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Abstract
In neuroscience, clustering subjects based on brain dysfunctions is a promising ave-
nue to subtype mental disorders as it may enhance the development of a brain-based 
categorization system for mental disorders that transcends and is biologically more 
valid than current symptom-based categorization systems. As changes in functional 
connectivity (FC) patterns have been demonstrated to be associated with various 
mental disorders, one appealing approach in this regard is to cluster patients based 
on similarities and differences in FC patterns. To this end, researchers collect three-
way fMRI data measuring neural activation over time for different patients at sev-
eral brain locations and apply Independent Component Analysis (ICA) to extract 
FC patterns from the data. However, due to the three-way nature and huge size of 
fMRI data, classical (two-way) clustering methods are inadequate to cluster patients 
based on these FC patterns. Therefore, a two-step procedure is proposed where, first, 
ICA is applied to each patient’s fMRI data and, next, a clustering algorithm is used 
to cluster the patients into homogeneous groups in terms of FC patterns. As some 
clustering methods used operate on similarity data, the modified RV-coefficient is 
adopted to compute the similarity between patient specific FC patterns. An exten-
sive simulation study demonstrated that performing ICA before clustering enhances 
the cluster recovery and that hierarchical clustering using Ward’s method outper-
forms complete linkage hierarchical clustering, Affinity Propagation and Partition-
ing Around Medoids. Moreover, the proposed two-step procedure appears to recover 
the underlying clustering better than (1) a two-step procedure that combines PCA 
with clustering and (2) Clusterwise SCA-ECP, which performs PCA and cluster-
ing in a simultaneous fashion. Additionally, the good performance of the proposed 
two-step procedure using ICA and Ward’s hierarchical clustering is illustrated in an 
empirical fMRI data set regarding dementia patients.
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1 Introduction

Nowadays, several research questions in neuroscientific studies call for a clustering 
of subjects based on high-dimensional—big—brain data. For example, a promising 
trend in clinical neuropsychology is to categorize (and subtype) mental disorders 
based on brain dysfunctions instead of on symptom profiles (only) (see Sect. 2.1). 
Relevant brain dysfunctions in this regard are the changes in functional connectivity 
(FC), where FC refers to the synchronized activity over time of spatially distributed 
brain regions (Barkhof et al. 2014). These changes in FC have been demonstrated 
(see Sect.  2.1) to be related to various neuropsychiatric diseases—and subtypes 
therein—such as depression and dementia (Greicius et al. 2004). As such, these FC 
pattern changes can be used to cluster patients and to identify the corresponding 
distinct mental disorder categories and subtypes. In particular, each obtained patient 
cluster may represent a distinct mental disorder/subtype. Moreover, using an unsu-
pervised clustering technique that ignores the existing patient labels, the obtained 
categories and subtypes may differ from the symptom-based categories and sub-
types and may account for the large heterogeneity in symptoms, disease courses and 
treatment responses encountered within the existing categories and subtypes (e.g., 
Alzheimer’s disease and frontotemporal dementia).

Key to the clustering is the identification of relevant FC pattern changes. To cap-
ture these FC patterns, researchers often collect functional Magnetic Resonance 
Imaging (fMRI) data for multiple patients. Such data, which can be arranged in a 
three-way array (see Fig. 1), represent Blood Oxygen Level Dependent (BOLD) sig-
nal changes for a large number of brain locations (voxels) that are measured over 
time for multiple patients at rest or while they are performing a particular task. A 
commonly used method to extract FC patterns from fMRI data is Independent Com-
ponent Analysis (ICA), which reduces the data to a smaller set of independent com-
ponents which represent brain regions that show synchronized activity (Mckeown 

Fig. 1  Three-way data repre-
sentation of a multi-subject 
fMRI data set. The rows (first 
way) represent small areas 
in the brain known as voxels 
( v = 1,… ,V  ). The columns 
(second way) represent time 
points ( t = 1,… ,T  ). The slices 
(third way) refer to subjects/
patients ( i = 1,… ,N)
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et  al. 1998; Beckmann and Smith 2004; Beckmann 2012). ICA has successfully 
been applied in resting-state fMRI studies to both investigate cognition and abnor-
mal brain functioning (Smith et al. 2009; Filippini et al. 2009) and to disentangle 
noise (e.g., machine artefacts, head motion, physiological pulsation and haemody-
namic changes induced by different processes) from relevant signal (Calhoun et al. 
2001, 2009; Erhardt et al. 2011).

A new way of categorizing/subtyping mental disorders consists of collecting 
fMRI data from a set of patients and clustering these patients into clusters that are 
homogeneous with respect to the FC patterns underlying the data of the patients. In 
particular, patients with similar FC patterns should be clustered together, whereas 
patients exhibiting patterns that are qualitatively different should be allocated to dif-
ferent clusters. Such an approach clearly differs from the existing approaches for 
clustering fMRI data in that the existing approaches only focus on clustering voxels 
or brain regions (Mezer et al. 2009) or on clustering functional networks (Esposito 
et  al. 2005) but do not allow to cluster patients in terms of FC patterns. Existing 
methods that allow for a patient clustering use clinical symptom information (van 
Loo et al. 2012) or measures derived from fMRI data (i.e., graph-theoretical meas-
ures, like path length and centrality), but not raw fMRI data, as input, and, as a con-
sequence, do not focus on underlying FC patterns.

Due to the three-way nature of multi-subject fMRI data, classical clustering meth-
ods such as k-means (Hartigan and Wong 1979), hierarchical clustering (Sokal and 
Michener 1958) and model-based clustering (Fraley and Raftery 2002; Banfield and 
Raftery 1993; McLachlan and Basford 1988) are not suitable for clustering patients 
based on FC patterns underlying fMRI data since these methods require two-way 
data (e.g., patients measured on a set of variables or (dis)similarities between patient 
pairs) as input. Converting three-way data to two-way data, a procedure called 
matricizing (Kiers 2000), is not a panacea as the classical clustering methods have 
large difficulties dealing with the large number of ‘variables’ created in that way 
(i.e., the number of voxels times the number of time points, which easily can exceed 
millions). Moreover, matricizing multi-subject fMRI data implies the loss of spatio-
temporal information that is relevant for the clustering of the patients. As such, a 
proper method for clustering three-way data is needed (see Sect. 2.2 for a discus-
sion of existing three-way clustering methods that are not appropriate for the task at 
hand).

In the current study, therefore, we propose a two-step procedure where, first, FC 
patterns are extracted by performing ICA on the data of each patient separately, and, 
next, the patients are clustered based on similarities and dissimilarities between the 
patient-specific FC patterns. To determine the degree of (dis)similarity between—
the estimated FC patterns of—two patients, the modified RV-coefficient is used, 
which is a matrix correlation quantifying the linear relation between matrices—
instead of variables—that shows favourable properties for high-dimensional data 
(Smilde et al. 2009). For the clustering, Affinity Propagation (AP; Frey and Dueck 
2008) is used, which is a relatively new clustering method that has been shown to 
outperform the popular k-means algorithm for clustering brain functional activation 
(Zhang et al. 2011), genetic data and images/faces (Frey and Dueck 2008). A related 
method that also combines clustering with ICA is mixture ICA (Lee et  al. 1999). 
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This method, however, differs from our proposed two-step procedure in two ways: 
(1) mixture ICA can only be used for single-subject fMRI data, and (2) for the clus-
tering it uses a mixture analysis (i.e., model-based) approach instead of a k-means-
like approach (for a discussion and comparison of both types of clustering methods, 
see Steinley and Brusco 2011). Another related method is group ICA (Calhoun et al. 
2001, 2009) in which the data of a (known) group of patients are concatenated and 
afterwards subjected to ICA. This method is not appropriate for the task at hand 
as it assumes that the patient clusters (e.g., Alzheimer vs. frontotemporal dementia 
patients) are known beforehand.

The goal of this paper is to evaluate in an extensive simulation study and in an 
illustrative application to fMRI data regarding dementia patients the performance 
of our two-step procedure using AP and to compare AP to commonly used methods 
from the family of hierarchical clustering and k-means type of clustering methods. 
Moreover, to demonstrate that the ICA decomposition step is a vital step for uncov-
ering the true clusters in terms of the FC patterns underlying fMRI data, the pro-
posed two-step procedure is compared to a procedure in which the fMRI data are 
clustered (1) without performing ICA, and (2) after reduction with PCA (instead 
of ICA). The two-step procedure is also compared to Clusterwise SCA, which per-
forms clustering and PCA data reduction simultaneously (for a description of this 
method, see Sect. 2.2).

The remainder of this paper is organized as follows: in the next section, some 
background on brain dysfunctions and their potential for categorizing mental disor-
ders is discussed (Sect. 2.1) and existing clustering methods for three-way data are 
sketched (Sect. 2.2). Next, in Sect. 3, ICA for analysing fMRI data of a single patient 
is discussed, together with the modified RV-coefficient for computing the (dis)simi-
larity between FC patterns. Further, the four clustering methods that are used in this 
study are briefly described: (1) Affinity Propagation (AP; Frey and Dueck 2008), (2) 
Partitioning Around Medoids (PAM; Kaufman and Rousseeuw 1990), (3) hierarchi-
cal clustering using Ward’s method (Ward 1963) and (4) complete linkage hierar-
chical clustering. In the fourth section, the performance of the proposed two-step 
procedure is evaluated by means of an extensive simulation study. Next, in Sect. 5, 
the proposed two-step procedure is illustrated on empirical fMRI data regarding 
dementia patients. Finally, implications and limitations of the proposed procedure 
are discussed, along with directions for further research.

2  Background

2.1  Brain dysfunctions as the basis for categorizing mental disorders

Until recently, mainly symptom information has been used to categorize mental 
disorders (e.g., DSM-V; American Psychiatric Association 2013). Many psychi-
atric and neurocognitive disorders (e.g., depression, schizophrenia and demen-
tia), however, show a large variability in symptoms, disease courses and treat-
ment responses. This substantial clinical heterogeneity, which is caused by the 
weak links that exist between the current diagnostic categories and the underlying 
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biology of mental disorders (see, for example, Craddock et al. 2005; Happé et al. 
2006), questions the validity of the current symptom-based diagnostic categori-
zation systems for mental disorders. As brain dysfunctions have been found to 
be important predisposing/vulnerability factors for many psychiatric disorders 
(Marín 2012; Millan et al. 2012), a way to obtain a biologically more valid diag-
nostic system is to base the categorization on similarities and differences between 
patients in brain (dys)functioning. This shift from symptom- to brain-based cat-
egorization is a crucial prerequisite for and connects well with the emerging trend 
of personalized psychiatry, also called precision psychiatry (Fernandes et  al. 
2017). Note that this shift clearly links up with recent modern mental health ini-
tiatives, such as the National Institute of Mental Health’s Research Domain Cri-
teria in psychiatry (RDoC; Insel et al. 2010; Cuthbert 2014), the Precision Medi-
cine Initiative (Collins and Varmus 2015) and the European Roadmap for Mental 
Health Research (ROAMER; Schumann et al. 2014). Additionally, as brain dys-
functions occur at pre-symptomatic stages (i.e., before structural and cognitive 
changes become apparent) for most mental disorders (Marín 2012; Damoiseaux 
et al. 2012; Drzezga et al. 2011) and are predictive for treatment response (Lis-
ton et  al. 2014; Downar et  al. 2014; McGrath et  al. 2013), disposing of brain-
based diagnostic categories allows for the early detection of subjects at risk for a 
particular disorder and may advance evidence-based treatments and outcomes for 
patients.

Using brain dysfunctions as the basis for a categorization of mental disorders 
is promising as recent scientific studies provided ample evidence for the relation 
between mental disorders and brain dysfunctions. Especially relevant in this regard 
are changes in FC patterns, which have been showed to be prevalent in many mental 
disorders (for an overview, Seeley et  al. 2009; Greicius 2008; Zhang and Raichle 
2010; Deco and Kringelbach 2014), like schizophrenia (Lynall et al. 2010; Jafri et al. 
2008), panic disorder and social anxiety disorder (Veer et al. 2011; Pannekoek et al. 
2013), Alzheimer’s disease and dementia (Pievani et al. 2011; Greicius et al. 2004; 
Rombouts et al. 2005), major depression (Kaiser et al. 2015; Veer et al. 2010; Miller 
et al. 2015) and autism spectrum disorder (Lee et al. 2017; Weng et al. 2010). More-
over, recently, Drysdale et  al. (2017) and Tokuda et  al. (2018) demonstrated that, 
using (mainly) information on (dys)functional connectivity patterns, neurophysi-
ological subtypes of depression—called biotypes—could be derived that transcend 
current diagnostic symptom-based depression (sub)categories. These biotypes, 
which cannot be detected using symptom information only, are robust over time, 
are related to differential clinical symptom profiles and are predictive for treatment 
response. Taking this evidence together, a promising avenue for advancing preci-
sion psychiatry is to construct a brain-based categorization system for mental disor-
ders, which may complement the existing consensus on symptom-based categoriza-
tions. To this end, patients should be clustered based on similarities and differences 
in their underlying FC patterns such that each patient cluster (hopefully) represents 
a specific mental disorder category or subtype thereof. This is a novel strategy for 
clustering patients as current approaches in this regard—except for the two studies 
mentioned earlier—mainly resort to clinical symptom profiles (for example, see, van 
Loo et al. 2012; Schacht et al. 2014) instead of to brain dysfunctions.
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2.2  Methods for clustering three‑way data

To cluster three-way data, Kroonenberg (2008) and Viroli (2011) proposed a model-
based procedure. However, both these procedures cannot handle the large number of 
voxels—50,000 or more—typically measured in fMRI data. Moreover, these methods 
assume some form of multivariate normality, which is often not realistic for fMRI data. 
Another method that enables the clustering of three-way data is Clusterwise Simultane-
ous Component Analysis (for example, Clusterwise SCA-ECP; De Roover et al. 2012). 
This method combines SCA and clustering in such a way that a data reduction in two 
modes (e.g., voxels and time) and a clustering along the third mode (e.g., patients) are 
achieved simultaneously. Although Clusterwise SCA may result in a useful clustering 
of the patients, the associated components that are simultaneously estimated by this 
method, in general, will not yield a good representation of the FC patterns underlying 
fMRI data. This is caused by the fact that these models do not seek for components that 
are non-Gaussian and independent in the spatial domain, which is an attractive feature 
of (spatial) ICA. Note that FC patterns that are related to mental disorders often are 
non-Gaussian and show independence in the spatial domain.

3  Methods

3.1  Independent component analysis (ICA) of a single subject’s data

ICA (in particular, spatial ICA) decomposes a multivariate signal into statistically inde-
pendent components and their associated time courses of activation (see Fig. 2). A crit-
ical assumption of the ICA model is that the components underlying the data follow a 
non-Gaussian distribution and are statistically independent of each other. As such, ICA 
is able to separate systematic information in the data from irrelevant sources of vari-
ability such as noise. For fMRI data, the systematic information represents functionally 
connected brain regions (FC patterns) that are independent in the spatial domain (i.e., 
spatial ICA) -also called spatial maps- and their corresponding time courses.

More rigorously defined, ICA is a multivariate technique that aims at finding a linear 
representation of the data such that the statistical dependency between non-normally 
distributed components is minimized (Jutten and Herault 1991; Comon 1994). In the 
general ICA model for fMRI data of a single patient (with V voxels and T volumes), 
the observed signal mixture � (V × T) is assumed to be the result of a linear mix-
ing of Q independent (non-Gaussian) source signals � (V × Q) by means of a mixing 
matrix � (T × Q) . The general ICA model is defined as (with (⋅)T denoting the matrix 
transpose)

The unknown source signals � can be computed by multiplying the observed mixed 
signals � with a weight matrix � , which equals the pseudo-inverse (Golub and Van 
Loan 2012) of � (with the pseudo-inverse of a matrix being indicated by †):

(1)� = ��
T

(2)� = ��
T
= �(�

†
)
T
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Several methods have been proposed to estimate the weight matrix � (and hence � ). 
The idea behind these methods is to make each column of ��T as non-Gaussian as 
possible, which -due to the Central Limit Theorem- results in the columns of ��T 
containing the independent components underlying the data (for a more theoretical 
explanation, see Hyvärinen and Oja 2000, Sect.  4.1). The proposed methods dif-
fer in the criterion that they use to measure the extent to which a distribution is 
non-Gaussian. One of the most popular and fastest methods is known as fastICA 
(Hyvärinen 1999). This method uses negentropy as a measure for non-Gaussianity. 
The negentropy (also denoted as negative entropy) of a distribution, indeed, meas-
ures the “distance” of a distribution to the normal distribution, with larger values 
indicating a distribution that is “further away” from the Gaussian distribution. Note 
that a normally distributed (Gaussian) random variable has a negentropy, which is 
always nonnegative, of zero; hence, maximizing the negentropy of (the columns of) 
��

T ensures that the estimated components (in ��T ) are as non-Gaussian, and, 
as a result, as independent from each other as possible. FastICA achieves this by 
means of a fast fixed-point algorithm (Hyvärinen 1999). As a pre-processing step, 
the observed mixture � is often centered and pre-whitened (i.e., decorrelation 
and scaling to unit variance), which results in a serious decrease in the computa-
tional complexity of the estimation procedure to find the independent components 
(Hyvärinen et  al. 2001; Beckmann and Smith 2004). Indeed, after pre-whitening, 
the vectors of ��T are ensured to be mutually orthogonal and of unit variance and 
the independent components can be identified by estimating a rotation matrix that 
maximizes the negentropy of ��T . Note that in contrast to PCA, ICA uses higher 

Fig. 2  The ICA model for a single patient. A multivariate measured signal � (the BOLD response meas-
ured over time for a set of voxels) is assumed to result from a linear mixing of an underlying source sig-
nal matrix � with a mixing matrix � . The components of � refer to underlying FC patterns whereas the 
components of � represent the associated underlying fMRI time courses of activation
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order information (i.e, third and higher moments of the data) to estimate the compo-
nents and, as a consequence, does not have rotational freedom of the components. 
Similar as in PCA, when performing ICA, one has to decide upon the number of 
components Q to extract. Most popular methods in this regard are based on search-
ing for an elbow in a scree plot that displays the ordered eigenvalues—estimated 
from the data covariance matrix—against their rank number. Other popular methods 
are based on applying a Bayesian model selection procedure (Beckmann and Smith 
2004) within the context of Probabilistic Principal Component Analysis (PPCA; 
Tipping and Bishop 1999) or on information theoretic measures, such as AIC (see, 
for example, Li et al. 2007).

3.2  Computing a (dis)similarity matrix with the modified‑RV coefficient

After performing ICA —with the same number of components Q— to the data �i of 
each patient i (i = 1…N) , which results in estimated patient specific FC patterns 
�̂
ICA
i

 and mixing matrices �̂ICA
i

 (see Fig. 2), clustering is performed on the estimated 
FC patterns contained in the �̂ICA

i
’s. Similarly, one could choose to first perform 

PCA (with the same Q) on each data matrix �i such that a component score matrix 
�̂
PCA
i

 and a loading matrix �̂PCA
i

 is estimated for each patient. Subsequently, a clus-
tering method is performed on the FC patterns contained in the component score 
matrices. As several clustering methods, such as Affinity Propagation (see later), 
need a similarity matrix � as input (see Fig. 3), for each pair of patients, the modi-
fied RV-coefficient (Smilde et al. 2009) is computed between the estimated �̂i ’s of 
both pair members (see lower panel of Fig. 3). Next, the modified RV-values for all 
patient pairs (i,  j) (i, j = 1…N) are stored in the N × N similarity matrix � . The 
modified RV-coefficient is a matrix correlation that provides a measure of similarity 
of matrices.1 The modified RV ranges between −1 and 1, with 1 indicating perfect 
agreement and 0 agreement at chance level.2 As the hierarchical clustering and Par-
titioning Around Medoids clustering methods need a dissimilarity matrix �∗ -instead 
of a similarity matrix- as input, each similarity value dij of � is converted into a dis-
similarity value by subtracting the value of the similarity value from 1 (i.e., 
d∗
ij
= 1 − dij).
To determine whether performing dimension reduction through ICA/PCA before 

clustering the patients outperforms a strategy in which the patients are clustered 
based on the original fMRI data directly, also a similarity matrix � (and �∗ ) is con-
structed with entries being the modified RV-coefficients between the original �i ’s 
(see upper panel of Fig. 3).

1 It should be noted that a modified RV value can also be computed between matrices with a different 
number of columns. As such, the modified RV coefficient is also defined for patients that differ in the 
number of estimated components/FC patterns. In this paper, however, the number of components Q will 
always be kept equal across patients.
2 Note that nor for the simulation study in Sect. 4 nor for the illustrative application in Sect. 5 negative 
values for the modified RV were encountered.
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3.3  Clustering methods

After computing � and �∗ , the patients are clustered into homogeneous groups 
by means of the following three clustering methods: Hierarchical Clustering 
(HC), Partitioning Around Medoids (PAM) and Affinity Propagation (AP). HC 
and PAM—which is closely related to k-means—were selected because they can 
be considered as standard methods that are commonly used. AP was included in 
the study because it is considered as a ‘new’ clustering method that has great 
potential for psychological and neuroscience data (Frey and Dueck 2008; Li et al. 
2009; Santana et  al. 2013). Model-based clustering methods were not included 
because they are less appropriate to deal with the format of the data (i.e., a high-
dimensional data matrix instead of a vector per patient) and cannot handle a (dis)
similarity matrix as input.

Agglomerative Hierarchical Clustering. Using a dissimilarity matrix as input 
(e.g., Euclidean distances between objects), agglomerative hierarchical cluster-
ing produces a series of nested partitions of the data by successively merging 

Fig. 3  Schematic overview of the two-step clustering procedure. A similarity matrix � is constructed by 
computing all (patient) pairwise modified-RV coefficients between either the full data �i (upper panel) 
or the ICA or PCA reduced component score matrices �̂i (lower panel). In particular, each entry dij of 
� contains the value of the RV coefficient between �i and �j ( ̂�i and �̂j ), with i and j referring to two 
patients ( i, j = 1,… ,N ). Subsequently, a partitioning of the patients is obtained by applying a cluster-
ing method to either � (for AP) or �∗ (for PAM, HCW and HCC), with the elements d∗

ij
 of dissimilarity 

matrix �∗ being d∗
ij
= 1 − dij
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objects/object clusters into (larger) clusters.3 Here, each object starts as a single 
cluster and at each iteration the most similar pair of objects/object clusters are 
merged together into a new cluster (Everitt et  al. 2011). To determine the dis-
similarity between object clusters, agglomerative clustering uses various linkage 
functions (for a short overview see, Everitt et  al. 2011). For the current study, 
complete linkage and Ward’s method (Ward 1963) are used. The former method 
defines the dissimilarity between clusters A and B as the maximal dissimilarity 
dij encountered among all pairs (i, j), where i is an object from cluster A and j an 
object from cluster B (Kaufman and Rousseeuw 1990). In Ward’s method, object 
clusters are merged in such a way that the total error sum of squares (ESS) is 
minimized at each step (Everitt et al. 2011). Here, the ESS of a cluster is defined 
as the sum of squared Euclidean distances between objects i of that cluster and 
the cluster centroid (Murtagh and Legendre 2014). For hierarchical clustering, 
the number of clusters K has to be specified and methods known as stopping rules 
have been specially developed to this end (Mojena 1977).

Partitioning Around Medoids. PAM aims at partitioning a set of objects into K 
homogeneous clusters (Kaufman and Rousseeuw 1990). PAM identifies K objects 
in the data—called medoids- that are centrally located in—and representative for—
the clusters. To this end, the average dissimilarity between objects belonging to the 
same cluster is minimized. The PAM method yields several advantages over other 
well-known partitioning methods such as k-means (Hartigan and Wong 1979) and 
is, therefore, included in this study instead of k-means. First, the medoids obtained 
by PAM are more robust against outliers than the centroids resulting from k-means 
(van der Laan et  al. 2003). Second, in PAM the ‘cluster centers’ or medoids are 
actual objects in the data, whereas in k-means the centroids do not necessarily 
refer to actual data objects. From a substantive point of view, actual data objects as 
cluster representatives are preferred over centroids that are often hard to interpret. 
Finally, PAM can be used with any specified distance or dissimilarity metric, such 
as Euclidean distance, correlations and -relevant to the current study- modified RV-
coefficients. The k-means method, however, is restricted to the Euclidean distance 
metric, which is problematic especially for high-dimensional data such as fMRI 
data. Indeed, as shown in Beyer et al. (1999), when the dimensionality of the data 
increases, the (Euclidean) distance between nearby objects approaches the distance 
between objects ‘further away’, implying all objects becoming equidistant from each 
other. Regarding selecting the optimal number of clusters K, several methods have 
been developed. A well-known method, for example, is the Silhouette method that 
determines how well an object belongs to its allocated cluster—expressed by the sil-
houette width si—compared to how well it belongs to the other clusters (Rousseeuw 
1987). An optimal number of K can be determined by taking the K from the cluster 
solution that yields the largest average silhouette width (i.e., the average of all si ’s of 
a clustering).

3 We will use the general term ‘objects’, which, depending on the application, refers to subjects, patients, 
etc.
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Affinity Propagation. A relatively new clustering method is known as Affinity 
Propagation (AP; Frey and Dueck 2008) and it is similar to other clustering meth-
ods such as p-median clustering (Köhn et al. 2010; Brusco and Steinley 2015). AP 
takes as input (1) a set of pairwise similarities between data objects and (2) a set of 
user-specified values for the ‘preference’ of each object (see further). AP aims at 
determining so called ‘exemplars’ which are actual data objects, with each exem-
plar being the most representative member of a particular cluster. AP considers 
all available objects as potential exemplars and, in an iterative fashion, gradually 
selects suitable exemplars by exchanging messages between the data objects (Frey 
and Dueck 2008). At the same time, for the remaining (non-exemplar) objects, the 
algorithm gradually determines the cluster memberships. More precisely, the objects 
are considered to be nodes in a network and two types of messages are exchanged 
between each pair of nodes (i,j) in the network: messages regarding (1) the respon-
sibility which reflects the appropriateness of a certain object j to serve as an exem-
plar for object i, and (2) the availability which points at the properness for object 
i to select object j as its exemplar. At each iteration of the algorithm, the informa-
tion in the messages (i.e., the responsibility and the availability of an object in rela-
tion to another object) is updated for all object pairs. As such, at each iteration, it 
becomes more clear which objects can function as exemplars and to which cluster 
each remaining object belongs. The procedure stops after a fixed set of iterations or 
when the information in the two types of messages is not updated anymore for some 
number of iterations (for a more technical description of the method, readers can 
consult Frey and Dueck 2008). A nice feature of AP is that it simultaneously esti-
mates the clusters as well as the number of clusters. However, it should be noted that 
the number of clusters that is obtained by the algorithm depends on the user-speci-
fied values for the ‘preference’ of each object. This preference value determines how 
likely a certain object is chosen as a cluster exemplar, with higher (lower) values 
implying objects being more (less) likely to function as a cluster exemplar. As such, 
giving low (high) preference values to all objects will result in a low (high) number 
of clusters K. Note that implementations of AP exist in which the user can specify 
the desired K prior to the analysis (Bodenhofer et al. 2011). In these implementa-
tions, a search algorithm determines the optimal preference values such that the final 
number of clusters K equals the user specified number of clusters K (i.e., the final K 
can be decreased/increased by choosing lower/higher preference values).

4  Simulation study

4.1  Problem

In this section, a simulation study is presented in which it is investigated whether 
and to which extent the aforementioned two-step clustering procedure is able to cor-
rectly retrieve the ‘true’ cluster structure from the data. It is also evaluated whether 
or not using ICA for data reduction prior to the clustering enhances the recovery 
of the true cluster structure. Herewith, also PCA and Clusterwise SCA, which are 
related techniques for data reduction, are investigated. Furthermore, it is studied 



 Behaviormetrika

1 3

whether the recovery performance of the two-step procedure depends on the fol-
lowing data characteristics: (1) the number of clusters, (2) equal or unequal cluster 
sizes, (3) the degree to which clusters overlap, and (4) the amount of noise present 
in the data.

Based on previous research, it can be expected that the recovery of the true clus-
ter structure deteriorates when there are a larger number of clusters underlying the 
data and/or when the data are noisier (Wilderjans et al. 2008; De Roover et al. 2012; 
Wilderjans et  al. 2012; Wilderjans and Ceulemans 2013). Moreover, with respect 
to the size of the clusters, it can be expected that a better recovery will be obtained 
when the clusters are of equal size and this especially for the hierarchical clustering 
method using Ward’s method (Milligan et al. 1983). Further, when the true clusters 
show more overlap, all clustering methods are expected to deteriorate since more 
overlap makes it harder to find and separate the true clusters (Wilderjans et al. 2012, 
2013). Finally, reducing the data with ICA before clustering is expected to outper-
form Clusterwise SCA and reducing the data with PCA prior to clustering as ICA 
better captures the FC patterns underlying the data, which are independent and Non-
Gaussian, than PCA-based methods.

As mentioned before, when performing ICA (or PCA), one has to decide on the 
optimal number of independent components Q to extract. Often, a procedure for 
estimating the optimal number of components Q, like the scree plot (see earlier), is 
used to this end. To investigate the effect of under- and overestimating the true num-
ber of components Qtrue (which was kept equal across patients) on the true cluster-
ing, we re-analysed a small portion of the simulated data sets and varied the number 
of components Q used for ICA. For this simulation study, it can be expected that the 
underlying cluster structure is recovered to a large extent when the selected number 
of components Q equals or perhaps is close to the true number of components Qtrue . 
In other cases, however, it is expected that the true clusters are not retrieved well.

4.2  Design and procedure

Design. To not have an overly complex design, the number of patients N was fixed 
at 60. Additionally, the true number of source signals per cluster Qtrue was set at 20, 
the number of voxels V at 1000 and finally the number of time points T at 100. Note 
that these settings are commonly encountered in an fMRI study, except than for the 
number of voxels, which is often (much) larger.4 Furthermore, the following data 
characteristics were systematically varied in a completely randomized four-factorial 
design, with the factors considered as random:

– The true number of clusters, K, at two levels: 2 and 4;
– The cluster sizes, at two levels: equally sized and unequally sized clusters;

4 In fMRI studies, due to computational reasons, it is common to reduce the number of voxels by enlarg-
ing the voxel size from 2 by 2 by 2 mm to 4 by 4 by 4 or 8 by 8 by 8 mm. As such, a typical brain volume 
(i.e., all voxels measured at one time point) contains respectively 228483, 26647 and 2553 voxels.
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– The degree of overlap among clusters, at 5 levels: small, medium, large, very 
large and extreme;

– The percentage of noise in the data, at four levels: 10%, 30%, 60% and 80%.

Data generation procedure. The data were generated as follows: first, a common set 
of independent source signals �base ( 1000 × 20 ) was generated where each source 
signal was simulated from U(−1, 1) . Next, depending on the desired number of clus-
ters K, 2 or 4 temporary matrices �temp

k
 ( k = 1,… ,K ) were generated from U(−1, 1) . 

To obtain the cluster specific source signals �k , weighted �temp

k
 ’s were added to 

�base : �k = �base + w�
temp

k
 (for k = 1,… ,K ). Note that by varying the value of w, 

the cluster overlap factor was manipulated. In particular, a pilot study indicated that 
a weight of 0.395, 0.230, 0.150, 0.120 and 0.080 results -for K = 4 - in an average 
pairwise modified RV-coefficient between the cluster specific �k ’s of , respectively, 
0.75 (small overlap), 0.90 (medium overlap), 0.95 (large overlap), 0.97 (very large 
overlap) and 0.99 (extreme overlap).

Next, for each patient i ( i = 1,… , 60 ), patient specific time courses �i ( 100 × 20 ) 
were generated by simulating fMRI time courses using the R package neuRosim 
(Welvaert et al. 2011). Here, the default settings of neuRosim were used, that is, the 
repetition time was set at 2.0 s and the baseline value of the time courses equalled 
0. Note that the neuRosim package ensures that the fluctuations of the frequencies 
in the time courses are between 0.01 and 0.10 Hz, which is a frequency band that is 
relevant for fMRI data (Fox and Raichle 2007).

To obtain noiseless fMRI data �i for each patient i ( i = 1,… , 60 ), a true clus-
tering of the patients was generated and the patient specific time courses �i were 
linearly mixed by one of the cluster-specific source signals �k . More specifically, if 
equally sized clusters were sought for, the 60 patients were divided into clusters con-
taining exactly 60

K
 patients; for conditions with unequally sized clusters, the patients 

were split up into two clusters of 15 and 45 patients ( K = 2-conditions) or into four 
clusters of size 5, 10, 20 and 25 patients ( K = 4-conditions). For each patient, its �i 
was multiplied with the �k corresponding to the cluster to which the patient in ques-
tion was assigned to.

Finally, noise was added to each patient’s true data �i . To this end, first, a noise 
matrix �i ( 1000 × 100 ) was generated for each patient i by independently drawing 
entries from N(0, 1) . Next, the matrices �i were rescaled such that their sum of 
squared entries (SSQ) equalled the SSQ of the corresponding �i . Finally, a weighted 
version of the rescaled �i was added to �i to get data with noise �i : 
�i = �i + w�i = �k(�i)

T
+ w�i . The weight w was used to manipulate the amount 

-percentage- of noise in the data. In particular, the desired percentage of noise can 
be obtained by taking w =

√

noise

1−noise
 , with noise equalling 0.10, 0.30, 0.60 and 0.80 

for the 10%, 30%, 60% and 80%-noise condition, respectively.
Data analysis. For each cell of the factorial design, 10 replication data sets were 

generated. Thus, in total, 2 (number of clusters) × 2 (cluster sizes) × 5 (cluster over-
lap) × 4 (noise level) × 10 (replications) = 800 data sets �i ( i = 1,… , 60 ) were 
simulated. Each �i was subjected to (1) a single-subject ICA and (2) a single-sub-
ject PCA, both dimension reduction methods with Qtrue

= 20 components, yielding 
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estimated source signals �̂ICA
i

/�̂PCA
i

 (see bottom panel of Fig.  3). Notice that only 
ICA/PCA with the true number of components Qtrue (i.e., the number of compo-
nents used to generate the data) was performed as model selection is a non-trivial 
and complex task that falls outside the scope of this paper which focuses on clus-
tering patients. Next, for each data set, a (dis)similarity matrix was computed (see 
Sect. 3.2) using both the original data �i as well as the ICA/PCA reduced data �̂ICA

i

/�̂PCA
i

 . Finally, each (dis)similarity matrix was analysed with each of the following 
clustering methods using only the true number of clusters K: (1) AP, (2) PAM, (3) 
HC using Ward’s method and (4) HC using complete linkage. Note that we only 
analysed the data with the true number of clusters K as selecting the optimal number 
of clusters is a difficult task that exceeds the goals of this study. Moreover, several 
approaches have been proposed and evaluated in the literature to tackle this vexing 
issue (Milligan and Cooper 1985; Rousseeuw 1987; Tibshirani et al. 2001).

As Clusterwise SCA-ECP (De Roover et  al. 2012) simultaneously performs 
dimension reduction and clustering, it can be considered as a competitor of the pro-
posed two-step procedure.5 In order to investigate the cluster recovery performance 
of Clusterwise SCA-ECP, we selected a relatively easy and a fairly difficult condi-
tion from the simulation design. More specifically, we took the 10 data sets from 
the simulation condition with 2 equally sized clusters, with a medium overlap (RV 
= .90) and either 60% noise or 80% noise added to the data. We analysed these data 
sets with Clusterwise SCA-ECP using publicly available software (De Roover et al. 
2012) and choosing K = 2 and Q = 20 . As the Clusterwise SCA-ECP loss func-
tion suffers from local minima, a multi-start procedure with 25 random starts was 
implemented.

Over- and underestimation of the true number of ICA components Qtrue . To study 
the effect of under- and overestimating the true number of ICA components Qtrue on 
the cluster recovery performance, we selected the same relatively easy and fairly 
difficult condition from the simulation design as used for the Clusterwise SCA-ECP 
analysis (see above). Next, we applied the proposed two-step procedure (using ICA 
based data reduction and all clustering methods) to the data sets from the selected 
simulation conditions using a range for Q (which was kept equal across patients) 
such that Q was lower (underestimation) and larger (overestimation) than the 
true number of components Qtrue . In particular, we analysed these data sets using 
Q=2–40 (in steps of 2) components (remember that Qtrue equals 20) and K = 2 clus-
ters, which equals the true number of clusters used to generate the data.

Software. All simulations were carried out in R version 3.4 (Core Team 2017) 
on a high-performance computer cluster that enables computations in parallel. In 
order to compute the modified RV-coefficients, the R package MatrixCorrelation 
was used (Indahl et al. 2016). For ICA, the function icafast from the R package ica 
was adopted (Helwig 2015). The AP method was carried out with the apclusterK 

5 Note that Clusterwise SCA-P (De Roover et al. 2013), which is a less restricted version of Clusterwise 
SCA than Clusterwise SCA-ECP, could also be considered as a competitor for the proposed two-step 
clustering procedure. As this version, however, is not implemented in the Clusterwise SCA software (De 
Roover et al. 2012), and thus is not publicly available, we decided to not include this method in our study.
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function from the R package apcluster (Bodenhofer et al. 2011). Note that this func-
tion has the option to specify a desired number of clusters K, which can be obtained 
by playing around with the ‘preference’ values for the objects (see Sect. 3.3). PAM 
was performed using the function pam from the cluster package (Maechler et  al. 
2017). Finally, both hierarchical clustering methods were executed with the hclust 
function from the R stats package.

4.3  Results

To evaluate the recovery of the true cluster structure, the Adjusted Rand Index (ARI; 
Hubert and Arabie 1985) between the true patient partition and the patient partition 
estimated by the two-step procedure was computed. The ARI equals 1 when there is 
a perfect cluster recovery and 0 when both partitions agree at chance level.

The overall results -averaged across all generated data sets- show that the hier-
archical clustering methods (ARI Ward = 0.63, ARI complete linkage = 0.54) out-
perform both AP (ARI = 0.48) and PAM (ARI = 0.48). Table 1 displays the mean 
ARI value for each level of each manipulated factor per clustering method and this 
for when the original data, the PCA reduced data and the ICA reduced data are used 
as input for the clustering. From this table, it appears that for each level of each fac-
tor, hierarchical clustering using Ward’s method yields the largest ARI value among 
the clustering methods, and this for each reduction method (none/PCA/ICA) used. 
Further, for each clustering method, a high recovery of the cluster structure occurred 
when the cluster overlap was small. However, albeit to a lesser extent for the hier-
archical clustering method with Ward’s method, these results deteriorate when the 
overlap between cluster structures increases. Additionally, recovery performance 
becomes worse when the data contain a larger number of clusters that are of unequal 
size and when the data are noisier.

Comparing clustering original data and PCA reduced data to clustering ICA 
reduced data, a large recovery difference in favour of ICA reduced data is observed. 
In particular, all clustering methods recover the cluster structure to a relatively large 
extent when using ICA reduced data (mean overall ARI > 0.70 ), whereas recovery 
is much worse when no ICA reduction takes place (mean overall ARI’s between 
0.37 and 0.55). This implies that when the cluster structure is determined by simi-
larities and differences in independent non-Gaussian components underlying the 
observed data, these clusters cannot be recovered well by clustering the observed 
data. Moreover, reducing the data with PCA before clustering does not lead to an 
improved cluster recovery. Indeed, ICA needs to be applied first to reveal the true 
clusters (for a further discussion of this implication, see the Discussion section). Just 
as was the case for non-reduced data and PCA reduced data, for ICA reduced data 
-although to a smaller extent- recovery decreases when the data contain more noise 
and more clusters exist in the data that show larger overlap.

To evaluate potential main and interaction effects between the manipulated fac-
tors, a mixed-design analysis of variance (ANOVA) was performed using Green-
house-Geisser correction to account for violations of the sphericity assumption 
(Greenhouse and Geisser 1959). Here, the ARI was used as the dependent variable, 
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the aforementioned factors pertaining to data characteristics (see Sect.  4.2) were 
treated as between-subjects factors and the clustering method (four levels) and the 
type of data reduction (i.e., ICA, PCA or none) applied before clustering (three lev-
els) were used as within-subjects factors. When discussing the results of this analy-
sis, only significant effects with a medium effect size as measured by the general-
ized eta squared �2

G
 (Olejnik and Algina 2003) are considered (i.e., 𝜂2

G
> 0.15 ). The 

generalized eta squared was adopted as effect size because for complex designs such 
as the current one this effect size is more appropriate to use than the ordinary—par-
tial—eta squared effect size measure (Bakeman 2005).

The ANOVA table resulting from the analysis is presented in Table 2, only dis-
playing main and interaction effects with an effect size 𝜂2

G
> 0.15 (and p < 0.05 ). 

From this table, it appears that cluster recovery mainly depends on the amount of 
cluster overlap ( �2

G
= 0.91 ), the amount of noise present in the data ( �2

G
= 0.78 ), the 

type of data reduction ( �2
G
= 0.70 ) and the clustering method used ( �2

G
= 0.29 ). In 

particular, as can be seen also in Table 1, cluster recovery deteriorates when clus-
ters overlap more (mean ARI of 0.96, 0.77, 0.44, 0.30 and 0.19 for small, medium, 
large, very large and extreme cluster overlap, respectively), when the noise is the 
data increases (mean ARI of 0.67, 0.67, 0.56 and 0.24 for 10%, 30%, 60% and 80% 
of noise, respectively), when no ICA reduction is performed before clustering (mean 
ARI of 0.74, 0.43 and 0.43 for ICA reduced, PCA reduced and non-reduced data, 
respectively) and when AP and PAM are used compared to when HC is used (mean 
ARI of 0.63, 0.54, 0.48 and 0.48 for Ward’s HC, complete linkage HC, PAM and AP, 
respectively). These main effects, however, are qualified by three two-way interac-
tions. In particular, the amount of cluster overlap interacts both with the type of data 
reduction ( �2

G
= 0.57 ) and the amount of noise in the data ( �2

G
= 0.49 ): the decrease 

Table 2  ANOVA table resulting from the mixed-design ANOVA, considering only main and interaction 
effects with an effect size 𝜂2

G
> 0.15

All values are rounded to two decimal places. All reported effects have p < 0.05. When the sphericity 
assumption was violated, Greenhouse-Geisser corrections were applied to the corresponding degrees of 
freedom. The corrected degrees of freedom were calculated using a correction factor 𝜖 of 0.74 (for ∗ ) or 
0.97 (for †)
Overlap refers to the factor cluster overlap, ICA refers to the type of data reduction, Method refers to the 
factor with the four clustering methods (i.e., AP, PAM, HCW and HCC) as the levels and Noise indicates 
the amount of noise factor

Effect SS effect SS error DF effect DF error F �2
G

Overlap 800.49 10.17 4 720 14165.66 0.91
Noise 298.26 10.17 3 720 7037.35 0.78
ICA 198.67 19.74 1.94† 1396.80† 7245.88 .70
Method 34.17 18.21 2.22∗ 1598∗ 1350.91 0.29
Overlap × ICA 112.38 19.74 7.76† 1396.80† 1024.68 0.57
Noise × ICA 96.44 18.21 2.91† 1396.80† 1172.38 0.53
Noise × Overlap 79.97 10.17 12 720 471.73 0.49
Overlap × Noise × ICA 20.24 18.21 23.28† 1396.80† 219.09 0.46
Overlap × Noise × Method 20.24 18.21 26.64∗ 1598.40∗ 66.68 0.19
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in cluster recovery with increasing cluster overlap is more pronounced when the 
data are not reduced with ICA—compared to when data are ICA reduced—and 
when there is more noise present in the data. The third two-way interaction effect 
refers to the interaction between the amount of noise in the data and the type of data 
reduction ( �2

G
= 0.53 ). In particular, the cluster recovery is less affected by increas-

ing amounts of noise after ICA reduction compared to when no ICA reduction is 
applied. Finally, two sizeable three-way interactions qualify the above discussed 
effects. The first three-way interaction involves the amount of cluster overlap, the 
amount of noise in the data and the type of data reduction ( �2

G
= 0.46 ). In Fig. 4, 

which displays this three-way interaction effect, one can clearly see that the detri-
mental combined effect of larger cluster overlap and more noisy data is way more 
pronounced when the data are not reduced (upper panel of Fig. 4) or PCA reduced 
(middle panel) before clustering compared to when ICA reduction was applied 
(lower panel) before clustering.

The second three-way interaction refers to the amount of overlap between clus-
ters, the amount of noise in the data and which particular clustering method is used 
( �2

G
= 0.19 ). This three-way interaction is presented in Fig. 5 in which it clearly can 

be seen that the cluster recovery deteriorates when both the extent of cluster over-
lap and the amount of noise increases, with this effect being less pronounced for 
the hierarchical clustering using Ward’s method compared to the other clustering 
methods.

Clusterwise SCA-ECP. Table 3 displays the mean ARI value for each cluster 
method after either no reduction, PCA data reduction or ICA data reduction for 

Fig. 4  Mean Adjusted Rand Index (ARI) as a function of the degree of cluster overlap (X-axis), the 
amount of noise (colours) and the data reduction method (top: no reduction; middle: after PCA reduc-
tion; bottom: after ICA reduction). ICA independent component analysis, PCA principal component anal-
ysis (colour figure online)
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a fairly easy condition and a fairly difficult condition of the simulation design. 
Additionally, also the mean ARI values for the results obtained with a Cluster-
wise SCA-ECP applied to the data sets from the same two conditions are shown. 
For both conditions, the mean ARI obtained with Clusterwise SCA-ECP (mean 
ARI of 0.59 and 0.11 for the easy and difficult condition, respectively) is substan-
tially lower than the ARI’s resulting from any of the clustering methods in com-
bination with ICA or PCA reduction before clustering. Even after no reduction at 
all, the ARI’s of the clustering methods outperform Clusterwise SCA-ECP. All in 
all, the results of these two conditions suggest that Clusterwise SCA-ECP fails in 
recovering the clustering structure underlying the data.

Over- and underestimation of Qtrue . Figure  6 displays how the recovery per-
formance (in terms of ARI) is affected by choosing different values of Q for the 
ICA reduction (note that for each patient Qtrue

= 20 ) for each of the four clus-
tering methods and this when looking at a relatively easy (left panel of Fig. 6) 
and a fairly difficult (right panel) condition of the simulation design. The results 
clearly indicate that for the relatively easy condition with 60% noise all methods 
perform excellent when Q (kept equal across patients) is equal to or larger than 

Fig. 5  Mean Adjusted Rand Index (ARI) as a function of the degree of cluster overlap (X-axis), the 
amount of noise (colours) and the clustering method (four panels). AP affinitiy propagation, HCC hier-
archical clustering with complete linkage, HCW hierarchical clustering with Ward’s method, PAM parti-
tioning around medoids (colour figure online)
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Qtrue , which implies that overestimation of Q in this condition does not have a 
detrimental effect on cluster recovery. For the difficult condition with 80% noise, 
Ward’s hierarchical clustering method clearly outperforms the other clustering 
methods when Q is equal to or larger than Qtrue . Overestimation of Q has a small 
positive effect on cluster recovery for PAM and AP, but a less univocal effect for 
the hierarchical clustering methods. When Q is underestimated, cluster recovery 
declines, with this decline being stronger the more Q is lower than Qtrue . In the 
relatively easy condition especially AP and PAM are affected by under-estimation 
(i.e., the decline in recovery starts already at Q = 16 ), whereas hierarchical clus-
tering with complete linkage and to a stronger extent Ward’s hierarchical cluster-
ing are almost not affected by small to moderate amounts of underestimation (i.e., 
both methods perform well as long Q is equal or larger than 10). This implies 
that in this easy condition both hierarchical clustering methods need fewer ICA 
components to arrive at a good clustering solution than AP and PAM. In the diffi-
cult condition, however, all clustering methods suffer from underestimation of Q, 
and this even for small amounts of underestimation. Note that Ward’s hierarchi-
cal clustering in the difficult condition outperforms all other clustering methods, 
except when Q = 2.

Fig. 6  Mean Adjusted Rand Index (ARI) as a function of the number of retained ICA components Q 
(X-axis) and clustering method (colours) for two design conditions (two equally sized clusters with 
medium cluster overlap and 60%—left panel—or 80%—right panel—of noise in the data). AP affinitiy 
propagation, HCC hierarchical clustering with complete linkage, HCW hierarchical clustering with 
Ward’s method, PAM partitioning around medoids (colour figure online)
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5  Illustrative application

5.1  Motivation and data

In this section, the proposed two-step procedure will be illustrated on an empirical 
multi-subject resting-state (i.e., patients were scanned while not engaging in a par-
ticular task) fMRI data set concerning dementia patients. Although these patients 
are diagnosed with either Alzheimer’s disease (AD) or behavioral variant frontotem-
poral dementia (bvFTD), these existing labels will not be taken into account when 
performing the cluster analysis. Previous studies that investigated the brain dysfunc-
tions in these patient groups took the (labels for the) subtypes for granted, often 
focussed on a priori defined brain regions and mainly tried to discriminate each 
patient subtype from healthy controls. For example, it has been shown that -com-
pared to healthy subjects- decreased activity occurs in the default mode network 
(i.e., medial prefrontal cortex, posterior cingulate cortex and the precuneus) in AD 
patients (Greicius et al. 2004) and in the salience network (i.e., the anterior insula 
cortex and dorsal anterior cingulate cortex) for bvFTD patients (Agosta et al. 2013). 
However, by selecting a priori defined regions, analyses may overlook potentially 
relevant brain areas or FC patterns that are involved in these pathologies. Moreover, 
by focusing on the given dementia subtypes, the heterogeneity within each subtype 
is not accounted for. This within-subtype heterogeneity may point at the need for a 
further subdivision of the subtypes. As a solution, a data-driven whole-brain cluster-
ing method may be adopted that allocates patients to homogenous groups based on 
similarities and differences in whole-brain (dys)functioning. As such, heterogeneity 
in brain functioning within patient clusters is decreased. This may in an explorative 
way guide hypotheses about unknown subtypes of dementia, which should be later 
tested in confirmatory studies. Moreover, relevant but yet uncovered FC patterns 
that are able to differentiate between -known and unknown- dementia subtypes may 
get disclosed.

The goal of the current application in which the proposed two-step procedure 
is applied to multi-subject fMRI data regarding dementia patients is to cluster the 
patients on the basis of similarities and differences in the FC patterns underlying 
their data. It has to be stressed that this analysis is performed without using any 
information about the diagnostic labels (i.e., the analysis is completely unsuper-
vised). After clustering the patients, however, the diagnostic labels will be used to 
interpret and validate the derived clustering. To further validate the obtained clus-
tering, an ad hoc procedure is adopted in which the FC patterns in each cluster are 
matched to template FC patterns, allowing to identify the dementia related FC pat-
terns within each cluster (and differences therein between clusters). Such an ad hoc 
procedure is needed as fMRI data are very noise and ICA often retains FC patterns 
that represent (systematic) noise aspects of the data that are not physiologically or 
biologically relevant for dementia (e.g., head motion artefacts). Note that validating 
extracted ICA components is still a vexing issue within the fMRI community. We 
acknowledge that a more rigorous validation procedure is needed to demonstrate the 
existence of a novel –yet undiscovered– subtype of dementia. We believe, however, 
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that such a rigorous validation goes beyond the scope of the current study which 
mainly wants to present a method to cluster patients based on FC patterns.

The data set includes fMRI data for 20 patients, of which 11 are diagnosed as 
AD patients and 9 as bvFTD patients. The data for each patient contains 902,629 
voxels measured at 200 time points (i.e., a 6 minute scan). The data acquisition, pre-
processing (e.g., accounting for movement during a scanning session) and registra-
tion procedure (i.e., the registration of each patient’s brain to a common coordinate 
system of the human brain, see Mazziotta et al. 2001) are fully described in Hafke-
meijer et al. (2015).6

5.2  Data analysis

To make the analysis more feasible, we downsampled the voxels of the data �i of 
each patient such that the spatial resolution of each voxel is reduced from 2 × 2 × 
2mm to 4 × 4 × 4mm. This procedure is performed using the subsamp2 command 
from the FMRIB Software Library (FSL, version 5.0; Jenkinson et  al. 2012). As 
such, the number of voxels in each data set �i is reduced from 902,629 to 116,380. 
Additionally, a brain mask was applied to each data set such that only the voxels 
that are present within the brain are included in the analysis, resulting in a further 
reduction of the number of voxels to 26,647 voxels. As a result, the data used for the 
analysis contains 20 (patients) × 26,647 (voxels) × 200 (time points) = 106,588,000 
data entries.

To analyze the data, as a first step, the dimensionality of the data �i of each 
patient was reduced by means of ICA. To this end, the icafast function of the 
R-package ica (Helwig 2015) was used, and 20 ICA components were retained for 
each patient. We opted for this number of components since this is an often used 
model order for resting-state fMRI data that usually results in FC patterns that show 
a close correspondence to the brain’s known architecture (Smith et al. 2009). Next, 
a dissimilarity matrix was computed by calculating for each patient pair one minus 
the modified RV-coefficient between the ICA components �̂i of the members of the 
patient pair (see the procedure described in Sect. 3.2). In a second step, a hierarchi-
cal cluster analysis using Ward’s method was performed on this dissimilarity matrix 
and the resulting dendrogram was cut at a height such that K = 2, 3 and 4. Due to 
the small number of patients (i.e., 20) in the data set, it did not make much sense to 
check for larger numbers of clusters.

To validate the obtained clustering, the associated cluster specific FC patterns 
were investigated. To this end, for each cluster separately, ICA was performed on the 
temporally concatenated data sets of the patients belonging to that cluster (i.e., the 
original data �i of all patients belonging to a particular cluster were concatenated 
in the temporal dimension). The latter method is known in the literature as group 
ICA (Calhoun et al. 2009) and yields common FC patterns that are representative 
for a group of patients. As the ICA components have no natural order, identifying 

6 We thank the first author for kindly providing the data.
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cluster-specific ICA components related to dementia is a challenging task, which is 
even further complicated by the large amount of noise that is present in fMRI data 
and the fact that ICA may retain irrelevant noise components (e.g., motion artifacts). 
To identify dementia related FC patterns and investigate how these patterns differ 
between clusters, the FC patterns of the obtained clusters were matched on a one-
to-one basis. To this end, the obtained FC patterns in each cluster were compared 
to a reference template consisting of eight known FC patterns, which encompass 
important visual cortical areas and areas from the sensory-motor cortex (see left part 
of Fig. 8). These template FC patterns have been encountered consistently in many 
-mainly healthy- subjects (Beckmann et al. 2005), but disruptions in these FC pat-
terns have also been shown to be related to several mental disorders (i.e., depression 
and other psychiatric disorders, see Greicius et al. 2004; Gour et al. 2014). For each 
template FC pattern in turn, the ICA FC pattern in each cluster was determined that 
has the largest absolute Tucker congruence coefficient (Tucker 1951) with the tem-
plate FC pattern in question. Note that whereas the modified RV coefficient is often 
adopted to assess the similarity of matrices (see Sect. 3.2), the Tucker congruence 
coefficient is a more natural measure to quantify the similarity of vectors (with a 
Tucker congruence value larger than .85 being considered as indicating a satisfac-
tory similarity between vectors, see Lorenzo-Seva and Ten Berge 2006). As such, 
FC patterns from different clusters were matched to each other in a one-to-one fash-
ion (for an example, see Fig. 8).

To evaluate the proposed validation strategy based on group ICA and template 
FC patterns, also a group PCA-based validation strategy was performed. In particu-
lar, for each cluster, the data sets of the patients belonging to that cluster were tem-
porally concatenated and analyzed with PCA. The same matching strategy adopting 
template FC patterns was used to match PCA components across clusters in a one-
to-one fashion. As PCA, as opposed to ICA, has rotational freedom, the matched 
PCA components in each cluster were optimally transformed towards the template 
FC patterns by means of a Procrustes (oblique) rotation.

Further, we investigated the stability of the obtained cluster solution by employ-
ing a bootstrap procedure described in Hennig (2007) and implemented in the R 
package fpc (Hennig 2018). This procedure uses the Jaccard coefficient, which 
quantifies the similarity between sample sets (e.g., two clusterings), as a measure 
of cluster stability. The cluster stability is assessed by computing the average maxi-
mum Jaccard coefficient over bootstrapped dataset, with the maximum being taken 
to account for permutational freedom of the clusters. Here, each cluster receives a 
bootstrapped mean Jaccard value which indicates whether a cluster is stable (i.e., a 
value of .85 or above) or not.

Finally, for comparative purposes, we (1) analysed the data with Clusterwise 
SCA-ECP (with K = 2 clusters and Q = 20 components), (2) applied ICA (with Q 
= 20) in combination with the other clustering methods (with K = 2) and (3) per-
formed an analysis with PCA (instead of ICA) reduction with Q = 20 and an analy-
sis without ICA reduction (i.e., clustering the �′

i
s directly) before clustering (with 

always K = 2 clusters). To perform Clusterwise SCA-ECP, we used the Matlab code 
of De Roover et al. (2012) and employed a multi-start procedure with 25 starts to 
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avoid suboptimal cluster solutions representing local minima of the Clusterwise 
SCA-ECP loss function.

5.3  Results

Cluster solution. Table 4 shows the clustering obtained with the proposed two-step 
procedure using ICA with Ward’s HC for K = 2 , 3 and 4 clusters. The two-cluster 
solution yields two more or less equally sized clusters, whereas the three- and four-
cluster solution results in some clusters being very small. In particular, compared to 
the two-cluster solution, the three-cluster solution places three patients in a separate 
cluster (i.e., AD8, AD9 and AD11), whereas the four-cluster solution on top places 
a single patient into a separate cluster (i.e., FTD8). Since the cluster solutions with 
K = 3 and K = 4 have clusters with very few members (e.g., singleton cluster 4 for 
K = 4 ) and investigating the FC patterns underlying such small clusters might not be 
informative at all, only the solution with two clusters seems to make sense and will 
therefore be further discussed.

The two-cluster solution of the two-step procedure using ICA reduction and 
Ward’s method is displayed in Fig. 7 as a dendrogram, which is cut at a height of 
1 resulting in a partition of the patients into K = 2 clusters (indicated by lightgrey 
dashed rectangles). As can be seen in this figure (and also from the second column 

Table 4  Patient partition 
obtained by applying the two-
step procedure (using ICA with 
Q = 20 reduction and Ward’s 
hierarchical clustering) for 
K = 2 , 3 and 4

AD Alzheimer’s disease,  FTD Frontotemporal Dementia

K = 2 K = 3 K = 4

AD1 1 1 1
AD2 1 1 1
AD3 2 2 2
AD4 1 1 1
AD5 2 2 2
AD6 1 1 1
AD7 1 1 1
AD8 1 3 3
AD9 1 3 3
AD10 1 1 1
AD11 1 3 3
FTD1 2 2 2
FTD2 2 2 2
FTD3 2 2 2
FTD4 2 2 2
FTD5 2 2 2
FTD6 1 1 1
FTD7 1 1 1
FTD8 2 2 4
FTD9 1 1 1
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of Table  4/5), eight patients were allocated to the blue cluster (indicated by the 
blue branches), whereas the red cluster (indicated by the red branches) contains 12 
patients. Regarding the stability of the obtained two-cluster solution, the blue and 
red cluster yielded a bootstrapped mean Jaccard coefficient of 0.87 and 0.85, respec-
tively. This indicates that both clusters are stable.

Table 5 shows the partitions with K = 2 obtained for each type of data reduc-
tion (either using ICA reduction, PCA reduction or no reduction) in combina-
tion with each of the four clustering methods and for Clusterwise SCA-ECP. The 
obtained partitions with the four clustering methods after both ICA reduction and 
no reduction show similar results. In particular, when comparing two partitions 
at most five patients (but often only one or two) switch their cluster, with the 
patients that switch always belonging to the same cluster in both partitions. How-
ever, for the PCA reduction method, only the partition obtained with Ward’s HC 
equals one of the above mentioned partitions (i.e., the partition obtained with AP 
and complete linkage hierarchical clustering after no reduction). The partitions 
from PAM, AP and the hierarchical clustering using complete linkage, all do not 
make much sense as they allocate 17 patients to one cluster and only 3 patients 

Fig. 7  Dendrogram obtained after applying the two-step procedure with ICA with Q = 20 and Ward’s 
hierarchical clustering to the illustrative multi-subject fMRI data set regarding dementia patients. The 
tree is cut such that K = 2 clusters are retained, which are indicated with branches in a different colour 
(blue vs. red) and by lightgrey dashed rectangles. The obtained clustering is compared with the existing 
patient labels: bvFTD patients are indicated with golden nodes, whereas AD patients are indicated with 
green nodes. The distance at which patients/patient clusters are merged is indicated on the Y-axis (colour 
figure online)
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to the second cluster. Finally, the partition obtained with Clusterwise SCA-ECP 
does not seem to be related to any of the obtained partitions.

Fig. 8  Cluster specific FC patterns (matched to a template in terms of Tucker congruence value) for the 
clusters obtained with the two-step procedure (ICA with Ward’s hierarchical clustering) applied to the 
dementia data. The characteristic FC patterns for each cluster are estimated by performing Group ICA 
on the data per cluster. In the left panel (yellow), eight known FC patterns from a template from Beck-
mann et al. (2005) are displayed (in the rows). Note that each FC pattern is presented with three pictures 
as the brain can be displayed in three different planes: the sagittal plane (first picture), the coronal plane 
(second picture) and the axial plane (third picture). In the middle panel (blue) the eight estimated FC pat-
terns, which are most similar to the template patterns, for the blue cluster (mainly BvFTD patients) are 
displayed. In the right panel (red), the eight estimated FC patterns -matched to the templates- for the red 
cluster (mainly AD patients) are visualised. The eight known ’template’ FC patterns refer to eight impor-
tant brain networks: a medial visual network,  b lateral visual network, c salience network, d sensorimo-
tor network,  e default mode network,  f executive control network,  g right frontotemporal network and  
h left frontotemporal network (colour figure online)
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To validate the obtained two-cluster solution, it was compared to the diag-
nostic labels by means of the ARI coefficient (see Sect.  4.3) and the balanced 
accuracy, which is often used to indicate classification performance (García et al. 
2009). It appears, as can be seen in the dendrogram in Fig. 7, that the blue clus-
ter mainly consists of bvFTD patients (i.e., six out of eight) which are indicated 
with golden nodes, whereas nine out of twelve of the patients in the red clus-
ter are diagnosed with AD (green nodes). It can be concluded that the obtained 
clusters only partially correspond with the diagnostic labels. In particular, the 
balanced accuracy of the obtained clustering is 0.75 and the ARI equals 0.21. 
This demonstrates that differences in FC patterns do not fully correspond with 
the known dementia subtypes. This is in line with previous research that showed 
that supervised learning methods can predict dementia subtype membership to an 
acceptable large extent—but not perfectly—based on fMRI information alone (de 
Vos et al. 2018). Clusterwise SCA-ECP yields a clustering that does not capture 
the actual diagnosis of the patients at all: balanced accuracy = 0.51 and ARI = 
−0.05, which for both measures are at chance level (also see Table 5). Compared 
to ICA with Ward’s HC, ICA with single linkage hierarchical clustering recov-
ers the diagnostic labels to the same extent (balanced accuracy = 0.77 and ARI 
= 0.21), whereas the diagnostic labels are disclosed to a bit lesser extent by ICA 
with AP and PAM (balanced accuracy = 0.70 and ARI = 0.12). When applying 
the clustering methods after a PCA reduction, only Ward’s HC yields a cluster-
ing that corresponds to the diagnostic labels on an above chance level (balanced 
accuracy = 0.75 and ARI = 0.21), whereas the other three clustering methods 
after PCA reduction do not capture the diagnostic labels at all (all ARI’s = − 
0.02 and balanced accuracy’s = 0.25). Remarkably, when applying the clustering 
methods without a dimension reduction, the results are very similar to the results 
with ICA reduction. In particular, the balanced accuracy and ARI values are 0.75 
and 0.21 for all four clustering methods. Note, however, that an additional analy-
sis using an ICA reduction with Q=5 components (instead of 20) resulted in a 
balanced accuracy of 0.80 and an ARI of 0.33 for Ward’s hierarchical clustering 
(see Table 5). This suggests that taking a smaller number of components than the 
initial chosen number of Q = 20 components, may result in a partition that better 
captures the two existing patient groups.

Cluster specific FC patterns. To interpret and compare the underlying FC pat-
terns for the two clusters to each other, in Fig.  8, we plotted each template FC 
pattern (left part of the figure) against the component in the first (middle part, in 
red) and second (right part, in blue) cluster (obtained with the two-step approach 
with ICA and Ward’s hierarchical clustering) which resembles the template FC 
pattern in question the most. As such, a one-to-one mapping of the FC patterns in 
both clusters is obtained. As can be seen in Fig. 8, qualitative differences between 
(some) FC patterns of both clusters exist. For example, a clear difference is vis-
ible between the estimated salience network (template C in Fig.  8) of the blue 
cluster (middle panel, mainly bvFTD) and red cluster (right panel, mainly AD). 
In particular, the salience network seems more devastated for bvFTD (blue clus-
ter) than for AD (red cluster) patients. This result is in line with previous research 
that demonstrated a diminished activity within the salience network especially 
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for bvFTD patients (Agosta et  al. 2013). Further, for some templates, like the 
right and left frontotemporal network (template G and H), a rather similar FC 
pattern is found for AD patients but not for bvFTD patients, implying that these 
FC patterns are less pronounced for bvFTD patients than for AD patients. For the 
default mode network (template E), however, no clear differences between both 
clusters are visible, which contrasts with previous findings.

Table 6 displays, for each template FC pattern, the absolute Tucker congruence 
coefficient between the template in question and the matched FC pattern from 
each cluster. From this table, one can see that, overall, the two-step procedure 
with Ward’s hierarchical clustering finds FC patterns that match the template FC 
patterns to some extent (a mean Tucker congruence of 0.49 and 0.52 for the blue 
and red cluster, respectively).

The cluster specific FC patterns obtained with Clusterwise SCA-ECP before (left 
panels) and after an orthogonal rotation with varimax (right panels) are displayed in 

Fig. 9  Cluster specific FC patterns (matched to a template) obtained from the Clusterwise SCA-ECP 
analysis applied to the dementia data. Note that each FC pattern is presented with three pictures as the 
brain can be displayed in three different planes: the sagittal plane (first picture), the coronal plane (sec-
ond picture) and the axial plane (third picture). The first two columns (one for each cluster) refer to the 
unrotated FC patterns obtained with the Clusterwise SCA-ECP analysis. The last two columns show 
varimax rotated FC patterns of the Clusterwise SCA-ECP solution. Each FC pattern (in the rows) is opti-
mally matched in terms of Tucker congruence value to one of the eight known FC patterns (displayed in 
Fig. 8) from a template from Beckmann et al. (2005). The eight known ’template’ FC patterns refer to 
eight important brain networks: a medial visual network,  b lateral visual network,  c salience network,  
d sensorimotornetwork,  e default mode network,  f executive control network,  g right frontotemporal 
network and  h left frontotemporal network (colour figure online)



 Behaviormetrika

1 3

Fig. 9. In this figure, it clearly can be seen that Clusterwise SCA-ECP does not yield 
FC patterns that are related to dementia or to relevant differences between dementia 
subtypes. In particular, Clusterwise SCA-ECP yields FC patterns that encompass 
too large brain regions, which can be a consequence of Clusterwise SCA-ECP only 
enforcing orthogonality but not spatial independence and non-Gaussianity on the 
FC patterns. Moreover, as can be seen in Table 6, the cluster specific FC patterns 
obtained with (an unrotated) Clusterwise SCA-ECP match the template FC patterns 
to a smaller extent (a mean Tucker congruence of 0.35 and 0.41 for cluster 1 and 
2, respectively) than the FC patterns from the two-step procedure (i.e., ICA with 
Ward’s HC followed by group ICA). This result is also true after a varimax rotation 
of the Clusterwise SCA-ECP solution (i.e., mean Tucker congruence of 0.37 and 
0.42 for cluster 1 and 2, respectively).

Applying a Group PCA (instead of Group ICA) based validation strategy to the 
clusters obtained with the two-step procedure (ICA with Ward’s HC) resulted in 
FC patterns (not shown) that have no clear physiological meaning. Moreover, the 
obtained FC patterns match the template patterns to a smaller extent than the pat-
terns resulting from Group ICA (i.e., a mean Tucker congruence of 0.34 for both 
clusters). Optimally (obliquely) rotating these FC patterns towards the template pat-
terns did not substantially improve the FC patterns overall (in Table 6: mean Tucker 
values of 0.35 and 0.37) and also did not result in meaningful FC patterns (see right 
panels of Fig. 10). Fully exploiting the rotational freedom of Clusterwise SCA-ECP 
(left panels of Fig. 10) by transforming the SCA-ECP components in an optimal way 
towards the template FC patterns by means of a Procrustes (oblique) rotation does 
not lead to cluster specific FC patterns that are easy to interpret or that are physi-
ologically meaningful. The mean Tucker congruence values, however, become a lit-
tle bit larger than those associated with the FC patterns from Group ICA (i.e., 0.52 
and 0.56). This indicates that a large(r) Tucker congruence value alone is not enough 

Fig. 10  Cluster specific FC patterns (matched to a template) of the Clusterwise SCA-ECP analysis after 
Procrustes rotation and the two-step procedure (ICA with Ward’s hierarchical clustering) with Group 
PCA and Procrustes rotation applied to the dementia data. Note that each FC pattern is presented with 
three pictures as the brain can be displayed in three different planes: the sagittal plane (first picture), the 
coronal plane (second picture) and the axial plane (third picture). The second and third columns (one for 
each cluster) refer to the Procrustes rotated FC patterns obtained with the Clusterwise SCA-ECP analy-
sis. The last two columns show the FC patterns obtained by applying Group PCA with Procrustes rota-
tion to the clusters from the two-step procedure (ICA with Ward’s HC). Each FC pattern (in the rows) is 
optimally matched in terms of Tucker congruence value to one of two known FC patterns from a tem-
plate from  Beckmann et al. (2005). After this matching procedure, the FC patterns are optimally rotated 
to the template FC patterns using a Procrustes (oblique) rotation. The two known ’template’ FC patterns 
refer to two important brain networks relevant for dementia: (1) default mode network (template E in 
Fig. 8; top row) and (2) salience network (template C in Fig. 8; bottom row)
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to consider a FC pattern as substantively meaningful. Looking at Tucker congru-
ence values, however, can help to identify the FC patterns that are worth for further 
investigation.

6  Discussion

A new avenue in neuroscientific research pertains to clustering patients based on 
multi-subject fMRI data to, for example, obtain a categorization of mental disor-
ders (e.g., dementia and depression) in terms of brain dysfunctions. This search 
for a brain-based categorization of mental disorders, which fits nicely within the 
promising trend of personalized/precision psychiatry (Fernandes et  al. 2017), 
may result in improved treatments and outcomes for patients and enhance the 
early detection of patients at risk (Insel and Cuthbert 2015). However, due to the 
three-way nature of multi-subject fMRI data, most commonly adopted clustering 
methods cannot be used to this end in a straightforward way. Therefore, in this 
article, a two-step procedure was proposed that consists of (1) reducing the data 
with ICA and (2) clustering the patients into homogenous groups based on the 
(dis)similarity between patient pairs in terms of ICA components/FC patterns as 
measured by the modified RV-coefficient.

An extensive simulation study showed that our two-step procedure adopting 
ICA and Ward’s hierarchical clustering performs well in general and is superior 
to the two-step procedure using ICA with one of the other clustering methods 
(i.e., AP, PAM and complete linkage hierarchical clustering). The cluster recov-
ery obtained with Ward’s hierarchical clustering is excellent to good, except 
when clusters overlap to a very large extent and the data contains large amounts 
of noise. Further, not reducing the data with ICA or reducing the data with PCA 
prior to clustering seriously affects the cluster recovery and this especially for 
AP and PAM. When the overlap between clusters is large and/or when the data 
are very noisy, the performance of AP, PAM and -to a lesser extent- complete 
linkage hierarchical clustering deteriorates seriously, whereas hierarchical clus-
tering with Ward’s method is less affected. Moreover, these effects are way more 
pronounced when the original data are clustered without performing first an ICA 
reduction or when the data are reduced with PCA before clustering. Interestingly, 
when the clusters have a small overlap, Ward’s hierarchical clustering also per-
forms excellent when PCA reduction or no ICA reduction is performed before 
clustering, with this to a smaller extent being true for the other clustering meth-
ods. Finally, the two-step procedure clearly outperforms Clusterwise SCA-ECP 
in terms of retrieving the correct clustering underlying the data. We conjecture 
that the superior performance of the two-step procedure using ICA over Cluster-
wise SCA-ECP and the two-step procedure with PCA before clustering can be 
explained by the fact that PCA/SCA type of models do not look for independent 
components that are non-Gaussian. The reason for this is that the latter type of 
components can only be disclosed by using higher-order statistics, which ICA is 
relying on, whereas PCA/SCA only uses second-order statistics.
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A reoccurring result in our study was that, compared to performing no ICA or 
PCA reduction, a (clearly) better clustering was obtained when the data were first 
reduced with ICA. This implies that when the cluster structure is determined by 
similarities and differences in FC patterns (i.e., independent and non-Gaussian com-
ponents), this cluster structure cannot be recovered well by clustering the original or 
PCA reduced data. Indeed, in this case, ICA needs to be applied first to reveal the 
true clusters. An important issue when performing ICA pertains to determining an 
optimal number of independent components to extract. Our results show that retain-
ing too few components has a detrimental effect on the clustering, which implies 
that the removed components contain relevant information to uncover the clusters. 
Extracting too many components, however, does not seem to harm cluster recovery 
(at least not for the maximal number of components tested in our study), suggest-
ing that adding irrelevant components does not mask the cluster structure (i.e., the 
cluster information in the relevant components is strong enough to reveal the true 
clusters).

The good performance of the two-step procedure with ICA and Ward’s hierar-
chical clustering was also illustrated in an application of the procedure to empiri-
cal multi-subject fMRI data regarding dementia patients. In particular, the two-step 
procedure yielded a clustering that was stable and that corresponded to a reason-
able extent with the diagnostic labels (i.e., known/given dementia subtypes). Fur-
ther, the obtained cluster-specific FC patterns suggested that the salience network is 
more disrupted for the cluster containing mainly bvFTD patients than for the clus-
ter consisting predominantly of AD patients, which confirms results found in previ-
ous studies. Interestingly, applying PCA (for Ward’s HC) or no data reduction (for 
all clustering methods) before clustering resulted in cluster solutions that captured 
the diagnostic labels to the same extent as ICA data reduction (for all clustering 
methods). It should not be forgotten that fMRI data are very noisy, even after pre-
processing the data, and that the FC patterns underlying the data of both known 
subtypes of dementia patients may overlap to a serious extent, with only small dif-
ferences in FC patterns between both subtypes being related to dementia. Indeed, 
in the simulation study, when the data contains large amounts of noise and clusters 
overlap to a substantial extent, all methods perform more or less at the same (bad) 
level. Finally, Clusterwise SCA-ECP obtained a clustering that did not match the 
diagnostic labels at all and retained cluster specific FC patterns, even after exploit-
ing the rotational freedom of Clusterwise SCA-ECP, that did not show any relevance 
for dementia.

Limitations. Obviously, several limitations apply to the current study. Below, 
three limitations are discussed that pertain to: (1) the model selection problem, (2) 
the set of clustering methods adopted in this study and (3) the two-step nature of the 
proposed procedure.

Regarding the model selection problem, it should be noted that in the simula-
tion study it was assumed that the true number of clusters K and—for the ICA/
PCA reduction—the true number of components Q underlying the data was known. 
Moreover, the number of components Q underlying each patient’s fMRI data was 
assumed to be the same for each patient. In empirical applications, of course, the 
optimal number of clusters and components for a data set at hand is not known a 
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priori and has to be determined by the researcher. Wrongly specifying the true num-
ber of components may negatively affect the retrieval of the true cluster structure 
underlying a given data set. It can be conjectured that an overestimation of the true 
number of components may retain random information that is not related to the clus-
ter structure. Incorporating this information in the clustering phase may obscure the 
true cluster structure (Brusco 2004). Similarly, an underestimation of the number 
of components may lead to a sub-optimal cluster configuration since relevant clus-
ter related information may be excluded during the ICA process. A re-analysis of 
a limited number of simulated data sets showed that under-estimation of the num-
ber of ICA components negatively affects the cluster recovery, whereas no negative 
effect has been encountered for overestimating Q. Future research should investigate 
more thoroughly how and to which extent wrongly specifying the number of com-
ponents influences the cluster recovery, herewith allowing the number of compo-
nents Q to differ across patients. Moreover, more work needs to be done to study the 
performance of several procedures to determine the optimal number of components 
and clusters. Especially relevant and promising in this regard is the CHull method 
(Ceulemans and Kiers 2006; Wilderjans et  al. 2013; Vervloet et  al. 2017) which 
simultaneously determines the optimal number of clusters and components (per 
patient) by finding a good balance between model fit and model complexity, with the 
latter being a combination of the number of components (per patient) and clusters.

A second limitation of this study pertains to the set of selected clustering meth-
ods, which is restricted to popular methods that can deal with (dis)similarities 
between patients as input. As is well-known, however, the type of clustering method 
used seriously determines the clustering result. For example, when the true clusters 
are non-spherical or non-convex, clustering methods like k-means fail to uncover 
the clusters in the data as such methods are only able to deal with spherical and 
convex cluster structures. Future studies therefore should investigate the nature of 
the patient clusters underlying multi-subject fMRI data and should compare several 
clustering methods in their ability to retrieve such patient clusters.

As a final limitation, the proposed procedure consists of two steps where, first, 
ICA components are extracted from each patient’s data and, next, clustering is per-
formed on the basis of—the similarity between—these ICA components. A clear 
disadvantage of this approach is that the component extraction is performed sep-
arately from the clustering, which is referred to in the literature -and advocated 
against- as tandem analysis (Arabie and Hubert 1996; De Soete and Carroll 1994; 
Vichi and Kiers 2001; Timmerman et al. 2010; Steinley et al. 2012). As such, it is 
not guaranteed that the extracted ICA components contain information that allows 
a clear clustering of the patients. A better alternative would be to perform ICA and 
clustering simultaneously, which is an avenue for further study. A useful point of 
departure for this endeavour is similar work on the combination of clustering with 
Simultaneous Component Analysis (SCA; De Roover et al. 2012). In this approach, 
a combined model for SCA and clustering is used and the parameters of the model 
are estimated by means of an Alternating Least Squares (ALS) algorithm. The cur-
rent study investigated the performance of Clusterwise SCA-ECP for the empiri-
cal application and a subset of the simulation design and results indicated that this 
method is not able to retrieve a correct clustering and/or meaningful FC patterns 
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underlying the data. A possible reason could be that meaningful FC patterns in rest-
ing-state fMRI data are –more or less– mutually (spatially) independent and non-
Gaussian distributed, which can only be disclosed using higher-order statistics (i.e., 
third and higher moments of the data). As Clusterwise SCA-ECP relies on second-
order information (i.e., variances and covariances) solely, meaningful FC patterns 
may not get estimated correctly which may hamper the discovery of the true clus-
ters underlying the data. It has to be noted that other—less constrained—variants 
of Clusterwise SCA exist (e.g., Clusterwise SCA-P, see De Roover et al. 2013) that 
may show improved results, but investigating these variants is left for future stud-
ies. In the same vein as Clusterwise SCA, a combined model for ICA and cluster-
ing could be proposed and its parameters could be estimated by ALS. A drawback, 
however, of such an ALS algorithm is the problem of local minima. A commonly 
adopted way to resolve this issue is to make use of a multi-start procedure where the 
algorithm is run with different (pseudo-) random and/or rational initial patient parti-
tions (Ceulemans et al. 2007; Steinley 2003). In this regard, the two-step procedure 
using ICA in combination with Ward’s hierarchical clustering that was proposed in 
this study could be employed to identify a sensible initial -rational- patient partition. 
The performance of our two-step procedure as a rational start for a method that per-
forms ICA and clustering simultaneously is a topic for further study.
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