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2. Magnetic breakdown and
Klein tunneling in a type-II
Weyl semimetal

2.1. Introduction
Weyl semimetals provide a condensed matter realization of massless rela-
tivistic fermions [50]. Their spectrum features a diabolo-shaped surface in
energy-momentum space that separates helical electron-like states (moving
in the direction of the momentum) from hole-like states (moving opposite
to the momentum) [92]. These “Weyl cones” are the three-dimensional
analogue of the two-dimensional Dirac cones in graphene. The third spatial
dimension provides a topological protection, by which the conical point
(Weyl point) cannot be opened up unless two Weyl cones of opposite
helicity are brought together in momentum space [93].
Although the Weyl point cannot be locally removed, the cones can be

tilted and may even tip over [51–59]. For the relativistic Weyl cone such
a distortion is forbidden by particle-hole symmetry, but that is not a
fundamental symmetry in condensed matter. While in graphene the high
symmetry of the honeycomb lattice keeps the cone upright, strain providing
only a weak tilt [94], the tilting can be strong in 3D Weyl semimetals. This
leads to a natural division of Weyl cones into two topologically distinct
types [56]. In type I the cone is only weakly tilted so that the electron-like
states and hole-like states occupy separate energy ranges, above or below
the Weyl point. In type II the cone has tipped over so that electron and
hole states coexist in energy. Many experimental realizations of a type-II
Weyl semimetal have recently been reported [95–101].

In a magnetic field the coexisting electron and hole pockets of a type-II
Weyl semimetal are coupled by tunneling through the Weyl point (Fig. 2.1).

The contents of this chapter have been published in T.E. O’Brien, M. Diez and
C.W. J. Beenakker, Phys. Rev. Lett. 116 (23), 236401 (2016).
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

Figure 2.1.: a) Fermi surface of a type-II Weyl semimetal, calculated from the
model Hamiltonian (2.1), showing the electron and hole pockets touching at the
Weyl point. Equi-energy contours in planes perpendicular to the magnetic field
B are indicated. The magnetic quantum oscillations have a periodicity in 1/B
determined by the contour that encloses an extremal area. b) Intersection of the
Fermi surface with a plane perpendicular to B that passes through the Weyl
point. Electron and hole pockets are bounded by a contour C± enclosing an area
A±. The semiclassical orbit of an electron follows the contour in the direction
of the arrow. Tunneling between the pockets happens with a probability T
that tends to unity when their minimal separation ∆k → 0. This magnetic
breakdown is a manifestation of Klein tunneling in momentum space.

Here we investigate how this process, a momentum space manifestation
of Klein tunneling [102], affects the magnetic quantum oscillations of
the density of states (De Haas-Van Alphen effect), providing a unique
thermodynamic signature of the topologically protected band structure
(an alternative to proposed transport signatures [56, 103–105]). Because
the quantum oscillations are governed by extremal cross-sections of the
Fermi surface, one might wonder whether some high symmetry is required
to align the extremal cross-section with the Weyl point, so that it becomes
observable. Our analysis shows that a magnetic field axis for this alignment
exists generically, because of the Möbius strip topology of the projective
plane. We first consider Klein tunneling through a single type-II Weyl
point, and then turn to pairs of Weyl cones of opposite helicity, which
can be combined in topologically distinct ways [55] — with a qualitatively
different dependence on the Klein tunneling probability.
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2.2. Semiclassical quantization

2.2. Semiclassical quantization
To first order in momentum k, the Hamiltonian of a Weyl cone has the
generic form

H =
∑
ijvijkiσj + atiltkxσ0, (2.1)

in terms of Pauli matrices σi, i ∈ {x, y, z} (unit matrix σ0). The eigenvalues
lie on two hyperboloid sheets E±,

E± = atiltkx ±
√∑

ijlvilvjlkikj , (2.2)

that touch at the Weyl point k = 0.
For sufficiently small atilt the Fermi surface contains either electron-like

states in E+ or hole-like states in E−, depending on the sign of the Fermi
energy. With increasing atilt the Weyl cone is tilted in the (arbitrarily
chosen) x-direction, and when it tips over coexisting electron and hole
states appear on the Fermi surface. This is the type-I to type-II Weyl
semimetal transition [56].

The hyperboloid dispersion (2.2) only holds near the Weyl point. In the
physical realizations of a type-II Weyl semimetal the Fermi surface closes
away from the Weyl point, forming compact electron and hole pockets. A
cross-section is defined by fixing an axis (unit vector n̂) and choosing a
coordinate q along that axis. The intersection of the Fermi surface with
the plane n̂ · k = q is an oriented contour C±(q) enclosing the signed
area A±(q) (positive for C+ and negative for C−). The contours are the
classical momentum-space orbits for a magnetic field B in the n̂-direction,
the change in orientation between C+ and C− resulting from the sign
change of the effective mass in the electron and hole pockets.
Semiclassical quantization of the orbits produces Landau tubes [25],

with quantized cross-sectional area

A±(q) = 2π(n+ ν)eB/~, n = ±1,±2. (2.3)

The Maslov index ν = 1/2 for massive electrons, while ν = 0 for massless
Weyl fermions [106]. The Landau tubes give rise to oscillations in the
density of states periodic in 1/B∗,

δρ/ρ0 = Re
{

[−iA′′±(qc)]−1/2e2πi(F±/B−ν)
}
, (2.4)

∗For a convex electron or hole pocket one has signA′′±(qc) = ∓1 so the factor
[−iA′′±(qc)]−1/2 in Eq. (2.4) contributes a phase shift ∓π/4 to the magnetic oscillations.
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

with frequency given by the Onsager relation [107, 108]

F± = (~/2πe)|A±|. (2.5)

The extremal area A± = A±(qc) is the area at which the first derivative
dA±(q)/dq = 0. The contour enclosing the extremal area is denoted by
C±.

2.3. Magnetic breakdown
The two sheets E± of a type-II Weyl cone are coupled by quantum tunneling.
This magnetic-field-induced tunneling between electron and hole pockets
is the momentum space counterpart of Klein tunneling at a p–n junction
in graphene [109], and can be analyzed along the same lines [110].
The effect of a magnetic field B in, say, the y-direction, with vector

potentialA = (Bz, 0, 0), is accounted for by the substitution kx 7→ kx+eBz
(setting ~ = 1). In momentum representation, the Schrödinger equation
Hψ = Eψ reads

iU0
∂ψ

∂kz
= U(kz)ψ, U0 = eB

(∑
jvxjσj + atiltσ0

)
, (2.6a)

U(kz) = Eσ0 −
∑
ijvijkiσj − atiltkxσ0. (2.6b)

For atilt > (
∑
j v

2
xj)1/2 the matrix U0 is positive definite, so that it can be

factorized as U0 = V V † with invertible V and we may write

i∂ψ/∂kz = V −1U(kz)(V †)−1ψ ≡ H(kz)ψ, (2.7)

with H(kz) = H0 + H1kz. If we interpret kz ≡ t as “time”, this looks
like a Schrödinger equation for a spin-1/2 particle with “time”-dependent
Hamiltonian H(t). Because the t-dependence of H(t) is linear, we can
use the Landau-Zener formula for the tunneling probability between the
electron and hole pockets [111].

Quite generally, for a two-level system with time-dependent Hamiltonian

H(t) =
(
αt+ c γ

γ∗ βt+ c′

)
, (2.8)

the Landau-Zener tunnel probability is

T = exp
(
−2π|γ|2|α− β|−1). (2.9)
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2.3. Magnetic breakdown

Figure 2.2.: Energy spectrum at ky = 0 of the type-II Weyl semimetal with
Hamiltonian (2.11) (parameters t = 1, t′ = 2, µ = 3, b = 1.2, atilt = 1.7,
ξ = 0.08). The black dotted curves are the exact numerical results, the red
dashed lines form the semiclassical Landau fan (2.15) for tunnel-coupled electron
and hole pockets. The individual pockets are responsible for the high-frequency
oscillations superimposed on the fan.

The matrix (2.7) is of the form (2.8) in the basis where H1 is diagonal, so
in that basis we can read off the coefficients α, β, γ needed to determine T .

For a specific example we consider the Hamiltonian (2.1) with vij = viδij ,
which for atilt > vx represents a type-II Weyl cone. We find

T = exp
(
− π~
eB

v2
xE

2 + v2
yk

2
y(a2

tilt − v2
x)

vz(a2
tilt − v2

x)3/2

)
= exp

(
− π~

4eBvz
(∆k)2(a2

tilt − v2
x)1/2

)
, (2.10)

with ∆k the minimal separation of the contours C+ and C−. This has the
general form of the interband tunnel probability in the theory of magnetic
breakdown [108, 112, 113], with a breakdown field Bc ∝ (∆k)2. The
characteristic feature of Klein tunneling is that the tunnel probability
T → 1 and Bc → 0 at the conical point of the band structure — here a
3D Weyl point and a 2D Dirac point in Ref. 102.

To illustrate the effect of Klein tunneling between electron and hole
pockets on the magnetic quantum oscillations in the density of states, we
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

consider the model Hamiltonian [65]∗

H = τz(t′σx sin kx + t′σy sin ky) + tτzσ0 sin kz
+ τxσ0(µ− t cos kx − t cos ky − t cos kz)
+ bτ0σz +

[
atilt sin kx + ξ(1− cos kx)

]
τ0σ0. (2.11)

This is a tight-binding Hamiltonian on a cubic lattice (lattice constant
a0 = 1), with a spin and orbital degree of freedom on each lattice site (Pauli
matrices σi and τi, respectively). The time-reversal symmetry breaking
term b splits the Dirac cone into two Weyl cones separated along the z-axis.
To produce a type-II Weyl semimetal we have added a tilting term atilt
and a term ξ that breaks the symmetry between the electron and hole
pockets.

As derived in App. A, near a Weyl point the effective low-energy Hamil-
tonian has the form (2.1) with diagonal velocity tensor vij = viδij given
by

vx = vy = (2t− µ)2 − t2 + b2

2b(2t− µ) t′, (2.12a)

vz = 1
2b
√

[(t− µ)2 − b2] [b2 − (3t− µ)2]. (2.12b)

The Hamiltonian (2.11) retains a mirror symmetry in the x–z plane
(to be removed later on), which implies that for a magnetic field in the
y-direction the areas A±(ky) are extremal for ky = 0. By means of
exact diagonalization† we have calculated the partial density of states
ρ(E,B, ky) =

∑
p δ[E − Ep(B, ky)] for ky = 0, assuming that this gives

the dominant contribution to the magnetic quantum oscillations. We
choose the gauge A = (0, 0,−Bx), with a rational flux Ba2

0 = 1/N × h/e
through a unit cell. The lattice has dimensions N ×NM in the x–z plane
(M � N � 1), with periodic boundary conditions in both directions.

Fig. 2.2 shows the energy spectrum as a function of magnetic field and
Fig. 2.3 shows the periodicity of the magnetic oscillations, extracted from
a Fourier transform of the density of states. When the Fermi level is far
from the Weyl point E = 0, the electron and hole pockets contribute
separately with frequencies F± set by the extremal areas A±. The slopes

∗The Hamiltonian (2.11) differs from that in this reference by the addition of the
atilt and ξ terms, and also in the replacement of τyσ0 sin kz by τzσ0 sin kz . This last
change was introduced to produce small electron and hole pockets that do not spread
out over the entire Brillouin zone.
†To discretize the model Hamiltonian (2.11) we used the kwant toolbox of [114].
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2.3. Magnetic breakdown

Figure 2.3.: Fourier amplitudes of the magnetic quantum oscillations. The
numerical data for the partial density of states ρ(E, ky = 0) (smoothed with
a Gaussian of width Γ = t/500) is Fourier transformed over the field range
B . 0.005h/ea2

0 (200 < N < 1500). The fundamental frequencies from the
electron and hole pockets are indicated by F+ and F−, respectively (the first
harmonics are also faintly visible). Klein tunneling between the pockets when the
Fermi energy approaches the Weyl point (E = 0) suppresses these high-frequency
oscillations, introducing a new component at the difference frequency |F+ − F−|.
The colored data points for F± are the semiclassical prediction (2.5) from the
extremal areas.

dF±/dE have opposite sign in the two pockets, signifiying the opposite
sign of the cyclotron effective mass

m± = ~2

2π
d

dE
|A±|. (2.13)

Near the Weyl point a low-frequency component appears at the differ-
ence |F+ − F−|, and the individual high-frequency components F± are
suppressed. In a semiclassical description, the orbit responsible for the
difference frequency is the “figure of eight” orbit formed by joining C+ to
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

C− at the Weyl point (see Fig. 2.1b). The corresponding effective mass

mΣ = ~2

2π
d

dE
|A+ +A−| (2.14)

governs the Landau fan in Fig. 2.2,

Ep(B) = Ep(0) + p× ~eB/mΣ. (2.15)

Notice the absence of a 1/2 offset from the integer p, canceled by a Berry
phase.

Figure 2.4.: Energy dependence of the Fourier amplitudes from Fig. 2.3. The
curves are fits to Ω±

√
1− T and ΩΣT , with the transmission probability T (E)

calculated from Eq. (2.10) and energy-independent fit parameters Ω±,ΩΣ. When
two frequency lines in Fig. 2.3 cross we cannot reliably determine the individual
amplitudes — which explains some of the large scatter in the data points.

The tunnel probability (2.10) evaluates for our model parameters to
T (E) = exp[−0.52N(E/t)2]. The contribution of an orbit to the Fourier
amplitude contains a factor t =

√
T for each transmission through the

Weyl point and a factor r =
√

1− T for each reflection. In Fig. 2.4 we plot
the peak heights of Fig. 2.3 as a function of energy. The solid lines are fits
to Ω±

√
1− T (E) and ΩΣT (E), with energy-independent fit parameters

Ω±,ΩΣ. We take for the inverse field strength N = 850, half-way the
interval used in the Fourier transform. A good match to the predicted
Gaussian T (E) is obtained.
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2.3. Magnetic breakdown

Figure 2.5.: Magnetic field axis L± = (θ±, φ±) for which the extremal contour
C± at E = 0 touches the Weyl point. The dashed curves correspond to the
Hamiltonian (2.11) with the parameters of Fig. 2.1. For the solid curves we have
broken the mirror symmetry by adding the term V0τ0σ0 sin ky with V0 = 0.5. The
intersection of L+ and L− (encircled) is the special axis at which Klein tunneling
between electron and hole pockets produces magnetic quantum oscillations with
the difference frequency |F+ − F−|, suppressing both the electron and hole
frequencies F±. The intersection is protected by the topology of the Möbius
strip (indicated by arrows, which show how the edges at φ = 0, π should be
glued with a twist).

The above analysis was simplified by the mirror symmetry in the x–z
plane, because we could immediately identify the special magnetic field
axis for which the extremal contours C± in the electron and hole pockets
both touch the Weyl point when E → 0, allowing for Klein tunneling. One
might wonder how restrictive this alignment is — is it possible to find
such a special axis in the absence of any symmetry? The answer is yes, as
we demonstrate with the help of Fig. 2.5. At E = 0 we plot the polar and
azimuthal angles θ±, φ± of the magnetic field axis for which the extremal
contour C± touches the Weyl point. Because (θ, φ) and (π − θ, π + φ)
represent the same axis, we may restrict φ to the range [0, π] — half the
usual range for spherical coordinates — identifying the end points (θ, 0)
and (π − θ, π). The (θ, φ) plane with these “twisted” periodic boundary
conditions is the so-called projective plane P2, and has the topology of a
Möbius strip.
If the loops L+ = (θ+, φ+) and L− = (θ−, φ−) both wind around the

Möbius strip, as they do in Fig. 2.5, they must necessarily intersect because
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

Figure 2.6.: Left panels: Dependence on the orientation of the magnetic field of
the amplitude of the magnetic quantum oscillations (normalized to unit maximal
amplitude), for a fixed Fermi energy EF = 0. Pairs of type-II Weyl points at
E = 0 with disconnected or connected Fermi surfaces are compared. The right
panels show a cross-section through the electron and hole pockets. For each
curve in the left panels the corresponding orbit is indicated. The calculations,
detailed in App. C, are for the Hamiltonian (2.11) with parameters t = 1, µ = 3,
b = 1.2, atilt = 1.7 for all panels and t′ = 2, ξ = 0.08 (top panels); t′ = 1.7,
ξ = 0.24 (bottom panels).

of the twist. The point of intersection is the special axis at which both
C+ and C− touch the Weyl point. In App. B we show that such non-
contractible loops always exist if the Fermi surface is convex, independent
of any symmetry requirement.

2.4. Conclusion
So far we considered Klein tunneling at a single Weyl point. A second
Weyl point of opposite helicity necessarily exists in the Brillouin zone, and
this allows for topologically distinct Fermi surfaces [55]. In Fig. 2.6 we
illustrate how Klein tunneling can distinguish connected from disconnected
pairs of type-II Weyl cones, by the qualitatively different dependence on
the magnetic field orientation.
Experimentally, Klein tunneling through a type-II Weyl point can be

detected in measurements of the De Haas-Van Alphen effect in the magnetic
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2.4. Conclusion

Figure 2.7.: Dispersion close to a type-II Weyl point. Shown are five kz-
subbands at ky = 0; blue-solid lines show the dispersion of the four-band
model (2.11); yellow-dashed lines show the corresponding low energy descrip-
tion (2.23). Parameters are the same as in Fig. 2.2.

susceptibility: If the magnetic axis is rotated towards the special alignment
of Fig. 2.5, the high-frequency magnetic quantum oscillations from the
electron and hole pockets would both be suppressed in favor of a low-
frequency oscillation from the coupled orbits. The characteristic field
for this magnetic breakdown would depend quadratically on the energy
mismatch E between the Weyl point and the Fermi energy, with unit
tunnel probability in the limit E → 0 as the defining signature of Klein
tunneling in momentum space. With sufficient doping WTe2 would produce
disconnected type-II Weyl cones near the Fermi energy [56, 115]∗, while
they are connected in undoped LaAlGe [96]. Klein tunneling is a powerful
diagnostic for such topologically distinct Fermi surfaces.

∗The recent experimental study [115] of magnetic quantum oscillations in semimetal-
lic WTe2 reports the sudden appearance of a new frequency above a critical field. Since
the new frequency is the sum rather than the difference of the low-field frequencies, it
cannot be associated with Klein tunneling through a Weyl point.
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

2.A. Low-energy limit of the four-band
model Hamiltonian of a type-II Weyl
semimetal

The dispersion along the kz-axis (for kx = ky = 0) of the four-band
Hamiltonian (2.11) is given by

Ehigh
± = ±b±

√
(2t− µ)2 + t2 + 2t(2t− µ) cos kz, (2.16)

Elow
± = ±b∓

√
(2t− µ)2 + t2 + 2t(2t− µ) cos kz. (2.17)

For µ > 2t the two low-energy bands Elow
± form a pair of Weyl cones

located at

Kz = ± arccos
(

(2t− µ)2 + t2 − b2

2t(µ− 2t)

)
. (2.18)

We wish to derive the corresponding low-energy Hamiltonian. Notice that
for kx = ky = 0 the Hamiltonian (2.11) commutes with σz and is thus
block-diagonal. Each of the two blocks contains one low and one high
energy band. At K = (0, 0,Kz) the corresponding low energy eigenstates
are given by

Ψlow
+ = 1

N+

(
(2t− µ)(2b− 2t

√
1− cos2Kz)

(2t− µ)2 − t2 + b2
, 1, 0, 0

)
, (2.19)

Ψlow
− = 1

N−

(
0, 0,− (2t− µ)(2b+ 2t

√
1− cos2Kz)

(2t− µ)2 − t2 + b2
, 1
)
. (2.20)

We expand the four-band Hamiltonian in the basis of these eigenstates:
〈Ψlow

+ |H|Ψlow
+ 〉 〈Ψlow

+ |H|Ψlow
− 〉 〈Ψlow

+ |H|Ψhigh
+ 〉 〈Ψlow

+ |H|Ψhigh
− 〉

〈Ψlow
− |H|Ψlow

+ 〉 〈Ψlow
− |H|Ψlow

− 〉 〈Ψlow
− |H|Ψhigh

+ 〉 〈Ψlow
− |H|Ψhigh

− 〉
〈Ψhigh

+ |H|Ψlow
+ 〉 〈Ψhigh

+ |H|Ψlow
− 〉 〈Ψhigh

+ |H|Ψhigh
+ 〉 〈Ψhigh

+ |H|Ψhigh
− 〉

〈Ψhigh
− |H|Ψlow

+ 〉 〈Ψhigh
− |H|Ψlow

− 〉 〈Ψhigh
− |H|Ψhigh

+ 〉 〈Ψhigh
− |H|Ψhigh

− 〉


=
(

Hlow Vhigh,low

V †high,low Hhigh

)
. (2.21)

AtK the high and low energy blocks are uncoupled (Vhigh,low(0, 0,Kz) =
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0). Close to the Weyl point we have

H ≈ Hlow + V †high,low(Hhigh)−1Vhigh,low. (2.22)

Thus, to linear order in the deviation from K we can neglect this coupling
and simply linearize Hlow. After some algebra we find the corresponding
low-energy Weyl Hamiltonian,

H = atiltkxσ̃0 − vxkxσ̃x + vykyσ̃y + vz(kz −Kz)σ̃z. (2.23)

The matrices σ̃0,x,y,z are the identity and the Pauli matrices in the basis
of |Ψlow

± 〉. The anisotropic velocity components were given in the main
text, Eq. (2.12).
Fig. 2.7 shows a comparison between the type-II Weyl cone of the

four-band model and its effective low-energy description.

2.B. Topological protection of the special
magnetic field axis for Klein tunneling
between electron and hole pockets

Figure 2.8.: Same as Fig. 2.5, but now the incontractible loop L+ is replaced
by a set of contractible loops, containing the entire set of magnetic field axes
with extremal contours in the electron pocket that touch the Weyl point. This
arrangement would avoid the topological protection of the intersection of incon-
tractible loops in a Möbius strip, but we show by contradiction that it cannot
happen in a convex electron pocket.

The topology of the Möbius strip (the projective plane P2) protects the
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2. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal

intersection of two incontractible loops, ensuring the existence of a special
magnetic field axis where the extremal contours C± in the electron and
hole pockets both touch the Weyl point at E = 0. This is the arrangement
shown in Fig. 2.5. Contractible loops can avoid the intersection, as they
do in Fig. 2.8. For convex electron and hole Fermi surfaces the existence
of incontractable loops is guaranteed by the following argument.
Consider the full set S+ of magnetic field axes for which the extremal

contour C+ in the electron pocket touches the Weyl point. If this set
would consist only of contractible loops, then we would be able to pass an
incontractible loop L through P2 that avoids S+. We will now see that
this leads to a contradiction.
For a convex Fermi surface each field axis n̂ on L is associated with a

unique extremal contour C(n̂). By construction, the contour C(n̂) lies
in a plane normal to n̂. The direction n̂ defines whether the Weyl point
lies above or below this plane. Inversion of the axis produces the same
extremal contour and therefore the same normal plane, with “above” and
“below” interchanged. As we follow the incontractible loop L from polar
angle φ = 0 to φ = π, the field axis is inverted, so at some axis n̂0 on L
the Weyl point must move from above to below the plane. As motion of
the plane is continuous, this can only happen if the Weyl point actually
lies on C(n̂0) ∈ L. This would mean that C(n̂0) ∈ S+, which we had
excluded by the construction of L.

The same argument can be applied to the hole pocket, and we conclude
that for both the (convex) electron and hole pockets there must exist
incontractible loops L± of field axes with extremal contours that touch
the Weyl point.

2.C. Klein tunneling for pairs of connected
type-II Weyl points

The curves in Fig. 2.6 are calculated as follows. The Fermi level is
fixed at the energy E = 0 of the Weyl points and the magnetic field B
is rotated in the x–y plane, staying close to the y-axis (angles θ = 0,
|φ/π − 1/2| � 1). We assume that the dominant φ-dependence of the
amplitude of the magnetic quantum oscillations is then given by the Klein
tunneling probability.
For a given field orientation n̂ we define T (q) as the Klein tunneling

probability between electron and hole pockets at E = 0 and n̂ · k = q.
Because of the symmetry of our band structure, both Weyl points have
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2.C. Klein tunneling for pairs of connected type-II Weyl points

the same T . We then take a planar cross-section of the Fermi surface
at a momentum q parallel to the field and select one of the contours
indicated in the left panels of Fig. 2.6. The contour encloses a signed area
A(q) and we determine the qc at which the area is extremal, A′(qc) = 0.
We calculate Tc = T (qc) using the general Landau-Zener formula (2.9).
Finally, we follow the contour for one period, collecting a factor

√
Tc for

each transmission through a Weyl point and a factor
√

1− Tc for each
reflection. The product of these factors is plotted in Fig. 2.6 (left panels)
as a function of the field orientation φ.
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