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1 Current challenges in agriculture  

At present, the agriculture faces different demands. First, it has been predicted that nearly 
9.77 billion people will need to be fed by 2050 (UN, 2017). As a consequence, it is estimated 
that nearly double volume of crop production, compared to 2013, will be required (Ray et al., 
2013). And second, there has been an intensification of the global network of ornamental 
plant species trade that has been accompanied by the increment in their cultivation and the 
use of pesticides. Increasing the land for the production of horticultural and/or ornamental 
plants is not the solution, and a great number of researchers have proposed the optimization 
of plant yield as the most sustainable strategy (Godfray et al., 2010; Foley et al., 2011; Phalan 
et al., 2011). We need to invest in sustainable agriculture (Garnett et al., 2013), and this might 
be achieved by optimizing the use of agriculture resources, e.g. water and nutrients (Foley et 
al., 2011). Also, the generation of high-yield and pest resistant crop varieties through 
conventional plant breeding or genetic engineering approaches can increase plant yield 
(Tester & Langridge, 2010). However, most of the cultivated species have been generated by 
selecting desirable market-related fruit, flower or yield features, while traits conferring 
resistance to pathogens and herbivores have been lost during the domestication process 
(Oerke, 2006). As a result, arthropod pests and the diseases they transmit are among the most 
important factors affecting crop production. Furthermore, these threats are predicted to 
increase due to current agricultural practices, e.g. monoculture system and global warming 
(Oerke & Dehne, 2004). To minimize the damaging effects of arthropod pests on horticultural 
and ornamental crops production, pesticides are used worldwide (Stokstad & Grullón, 2013). 
However, more than 440 species of insects and mites have been documented to develop 
pesticide resistances (Roush & Tabashnik, 2012). Moreover, the use of pesticide leads to 
residue problems in the crops and environment and, therefore, they constitute a threat for 
untargeted organisms, including humans. European countries have agreed to establish a 
framework to reduce the adverse effects of pesticides on human health and the environment 
by promoting the development of Integrated Pest Management (IPM) strategies (directive, 
2009). Among these, enhancing host plant resistance by using defense elicitors or the 
generation of pest resistant cultivars are desirable environmentally-friendly alternatives for 
pest control. 

2 Mechanisms of host plant defense against herbivores  

2.1 Constitutive and inducible defenses 

To defend themselves against arthropod herbivores, plants have evolved sophisticated 
defense mechanisms that can be classified into constitutive and inducible. Constitutive 
defenses are defined as pre-existed morphological or chemical components present in the 
plant in the absence of herbivory or pathogen infection. Nonetheless, plants may increase 
their defenses to better protect themselves in response to herbivore or pathogen attacks, i.e. 
induced defenses (Howe & Jander, 2008). Both constitutive and induced plant defenses can 
be modulated by the environment as well as by the plant genetics and ontogeny (Karban & 
Myers, 1989; Franceschi et al., 2005; Köhler et al., 2015). In addition, plants have evolved 
their immune systems to distinguish their enemies to a certain degree and, thereby, to 
specifically respond to different types of attacks (Koornneef & Pieterse, 2008). These 
inducible plant defenses are uniquely initiated after the recognition of molecular patterns 
associated to herbivory or pathogen attack. These can result from endogenous elicitors 
derived from injured tissues, the so-called damage-associated molecular patterns (DAMP). 
Other defense elicitors are components of microbial pathogens (e.g. flagellin, 
lipopolysaccharides, peptidoglycan, β-glucans and chitin) and they are called pathogen- or 
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microbe-associated molecular patterns (PAMPs or MAMPs). Upon herbivory, plants can 
recognize this type of attack by detecting herbivore-associated molecular patterns (HAMPs). 
HAMPs are released from the herbivore’s oral secretions, saliva, oviposition fluids, digestive 
wastes, and/or endosymbionts activity (Mithöfer & Boland, 2008; Basu et al., 2017). Some 
examples are the oral secretion-related protein glucose oxidase, the fatty acid-amino acid 
conjugates such as volicitin, sulfated fatty acids such as caeliferins, and peptide fragments 
such as inceptins (Basu et al., 2017). Also, salivary secretions containing ATP hydrolyzing 
enzymes and ATP synthase (Wu et al., 2012), digestive wastes like the frass of the caterpillar 
Spodoptera frugiperda (Ray et al., 2015), or endosymbionts in Diabrotica virgifera (Barr et 
al., 2010) all have been documented to serve as HAMPs. Once recognized by plants, HAMPs 
can elicit the expression of defense-related genes, thereby modifying the physical and/or 
chemical defensive components of the plant.  

Induced plant defenses against arthropod herbivores can be divided into direct and 
indirect defenses. Direct defenses include morphological features such as cuticles waxes, leaf 
toughness, spines and trichomes (Barton, 2016) and/or production of specialized metabolites 
and defensive-related proteins that negatively affect herbivore preference (i.e. host plant 
selection, oviposition, feeding behavior) and/or performance (i.e. growth rate, development, 
reproductive success) (Howe & Schaller, 2008). Among the above-mentioned mechanisms, 
the important defensive role of trichomes has been extensively studied for decades. 
Trichomes are epidermal hairy structures originated from the epidermal cells of plants, which 
can be divided into non-glandular or glandular types (Werker, 2000). Non-glandular 
trichomes are unicellular or multicellular hairs, while glandular trichomes are usually 
multicellular structures provided with specialized glands that can produce and/or secrete 
diverse chemical substances (Glas et al., 2012). Non-glandular trichomes can provide 
physical protection against herbivores, while glandular trichome can provide both a physical 
and chemical barrier in the leaf surface. Glandular trichomes can produce and secrete 
different allelochemicals that restrain the survival, growth and fecundity of arthropod 
herbivores. Although trichomes can be present in the plant before herbivory or pathogen 
infection, their density and chemistry are modulated by abiotic and biotic factors (Peiffer et 
al., 2009; Escobar-Bravo et al., 2017). Besides trichome induction, many specialized plant 
chemicals with toxic or repellent properties against herbivores have been described to be 
induced by herbivory. Some examples include the production of phenolics, terpenoids, 
alkaloids, cyanogenic glucosides, and glucosinolates (Karban & Myers, 1989; Bennett & 
Wallsgrove, 1994; Grubb & Abel, 2006). In addition, plants can increase the production of 
defensive proteins that limit the nutritional value of plant tissues, such as polyphenol oxidases 
(PPOs) and proteinase inhibitors (PIs) (Chen, 2008; Howe & Schaller, 2008). Finally, 
herbivory can also induce indirect plant defenses, which consists on the attraction of the 
herbivore’s enemies, often via the release of volatile organic compounds that serve as 
predatory cues, or by supplying additional food to the predators such as extrafloral nectar 
(Wu & Baldwin, 2010). 

2.2 Hormone-mediated regulation of induced plant defenses  

Induced plant defense responses are mainly controlled by the plant hormones jasmonic acid 
(JA), salicylic acid (SA) and ethylene (ET) (Smith et al., 2009; Eyles et al., 2010). In general, 
chewing-biting (like caterpillars) and cell-content feeding insects (like thrips and spider mites) 
and necrotrophic pathogens activate the JA signaling pathway (Walling, 2000; Glazebrook, 
2005), while the SA pathway is induced by biotrophic pathogens and phloem feeding insects 
(like aphids and whiteflies) (Glazebrook, 2005). Nonetheless, other hormones like 
gibberellins, cytokinins, abscisic acid, brassinosteroids and strigolactones participate in the 
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regulation of these induced plant defenses (Verma et al., 2016). Hence, JA and SA signaling 
are fine-tuned by other hormones and they also interact through hormonal crosstalk. For 
instance, antagonistic effects of SA on JA signaling, and vice versa, have been amply 
described in the literature (Pieterse et al., 2012). 

Jasmonic acid signaling 

Upon perception of attack by necrotrophic pathogens, herbivory or wounding, early signaling 
events like ion fluxes and cell membrane depolarization precede biosynthesis and rapid 
accumulation of JA in plants (Kessler & Baldwin, 2002; Wasternack & Hause, 2013). JA 
biosynthesis is initiated in the chloroplast, where α-linolenic acid is released from the 
galactolipids of chloroplast membranes via the action of phospholipases. These enzymatic 
reactions generate several oxylipins, including the JA precursor 12-oxo-phytodienoic acid 
(OPDA). OPDA is transported to the peroxisomes and subjected to a series of β-oxidation 
steps to generate JA (Wu & Baldwin, 2010). JA can be converted into the volatile component 
methyl jasmonate (MeJA), or conjugated to amino acids, such as isoleucine (Ile), producing 
the highly bioactive JA-derivative JA-Ile (Fonseca et al, 2009). JA-Ile is perceived by the 
plant in a dose-dependent manner, and it is crucial for the JA-induced molecular responses 
(Staswick & Tiryaki, 2004; Howe & Jander, 2008). JA-Ile can be perceived by the F-box 
protein coronatine insensitive1 (COI1) of the E3 ubiquitin-ligase SKP1-Cullin-F-box 
complex SCFCOI1 (Sheard et al., 2010). Upon recognition of JA-Ile, COI1 targets the 
jasmonate ZIM domain (JAZ) transcriptional repressor proteins for degradation via the 26S 
proteasome. This results in the activation of JA-responsive genes that control, for instance, 
the synthesis of secondary metabolites (Van Dam et al., 2004), defense-related proteins 
(Thaler et al., 2001), trichomes (Tian et al., 2014), and volatile organic compounds 
(Strapasson et al., 2014).  

Salicylic acid signaling 

SA is rapidly synthesized in plants in response to pathogen infection or attack by phloem 
feeding insects. It is a phenolic compound that can be synthesized by two different 
biosynthetic pathways, both requiring chorismate (see also reviewed by Boatwright & 
Pajerowska‐Mukhtar, 2013). The first pathway occurs via the isochorismate synthase, 
resulting in the production of the SA-precursor isochorismic acid. In the second pathway, 
chorismic acid is converted into cinnamic acid via phenylalanine. Cinnamic acid is then 
converted into SA via either benzoic acid or coumaric acid. Activation of the SA-associated 
defenses is mainly regulated by NONEXPRESSOR OF PR GENES1 protein (NPR1). NPR1 
translocates to the nucleus in response to SA accumulation (Ding et al., 2018). Then, NPR1 
interacts with TGA transcription factors, resulting in the activation of defense-related genes, 
including for instance the pathogen-related (PR) genes.  

2.3 Local and systemic induced plant defenses 

Induction of plant defenses can occur locally at the site of attack and systemically in 
undamaged parts of the plant located at a substantial distance from the challenged area, which 
is called as a systemic response (Pieterse et al., 2014). The first publication related to induced 
systemic defense responses against herbivorous arthropods was reported in the 1970s. Local 
feeding by Colorado potato beetles resulted in a rapid accumulation of PIs in systemic tissues 
of tomato (Solanum lycopersicum) and potato (Solanum tuberosum) plants (Green & Ryan, 
1972). Since then, lots of experiments have been conducted to uncover the long-distance 
signal(s) responsible for induced systemic defenses. It has been proposed that the signal 
propagation through the plant occur through the transport of mobile signals in the phloem 
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(extracellular pathways) but also trough symplastic (cytoplasmic) pathways. For instance, 
grafting experiments in tomato have demonstrated that the herbivory-induced JA itself serves 
as a long distance mobile signal (Sun et al., 2011). In addition, in Arabidopsis, it has been 
shown that local and systemic defense responses are also mediated by reactive oxygen 
species, electrical signals, and changes in cytosolic Ca2+ concentration (see review by Choi 
et al., 2017). 

Although defense-related responses have been reported to occur within minutes in 
local and systemic tissues, they often vary in their time, organ and magnitude within and 
among plant species. This variation can be explained by the genetic background, the 
development plasticity, transmission of long‐distance signals, and the vascular architecture 
of the plant (Van Dam et al., 2001; Arnold & Schultz, 2002; Arimura et al., 2004; Orians, 
2005; Howe & Jander, 2008). Importantly, this variation can influence herbivore distribution 
along the plant canopy, and it can modulate plant-herbivore interactions in specific plant 
tissues (Lee et al., 2017). 

2.4 Within-plant variation of constitutive and inducible defenses 

Within an individual plant, leaves of different development stage might differ in their degree 
of constitutive defenses, and they might respond differently to biotic stresses as well 
(Takabayashi et al., 1994; Constabel et al., 2000; Bezemer et al., 2004; Steimetz et al., 2012). 
For instance, young maize leaves have been reported to induce higher levels of 1,4‐
benzoxazin‐3‐one derivatives than older leaves (Köhler et al., 2015). In another example, 
wounding or exogenous MeJA treatments triggered a much stronger expression of PPO in 
young poplar (Populus trichocarpa × Populus deltoids) leaves than in older leaves 
(Constabel et al., 2000). According to the optimal defense theory, this phenomenon can be 
explained by the higher contribution of young leaves to plant fitness (Harper, 1989; Iwasa et 
al., 1996; Van Dam et al., 1996). Importantly, this asymmetric distribution of plant defenses 
along the plant canopy can shape the foraging behavior of arthropod herbivores (Köhler et 
al., 2015). For instance, many generalist herbivores display preferential feeding for basal and 
less protected parts of their host plant (Meyer & Montgomery, 1987; Bodnaryk, 1991; Leiss 
et al., 2009b). Exploring the differences in constitutive and inducible chemical defenses 
within the plant canopy would help to identify resistant factors and develop plant protection 
strategies. 

2.5 Activation of JA signaling by the Pseudomonas syringae-derived phytotoxin 
coronatine 

JA-associated plant defense responses can be artificially activated by natural and synthetic 
elicitors. For instance, exogenous application of systemin, JA, MeJA, oligogalacturonides, 
and chitosan all have been documented to induce JA signaling pathway, and to enhance plant 
resistance to herbivorous arthropods in different plant species (Doares et al., 1995; Bergey et 
al., 1996; Wu et al., 2008). Another extensively studied example of natural defense elicitors 
of JA signaling is the phytotoxin coronatine (COR). COR is a polyketide produced by various 
Pseudomonas syringae pathovars, including pv. atropurpurea, glycinea, maculicola, 
morsprunorum and tomato (Zhao et al., 2001). COR is composed of two moieties, the 
polyketide coronafacic acid and coronamic acid (Ichihara et al., 1977; Slawiak & Lojkowska, 
2009). Both the structure and function of COR mimic the bioactive molecule JA-Ile. COR 
binds with high affinity to COI1 and activates the JA signaling pathway (Geng et al., 2014). 
Yet, this phytotoxin is ca. 1000-fold more active than JA-Ile in activating downstream JA 
signaling pathway in vitro (Katsir et al., 2008). Among the biological activities, COR induces 
chlorosis, hypertrophy and ET release (Kenyon & Turner, 1990b; Kenyon & Turner, 1990a).  



Chapter 1 

12 

In Arabidopsis, P. syringae pv. tomato infection results in a significant increase in 
COR levels during the first 24 h, followed by large increases after 48 h (Schmelz et al., 2003). 
Due to the antagonistic interactions between JA and SA signaling pathways (Takahashi et al., 
2004), COR-mediated activation of JA signaling suppresses the SA-dependent defenses 
responses in the plant (Zhao et al., 2003; Block et al., 2005; Brooks et al., 2005; Uppalapati 
et al., 2007). Suppression of SA defenses increase the plant susceptibility to P. syringae. 
Hence, in coronatine-insensitive Arabidopsis mutants, P. syringae elicits both elevated levels 
of SA and expression of defensive PR proteins, which suppress bacterial growth (Kloek et 
al., 2001). Notably, activation of JA signaling by COR-producing P. syringae strains can 
alter plant resistance to arthropod herbivores that are susceptible to these defenses (Stout et 
al., 1999; Cui et al., 2005). This hormonal crosstalk employed by P. syringae might set the 
basis to investigate whether COR and/or other P. syringae-derived defense elicitors could be 
exploited in agricultural systems to increase plant resistance to insect pests.  

3 The experimental system 

In this thesis I have explored how variations in constitutive and JA-associated inducible 
defenses correlate with the plant susceptibility to Western flower thrips Frankliniella 
occidentalis in cultivated tomato (S. lycopersicum) and chrysanthemum (Chrysanthemum × 
morifolium Ramat), two economically important plant species for which Western flower 
thrips represent one of the most damaging insect pests affecting their production worldwide. 
In addition, I have investigated whether the exogenous application of P. syringae-derived 
defense elicitors, i.e. COR, might elicit the positive effects of JA on plant defenses against 
this insect pest. 

3.1 The Western flower thrips  

Economic impact and biology  

Western flower thrips (WFT), F. occidentalis (Pergande) (Thysanoptera: Thripidae), was 
first described in 1895 from specimens collected in California, USA. It has become a global 
agriculture and horticulture pest since 1970s, when insecticide resistant strain(s) emerged due 
to intensive pesticide use in Western North American greenhouses (Immaraju et al., 1992; 
Kirk & Terry, 2003). Since then, WFT has spread to the East North America, and then to 
Europe and the rest of the world, this being mainly boosted by the global horticulture and 
floricultural trade (Kirk & Terry, 2003; Wu et al., 2017). In the Netherlands, WFT was first 
recorded in 1983, on a glasshouse of African violets, and it has become the most common 
thrips species in Dutch greenhouses (Vierbergen, 2001; Messelink, 2014). It has been 
estimated to cause annual loses of 55 million euros only in vegetable and ornamental crops 
cultured in Dutch greenhouses (see also MacDonald et al., 2002).  

Several features make WFT a serious agricultural pest. First, it is a highly 
polyphagous insect that feeds on more than 250 plant species from nearly 60 different 
families, including fruiting and leafy vegetables, horticultural plants and fruit trees (Lewis, 
1997). Second, because of its small size (less than 2.0 mm length) and cryptic habit, it is often 
unnoticed in the crops until serious levels of infestation take place. Furthermore, typical 
hiding and feeding behavior in tiny crevices of flowers or leaves makes this pest difficult to 
control by pesticides (Jensen, 2000). Third, it has a short developmental time and a high 
reproductive potential. The life cycle of WFT from egg to adult takes from 14 to 21 days to 
be completed at a moderate temperature (20-25°C) (Fig. 1); although it can be shortened to 
less than 10 days at 30°C (Reitz, 2008). Depending on the host plant species, WFT may 
produce up to 300 eggs per female, leading to more than 200 offspring per female and up to 
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five generations per year under field conditions (Robb, 1989; Lewis, 1997; McDonald et al., 
1998). And fourth, WFT easily develops insecticide resistance due to the short generation 
time, high fecundity and its haplodiploid sex-determination system (Jensen, 2000).  

 
Fig. 1 Development and feeding damage by Western flower thrips. Photographs of (A) adult and 
(B) first instar larva of Western flower thrips (F. occidentalis). (C) life cycle of F. occidentalis at 25oC. 
Photographs of the typical feeding damage, also termed as “silver damage” on leaves of (D) tomato and 
(E) chrysanthemum plants. Scale bars = 0.5 mm. The pictures in A and B were kindly provided by 
María José Rodríguez. 

WFT can cause direct damage by feeding on different parts of the plant (Tommasini 
& Maini, 1995). WFT penetrates the epidermal and sub-epidermal plant cells with stylet-like 
mouthparts, sucking out the entire cell sap (Jensen, 2000; Maris et al., 2004). Empty cells are 
then filled with air resulting in silvery or necrotic patches on leaves, flowers and fruits, which 
is so-called ‘silver damage’ (Jensen, 2000). In addition, WFT feeding on developing tissues 
leads to distortion of flowers and leaves, affecting the photosynthetic ability and fertility of 
crops and, ultimately, decreasing the crop yield (de Jager et al., 1995; Shipp et al., 2000). 
Indirect damage by WFT results from the transmission of tospoviruses, of which the tomato 
spotted wilt virus (TSWV) is especially important. It has been estimated that TSWV alone 
causes an annual economic loss of $19 million in The Netherlands (Rugman-Jones et al., 
2010). Until now, more than 1000 plant species belonging to 84 families have been 
documented to be TSWV hosts, which makes TSWV as one of the most widespread and host-
ranged viruses (Parrella et al., 2003). TSWV is transmitted by several species of thrips, of 
which WFT is one of the most important vectors (Ullman et al., 1989). TSWV is only 
acquired by first- and second-instar WFT larvae and transmitted by second larval instars or 
adults (Ullman et al., 1993; Wijkamp & Peters, 1993). As WFT can feed on an ample array 
of plant species, viruliferous individuals can efficiently transmit the virus across neighboring 
species.  

WFT control in agriculture systems 
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Current control of WFT mainly relies on the use of insecticides and biological 
control. Most chemicals, however, have a short-term effectiveness in part due to the cryptic 
life style of WFT, and a frequent spraying of 3-5 days interval is generally required 
(Brødsgaard, 1994; Daughtrey et al., 1997; Berndt et al., 2004). General biological control 
agents of WFT include predatory mites (Gerson & Weintraub, 2007), bugs (Blaeser et al., 
2004) and entomopathogenic fungi (Wang & Zheng, 2012). However, biological control is 
often inefficient because of the limited feeding habit of the predator. For instance, both 
Neoseiulus barkeri Hughes and Amblyseius cucumeris Oudenmans primarily prey on WFT 
first instar larva only (Van der Hoeven & Van Rijn, 1990). Combining two biocontrol control 
agents, however, seems to not solve this situation and negative interactions might happen 
between or among biological control agents when simultaneously preying on WFT (Wu et 
al., 2016). Furthermore, some predators can feed on the plant as well when WFT populations 
are not very high, thus causing damage in the plant (Briese, 2005).  

WFT-plant interactions 

WFT feeding induces JA signaling pathway and this response is required to increase 
plant resistance against this insect (De Vos et al., 2005; Abe et al., 2008; Abe et al., 2009; 
Kawazu et al., 2012). Accordingly, exogenous application of JAs has been found to increase 
plant resistance to WFT in cotton (Aphis gossypii) (Omer et al., 2001), Arabidopsis (Abe et 
al., 2008), Chinese cabbage (Brassica rapa) (Abe et al., 2009) and tomato (S. lycopersicum) 
(Thaler et al., 2001; Escobar-Bravo et al., 2017). Morphological, chemical and enzymatic-
related defenses induced through the activation of JA-dependent defenses (Traw & Bergelson, 
2003; Boughton et al., 2005; Tian et al., 2012; Chu et al., 2017; Escobar-Bravo et al., 2017) 
probably accounts for the enhanced resistance to this insect pest.  

Host plant resistance to WFT 

Host plant resistance to WFT can be mediated by the constitutive expression of 
morphological and chemical plant defensive traits, but also by the induction of these or other 
defenses. For instance, foliar wax content has been found to be negatively correlated with 
WFT feeding in Gladiolus spp. (Zeier & Wright, 1995). In addition, constitutive levels of 
certain primary and secondary metabolites, as well as defense enzymes, have been associated 
with plant resistance to WFT (Mouden et al., 2017). Low concentration of certain aromatic 
amino acids has been observed to correlate with a reduced WFT feeding damage in lettuce 
(Lactuca sativa), tomato (S. lycopersicum), sweet pepper (Capsicum annuum) and cucumber 
(Cucumis sativus) (Mollema & Cole, 1996). Variations in constitutive levels of secondary 
metabolites such as isobutylamide, chlorogenic and feruloyl quinic acid in chrysanthemum 
(Tsao et al., 2005; Leiss et al., 2009b), jacobine and jaconine in Senecio (Leiss et al., 2009a), 
trichome-derived acyl sugars in tomato (Mirnezhad et al., 2010), pyrethrins in Tanacetum 
cinerariifolium (Yang et al., 2012), and luteolin and β-alanine in Daucus carota L. (Leiss et 
al., 2013) all have been found to correlate with WFT resistance. Furthermore, genetic 
engineering for the expression of cysteine proteases inhibitors has been demonstrated to 
reduce WFT offspring and survival in transgenic potato (S. tuberosum) plants (Outchkourov 
et al., 2004). Notably, induction of certain chemical and morphological defenses has been 
demonstrated to correlate with WFT resistance or susceptibility as well. For instance, light 
intensity-mediated reinforcement of type-VI trichome associated chemical defenses has been 
shown to increase WFT resistance in tomato (S. lycopersicum) (Escobar-Bravo et al., 2018). 
In pepper, Maharijaya et al. (2012) showed that while susceptible pepper (Capsicum spp.) 
accessions induced the production of alkanes and fatty acids in response to WFT infestation, 
resistant accessions did not. 
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3.2 Tomato and chrysanthemum 

Tomato 

Cultivated tomato (S. lycopersicum L.) is one of the main consumed vegetable in the world, 
with an estimated global production of around 177 million tons per year (FAOSTAT, 2016). 
China, India, EU, USA, Turkey, Egypt, Iran, Brazil, Mexico and Russia produced more than 
81% of the total global tomato fruit yield in 2016. In the Netherlands, tomato production was 
900 thousand tons in 2016, making tomato production come fifth after potatoes, sugar beet, 
onions, and wheat (FAOSTAT, 2016). Tomato fruit is a rich source of vitamins A and C, 
potassium, folic acid and carotenoids, which are positively associated with human health 
(Giovannucci, 1999; Perveen et al., 2015). Furthermore, carotenoids cannot be synthesized 
in human tissues, being exclusively obtained from our diet. Tomato fruit also contains other 
antioxidant compounds, which include flavonoids and phenolic acids (Wardale, 1973). 
Flavonoids and polyphenols have shown many beneficial properties for human health 
including anti-cancer, anti-inflammatory, immunomodulatory, and anti-thrombotic activities 
(Lee & Zhu, 2005; García-Lafuente et al., 2009). Altogether, these features make tomatoes 
an important nutrient source for the human diet.  

Cultivated tomato (S. lycopersicum L.) belongs to the Solanaceae family. This 
family originated in South America and contains many of the most important cultivated 
plants such as potato, tomato, pepper, eggplant, petunia and tobacco. Tomato breeding for 
fruit yield, taste and nutritional quality have generated more than 7500 cultivated varieties 
(Bai & Lindhout, 2007; Korir et al., 2014). Yet, important agricultural traits such as 
resistance to biotic and abiotic stresses were gradually lost during tomato domestication. As 
a consequence, most cultivated tomatoes are highly susceptible to a wide array of diseases 
and arthropod pests, including WFT (Kennedy & Barbour, 1992; Bai & Lindhout, 2007).  

One of the main and most important components of tomato defenses against 
herbivorous arthropods is the leaf trichomes (Kang et al., 2010a; Kang et al., 2010b). 
Cultivated tomatoes possess non-glandular (type III, V and VIII) and glandular (type I, VI 
and VII) trichomes types (Glas et al., 2012). Non-glandular trichomes can physically hinder 
the movement, feeding and oviposition of arthropod herbivores. Type VI glandular trichome, 
which is the most abundant glandular-type in the leaf surface, can also affect host plant 
selection and herbivore growth, survival and fecundity (Duffey, 1986). Type-VI glandular 
trichomes produce and secrete a wide variety of specialized metabolites including terpenoids, 
phenolics and acyl sugars (Kang et al., 2014). Despite their constitutive expression in the 
plant, glandular trichome density and chemistry can be induced by the application of JA 
(Degenhardt et al., 2010; Cevallos-Cevallos et al., 2012; Dobritzsch et al., 2015) or its 
volatile methyl jasmonate (MeJA) (Boughton et al., 2005; Tian et al., 2012), which can 
increase tomato resistance to herbivorous arthopods (Escobar-Bravo et al., 2018).  

Chrysanthemum 

Chrysanthemum [Chrysanthemum × morifolium Ramat. (Asteraceae)], bred as early 
as ca. 1000 BC in China and Japan, is one of the economically most important greenhouse 
ornamentals worldwide (Fletcher, 1992). It is the second most important cutting flowers just 
after roses in the Netherlands. The Netherlands is also the largest exporting country of cut-
chrysanthemum to intra-EU, amount annually to €232 million (Hanks, 2015). The number of 
chrysanthemum varieties is extremely large, with about 15000 and 6000 listed in Japan and 
in the National Chrysanthemum Society in Britain, respectively (Teixeira da Silva et al., 
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2013). Chrysanthemum is primarily propagated asexually by cultivating asexual vegetative 
stem cuttings (Teynor et al., 1989).  

Modern garden chrysanthemums are most likely derived from interspecific hybrids 
between Chrysanthemum indicum and C. vestitum native in Eastern Asia being the center of 
genetic resources of this genus (Zhao et al., 2009). Due to the dense screening and selection 
of chrysanthemum varieties varying in flower color, size and shape, commercial varieties 
lacks resistance traits to biotic or abiotic stresses (Teixeira da Silva et al., 2013). Hence, most 
commercial chrysanthemum cultivars are susceptible to many arthropod pests including the 
leaf miner Liriomyza trifolii (van Dijk et al., 1992), the cotton aphid Aphis gossypii 
(Guldemond et al., 1994) and WFT (F. occidentalis) (Leiss et al., 2009b). Yet, there are still 
variations in the levels of pest resistance. Such variations have been associated to differences 
in trichome density and antioxidant leaf properties in some cultivars (Leiss et al., 2009b; 
Deng et al., 2010; He et al., 2011). Thus, determining constitutive and inducible defense 
traits against arthropod pests in chrysanthemum might be used for the generation of resistant 
varieties by plant breeding strategies.  

4 Outline of this thesis 

In chapter 2 I investigated how JA-mediated induction of tomato defenses against and 
resistance to WFT is affected by the leaf developmental stage. For this, I measured how JA 
induced the defensive protein polyphenol oxidase (PPO), type-VI foliar glandular trichome 
density and accumulation of their associated volatiles in developing and fully-developed 
leaves. In addition, I assessed the feeding damage by WFT on those leaves. Our results 
demonstrated that the capacity of tomato leaves to induce JA-associated defenses against 
WFT is constrained by the leaf development stage, and positively correlated with the levels 
of WFT resistance along the tomato canopy. Importantly, I also demonstrated that the 
production of type-VI trichome associated volatiles was differently regulated in developing 
and fully-developed leaves. These findings have important implications for agriculture, as 
type-VI trichomes constitute important physical and chemical defenses in tomato against 
WFT (Escobar-Bravo et al., 2018). 

In chapter 3 I explored the potential use of novel bacteria-derived defense elicitors 
to activate JA-associated defenses against WFT in tomato. I determined how infiltration with 
the bacterial pathogen P. syringae pv. tomato (Pst) strain DC3000, the Pst-derived 
phytotoxin coronatine (COR) or Pst-derived medium affected tomato defenses and resistance 
against WFT. For this, I determined how COR and Pst influenced feeding damage by WFT, 
activation of the JA and SA defenses, type-VI foliar glandular trichome density and leaf 
chemistry. In addition, I investigated the action of Pst-derived culture medium with and 
without COR, and their interactive effect with pure COR, on tomato resistance to WFT. Our 
results showed that infiltration of plants with Pst, COR or Pst-derived culture medium 
without COR all increased tomato resistance against WFT through the induction of JA-
associated defenses, suggesting the presence of non-identified defense elicitors in Pst-derived 
medium. Furthermore, I showed that the Pst- or COR-mediated enhancement of tomato 
resistance against WFT was not explained by the reinforcement of type VI leaf trichome 
densities, but rather the induction of other JA-associated chemical defenses. 

In chapter 4 I explored the phenotypic diversity in constitutive and inducible 
defenses against WFT in chrysanthemum. I determined whether variations in constitutive 
levels of leaf trichome density and oxidative defenses among different chrysanthemum 
cultivars correlated with the degree of WFT resistance. In addition, I explored whether 
differences in WFT resistance among a subset of chrysanthemum varieties could be explained 
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by the JA-mediated induction of trichome densities and a defense-related enzyme, PPO. First, 
our data showed that exogenous application of the phytohormone JA enhanced resistance 
against WFT in chrysanthemum. However, the phenotypic variation in WFT resistance 
among chrysanthemum cultivars were not explained by the presence/induction of non-
glandular and glandular trichome densities, nor the activity of the defensive protein PPO.  

In additional experiments, we observed that local application of JA on 
chrysanthemum plants did not have a significant effect on WFT resistance. Thus, in chapter 
5 I investigated whether activation of local and systemic chemical responses upon exogenous 
application of JA varies along the plant canopy in chrysanthemum, and whether it correlates 
with resistance to WFT. For this, I performed a comprehensive untargeted metabolomic 
analysis to determine JA-mediated induced chemical responses in local and systemic leaves. 
Our results showed that local and systemic induction of JA-mediated chemical defenses in 
chrysanthemum is spatially variable and dependent on the site of the induction. Furthermore, 
our analyses on the distribution of WFT-associated feeding in the chrysanthemum plant 
canopy and the metabolomic profiles of basal and apical leaves suggest that higher levels of 
constitutive and inducible defenses in basal leaves might explain their higher degree of WFT 
resistance. 

In chapter 6 I summarized and discussed the findings described in this thesis. In 
addition, I discussed the implications of these findings for the management of WFT in 
agricultural systems.  
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