

On transport properties of Majorana fermions in superconductors: free & interacting

Gnezdilov, N.V.

Citation

Gnezdilov, N. V. (2019, June 12). On transport properties of Majorana fermions in superconductors: free & interacting. Retrieved from https://hdl.handle.net/1887/74405

Not Applicable (or Unknown) Version: License: Leiden University Non-exclusive license Downloaded from: <u>https://hdl.handle.net/1887/74405</u>

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The following handle holds various files of this Leiden University dissertation: http://hdl.handle.net/1887/74405

Author: Gnezdilov, N.V. Title: On transport properties of Majorana fermions in superconductors: free & interacting Issue Date: 2019-06-12

On transport properties of Majorana fermions in superconductors: free & interacting

Proefschrift

ter verkrijging van de graad van Doctor aan de Universiteit Leiden, op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 12 Juni 2019 klokke 15.00 uur

DOOR

Nikolay Vladislavovich Gnezdilov geboren te Novosibirsk, Rusland in 1991

Promotores:	Prof. dr. C. W. J. Beenakker
	Prof. dr. S. I. Mukhin (National University of Science
	and Technology, Moscow, Russia)
Promotiecommissie:	Dr. A. R. Akhmerov (TU Delft)
	Prof. dr. A. Brinkman (Universiteit Twente)
	Dr. A. Boyarski
	Prof. dr. E. R. Eliel
	Prof. dr. H. Schiessel

Casimir PhD Series Delft-Leiden 2019-19 ISBN 978-90-8593-405-9 An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

Front cover: Spectral function of the SYK impurity lattice with the lines of zeros. Chiral Majorana mode propagating along the edge of a twodimensional topological superconductor, with a graphene fragment in the lower left corner. Back cover: Tunneling spectroscopy of a black hole chip (SYK quantum dot), on the background of a graph of the low-high voltage duality derived in this thesis. The author's name is tilted representing the "rotating" Holstein-Primakoff approach proposed in this thesis.

To my parents. Моим родителям.

Contents

T	Intr	oducti	ion	1
	1.1	Prefac	e	1
	1.2	Electr	ical signatures of Majorana surface states	4
	1.3	The S	achdev-Ye-Kitaev model in solid state systems	6
	1.4 This thesis			10
		1.4.1	Chapter 2	10
		1.4.2	Chapter 3	10
		1.4.3	Chapter 4	11
		1.4.4	Chapter 5	11
		1.4.5	Chapter $6 \ldots \ldots$	12
		1.4.6	Chapter 7	12
		1.4.7	Chapter 8	12
			-	
2	Wie	edemai	nn-Franz-type relation between shot noise and	
	the	mal co	onduction of Majorana surface states in a three-	
			J	
	dim	ension	al topological superconductor	15
	dim 2.1	ension Introd	al topological superconductor	15 15
	dim 2.1 2.2	ension Introd Surfac	al topological superconductor luction	15 15 17
	dim 2.1 2.2	ension Introd Surfac 2.2.1	al topological superconductor luction	15 15 17 17
	dim 2.1 2.2	ension Introd Surfac 2.2.1 2.2.2	al topological superconductor luction	15 15 17 17 18
	dim 2.1 2.2	ension Introd Surfac 2.2.1 2.2.2 2.2.3	al topological superconductor luction	15 15 17 17 18
	dim 2.1 2.2	ension Introd Surfac 2.2.1 2.2.2 2.2.3	al topological superconductor luction	 15 17 17 18 18
	dim 2.1 2.2	Introd Surfac 2.2.1 2.2.2 2.2.3 Comb	al topological superconductor luction	 15 17 17 18 18
	dim 2.1 2.2 2.3	Introd Surface 2.2.1 2.2.2 2.2.3 Comb tries o	al topological superconductor luction	 15 17 17 18 18 19
	dim 2.1 2.2 2.3	Introd Surface 2.2.1 2.2.2 2.2.3 Comb tries o 2.3.1	al topological superconductor luction	 15 17 17 18 18 19
	dim 2.1 2.2 2.3	Introd Surfac 2.2.1 2.2.2 2.2.3 Comb tries o 2.3.1	al topological superconductor luction	 15 17 17 18 18 19 19
	dim 2.1 2.2 2.3	ension Introd Surfac 2.2.1 2.2.2 2.2.3 Comb tries o 2.3.1 2.3.2	al topological superconductor luction	 15 17 17 18 18 19 19

	2.4	Formu	lation and solution of the surface scattering problem	22
		2.4.1	Reduction to an effectively 2D geometry	22
		2.4.2	Single-surface transmission matrix	23
		2.4.3	Transmission matrix for coupled top and bottom	
			surfaces	24
	2.5	Therm	al conductance and corresponding shot noise power .	26
		2.5.1	Single surface	26
		2.5.2	Coupled surfaces	27
		2.5.3	Finite aspect ratio	28
		2.5.4	Locality condition	29
	2.6	Numer	rical solution of the full 3D scattering problem	30
		2.6.1	Model Hamiltonian	30
		2.6.2	Translationally invariant system	31
		2.6.3	Disorder effects	33
	2.7	Discus	sion	33
	2.8	Appen	dix: Matrix Green's function of the surface Hamil-	
		tonian		35
		2.8.1	Single surface	36
		2.8.2	Coupled top and bottom surfaces	37
3	Тор	ologica	ally protected charge transfer along the edge of	
	a ch	iral p-	wave superconductor	39
	3.1	Introd	uction	39
	3.2	Full co	ounting statistics of Majorana edge states	41
		3.2.1	Finite temperature	43
	3.3	Discus	sion	45
	3.4	Appen	adix: Effect of a tunnel barrier at the NS contact	47
4	Val	ley swi	tch in a graphene superlattice due to pseudo-	
	And	dreev r	eflection	49
	4.1	Introd	uction	49
	4.2	Graph	ene superlattice with anti-unitary symmetry	50
	4.3	Topolo	pgical phase transitions	52
	4.4	Valley	switch	54
	4.5	Robus	tness of the valley switch	55
	4.6	Conclu	usion	57
	4.7	Appen	dix: Scattering matrix of the graphene superlattice .	57

5	Low	-high voltage duality in tunneling spectroscopy of the	
	Sac	hdev-Ye-Kitaev model	59
	5.1	Introduction	59
	5.2	Tunneling Hamiltonian	61
	5.3	Tunneling current	62
	5.4	Low-high voltage duality	63
	5.5	Conclusion	64
	5.6	Appendix: Outline of the calculation	65
		5.6.1 Generating function of counting statistics	65
		5.6.2 Saddle point solution	66
		5.6.3 Average current and shot noise power	67
6	Isol	ated zeros in the spectral function as signature of a	
	qua	ntum continuum	69
	6.1	Introduction	69
	6.2	Isolated zeros in the spectral function	71
	6.3	SYK model	73
	6.4	Cluster of SYK nodes	75
	6.5	Holographic fermions	77
	6.6	Conclusion	79
	6.7	Appendix: Outline of the calculation	80
		6.7.1 Inclusion of general coupling between discrete levels	80
		6.7.2 Mean-field treatment of the SYK model with two	
		component impurity	81
		6.7.3 Multiple states coupled to the SYK continuum	83
		6.7.4 Effective momentum coupling by the SYK chain	85
7	Gap	bless odd-frequency superconductivity induced by the	
	Sac	hdev-Ye-Kitaev model	87
	7.1	Introduction	87
	7.2	The model	88
	7.3	SYK proximity effect	89
	7.4	Conclusion	94
	7.5	Appendix: Gor'kov Green's function for the QD variables .	94
8	Firs	t-order dipolar phase transition in the Dicke model	
	witl	n infinitely coordinated frustrating interaction	99
	8.1	Introduction	99
	8.2	Dicke Hamiltonian for a Cooper pair boxes array	101

8.3	Diagonalization of the frustrated Dicke model	. 104
	8.3.1 Tunneling regime	. 104
	8.3.2 Rotating Holstein-Primakoff representation	. 106
	8.3.3 Superradiant dipolar regime	. 108
8.4	First order dipolar phase transition	. 111
8.5	Conclusions	. 117
8.6	Appendix: Bogoliubov's transformation for the frustrated	
	Hamiltonian	. 117
8.7	Appendix: Quantum phase transition in the Dicke model	. 119
Bibliog	graphy	123
Summa	ary	139
Samen	vatting	143
Curric	ulum Vitæ	147
List of	Publications	149