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Chapter 1

Introduction

1.1 Preface

Majorana fermions are charge neutral fermionic modes that equal their
own antiparticles [1] and originate from a real solution of the complex
Dirac equation [2]. Those recently attracted a lot of attention in the
context of subgap states in superconductors [3–11]. In superconducting
systems, oppositely charged electron and hole quasiparticle excitations
can be naturally thought as particle-antiparticle partners. The particle-
hole symmetry relates the creation operator of the quasiparticle excitation
γ†E at energy E to its annihilation operator γ−E at the opposite energy.
The p-wave superconducting pairing allows for the subgap solutions of
the Bogoliubov-De Gennes (BdG) Hamiltonian at E = 0 on vortices in
two dimensions [3–5, 8] or as the bound states at the ends of a one-
dimensional nanowire [6, 9], which makes the superconductor topologically
non-trivial [10, 12]. These solutions realize Majorana zero modes γ†0 = γ0
(often referred to as Majoranas) that obeys the anticommutation relation
{γi, γj} = 2δij . It follows from the reality of Majorana zero modes (γ†i =
γi) that two of those are needed to encode a single complex fermion, so
that each Majorana enters as an equal-weight superposition of the electron
and hole excitations. This results in 2N degeneracy of the ground state
described by 2N Majoranas, non-Abelian exchange statistic of the latter
ones [4, 5, 13], and makes them especially attractive in the perspective of
topological quantum computation [6, 14, 15].

Once Majorana zero modes are stacked together with sufficient overlap,
they form a subgap chiral edge Majorana mode. The left panel in Fig.
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Figure 1.1. Left panel: A stack of superconducting nanowires [6] that form a
dispersive (see Fig. 1.2) Majorana subgap edge state. The figure is taken from
M. Diez, I. C. Fulga, D. I. Pikulin, J. Tworzydło, and C. W. J. Beenakker, New
Journal of Physics 16, 063049 (2014). Right panel: 3D topological insulator in
proximity to superconductor and ferromagnet hosts Majorana edge mode. The
figure is reprinted with permission from A. R. Akhmerov, Johan Nilsson, and C.
W. J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009). Copyright 2009 by the
American Physical Society.

Figure 1.2. Dispersion of a chiral p-wave superconductor drawn from the tight-
binding model defined on the infinite stripe geometry (lattice constant a). The
bulk of the system is gapped, while the Majorana edge states have the linear
dispersion with a slope proportional to the bulk gap ∆0.

1.1 schematically shows an array of p-wave nanowires [6] that hosts a
Majorana edge state. Also, a surface of a three-dimensional topological
insulator [10, 16–18] in proximity to superconductor and ferromagnet is
predicted to form a Majorana edge mode along the boundary between a
ferromagnet and superconductor [19, 20], as it is shown in the right panel

https://doi.org/10.1088/1367-2630/16/6/063049
https://doi.org/10.1088/1367-2630/16/6/063049
https://doi.org/10.1103/PhysRevLett.102.216404
https://doi.org/10.1103/PhysRevLett.102.216404
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of Fig. 1.1. Moreover, Majorana edge modes at the interface between
quantum anomalous Hall insulator and an s-wave superconductor [21]
have been recently reported to be observed in experiment [22].

Chiral Majorana edge states in p-wave superconductors with a spin-
triplet px + ipy pair potential [4, 7], whose dispersion is shown in Fig
1.2, can be thought as a superconducting analog of chiral edge modes
of the quantum Hall effect. However, because Majorana fermions are
charge neutral, quantized electrical signatures of the Majorana edge mode
are lacking. On the other hand, a temperature gradient is predicted to
drive a heat current along the edge carried by Majorana fermions, so
that the thermal conductance G is quantized at the electronic quantum
G0 = π2k2

BT/3h times one-half. 1 Study of electrical alternatives to the
heat conductance measurements is the goal of Chapters 2 and 3.

3D TI

SC

B

Figure 1.3. Left panel: An array of the superconducting nanowires in the
magnetic field strongly coupled through a disordered quantum dot. The figure is
reprinted with permission from Aaron Chew, Andrew Essin, and Jason Alicea,
Phys. Rev. B 96, 121119(R) (2017). Copyright 2017 by the American Physical
Society. Right panel: Disordered surface of 3D TI in proximity to a s-wave
superconductor in the magnetic field. The figure is reprinted with permission
from D. I. Pikulin and M. Franz, Phys. Rev. X 7, 031006 (2017). Copyright
2017 by the American Physical Society.

The edge states of topological superconductors discussed above are
described by the low energy non-interacting theories. In contrast, the
second part of the thesis is devoted to the strongly interacting Majorana
zero-modes and to the Sachdev-Ye-Kitaev (SYK) model in particular [27,
28]. The interactions are supposed to be so strong, that the quasiparticle
description of the model is no longer possible. However, the SYK model is
exactly solvable in the large N limit and establishes connections between

1 The thermal conductance G = 1/2 × G0 is due to the central charge c = 1/2 of
the field theory of Majorana edge mode [4, 23–26].

https://doi.org/10.1103/PhysRevB.96.121119
https://doi.org/10.1103/PhysRevB.96.121119
https://doi.org/10.1103/PhysRevX.7.031006
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non-Fermi liquids, black hole horizons, and many-body quantum chaos
[27, 29, 30].

The SYK model can be realized as a low energy theory of an array
of superconducting nanowires in the topological phase [6, 9] once those
are strongly coupled through a disordered quantum dot in the magnetic
field oriented in the plane of the quantum dot [31]. Additionally, a surface
of a three-dimensional topological insulator with an irregular opening in
proximity to a superconductor is proposed [32] to be described by the SYK
model at low energies (see Fig. 1.3). Chapters 5, 6, and 7 are addressed
to direct and indirect transport signatures of the non-quasiparticle nature
of the SYK model to characterize these systems.

1.2 Electrical signatures of Majorana surface states
Topological superconductors are analogous to topological insulators [10,
16–18]: Both combine an excitation gap in the bulk with gapless states
at the surface, without localization by disorder as long as time-reversal
symmetry is preserved. However, the nature of the surface excitations
is entirely different: In a topological insulator these are Dirac fermions,
relativistic electrons or holes of charge ±e, while a topological supercon-
ductor has charge-neutral Majorana fermions on its surface. A transport
experiment that aims to detect the Majorana surface states cannot be as
routine as electrical conduction — the direct analog for Majorana fermions
of the electrical conductance of Dirac fermions is the thermal conductance
Gthermal. The challenge of low-temperature thermal measurements is one
reason why Majorana surface states have not yet been detected in a trans-
port experiment on candidate materials for topological superconductivity
[33–37].

There exists a purely electrical alternative to thermal detection of Ma-
jorana fermions [38]. Particle-hole symmetry enforces that a Majorana
fermion at the Fermi level is an equal-weight electron-hole superposition,
so while the average charge is zero, the charge fluctuations have a quan-
tized variance of

VarQ = 1
2(+e)2 + 1

2(−e)2 = e2. (1.1)

Quantum fluctuations of the charge can be detected electrically in a shot
noise measurement. For a single fully transmitted Majorana mode par-
ticle hole symmetry enforces a one-to-one relationship between the zero
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temperature shot noise power P and the thermal conductance,

P/P0 = G/G0 = 1
2 Tr tt†, P0 = e3V/h, (1.2)

where t is the rank-one transmission matrix between two contacts along
the edge (biased at voltage V > 0, see Fig. 1.4). By definition 2 [39, 40],

P =
∫ ∞
−∞

dt 〈δI(0)δI(t)〉 = τ−1 VarQ, (1.3)

the shot noise power is the correlator of the current fluctuations and
gives the variance of the charge transferred between the contacts in a
time τ . Eq. (1.2) implies that VarQ has the universal value 1

2P0τ for a
fully transmitted Majorana mode. These produce a quantized shot noise
power P of 1

2e
2/h per eV of applied bias [38]. The factor 1/2 reminds us

that a Majorana fermion is “half a Dirac fermion”.

Figure 1.4. Nonlocal current and voltage measurement to detect the charge-
neutral Majorana edge mode in a two-dimensional topological superconductor.
A bias voltage V excites the edge mode, producing a fluctuating current δI(t)
and voltage δV (t), detected at a remote contact. Because the bulk of the su-
perconductor is grounded, these nonlocal signals are evidence for conduction by
gapless edge excitations.

In Chapter 3 of this thesis, we extend the shot noise quantization to the
higher moments of charge fluctuations of a single Majorana edge-mode.
We explore the relation between the thermal conductance and electrical

2 The dissipated power in a contact resistance R = 1/G, measured in a frequency
band width ∆f , equals Pdiss = 2RP∆f . To avoid the factor of two, an alternative
definition of P has a factor of two in front of the integral in Eq. (1.3). With our
definition, the Johnson-Nyquist formula for thermal noise is Pthermal = 2kBTG, while
Pdiss = 4kBT∆f .
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shot noise for the surface of a three-dimensional topological superconduc-
tor in Chapter 2.

1.3 The Sachdev-Ye-Kitaev model in solid state
systems

The extreme case of strongly-correlated Majorana zero-modes is under
scrutiny in the second part of the thesis. We are going to be focused on
the SYK model, which describes N Majoranas with randomized infinite-
range interaction in 0 + 1 dimensions. It was proposed by Kitaev [27] as
a simplified version of the disordered quantum Heisenberg model studied
earlier by Sachdev and Ye [28], so that the system would not have a
replica symmetry breaking [41, 42] in the large N limit [43, 44]. The SYK
Hamiltonian [27, 29, 30] reads

H = 1
4!

N∑
i,j,k,l=1

Jijklγiγjγkγl , (1.4)

where γi are Majorana zero-modes: γ†i = γi and {γi, γj} = 2δij . The
couplings Jijkl can be drawn independently from Gaussian distribution
with zero mean Jijkl = 0 and finite variance J2

ijkl = 3!J2/N3.
The SYK model comprises several perculiar properties [27, 29, 30]:

1. it possesses an exact large N solution at strong coupling J lacking
quasiparticles;

2. emergent conformal symmetry in the infrared;

3. it saturates the upper bound on quantum chaos [45], which is also
the case for holographic duals of black hole horizons [46].

Both 1 and 2 can be understood in terms of two-point Green’s function
found in the long time limit 1� Jτ � N :

G(τ, τ ′) = −N−1
N∑
i=1

〈
T γi(τ)γi(τ ′)

〉
= −

(
4πJ2

)−1/4 sgn(τ − τ ′)√
|τ − τ ′|

. (1.5)

In frequency representation, the Green’s function (1.5) scales as a power-
law 1/

√
ω, that has a branch cut rather then quasiparticle like pole struc-
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ture. The result (1.5) originates from the solution of a saddle-point equa-
tion:

J2
∫
dτ ′G(τ, τ ′)G(τ ′, τ ′′)3 = −δ(τ − τ ′′) . (1.6)

Equation (1.6) remains invariant under time reparametrization τ 7→ f(τ):

G(τ, τ ′) 7→
[
∂τf(τ)∂τ ′f(τ ′)

]∆
G
(
f(τ), f(τ ′)

)
, (1.7)

where f(τ) is an arbitrary monotonic differentiable function due to the
conformal invariance and ∆ = 1/4 is an anomalous fermionic scaling di-
mension [27, 29, 30, 47]. The absence of quasiparticles in the SYK model
qualitatively describes the strange metal phase, that exists above the crit-
ical temperature in high-Tc superconductors [48, 49], including linear in
temperature resistivity in the case of one-dimensional extension of the
SYK model [50].

The property of maximal chaos 3 in the SYK model is usually formu-
lated in terms of the so-called Out-Of-Time-Order-Correlation function
(OTOC), first introduced by Larkin and Ovchinnikov [51]. It shows how
fast the perturbation at time t = 0 given by the operator V (0) spreads
through the system to influence the later measurement W (t) [45, 52]:

F (t) = Tr
(
e−βH [W (t), V (0)]2

)
. (1.8)

It was recently shown by Maldacena, Shenker, and Stanford [45], that
for a many-body quantum system OTOC can not grow faster then expo-
nentially with a characteristic time-scale tL ≥ ~/ (2πkBT ) known as the
Lyapunov time. The SYK model (1.4) is very nonlocal: All degrees of free-
dom are strongly coupled among each other. This leads to the exponential
growth of the OTOC function [27, 29, 30]:∑

i,j

〈γi(0)γj(t)γi(0)γj(t)〉 ∝ eλLt , (1.9)

that precisely saturates the upper bound on the Lyapunov time λL =
1/tL = 2πkBT/~ [45]. This is why the SYK model is often refereed as a
maximal scrambler.

A possibility to study all these intriguing properties in physical observ-
ables inspired a few proposals of realizing the SYK model in a condensed
matter platform as a low-energy effective description of an interacting
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quantum system [31, 32, 53–55]. The SYK model with Majorana (real)
zero-modes is claimed to be a low-energy theory of the Fu-Kane super-
conductor [8] in a magnetic field with a disordered opening [32], whereas
Ref. [31] suggests to use N Majorana nanowires [9] coupled through a
disordered quantum dot.

In Ref. [53] Chen et al suggested to use a graphene flake to realize
the SYK model with the conventional (complex) fermionic zero-modes 3

(cSYK model) [47]:

H =
N∑

i,j,k,l=1
Jij;kl c

†
ic
†
jckcl , (1.10)

where the couplings are hermitian and antisymmetric Jij;kl = J∗kl;ij =
−Jji;kl = −Jij;lk. Graphene in a perpendicular magnetic field B is known
to have Landau levels [57], which are quantized as En ' ~v

√
2n eB/~c

with integer n. The 0th Landau level is degenerate 4 and robust [58] under
disorder unless the chiral symmetry is broken. Thus, one gets fermionic
zero-modes separated from the higher bands by the gap controlled by the
magnetic field. As those are robust under disorder, the authors propose to
make the boundary of the flake sufficiently irregular. This would make the
wave functions of 0th Landau levels Φi(r) random in the real space. Inclu-
sion of the Coulomb interaction V (r− r′) would enable one to project the
interaction term on the basis of 0th Landau levels, so that the projection
is governed by the following overlap:

Jij;kl =
∫
dr
∫
dr′Φ∗i (r)Φ∗j (r′)V (r− r′)Φk(r)Φl(r′) , (1.11)

that makes the low-energy theory zero dimensional 5 with the cSYK ef-
fective Hamiltonian (1.10). The comparison of the generated overlap to

3 The features of the SYK model mentioned in Section 1.3 are valid for both
models with real (Majorana) and complex fermions. The difference is that for the cSYK
model the two-point function (1.5) contains the asymmetry parameter of the non-Fermi
liquid [56] if the system is away from the charge neutrality point (chemical potential
6= 0). We briefly address this issue in the Appendix of Chapter 5. Another distinction
between Dirac and Majorana cases is that the right hand side of the reparametrisation
prescription (1.7) for complex fermions is multiplied by g(τ)/g(τ ′), where the function
g(τ) appears because of U(1) gauge invariance [47].

4 Degeneracy of 0th Landau level is proportional to the amount of magnetic flux
that flows through the system.

5 The system can be thought as a strongly interacting disordered quantum dot.
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the expected Gaussian distribution is shown in Fig 1.5. It is stated that
the cSYK model well describes the low-energy theory of the disordered
graphene flake of the characteristic size l ' 0.15 µm that hosts N ' 100
zero-modes at field strength B ∼ 20 T [53]. Another proposal for realiza-
tion of the cSYK model (1.10) with ultracold gases was made by Danshita
et al [54]. However, all the proposals require for a large number of sta-
ble fermionic zero modes separated from the higher bands with a notable
gap, sufficient amount of disorder in the system to randomize the wave
functions of the zero-modes in the real space, and dominating two-body
interaction to be projected on the basis of zero-modes.

a

Figure 1.5. Left panel: Holography in a lab. Strongly interacting disordered
graphene quantum dot described by 0 + 1-dimensional cSYK model (1.10) at
the boundary of 1 + 1-dimensional anti-de Sitter space with a black hole [55].
The figure is reprinted by permission from Springer Nature: Marcel Franz and
Moshe Rozali, Nature Reviews Materials 3, 491–501 (2018). Copyright 2018 by
Springer Nature. Right panel: Statistics of the effective coupling Jij;jk (1.11)
for the disordered graphene flake. The figure is reprinted with permission from
Anffany Chen, R. Ilan, F. de Juan, D. I. Pikulin, and M. Franz, Phys. Rev. Lett.
121, 036403 (2018). Copyright 2018 by the American Physical Society.

To characterize the "black hole on a chip" discussed in Refs. [31, 32,
53] propose to measure the local density of states of the SYK quantum
dot in a tunneling spectroscopy. The differential tunneling conductance
at weak coupling

G = dI

dV
∝ ImGR(V ) ∝ V −1/2 (1.12)

reproduces the scaling of the SYK saddle-point solution (1.5) for the volt-
ages in the range of J/N � V � J . The scaling of the differential

https://doi.org/10.1038/s41578-018-0058-z
https://doi.org/10.1038/s41578-018-0058-z
https://doi.org/10.1038/s41578-018-0058-z
https://doi.org/10.1103/PhysRevLett.121.036403
https://doi.org/10.1103/PhysRevLett.121.036403
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conductance (1.5) reveals the emergent conformal symmetry of the SYK
model.

1.4 This thesis

Bellow, I briefly highlight the main results presented in the thesis.

1.4.1 Chapter 2

In the first chapter we compare the thermal conductance Gthermal (at
temperature T ) and the electrical shot noise power Pshot (at bias volt-
age V � kBT/e) of Majorana fermions on the two-dimensional surface
of a three-dimensional topological superconductor. We present analytical
and numerical calculations to demonstrate that, for a local coupling be-
tween the superconductor and metal contacts, Gthermal/Pshot = LT/eV
(with L the Lorenz number). This relation is ensured by the combi-
nation of electron-hole and time-reversal symmetries, irrespective of the
microscopics of the surface Hamiltonian, and provides for a purely electri-
cal way to detect the charge-neutral Majorana surface states. A surface
of aspect ratio W/L � 1 has the universal shot-noise power Pshot =
(W/L)× (e2/h)× (eV/2π).

1.4.2 Chapter 3

It was found in Ref. [38], that the Majorana fermions propagating along
the edge of a topological superconductor with px + ipy pairing deliver a
shot noise power of 1

2 × e
2/h per eV of voltage bias. In this chapter we

calculate the full counting statistics of the transferred charge and find that
it becomes trinomial in the low-temperature limit, distinct from the bino-
mial statistics of charge-e transfer in a single-mode nanowire or charge-2e
transfer through a normal-superconductor interface. All even-order corre-
lators of current fluctuations have a universal quantized value, insensitive
to disorder and decoherence. These electrical signatures are experimen-
tally accessible, because they persist for temperatures and voltages large
compared to the Thouless energy.
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1.4.3 Chapter 4

There exists an analogy of topological superconductors reveals while con-
sidering graphene superlattice shown in Fig. 1.6. Dirac electrons in

Figure 1.6. Graphene superlattice with a periodic potential modulation. Dif-
ferent colors distinguish the carbon atoms on the A and B sublattice, each of
which has an ionic potential VAn

, VBn
, n = 1, 2, 3, induced by the substrate.

graphene have a valley degree of freedom that is being explored as a carrier
of information. In that context of “valleytronics” one seeks to coherently
manipulate the valley index. In this chapter we show that reflection from a
superlattice potential can provide a valley switch: Electrons approaching
a pristine-graphene–superlattice-graphene interface near normal incidence
are reflected in the opposite valley. We identify the topological origin of
this valley switch, by mapping the problem onto that of Andreev reflec-
tion from a topological superconductor, with the electron-hole degree of
freedom playing the role of the valley index. The valley switch is ideal at
a symmetry point of the superlattice potential, but remains close to 100%
in a broad parameter range.

1.4.4 Chapter 5

In this chapter we study how the non-Fermi liquid behavior of the closed
system in equilibrium manifests itself in an open system out of equilib-
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rium. We calculate the current-voltage characteristic of a quantum dot,
described by the complex-valued SYK model, coupled to a voltage source
via a single-channel metallic lead (coupling strength Γ). A one-parameter
scaling law appears in the large-N conformal regime, where the differen-
tial conductance G = dI/dV depends on the applied voltage only through
the dimensionless combination ξ = eV J/Γ2. Low and high voltages are
related by the duality G(ξ) = G(π/ξ). This provides for an unambiguous
signature of the conformal symmetry in tunneling spectroscopy.

1.4.5 Chapter 6

We study the observable properties of quantum systems which involve a
quantum continuum as a subpart. We show in a very general way that
in any system, which consists of at least two isolated states coupled to a
continuum, the spectral function of one of the states exhibits an isolated
zero at the energy of the other state. Several examples of quantum systems
exhibiting such isolated zeros are discussed. Although very general, this
phenomenon can be particularly useful as an indirect detection tool for the
continuum spectrum in the lab realizations of quantum critical behavior.

1.4.6 Chapter 7

In this chapter we demonstrate that a single fermion quantum dot acquires
odd-frequency Gor’kov anomalous averages in proximity to strongly cor-
related Majorana zero-modes, described by the SYK model. Despite the
presence of finite anomalous pairing, superconducting gap vanishes for the
intermediate coupling strength between the quantum dot and Majoranas.
The increase of the coupling leads to smooth suppression of the original
quasiparticles.

1.4.7 Chapter 8

In the last chapter we consider another model with infinity ranged inter-
action. We found analytically a first-order quantum phase transition in a
Cooper pair box array of N low-capacitance Josephson junctions capaci-
tively coupled to resonant photons in a microwave cavity. The Hamilto-
nian of the system maps on the extended Dicke Hamiltonian of N spins
1/2 with infinitely coordinated frustrating interaction. This interaction
arises from the gauge-invariant coupling of the Josephson-junction phases
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to the vector potential of the resonant photons field. In the N � 1 semi-
classical limit, we found a critical coupling at which the ground state of
the system switches to one with a net collective electric dipole moment
of the Cooper pair boxes coupled to a super-radiant equilibrium photonic
condensate. This phase transition changes from the first to second order
if the frustrating interaction is switched off. A self-consistently “rotating”
Holstein-Primakoff representation for the Cartesian components of the
total superspin is proposed, that enables one to trace both the first- and
the second-order quantum phase transitions in the extended and standard
Dicke models, respectively.
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