

Applications of topology to Weyl semimetals and quantum computing O'Brien, T.E.

Citation

O'Brien, T. E. (2019, June 20). *Applications of topology to Weyl semimetals and quantum computing*. Retrieved from https://hdl.handle.net/1887/74471

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/74471

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: <u>http://hdl.handle.net/1887/74471</u>

Author: O'Brien, T.E. Title: Applications of topology to Weyl semimetals and quantum computing Issue Date: 2019-06-20

Applications of topology to Weyl semimetals and quantum computing

Proefschrift

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN RECTOR MAGNIFICUS PROF. MR. C.J.J.M. STOLKER, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP DONDERDAG 20 JUNI 2019 KLOKKE 15.00 UUR

DOOR

Thomas Eugene O'Brien

GEBOREN TE OTAHUHU (NIEUW-ZEELAND) IN 1990

Promotores:	Prof. dr. C. W. J. Beenakker
	Prof. dr. L. DiCarlo (Technische Universiteit Delft)
Co-promotor:	Dr. İ. Adagideli (Sabancı University, Istanbul)
Promotiecommissie:	Prof. dr. J. Aarts
	Prof. dr. A. Achúcarro
	Dr. V. Cheianov
	Dr. M. Veldhorst (Technische Universiteit Delft)
	Prof. dr. F. K. Wilhelm-Mauch (Saarland University)

Casimir PhD series, Delft-Leiden 2019-16 ISBN 978-90-8593-402-8 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

This work has been partially funded by the Netherlands Organization for Scientific Research (NWO/OCW), and by the European Research Council (ERC).

Printed by: ProefschriftMaken || www.proefschriftmaken.nl

Cover: Quantum circuits for interleaved surface code X and Z stabilizer measurements on a Mobiüs strip, forcing their intersection.

To my family; Mum, Dad, Tess, and to Louise.

Contents

1.	Introduction					
	1.1.	. Preface				
	1.2. Topological phases of matter					
		1.2.1. Topological quantum computation with Majorana				
		zero-modes	4			
		1.2.2. Weyl semimetals \ldots	7			
	1.3.	Quantum error correction	11			
		1.3.1. Toy example - the repetition code	12			
		1.3.2. Stabilizer codes \ldots	15			
		1.3.3. Stabilizer code dynamics	18			
		1.3.4. Topological quantum error correcting codes	19			
		1.3.5. Decoding topological codes	22			
	1.4.	Quantum algorithms	24			
		1.4.1. Quantum phase estimation	24			
		1.4.2. Variational quantum eigensolvers	26			
	1.5.	Quantum computing with superconducting qubits	27			
		1.5.1. Transmon architecture	27			
		1.5.2. Sources of errors	29			
	1.6.	Outline of this thesis	31			
		1.6.1. Part I	31			
		1.6.2. Part II	33			
		1.6.3. Part III	35			
1.	M	agnetotransport in topological semimetals	39			
2.	Mag	gnetic breakdown and Klein tunneling in a type-II				
	Wey	yl semimetal	41			
	2.1.	Introduction	41			
	2.2.	Semiclassical quantization	43			
	2.3.	Magnetic breakdown	44			
	2.4.	Conclusion	50			
	2.A. Low-energy limit of the four-band model Hamiltonian of a type-II Weyl semimetal 5					

Contents

	2.B.	Topological protection of the special magnetic field axis for		
		Klein tunneling between electron and hole pockets	53	
	2.C.	Klein tunneling for pairs of connected type-II Weyl points	54	
3.	Sup	erconductivity provides access to the chiral mag-		
	netic effect of an unpaired Weyl cone 5			
	3.1.	Introduction	57	
	3.2.	Pathway to single-cone physics	58	
	3.3.	Model Hamiltonian of a Weyl superconductor	59	
	3.4.	Flux bias into the single-cone regime	60	
	3.5.	Magnetic response of an unpaired Weyl cone	61	
	3.6.	Consistency of a nonzero equilibrium electrical current and		
		vanishing particle current	64	
	3.7.	Numerical simulation	65	
	3.8.	Extensions	66	
	3.9.	Conclusion	67	
	3.A.	Charge renormalization in a superconducting Weyl cone .	67	
		3.A.1. Block diagonalization	68	
		3.A.2. Current and charge operators	69	
		3.A.3. Effective Hamiltonian in the zeroth Landau level .	71	
		3.A.4. Renormalized charge for the CME	73	
	3.B.	Surface Fermi arc	74	
		3.B.1. Boundary condition	74	
		3.B.2. Construction of the surface state	75	
		3.B.3. Surface dispersion relation	77	
	3.C.	Derivation of the renormalized-charge formula for the CME	79	
		3.C.1. On-shell and off-shell contributions	79	
		3.C.2. Application to the zeroth Landau level	81	

II. Topological codes and quantum error correction 83

4 .	. Density-matrix simulation of small surface codes under			
	curi	cent ar	nd projected experimental noise	85
	4.1.	Introd	uction	85
4.2. Results	·S	86		
		4.2.1.	Error rates for Surface-17 under current experimen- tal conditions	86
		4.2.2.	Optimization of logical error rates with current experimental conditions	88

		4.2.3.	Projected improvement with advances in quantum	
			hardware	90
	4.3.	Discus	sion	92
		4.3.1.	Computational figure of merit	92
		4.3.2.	Decoder performance	93
		4.3.3.	Other observations	94
		4.3.4.	Effects not taken into account	95
	4.4.	Metho	ds	96
		4.4.1.	Simulated experimental procedure	96
		4.4.2.	Error models	101
	4.A.	Full ci	rcuit diagram for Surface-17 implementation	104
	4.B.	Param	eters of error models	105
		4.B.1.	Qubit idling	106
		4.B.2.	Photon decay	106
		4.B.3.	Single-qubit $R_y(\pi/2)$ rotations	107
		4.B.4.	Flux noise	107
		4.B.5.	C-Z gates	109
		4.B.6.	Measurement	110
	4.C.	Effect	of over-rotations and two-qubit phase noise on logical	
		error r	ate	112
	4.D.	Calcul	ation of decoder upper bound	112
	4.E.	Hardw	are requirements of simulation	114
	4.F.	Home	nade MWPM decoder with asymmetric weight cal-	
		culatic	m	115
	4.G.	Impler	nentation of a look-up table decoder	118
	4.H.	Details	s of lowest-order approximation	119
5.	Ada	ptive v	weight estimator for quantum error correction	
	in a	time-o	dependent environment	123
	5.1.	Introd	uction	123
	5.2.	Quant	um error correction and the repetition code	124
	5.3.	Weight	t inference from error syndromes	126
		5.3.1.	Formulation of the inversion problem	126
		5.3.2.	Solution for edges connecting pairs of vertices	128
		5.3.3.	Solution for boundary edges	129
	5.4.	Impler	nentation of the adaptive decoder	130
		5.4.1.	Convergence in the large-time limit	130
		5.4.2.	Performance in a time-dependent environment	131
	5.5.	Conclu	1sion	132

Contents

6.	Neu	ral network decoder for topological color codes with	15
	6.1.	Introduction 13	5
	6.2.	Description of the problem	6
		6.2.1. Color code	6
		6.2.2. Error model	8
		6.2.3. Fault-tolerance	9
		6.2.4. Flag qubits	0
	6.3.	Neural network decoder	1
		6.3.1. Learning mechanism	1
		6.3.2. Decoding algorithm 14	1
	6.4.	Neural network performance	3
		6.4.1. Power law scaling of the logical error rate 14	3
		6.4.2. Performance on realistic data	4
	6.5.	Conclusion	5
	6.A.	Quantum circuits	5
		6.A.1. Circuits for the Pauli error model	5
		6.A.2. Measurement processing for the density-matrix error	_
	6 D	model	6
	6.B.	Details of the neural network decoder	8
		6.B.1. Architecture	8
		6.B.2. Training and evaluation	9
	a 0	6.B.3. Pauli frame updater	2
	6.C.	Results for distance-5 and distance-7 codes 15	3

III.Quantum Algorithms for digital quantum simulation

155

7.	7. Majorana-based fermionic quantum computation				
	7.1.	Introduction	157		
	7.2.	Description of the architecture	158		
	7.3.	Quantum algorithms	161		
	7.4.	Conclusion	165		
	7.A.	Preparing extended ancilla qubits for quantum phase esti-			
		mation	166		
	7.B.	Algorithm to perform Trotter steps in $O(N^3)$ time	167		
	7.C.	Details of parallel circuit for Hubbard model	169		

8.	Qua	ntum phase estimation for noisy, small-scale exper-	
	ime	nts	173
	8.1.	Introduction	173
	8.2.	Quantum phase estimation	175
	8.3.	Classical data analysis	179
		8.3.1. Time-series analysis	182
		8.3.2. Efficient Bayesian analysis	187
		8.3.3. Experiment design	189
	8.4.	Results without experimental noise	190
		8.4.1. Single eigenvalues	190
		8.4.2. Example behaviour with multiple eigenvalues	192
		8.4.3. Estimator scaling with two eigenvalues	194
		8.4.4. Many eigenvalues	196
	8.5.	The effect of experimental noise	197
		8.5.1. Depolarizing noise	198
		8.5.2. Realistic circuit-level noise	199
	8.6.	Discussion	203
	App	endices	205
	8.A.	Derivation of the identity in Eq. (8.25)	206
	8.B.	Variance calculations for time-series estimator	207
	8.C.	Fourier representation for Bayesian updating	209
		8.C.1. Bayesian updating for multi-eigenvalue starting state	211
	8.D.	Convergence of the (noiseless) time-series analysis in case	
		of multiple eigenvalues	214
	8.E.	Details of realistic simulation	214
		8.E.1. Error model and error parameters	216
Bi	bliog	raphy	219
Ac	knov	vledgments	249
Sa	men	vatting	253
Su	mma	ary	257
Cı	Curriculum Vitæ 2		
Li	List of publications 2		