron Weyl cones to the pair of particle-hole conjugate Weyl
cones in the lower-right block of H is introduced by the pair potential,
which may be realized by alternating the layers of topological insulator with
a conventional BCS superconductor [142, 143]. (Intrinsic superconducting
order in a doped Weyl semimetal, with more unconventional pair potentials,
is an alternative possibility [144–153].) The superconductor does not gap
out the Weyl cones if ∆0 <

√
β2 −m2

0.

3.4. Flux bias into the single-cone regime

As explained by Meng and Balents [142], a Weyl superconductor has
topologically distinct phases characterized by the number N ∈ {2, 1, 0} of
ungapped particle-hole conjugate pairs of Weyl cones. We propose to tune
through the phase transitions in an externally controllable way by means
of a flux bias, as shown in the circuit of Fig. 3.1. For a real ∆0 > 0 the flux
bias Φbias enters in the Hamiltonian via the vector potential component
Az = Φbias/L ≡ Λ/e. The Φbias-dependent band structure is shown in
Fig. 3.2, calculated [114] in a slab geometry with hard-wall boundaries
at x = ±W/2 and periodic boundary conditions at y = ±W ′/2 (sending
W ′ →∞).
The two pairs of particle-hole conjugate Weyl cones are centered at

(0, 0,K±) and (0, 0,−K±), with

K2
± =

(√
β2 −m2

0 ± Λ
)2 −∆2

0. (3.4)

We have assumed Λ, K± � 1, so the Weyl cones are near the center of
the Brillouin zone. A cone is gapped when K± becomes imaginary, hence
the N = 1 phase is entered with increasing Λ > 0 when√

β2 −m2
0 + Λ > ∆0 >

∣∣√β2 −m2
0 − Λ

∣∣. (3.5)

This is the regime in which we can observe the CME of an unpaired Weyl
cone, as we will show in the following.
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3.5. Magnetic response of an unpaired Weyl cone

Figure 3.2.: Effect of a flux bias on the band structure of a Weyl superconductor.
The plots are calculated from the Hamiltonian (3.3) in the slab geometry of
Fig. 3.1 (parameters: m0 = 0, ∆0 = 0.2, β = 0.5, µ = −0.05, ky = 0, W = 100,
Bz = 0). The color scale indicates the charge expectation value, to distinguish
electron-like and hole-like cones. As the flux bias is increased from Λ = 0 in
panel (a), to Λ = 0.1 and 0.4 in panels (b) and (c), one electron-hole pair of
Weyl cones merges and is gapped by the pair potential. What remains in panel
(c) is a single pair of charge-conjugate Weyl cones, connected by a surface Fermi
arc. This is the phase that supports a chiral magnetic effect in equilibrium.

3.5. Magnetic response of an unpaired Weyl
cone

We assume that the slab is thinner than the London penetration depth, so
that we can impose an unscreened magnetic field Bz in the z-direction∗.
The vector potential including the flux bias is A = (0, xBz,Λ/e). To
explain in the simplest terms how single-cone physics emerges we linearize
in k and A and set m0 = 0, so the mass term mk can be ignored. (A
discussion of the nonlinearities may be found in App. 3.A.)
The Hamiltonian (3.3) is approximately block-diagonalized by the Bo-

∗For magnetic lengths lm =
√

~/eB below the thickness W of the slab, the parallel
magnetic field B may induce vortices in the order parameter. We take a uniform order
parameter in our analysis, however, the numerical data in Fig. 3.4 shows that our results
extend down to the lowest fields with lm �W , when vortex formation is suppressed.
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.3.: Chirality switch of a pair of charge-conjugate Weyl cones, induced
by a sign change of the flux bias Λ = 0.15, -0.45, and 0.45 in panels a, b, and c,
respectively. All other parameters are the same in each panel: m0 = 0, ∆0 = 0.6,
β = 0.5, W = 100, ky = 0, µ = −0.05, and Bz = 0.001 a−2

0 h/e. The charge
color scale of the band structure is as in Fig. 3.2. Particles in the zeroth Landau
level propagate through the bulk in the same direction both in the electron-like
cone and in the hole-like cone, as determined by the chirality χ = −sign Λ∗.
A net charge current appears in equilibrium because µ < 0, so there is an
excess of electron-like states at E > 0. [States at E < 0 do not contribute to
the equilibrium current (3.11).] The particle current is cancelled by the Fermi
arc that connects the charge-conjugate Weyl cones. The Fermi arc carries an
approximately neutral current, hence the charge current in the chiral Landau
level is not much affected by the counterflow of particles in the Fermi arc.
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3.5. Magnetic response of an unpaired Weyl cone

Figure 3.4.: Data points: numerical calculation of the equilibrium supercurrent
in the flux-biased circuit of Fig. 3.1. The parameters are m0 = 0, ∆0 = 0.6,
β = 0.5, Λ = 0.45, W = 100, kBT = 0.01; the green data points are for a
fixed µ with variation of Bz and the blue points for a fixed Bz with variation
of µ. The data is antisymmetrized as indicated, to eliminate the background
supercurrent from the flux bias. The solid curves are the analytical prediction
(3.10), with κ = 0.775 following directly from Eq. (3.9) (no fit parameters). The
Bz-dependent data is also shown with a zoom-in to very small magnetic fields,
down to 10−7a−2

0 h/e, to demonstrate that the linear Bz-dependence continues
when lm > W .

goliubov transformation

ψ̃k = cos(θk/2)ψk + i sin(θk/2)τzσxψ†−k,
H̃ = U†HU, U = exp

( 1
2 iθkνyτzσz

)
,

(3.6)

where the Pauli matrix να acts on the particle-hole degree of freedom. If

∗The chirality χ of a Weyl cone determines the sign of the dispersion of the zeroth
Landau level in a magnetic field: sign (dE/dkz) = χ sign (Bz). In the flux-biased Weyl
superconductor χ = −sign Λ, as one can see in this figure.
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3. Chiral magnetic effect of an unpaired Weyl cone

we choose the kz-dependent angle θk such that

cos θk = −(sin kz)/∆k, sin θk = ∆0/∆k,

∆k =
√

∆2
0 + sin2 kz,

(3.7)

the gapless particle-hole conjugate Weyl points at k2
z = K2

+ ≈ 2∆0(β +
Λ−∆0)� 1 are predominantly contained in the (ν, τ) = (−,−) block of
H̃. Projection onto this block gives the low-energy Hamiltonian

H̃ =
∑
kψ̃
†
k

[∑
αvα(δkα − qαAα)σα − q0µσ0

]
ψ̃k, (3.8)

where k = (0, 0,K+) + δk, v = (1, 1,−κ), q0 = κ,
q = (κe, κe, e/κ), and

κ ≈ K+/
√

∆2
0 +K2

+ =
√

1−∆2
0/(β + Λ)2. (3.9)

Eq. (3.8) represents a single-cone Hamiltonian of the form (3.2), with
a renormalized velocity vα and charge qα. As a consequence, the CME
formula for the equilibrium current density jz is renormalized into∗

∂jz
∂Bz

= qyqz
h2 q0µ = e∗e

h2 µ, e∗ = κe. (3.10)

The renormalization of v does not enter because the CME is independent
of the Fermi velocity. One can understand why the product e∗e appears
rather than the more intuitive (e∗)2, by noticing that ∂jz/∂Bz changes
sign upon inversion of the momentum — hence only odd powers of κ ∝ K+
are permitted.

3.6. Consistency of a nonzero equilibrium
electrical current and vanishing particle
current

For thermodynamic consistency, to avoid heat transport at zero tempera-
ture, the CME should not produce a particle current in the superconductor.
The flow of charge e∗ particles in the z-direction should therefore be can-
celled by a charge-neutral counterflow. This counterflow is provided by
∗A more formal derivation of the effective charge formula (3.10) for the equilibrium

CME is given in App. C
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3.7. Numerical simulation

the surface Fermi arc, as illustrated in Fig. 3.3. The Fermi arc is the
band of surface states connecting the Weyl cones [154, 155], to ensure
that the chirality of the zeroth Landau level does not produce an excess
number of left-movers over right-movers. In a Weyl superconductor one
can distinguish a trivial or nontrivial connectivity, depending on whether
the Fermi arc connects cones of the same or of opposite charge [140, 156].
Here the connectivity is necessarily nontrivial, because there is only a
single pair of charge-conjugate Weyl cones. As a consequence, the Fermi
arc is approximately charge neutral near the Fermi level (near E = 0), so
it can cancel the particle current without cancelling the charge current∗†.

3.7. Numerical simulation

We have tested these analytical considerations in a numerical simulation
of the model Hamiltonian (3.3), in the slab geometry of Fig. 3.1. At
temperature T the equilibrium current is given by [159]

Iz = 1
2
∑
n,m

∫
dkz
2π tanh

(
Enm
2kBT

)
Θ(Enm)∂Enm

∂Az
, (3.11)

where Θ(E) is the unit step function and the prefactor of 1/2 takes care of
a double counting in the BdG Hamiltonian H. The eigenvalues Enm(kz) of
H are labeled by a pair of mode indices n,m for motion in the x–y plane
transverse to the current. In Fig. 3.4 we show results for the current density
jz = Iz/WW ′ in the T = 0 limit, including a small thermal broadening in
the numerics to improve the stability of the calculation.
We see that the numerical data is well described by the analytical

result (3.10), with charge renormalization factor κ = 0.775 from Eq. (3.9).
That analytical formula was derived upon linearization in k and A. A
more accurate calculation‡ that includes the nonlinear terms in the BdG
Hamiltonian gives κ = 0.750, so the simple formula (3.9) is quite accurate.

∗A cancellation of a particle current in the bulk by a particle current at the surface
is possible without superconductivity, but then also the charge current is cancelled. For
such a spatial separation of counter-propagating particle currents in the normal state
see [157, 158].
†See App. B for a detailed calculation of the approximately neutral current carried

by the surface Fermi arc.
‡Details of the calculation of the charge renormalization factor, including all nonlin-

earities in k and A, are given in App. A.
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.5.: Same as Fig. 3.4 in the current-biased circuit show in the inset.
No antisymmetrization of the data is needed because the measured current is
perpendicular to the current bias.

3.8. Extensions
We mention extension of our findings that may help to observe the equi-
librium CME in an experiment. A first extension is to smaller flux biases
in the N = 2 regime, when two pairs of charge-conjugate cones remain
gapless. The supercurrent is then given by

∂jz
∂Bz

= (κ+ − κ−) e
2

h2µ, κ± =
√

1−∆2
0/(β ± Λ)2, (3.12)

so the CME can be observed without fully gapping out one pair of cones.
A second extension is to a current-biased, rather than flux-biased circuit,

with the applied magnetic field By perpendicular to the current bias j0 in
the z-direction. The current bias then drives the Weyl superconductor into
the N = 1 phase via the vector potential component Az = µ0λ

2j0 ≡ Λ/e,
with λ the London penetration depth [159]. The analytical theory for this
alternative configuration is more complicated, and not given here, but
numerical results are shown in Fig. 3.5. While the effect is smaller than in
the flux-biased configuration, it is not superimposed on a large background
supercurrent so it might be more easily observed.
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3.9. Conclusion

A third extension concerns the inclusion of disorder. Our analysis is
simplified by the assumption of a clean slab, without disorder. We expect
that the chirality of the zeroth Landau level will protect the equilibrium
CME from degradation by impurity scattering, in much the same way as
the nonequilibrium CME is protected.

3.9. Conclusion
We have shown how the chiral anomaly of an unpaired Weyl cone can be
accessed in equilibrium in a superconducting Weyl semimetal. A flux bias
drives the system in a state with a single charge-conjugate pair of Weyl
cones, that responds to an applied magnetic field as a single species of
Weyl fermions. The cancellation of the chiral magnetic effect (CME) for
left-handed and right-handed Weyl fermions is removed, resulting in an
equilibrium current along the field lines. The predicted size of the induced
current is the same as that of the nonequilibrium CME, up to a charge
renormalization of order unity, and since that dynamical effect has been
observed [122–126] the static counterpart should be observable as well —
perhaps even more easily because decoherence and relaxation play no role.
In closing we note that the chiral anomaly in a crystal was originally

proposed [64] as a condensed matter realization of an effect from relativistic
quantum mechanics, and has since been an inspiration in particle physics
and cosmology [160–163]. The doorway to single-cone physics that we
have opened here might well play a similar role.

3.A. Charge renormalization in a
superconducting Weyl cone

We develop an effective low-energy description of the BdG Hamiltonian
(3.3), to determine the charge renormalization factors that govern the
equilibrium CME. In the main text we gave a simplified description,
linearized in k and A, valid if the Weyl points are near the center of the
Brillouin zone. Here we retain the nonlinear terms to obtain more accurate
expressions valid throughout the Brillouin zone. As it turns out, our final
result (3.34) for the charge renormalization factor is within a few percent
of the simple formula (3.9) for the parameters in the simulation of Fig.
3.4.

In this Appendix 3.A we focus on the bulk spectrum, the surface states
are considered in the next Appendix 3.B.
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3. Chiral magnetic effect of an unpaired Weyl cone

3.A.1. Block diagonalization

For a real pair potential ∆0 and including the flux bias Az = Λ/e by the
substitution kz 7→ kz − Λνz, the BdG Hamiltonian is

H = νzτz(σx sin kx + σy sin ky + σz sin kz cos Λ)
+mkνzτxσ0 − µνzτ0σ0 + βν0τ0σz + ∆0νxτ0σ0

− ν0τzσz cos kz sin Λ− ν0τxσ0 sin kz sin Λ, (3.13)
mk = m0 +

(
3− cos kx − cos ky − cos kz cos Λ). (3.14)

The 8 × 8 matrix H is constructed from the tensor product νατβσγ ≡
να ⊗ τβ ⊗ σγ of the Pauli matrices να, τβ , σγ , acting respectively on the
particle-hole, orbital, and spin degree of freedom.

Adapting the block-diagonalization procedure of Ref. 140, we carry out
a sequence of kz-dependent unitary transformations,

H̃ = U†3U
†
2U
†
1HU1U2U3, (3.15a)

U1 = exp
(
− 1

2 ikzν0τyσz
)
, U2 = exp

( 1
2 iθνyτzσz

)
,

U3 = exp
( 1

2 i(φ0ν0 + φzνz)τyσz
)
, (3.15b)

where the angles θ, φ0, φz are determined by

cos θ = uk
M0

, sin θ = ∆0

M0
, (3.16a)

cos(φ0 ± φz) = M0 ± sin Λ
M±

, (3.16b)

sin(φ0 ± φz) = vk
M±

, (3.16c)

uk = −mk sin kz − sin kz cos kz cos Λ, (3.16d)
vk = mk cos kz − sin2 kz cos Λ, (3.16e)

M0 =
√

∆2
0 + u2

k, (3.16f)

M± =
√

(M0 ± sin Λ)2 + v2
k. (3.16g)
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3.A. Charge renormalization in a superconducting Weyl cone

We thus arrive at a transformed Hamiltonian,

H̃ = νzτz(σx sin kx + σy sin ky) + βν0τ0σz

− νzτzσz
√

(M0 + νz sin Λ)2 + v2
k − µ cos θνzτ0σ0

− µ sin θ cosφ0νxτzσz − µ sin θ sinφ0νxτxσ0, (3.17)

that for small µ is predominantly block-diagonal in the ν and τ degree of
freedom.
We focus on the parameter range M− < β < M+ where two of the

four Weyl cones are gapped by the phase bias Λ, leaving one gapless
particle-hole conjugate pair. The effective low-energy Hamiltonian Heff is
then obtained by projecting H̃ onto the νz = −1, τz = −1 band,

Heff = σx sin kx + σy sin ky + (β −M−)σz + µσ0 cos θ. (3.18)

The two Weyl points are at the momenta ±K = (0, 0,±Kz) where
M− = β. Near one of the Weyl points, to first order in δk = k −K, the
effective Hamiltonian represents an anisotropic Weyl cone:

HK =
∑
α

vαδkασα + µσ0 cos θ, (3.19)

with effective velocity v = (1, 1,−∂M−/∂kz) evaluated at k = K.

3.A.2. Current and charge operators
The electrical current operator

j = − lim
a→0

∂

∂a
H(k − eνza) (3.20)

associated with the BdG Hamiltonian (3.13) has components

jx = eν0τzσx cos kx + eν0τxσ0 sin kx, (3.21a)
jy = eν0τzσy cos ky + eν0τxσ0 sin ky, (3.21b)
jz = eν0τzσz cos kz cos Λ + eν0τxσ0 sin kz cos Λ

+ eνzτzσz sin kz sin Λ− eνzτxσ0 cos kz sin Λ. (3.21c)

The unitary transformation (3.15) maps this into

̃α = U†3U
†
2U
†
1 jαU1U2U3, (3.22)
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3. Chiral magnetic effect of an unpaired Weyl cone

resulting in

̃x = eν0τzσx cos kx cos θ
− eν0τzσz sin kx

[
cos kz cos θ sin(φ0 + νzφz)− sin kz cos(φ0 + νzφz)

]
+ eν0τxσ0 sin kx

[
cos kz cos θ cos(φ0 + νzφz) + sin kz sin(φ0 + νzφz)

]
− eνxτ0σ0 sin kx cos kz sin θ sinφz + eνyτ0σy cos kx sin θ cosφ0

+ eνyτyσz sin kx cos kz sin θ cosφz − eνyτyσx cos kx sin θ sinφ0, (3.23a)

̃y = eν0τzσy cos ky cos θ
− eν0τzσz sin ky

[
cos kz cos θ sin(φ0 + νzφz)− sin kz cos(φ0 + νzφz)

]
+ eν0τxσ0 sin ky

[
cos kz cos θ cos(φ0 + νzφz) + sin kz sin(φ0 + νzφz)

]
− eνxτ0σ0 sin ky cos kz sin θ sinφz − eνyτ0σx cos ky sin θ cosφ0

+ eνyτyσz sin ky cos kz sin θ cosφz − eνyτyσy cos ky sin θ sinφ0, (3.23b)

̃z = eν0τzσz cos(Λ + φ0 + νzφz) + eν0τxσ0 sin(Λ + φ0 + νzφz). (3.23c)

Upon projection onto the νz = −1, τz = −1 band we thus arrive at

̃x = eσz sin kx(cos kz cos θ sinφ− − sin kz cosφ−)
− eσx cos kx cos θ (3.24a)

̃y = eσz sin ky(cos kz cos θ sinφ− − sin kz cosφ−)
− eσy cos ky cos θ, (3.24b)

̃z = − eσz cos(Λ + φ−) = eσz∂M−/∂Λ. (3.24c)

We have abbreviated φ− ≡ φ0 − φz.
The corresponding charge operator is simply

Q = −e∂Heff/∂µ = −eσ0 cos θ, (3.25)

resulting in a charge expectation value

〈Q〉 = −e cos θ

= e(3 +m0 − cos kx − cos ky) sin kz√
∆2

0 + (3 +m0 − cos kx − cos ky) sin2 kz

(3.26)

of the gapless quasiparticles. The charge changes sign as we move from
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3.A. Charge renormalization in a superconducting Weyl cone

one Weyl cone at K to its particle-hole conjugate at −K.
Notice that 〈Q〉 is independent of Az = eΛ. We will make us of this

later on to explain why the off-shell contributions to the CME can be
neglected [see Eq. (3.56)].

3.A.3. Effective Hamiltonian in the zeroth Landau
level

To apply the effective low-energy Hamiltonian (3.18) to the zeroth Landau
level we include the vector potential A from an applied magnetic field to
first order,

Heff(A) = σx sin kx + σy sin ky + (β −M−)σz
+ µσ0 cos θ −

∑
α

̃αAα. (3.27)

We take the vector potential A = (0, Bzx, 0) for a magnetic field Bz in
the z-direction and linearize with respect to kx. This linearization also
eliminates kx from the mass term mk, which would otherwise interfere
with the x-dependent A when we perform the unitary transformations
(3.15). We thus obtain

Heff = σxkx + σy sin ky + (β −M−)σz
+ µσ0 cos θ − eBzx(Vyσy + Vzσz), (3.28a)

Vy = − cos ky cos θ, (3.28b)
Vz = sin ky(cos kz cos θ sinφ− − sin kz cosφ−). (3.28c)

The x and kx = −i∂/∂x dependent parts of the Hamiltonian govern the
decay of the wave function when x→ ±∞, according to

∂ψ/∂x = iσxeBzx(Vyσy + Vzσz)ψ,

⇒ ψ(x) ∝ exp
(
− 1

2eBzx
2
√
V 2
y + V 2

z

)
|V 〉, (3.29a)

|V 〉 =
(
Vy +

√
V 2
y + V 2

z

−iVz

)
. (3.29b)

The energy E0(ky, kz) of the zeroth Landau level then follows upon
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.6.: Data points: Numerical results for the band structure of the
Weyl superconductor near the hole-like Weyl point at −Kz, showing the first
few Landau levels in a magnetic field Bz = 5 · 10−4 a−2

0 h/e (other parameters
m0 = 0, ∆0 = 0.6, β = 0.5, Λ = 0.45, W = 50, ky = 0, µ = 0). Red curve:
Analytical result (3.30) in the chiral zeroth Landau level, plotted without any
fit parameters.

projection of Heff onto |V 〉,

E0(ky, kz) = 〈V |Heff |V 〉
〈V |V 〉

= (β −M−)Vy − Vz sin ky√
V 2
y + V 2

z

+ µ cos θ. (3.30)

Near each of the two Weyl points at k = (0, 0,±Kz) + δk this reduces
to the dispersion

E±(kz) = v0δkz − q±µ+O(δk2),

q± = − cos θ
∣∣
Kz
, v0 = − ∂M−

∂kz

∣∣∣∣
Kz

.
(3.31)

of a zeroth Landau level that propagates chirally (unidirectionally) in the
z-direction with the same velocity v0 and opposite charge q±.
In Fig. 3.6 we compare the dispersion (3.30) in the zeroth Landau
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3.A. Charge renormalization in a superconducting Weyl cone

level, derived from the effective low-energy Hamiltonian (3.27), with the
numerical result from the full Hamiltonian (3.13). The agreement is very
good without any adjustable parameters, giving confidence in the reliability
of the low-energy description.

3.A.4. Renormalized charge for the CME

To make contact with the single-cone Hamiltonian (3.8) from the main
text, we seek the charge and velocity renormalization near the Weyl point
at K. The current and charge operators (3.24) and (3.25) enter into the
effective Hamiltonian (3.19) as

HK =
∑
α

vα(δkα − qαAα)σα − q0µσ0, (3.32a)

v = (1, 1,−∂M−/∂kz),
q0 = − cos θ,
q = −e (cos θ, cos θ, 1/ cos θ) ,

 at k = K. (3.32b)

We have linearized in the momentum δk = k −K and vector potential A
and we have used the fact that

∂M−/∂Λ
∂M−/∂kz

= 1
cos θ . (3.33)

From Eq. (3.10) we find the contribution from the zeroth Landau level
to the equilibrium supercurrent density,

∂jz
∂Bz

= q0qyqz
h2 µ = κ

e2

h2µ,

κ = − cos θ
∣∣
k=K = (1 +m0) sinKz√

∆2
0 + (1 +m0)2 sin2Kz

,

(3.34)

with K = (0, 0,Kz) determined by the equation M− = β.
For the parameter values of Fig. 3.4 we find Kz = 0.747, resulting in

the charge renormalization factor κ = 0.750. The formula (3.9) from the
linearized theory in the main text gives κ = 0.775 for the same parameter
values. It is remarkable how accurate that simple formula is, see Fig. 3.7,
even when Kz is not much smaller than unity.
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.7.: Black curve: Momentum Kz of the Weyl point as a function of the
flux bias Λ, calculated from the solution of M− = β for the parameters m0 = 0,
∆0 = 0.6, β = 0.5. Red curves: The corresponding charge renormalization factor
κ, from Eq. (3.34) (solid curve) and from the small-Kz approximation (3.9)
(dashed curve). The curves terminate at the value Λ = ∆0 − β = 0.1 where a
gap opens in the Weyl cone and the solution to M− = β becomes imaginary.

3.B. Surface Fermi arc

In App. 3.A we gave a low-energy description of the bulk Weyl cones. We
now turn to the surface states, to derive the dispersion relation shown in
Fig. 3.3 of the main text and to demonstrate that the Fermi arc carries an
approximately neutral current along the surface.

3.B.1. Boundary condition

In the slab geometry of Fig. 3.1 the Weyl superconductor is confined to the
inner region |x| < W/2 by an infinite mass in the outer region |x| > W/2.
The requirement of a decaying wave function in the outer region, where
m0 →∞, implies that the wave function at the interfaces satisfies

(1± ν0τyσx)ψ(±W/2) = 0. (3.35)
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3.B. Surface Fermi arc

The unitary transformation (3.15) changes this boundary condition into

(1± Ub)ψ̃(±W/2) = 0, (3.36)

Ub = U†3U
†
2U
†
1ν0τyσxU1U2U3

= ν0τ0σy[cos kz sin(φ0 + νzφz)− cos θ sin kz cos(φ0 + νzφz)]
+ ν0τyσx[cos kz cos(φ0 + νzφz) + cos θ sin kz sin(φ0 + νzφz)]
+ νyτzσx sin θ sin kz cosφz + νxτxσy sin θ sin kz sinφz, (3.37)

for the transformed wave function ψ̃ = U†3U
†
2U
†
1ψ.

For later use we note that the two matrices U0 = νzτzσy and Ub commute,
so they can be jointly diagonalized. Each matrix has eigenvalues ±1, we
seek the eigenspace where both eigenvalues have same sign. The two
orthonormal eigenvectors u1 and u2 with eigenvalue −1 are given by

u1 = 1
2Z
−2
0
(
iZ1, Z1,−iZ2, Z2, 0, 0, iZ4, Z4

)
, (3.38a)

u2 = 1
2Z
−2
0
(
i cosφzZ4, cosφzZ4, i sinφzZ4,

− sinφzZ4,−iZ0, Z0,−iZ3,−Z3
)
, (3.38b)

Z0 = 1− cos kz sinφ− + sin kz cos θ cosφ−, (3.38c)
Z1 = sinφ0 sin kz cos θ + cosφ0 cos kz + sinφz, (3.38d)
Z2 = cosφ0 sin kz cos θ − sinφ0 cos kz + cosφz, (3.38e)
Z3 = cos kz cosφ− + sin kz cos θ sinφ−, (3.38f)
Z4 = sin kz sin θ. (3.38g)

The eigenspace with eigenvalue +1 of U0 and Ub is spanned by u3 =
ν0τ0σzu1 and u4 = ν0τ0σzu2.

3.B.2. Construction of the surface state

For M− < β < M+ there is only one pair of gapless Weyl cones, so there
is a single low-energy surface state connecting them. We assume that
W is sufficiently large that we can treat the two surfaces at x = ±W/2
independently. Let us consider the surface state ψ̃ at x = W/2. It should
be a solution of H̃ψ̃ = Eψ̃ that decays for x→ −∞ and that satisfies the
boundary condition Ubψ̃ = −ψ̃ at x = W/2.
We first solve this matching problem to zeroth order in µ, when the
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3. Chiral magnetic effect of an unpaired Weyl cone

Hamiltonian (3.17) reduces to

H̃0 = νzτz(σx sin kx + σy sin ky) + βν0τ0σz

− νzτzσz
√

(M0 + νz sin Λ)2 + v2
k. (3.39)

We linearize in kx = −i∂/∂x and obtain the solution of H̃0ψ̃ = E0ψ̃ in
the form

ψ̃(x) = exp
[
iδx νzτzσx

(
E0 − νzτzσy sin ky − βν0τ0σz

+ νzτzσz

√
(M0 + νz sin Λ)2 + v2

k

)]
ψ̃(W/2), (3.40)

abbreviating δx = x−W/2.

For E0 = − sin ky the solution (3.40) that decays for δx → −∞ is an
eigenvector of U0 = νzτzσy with eigenvalue −1:

ψ̃(x) =
(

0, 0,−iC1e
(β+M+)δx, C1e

(β+M+)δx,

− iC2e
(β+M−)δx), C2e

(β+M−)δx,

iC3e
(β−M−)δx, C3e

(β−M−)δx
)
. (3.41)

To satisfy the boundary condition at x = W/2, the coefficients C1, C2, C3
should be chosen such that ψ̃(W/2) = (0, 0,−iC1, C1,−iC2, C2, iC3, C3) is
a superposition of the eigenvectors u1 and u2 in Eq. (3.38). This results in

C1 = Z1Z4 sinφz + Z2Z4 cosφz, C2 = −Z0Z1,

C3 = Z1Z3 + Z2
4 cosφz,

(3.42)

up to an overall normalization constant.
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3.B. Surface Fermi arc

3.B.3. Surface dispersion relation

We now add to the zeroth order energy E0 = − sin ky the contribution
δEµ from the chemical potential in first order perturbation theory,

δEµ = 〈ψ̃|δH̃|ψ̃〉
〈ψ̃|ψ̃〉

, (3.43)

δH̃ = H̃ − H̃0 = −µ cos θνzτ0σ0 − µ sin θ cosφ0νxτzσz

− µ sin θ sinφ0νxτxσ0. (3.44)

Two of the three µ-dependent terms in δH̃ mix the ν = ±1 bands in the
bulk. The small parameter that governs the ν-band mixing is δmix =
(β −M−)/(β +M+). If we neglect this mixing and project both ψ̃ and H̃
onto the ν = −1 band, we have simply

δEµ = µ cos θ. (3.45)

In the same way we include to first order the contribution δEB from
the magnetic field with vector potential Ay = Bzx,

δEB = −Bz
〈ψ̃|x̃y|ψ̃〉
〈ψ̃|ψ̃〉

= − 1
2WeBz cos ky cos θ, (3.46)

where we have projected ψ̃ and ̃y onto the ν = −1 band and taken the
large-W limit of the expectation value.

Collecting results we thus obtain the dispersion relation Esurface(ky, kz)
for the surface Fermi arc,

Esurface = − sin ky − ( 1
2WeBz cos ky − µ) cos θ

= − sin ky

+
( 1

2WeBz cos ky − µ)(2 +m0 − cos ky) sin kz√
∆2

0 + (2 +m0 − cos ky) sin2 kz

. (3.47)

This is for the surface at x = W/2. For the opposite surface at x = −W/2
we should substitute ky 7→ −ky.

From Eq. (3.47) we calculate the expectation values of the charge 〈Q〉
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3. Chiral magnetic effect of an unpaired Weyl cone

Figure 3.8.: Data points: Dispersion of the surface states connecting the
electron-like and hole-like zeroth Landau levels, for the same parameters as Fig.
3.6. The color scale gives the charge expectation value. The black curve is the
analytical dispersion (3.47) of the surface Fermi arc.

and the electrical current 〈jz〉 of the surface state,

〈Q〉 = −e∂Esurface

∂µ
= −e cos θ,

〈jz〉 = −e∂Esurface

∂Λ = 0,
(3.48)

the same on both surfaces. The Fermi arc transports no charge in the
z-direction — up to corrections of order δmix from the band mixing. The
approximately neutral current in a Fermi arc explains why the calculation
of the CME including only the chiral Landau level in the bulk agrees so
well with the numerics in Fig. 3.5.

In Figs. 3.8 and 3.9 we compare these analytical results for the surface
dispersion, charge, and current with the numerical data. The agreement is
quite satisfactory, without any adjustable parameter.
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Figure 3.9.: Solid curves: Expectation value of charge Q (red, left axis) and
electrical current jz (green, right axis), for the same parameters as Fig. 3.8. The
black dashed curves are the analytical result (3.48) for the surface state. The
electrical current is predominantly carried by the bulk Landau level, while the
surface Fermi arc carries an approximately neutral current.

3.C. Derivation of the renormalized-charge
formula for the CME

Equation (3.10) in the main text for the equilibrium CME in a supercon-
ductor has the form expected for a single Weyl cone, modified by charge
renormalization. We give a derivation of this formula.

3.C.1. On-shell and off-shell contributions
The equilibrium supercurrent

Iz = 1
2
∑
n,m

∫
dkz
2π Θ(E) tanh

(
E

2kBT

)
∂E

∂Az
(3.49)

is not a Fermi surface property, but contains contributions over a range
of energies E = Enm(kz) > 0 even in the limit that the temperature T
goes to zero. For the CME we seek a contribution to Iz that is linear in
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3. Chiral magnetic effect of an unpaired Weyl cone

the chemical potential µ, measured relative to the Weyl points. As we
will now show, the derivative ∂I/∂µ in the limit µ→ 0 has predominantly
Fermi-surface (on-shell) contributions, which at T = 0 can be written as a
sum over propagating modes at the Fermi energy E = 0.

Using particle-hole symmetry (relating states at energy ±E carrying
opposite current ±∂E/∂Az) we rewrite Eq. (3.49) as an integral over all
states of positive and negative energies,

Iz = −1
2
∑
n,m

∫
dkz
2π f(E) ∂E

∂Az
, (3.50)

weighted by the Fermi function

f(E) =
(

1 + eE/kBT
)−1

= 1
2 −

1
2 tanh(E/2kBT ). (3.51)

The derivative of the energy in Eq. (3.50) gives the expectation value of
the electrical current operator jz = −∂H/∂Az in the state with energy E,

〈jz〉E = −〈∂H/∂Az〉E = −∂E/∂Az, (3.52)

according to the Hellmann-Feynman theorem. Two other expectation
values that we need are those of the velocity operator vz = ∂H/∂kz and
the charge operator Q = −e∂H/∂µ, given by

〈vz〉E = ∂E/∂kz, 〈Q〉E = −e∂E/∂µ. (3.53)

We take the derivative with respect to µ of Eq. (3.50):

∂Iz
∂µ

= Jon-shell + Joff-shell, (3.54)

Jon-shell = − 1
2e
∑
n,m

∫
dkz
2π f

′(E)〈Q〉E〈jz〉E , (3.55)

Joff-shell = 1
2e
∑
n,m

∫
dkz
2π f(E) ∂

∂Az
〈Q〉E . (3.56)

At low temperatures, when −f ′(E)→ δ(E) becomes a delta function, the
on-shell contribution Jon-shell involves only Fermi surface properties. It
is helpful to rewrite it as a sum over modes at the Fermi energy. For
that purpose we replace the integration over kz by an energy integration
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weighted with the density of states:

Jon-shell = − 1
4πe

∑
n,m

∫ ∞
−∞

dE f ′(E)
∣∣∣∣ ∂E∂kz

∣∣∣∣−1
〈Q〉E〈jz〉E . (3.57)

This equation may be written in a more suggestive form by defining a
vector charge

Q = (Qx, Qy, Qz), with Qα(E) ≡ 〈jα〉E
〈vα〉E

, (3.58)

which may be different from the average (scalar) charge Q0 ≡ 〈Q〉E because
the average of the product of charge and velocity may differ from the
product of the averages.(For example, the coherent superposition of a
right-moving electron and a left-moving hole has zero average charge and
zero average velocity, but nonzero average electrical current.) We finally
arrive at

Jon-shell = − 1
4πe

∑
n,m

∫ ∞
−∞

dE f ′(E)

×Q0(E)Qz(E)
(
sign 〈vz〉E

)
. (3.59)

At zero temperature a sum over modes remains,

Jon-shell = 1
2
e

h

∑
n,m

Q0Qz
e2

(
sign 〈vz〉

)∣∣∣∣
Enm=0

, (3.60)

where we have restored the units of ~ = h/2π. The subscript n,m labels
the mode indices of a propagating mode in the z-direction at the Fermi
energy (E = 0).

3.C.2. Application to the zeroth Landau level

We evaluate Eq. (3.60) for the effective Hamiltonian (3.32) in the zeroth
Landau level near the Weyl point at K and its charge-conjugate at −K.
The two Weyl points have opposite sign of both the scalar charge Q0 =
−e cos θ and the vector charge Qz = −e/ cos θ, and the same sign 〈vz〉 =
χ (signBz), so their contributions add. The Landau level degeneracy is

N = 1
h
WW ′|BzQy| =

e

h
WW ′|Bz cos θ|, (3.61)
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Substitution into Eq. (3.60), times two for two Weyl points, gives the
on-shell contribution to the zero-temperature equilibrium current,

Jon-shell = e

h
N Q0Qz

e2 χ( signBz) = WW ′
e2

h2κχBz, (3.62)

with charge renormalization factor

κ = lim
k→K

| cos θ|. (3.63)

This confirms Eq. (3.10) in the main text (where we took a positive
chirality χ), provided that we can neglect 1) contributions from the surface
states; and 2) off-shell contributions from the bulk states. A numerical
demonstration that these contributions can be neglected is provided in
Fig. 3.5, where the full expression (3.49) is evaluated in a slab geometry.
Analytical justification comes from the effective low-energy Hamiltonian,
which shows that 1) ∂E/∂Az = e∂E/∂Λ vanishes on the surface in view of
Eq. (3.48); and 2) ∂〈Q〉E/∂Az vanishes in the bulk in view of Eq. (3.26).
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