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Abstract
We study the distribution of additive functionals of reset Brownian motion, 
a variation of normal Brownian motion in which the path is interrupted at a 
given rate and placed back to a given reset position. Our goal is two-fold: (1) 
for general functionals, we derive a large deviation principle in the presence of 
resetting and identify the large deviation rate function in terms of a variational 
formula involving large deviation rate functions without resetting. (2) For 
three examples of functionals (positive occupation time, area and absolute 
area), we investigate the effect of resetting by computing distributions and 
moments, using a formula that links the generating function with resetting to 
the generating function without resetting.

Keywords: Brownian motion, resetting, additive functionals, scaling, large 
deviations

(Some figures may appear in colour only in the online journal)

1.  Introduction

In this paper we study a variation of Brownian motion (BM) that includes resetting events 
at random times. Let (Wt)t�0 be a BM on R  and consider a Poisson process on [0,∞) with 

intensity r ∈ (0,∞) and law P, producing N(T) random points {σi}N(T)
i=1  in the time interval 

[0, T], satisfying E[N(T)] = rT . From these two processes, we construct the reset Brownian 
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motion (rBM), (Wr
t )t�0, by ‘pasting together’ N(T) independent trajectories of the BM, all 

starting from a reset position x∗ ∈ R and evolving freely over the successive time lapses of 
length τi with

τi = σi+1 − σi, i = 0, . . . , N(T)− 1,� (1.1)

with σ0 = 0. More precisely, Wr
t = x∗ + Wi

t  for t ∈ [σi,σi+1) with (Wi
t )t�0, i = 0, . . . , 

N(T)− 1, independent BMs starting at 0. Without loss of generality, we assume that x*  =  0. 
We denote by Pr the probability with respect to rBM with reset rate r.

The properties of rBM, and reset processes in general [29], have been the subject of several 
recent studies, related to random searches and randomized algorithms [2–4, 6, 8, 10, 12, 19, 
23] (which can be made more efficient by the addition of resetting [11]), queueing theory 
(where resetting accounts for the accidental clearing of queues or buffers), as well as birth–
death processes [7, 9, 20, 26, 30, 31] (in which a population is drastically reduced as a result 
of natural disasters or catastrophes). In biology, the attachment, targeting and transcription 
dynamics of enzymes, proteins and other bio-molecules can also be modelled with reset pro-
cesses [5, 15, 27, 32–34, 39].

Resetting has the effect of creating a ‘confinement’ around the reset position, which can 
bring the process from being non-stationary to being stationary. The simplest example is rBM, 
which has a stationary density ρ  given by [10]

ρ(x) =
√

r
2

e−
√

2r|x|, x ∈ R.� (1.2)

The motivation for the present paper is to study the effect of the confinement on the distribu-
tion of additive functionals of rBM of the general form

FT =

∫ T

0
f (Wr

t ) dt,� (1.3)

where f  is a given R-valued measurable function. We are especially interested in studying 
the effect of resetting on the large deviation properties of these functionals, and to determine 
whether resetting is ‘strong enough’ to bring about a large deviation principle (LDP) for the 
sequence of random variables (T−1FT)T>0 when it does not satisfy the LDP without resetting.

For this purpose, we use a recent result [27, 28] based on the renewal structure of reset 
processes that links the Laplace transform of the Feynman-Kac generating function of FT with 
resetting to the same generating function without resetting. Additionally, we derive a vari-
ational formula for the large deviation rate function of (T−1FT)T>0, obtained by combining 
the LDPs for the frequency of resets, the duration of the reset periods, and the value of FT in 
between resets. This variational formula complements the result based on generating func-
tions by providing insight into how a large deviation event is created in terms of the constitu-
ent processes. These two results are stated in sections 2 and 3 and, in principle, apply to any 
functional FT of the type defined in (1.3). We illustrate them for three particular functionals:

AT =

∫ T

0
1[0,∞)(Wr

t ) dt, BT =

∫ T

0
Wr

t dt, CT =

∫ T

0
|Wr

t | dt,� (1.4)

i.e. the positive occupation time, the area and the absolute area (the latter can also be inter-
preted as the area of rBM reflected at the origin). These functionals are discussed in sec-
tions 4–6, respectively.

It seems possible to extend part of our results to general diffusion processes with resetting, 
although we will not attempt to do so in this paper. The advantage of focusing on rBM is that 
we can obtain exact results.
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2. Two theorems

In this section we present two theorems that will be used to study distributions (theorem 2.1) 
and large deviations (theorem 2.2) associated with additive functionals of rBM.

The first result is based on the generating function of FT:

Gr(k, T) = Er
[
ekFT

]
, k ∈ R, T ∈ [0,∞),� (2.1)

where Er denotes the expectation with respect to rBM with rate r. The Laplace transform [40] 
of this function is defined as

G̃r(k, s) =
∫ ∞

0
dT e−sT Gr(k, T), k ∈ R, s ∈ [0,∞).� (2.2)

Both may be infinite for certain ranges of the variables. The same quantities are defined 
analogously for the reset-free process and are given the subscript 0. The following theorem 
expresses the reset Laplace transform in terms of the reset-free Laplace transform.

Theorem 2.1.  If k ∈ R and s ∈ [0,∞) are such that rG̃0(k, r + s) < 1, then

G̃r(k, s) =
G̃0(k, r + s)

1 − rG̃0(k, r + s)
.� (2.3)

Proof.  Theorem 2.1 was proved in [27] with the help of a renewal argument relating the 
process with resetting to the one without resetting. For completeness we write out the proof. 
For fixed T, split according to whether the first reset takes place at 0 < t � T  or t  >  T:

Er[ekFT
]
=

∫ T

0
dt re−rt E0

[
ekFt

]
Er

[
ekFT−t

]
+

∫ ∞

T
dt re−rt E0

[
ekFT

]
.� (2.4)

Substitute this relation into (2.1) and afterwards into (2.2), and interchange the integration 
over T and t, to get

G̃r(k, s) =
∫ ∞

0
dt re−rt E0

[
ekFt

]
e−st

∫ ∞

t
dT e−s(T−t) Er

[
ekFT−t

]
+

∫ ∞

0
dT e−rT e−sT E0

[
ekFT

]

= r
(∫ ∞

0
dt e−(r+s)t E0

[
ekFt

])(∫ ∞

0
dT ′ e−sT′

Er
[
ekFT′

])
+

∫ ∞

0
dT e−(r+s)T E0

[
ekFT

]

= rG̃0(k, r + s)G̃r(k, s) + G̃0(k, r + s).
�

(2.5)

Solving for G̃r(k, s), we get (2.3).� □ 

As shown in [27], theorem 2.1 can be used to study the effect of resetting on the distribution 
of FT. In particular, if the dominant singularity of G̃r(k, s) is a single pole, then theorem 2.1 can 
be used to get the LDP with resetting, under the assumption that

∀ T > 0: G0(k, T) exists for k in an open neighbourhood of 0 in R.� (2.6)

In theorem 2.2 below we show that, for every r  >  0, (T−1FT)T>0 satisfies the LDP on R  with 
speed T. Informally, this means that

∀φ ∈ R :
Pr(T−1FT ∈ dφ)

dφ
= e−Tχr(φ)+o(T), T → ∞,� (2.7)

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001
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where χr : R → [0,∞) is the rate function. See appendix A for the formal definition of the 
LDP.

Theorem 2.2 below provides a variational formula for χr  in terms of the rate functions of 
the three constituent processes underlying FT, namely (see [16, chapters I–II]):

	(1)	�The rate function for (T−1N(T))T>0, the number of resets per unit of time:

Ir(n) = n log
(n

r

)
− n + r, n ∈ [0,∞).� (2.8)

	(2)	�The rate function for (N−1 ∑N
i=1 δτi)N∈N, the empirical distribution of the duration of the 

reset periods:

Jr(µ) = h(µ | Er), µ ∈ P([0,∞)).� (2.9)

		 Here, P([0,∞)) is the set of probability distributions on [0,∞), Er  is the exponential 
distribution with mean 1/r, and h(· | ·) denotes the relative entropy

h(µ | ν) =
∫ ∞

0
µ(dx) log

[
dµ
dν

(x)
]

, µ, ν ∈ P([0,∞)).� (2.10)

	(3)	�The rate function for (N−1 ∑N
i=1 Fτ ,i)N∈N, the empirical average of i.i.d. copies of the 

reset-free functional Fτ  over a time τ :

Kτ (u) = sup
v∈R

{uv − Mτ (v)}, u ∈ R, τ ∈ [0,∞).� (2.11)

		 Here, Mτ (v) = logE0
[
evFτ

]
 is the cumulant generating function of Fτ  without reset and 

we require, for all τ ∈ [0,∞), that Mτ  exists in an open neighbourhood of 0 in R  (which 
is equivalent to (2.6)). It is known that Kτ is smooth and strictly convex on the interior of 
its domain (see [16, chapter I]).

Theorem 2.2.  For every r  >  0, the family (Pr(T−1FT ∈ · ))T>0  satisfies the LDP on R  with 
speed T and with rate function χr  given by

χr(φ) = inf
(n,µ,w)∈Φ(φ)

{
Ir(n) + nJr(µ) + n

∫ ∞

0
µ(dt)Kt(w(t))

}
, φ ∈ R,

� (2.12)

where

Φ(φ) =

{
(n,µ, w) ∈ [0,∞)× P([0,∞))× B([0,∞);R) : n

∫ ∞

0
µ(dt)w(t) = φ

}
� (2.13)

with B([0,∞);R) the set of Borel-measurable functions from [0,∞) to R .

Proof.  The LDP for (T−1FT)T>0 follows by combining the LDPs for the constituent pro-
cesses and using the contraction principle [16, chapter III]. The argument that follows is infor-
mal. However, the technical details are standard and are easy to fill in.

First, recall that N(T) is the number of reset events in the time interval [0, T]. By Cramér’s 
theorem [16, chapter I], (T−1N(T))T>0 satisfies the LDP on [0,∞) with speed T and with rate 
function Ir in (2.8), because resetting occurs according to a Poisson process with intensity r. 
This rate function has a unique zero at n  =  r and takes the value r at n  =  0.

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001
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Next, consider the empirical distribution of the reset periods,

Lm =
1
m

m∑
i=1

δτi .

� (2.14)

By Sanov’s theorem [16, chapter II], (Lm)m∈N satisfies the LDP on P([0,∞)), the space of 
probability distributions on [0,∞), with speed m and with rate function Jr in (2.9). This rate 
function has a unique zero at µ = Er.

Finally, consider the empirical average of N independent trials {Fτ ,i}N
i=1 of the reset-free 

process of length τ ,

mN =
1
N

N∑
i=1

Fτ ,i.� (2.15)

By Cramér’s theorem, (mN)N∈N satisfies the LDP on [0,∞) with speed N and with rate func-
tion Kτ in (2.11). This rate function has a unique zero at u = E0(Fτ ).

Now, the probability that nt µ(dτ) excursion times of length τ  contribute an amount 
u nt µ(dτ) to the integral equals

e−nt µ(dτ) Kτ (u)+o(nt)� (2.16)

for any u ∈ R. If we condition on N(T) = nT  and LN(T) = µ, and pick w ∈ B([0,∞);R), 
then the probability that nT duration times contribute an amount φ nT  to the integral, with

φ = n
∫ ∞

0
µ(dt)w(t),� (2.17)

equals

e−nT
∫ ∞

0 µ(dt)Kt(w(t))+o(nT).� (2.18)

Therefore, by the contraction principle [16, chapter III],

Pr(T−1FT ∈ dφ)
dφ

= e−Tχr(φ)+o(T),� (2.19)

where χr(φ) is given the variational formula in (2.12).� □ 

Remark 2.3.  A priori, theorem 2.2 is to be read as a weak LDP: the level sets of χr  need not 
be compact, e.g. it is possible that χr ≡ 0. Under additional assumptions, χr  has compact level 
sets, in which case theorem 2.2 can be read as a strong LDP. See appendix A for more details.

We will see that the three functionals in (1.4) have rate functions of different type, namely, 
χr  is:

	AT:	�zero at 12, strictly positive and finite on [0, 1] \ { 1
2}, infinite on R \ [0, 1] (strong LDP).

	BT:	�zero on R  (weak LDP).
	CT:	�zero on [1/

√
2r,∞), strictly positive and finite on (0, 1/

√
2r), infinite on (−∞, 0] (strong 

LDP).

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001
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3. Two properties of the rate function

The variational formula in (2.12) can be used to derive some general properties of the rate 
function with resetting. In this section, we show that the rate function is flat beyond the mean 
with resetting provided the mean without resetting diverges, and is quadratic below and near 
the mean with resetting. Both properties will be illustrated in section 6 for the absolute area 
of rBM.

3.1.  Zero rate function above the mean

For the following theorem, we define

φ∗
r = lim

T→∞
Er[T−1FT ], r � 0.

� (3.1)
Moreover, we must assume that f � 0 in (1.3), and that there exists a C ∈ (0,∞) such that

E[ f (Wt)
2] � C E[ f (Wt)]

2 ∀t � 0.� (3.2)

Remark 3.1.  Assumption (3.2) holds for f (x) = |x|γ, x ∈ R, and any γ ∈ [0,∞), and for 
f (x) = 1[0,∞)(x), x ∈ R.

Theorem 3.2.  Suppose that f  satisfies (3.2) and that φ∗
0 = ∞. For every r  >  0, if φ∗

r < ∞, 
then

χr(φ) = 0 ∀φ � φ∗
r .� (3.3)

In order to prove the theorem we need the following.

Lemma 3.3.  If (3.2) holds, then the following zero-one law applies:

P
(

lim
T→∞

T−1FT = ∞
)
= 1 ⇐⇒ φ∗

0 = ∞.� (3.4)

Proof.  Because (Wt)t�0 has a trivial tail sigma-field, we have

P
(

lim
T→∞

T−1FT = ∞
)
∈ {0, 1}.� (3.5)

It suffices to exclude that the probability is 0. First note that (3.2) implies

E[(T−1FT)
2] � CE[T−1FT ]

2 ∀ T > 0.� (3.6)

Indeed,

T2E[(T−1FT)
2] =

∫ T

0
ds

∫ T

0
dt E[ f (Ws) f (Wt)]

�
∫ T

0
ds

∫ T

0
dt

√
E[ f (Ws)2]E[ f (Wt)2]

� C
∫ T

0
ds

∫ T

0
dt E[ f (Ws)]E[ f (Wt)]

= C T2 E[T−1FT ]
2,

�

(3.7)

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001
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where the first inequality uses Cauchy–Schwarz and the second inequality uses (3.2). Armed 
with (3.6), we can use the Paley–Zygmund inequality

P(T−1FT � δE[T−1FT ]) � (1 − δ)2 E[T−1FT ]
2

E[(T−1FT)2]
∀ δ ∈ (0, 1) ∀ T > 0,

� (3.8)

to obtain

P
( T−1FT

E[T−1FT ]
� δ

)
� (1 − δ)2 1

C
∀ δ ∈ (0, 1) ∀ T > 0.

� (3.9)

Hence if limT→∞ E[T−1FT ] = ∞, then

P
(

lim
T→∞

T−1FT = ∞
)
� (1 − δ)2 1

C
> 0 ∀ δ ∈ (0, 1),� (3.10)

which completes the proof.� □ 

We now turn to proving theorem 3.2. Again, the argument that follows is informal, but the 
technical details are standard.

Proof of theorem 3.2.  The variational formula for the rate function in (2.12) is a con-
strained functional optimization problem that can be solved using the method of Lagrange 
multipliers. For fixed n and µ, the Lagrangian reads

L(w(·)) = Ir(n) + nJr(µ) + n
∫ ∞

0
µ(dt)Kt(w(t))− λn

∫ ∞

0
µ(dt)w(t),� (3.11)

where λ is the Lagrange multiplier that enforces the constraint

n
∫ ∞

0
µ(dt)w(t) = φ.� (3.12)

We look for solutions wλ(·) of the equation  ∂L
∂w(t) (·) = 0 for all t � 0, i.e.

K′
t (wλ(t)) = λ, t � 0,� (3.13)

where wλ(·) must satisfy the constraint n
∫∞

0 µ(dt)wλ(t) = φ. To that end, let Lt(·) be the 
inverse of K′

t (·), i.e.

K′
t (Lt(λ)) = λ, λ ∈ R, t > 0.� (3.14)

Then (3.13) becomes

wλ(t) = Lt(λ), t � 0,� (3.15)

and so

χr(φ) = inf
n∈[0,∞), µ∈P([0,∞))

{
Ir(n) + nJr(µ) + n

∫ ∞

0
µ(dt)Kt(Lt(λ))

}
,� (3.16)

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001
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where λ = λ(n,µ) must be chosen such that

n
∫ ∞

0
µ(dt) Lt(λ) = φ.� (3.17)

Our task is to show that χr  is zero on [φ∗
r ,∞) when φ∗

0 = ∞. To do so, we perturb χr(φ) 
around φ∗

r . To see how, we first rescale time. The proper rescaling depends on how FT scales 
with T without resetting. For the sake of exposition, we first consider the case where there ex-
ists an α ∈ (1,∞) such that

T−αFT
d
=F1 ∀ T > 0,� (3.18)

where d
= means equality in distribution. For example, for the area and the absolute area we 

have α = 3
2, while for the positive occupation time we have α = 1. (Note, however, that nei-

ther the area nor the positive occupation time qualify for the theorem because φ∗
0 = 0, respec-

tively, φ∗
0 = 1

2.) Afterwards we will explain how to deal with the general case.
By (2.11), (3.14) and (3.18), we have

Kt(u) = K1(ut−α), u ∈ R, t > 0, Lt(λ) = L1(λtα) tα, λ ∈ R, t > 0.
� (3.19)

The rescaling in (3.19) changes the integral in (3.16) to

n
∫ ∞

0
µ(dt)K1(L1(λtα))� (3.20)

and the constraint in (3.17) to

n
∫ ∞

0
µ(dt) L1(λtα) tα = φ.� (3.21)

We claim that, for every n ∈ (0,∞), we can find a minimising sequence of probability dis-
tributions (µm)m∈N (depending on n) such that λ = λ(n,µm) = 0 for all m ∈ N and such that 
µm converges as m → ∞ to Er  pointwise and in the L1-norm, but not in the Lα-norm. We will 
show that this implies that χr(φ) = 0 for φ > φ∗

r . We will construct the sequence (µm)m∈N by 
perturbing Er  slightly, adding a small probability mass near some large time and taking the 
same probability mass away near time 0.

Let u∗
r  be such that K1(u∗r ) = 0, i.e.

r
∫ ∞

0
Er(dt) u∗r tα = φ∗

r� (3.22)

(see figure 1; recall that Er(dt) = re−rt dt). Since u∗
r = L1(0), if we require the probability 

distribution µ over which we minimise to satisfy

n
∫ ∞

0
µ(dt) u∗r tα = φ,� (3.23)

then the scaled version of the optimisation problem in (3.16) reduces to

inf
n∈[0,∞)

{
Ir(n) + n inf

µ∈P([0,∞))
Jr(µ)

}
.� (3.24)

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001
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Our goal is to prove that this infimum is zero for all φ > φ∗
r  when φ∗

0 = ∞.
We get an upper bound by picking n  =  r and

µm(dt) = Er(dt) + νm(dt)� (3.25)

with

νm(dt) = −εmδ0(dt) + εmδθm(dt),� (3.26)

where εm, θm will be chosen later such that limm→∞ εm = 0 and limm→∞ θm = ∞. Substitut-
ing this perturbation into (3.23) and using (3.22), we get

ru∗r εm(θm)
α = φ− φ∗

r ,� (3.27)

which places a constraint on our choice of εm, θm. On the other hand, substituting the perturba-
tion into the expression for Jr(µ), we obtain

Jr(µm) =

∫ ∞

0
(Er − εmδ0 + εmδθ)(dt) log

(Er − εmδ0 + εmδθ
Er

)
(t)

=

∫ ∞

0
Er(dt) log

(
1 +

−εmδ0 + εmδθ
Er

)
(t)

− εm

∫ ∞

0
δ0(dt) log

(
1 +

−εmδ0 + εmδθ
Er

)
(t)

+ εm

∫ ∞

0
δθm(dt) log

(
1 +

−εmδ0 + εmδθ
Er

)
(t).

�
(3.28)

For a proper computation, δ0 and δθ must be approximated by η−1 1[0,η] and η−1 1[θ,θ+η], fol-
lowed by η ↓ 0. Doing so, after we perform the integrals, we see that the three terms in the 
right-hand side of (3.28) become

Figure 1.  Qualitative plot of u �→ K1(u) and u �→ K′
1(u) on R . The domain of K1 is a 

subset of R . In the interior of this domain, K1 is smooth and strictly convex.
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rη log
(1 − εm/η

r

)
+ re−rθmη log

(
1 +

εm/η

re−rθm

)
,

− εm log
(

1 − εm/η

r

)
,

+ εm log
(

1 +
εm/η

re−rθm

)
.

� (3.29)

For all of these terms to vanish as m → ∞ followed by η ↓ 0, it suffices to pick εm and θm 
such that limm→∞ εm = 0, limm→∞ θm = ∞ and limm→∞ θmεm = 0. Clearly, this can be done 
while matching the constraint in (3.27) for any φ > φ∗

r , because α ∈ (1,∞), and so we con-
clude that indeed the infimum in (3.24) is zero.

It is easy to check that the same argument works when, instead of (3.18), there exists a 
T �→ L(T) with limT→∞ L(T) = ∞ such that

(TL(T))−1FT
d
=F1 ∀ T > 0.� (3.30)

Indeed, then the constraint in (3.22) becomes ru∗
r εmθmL(θm) = φ− φ∗

r , which can be matched 
too. It is also not necessary that the scaling in (3.18) and (3.30) hold for all T  >  0. It clearly 
suffices that they hold asymptotically as T → ∞. Hence, all that is needed is that T−1FT  
without resetting diverges as T → ∞, which is guaranteed by lemma 3.3.� □ 

The interpretation of the above approximation is as follows. The shift of a tiny amount of 
probability mass into the tail of the probability distribution µ has a negligible cost on the expo-
nential scale. The shift produces a small fraction of reset periods that are longer than typical. 
In these reset periods large contributions occur at a negligible cost, since the growth without 
reset is faster than linear. In this way we can produce any φ that is larger than φ∗

r  at zero cost 
on the scale T of the LDP.

Remark 3.4.  Theorem 3.2 captures a potential property of the rate function to the right of 
the mean. A similar property holds to the left of the mean, when φ∗

0 = −∞ and φ∗
r > −∞ for 

r  >  0.

3.2.  Quadratic rate function below the mean

Theorem 3.5.  Suppose that φ∗
0 = ∞. For every r  >  0, if φ∗

r < ∞, then

χr(φ) ∼ Cr(φ
∗
r − φ)2, φ ↑ φ∗

r ,� (3.31)

with Cr ∈ (0,∞) a constant that is given by the variational formula in (3.39) and (3.40) 
below. (The symbol  ∼  means that the quotient of the left-hand side and the right-hand side 
tends to 1.)

Proof.  We perturb (2.12) around its zero by taking

n = r + mε, µ(dt) = Er(dt) [1 + ν(t)ε], w(t) = u∗r + v(t)ε,� (3.32)

subject to the constraint 
∫∞

0 Er(dt) ν(t) = 0, with ν(·), v(·) Borel measurable, to ensure that 
µ ∈ P([0,∞)). This gives
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Ir(r + mε) = F∗
r (m)ε2 + O(ε3), F∗

r (m) =
m2

2r
.� (3.33)

Next, we have

Jr(µ) =

∫ ∞

0
Er(dt) [1 + ν(t)ε] log[1 + ν(t)ε].� (3.34)

Expanding the logarithm in powers of ε and using the normalisation condition, we obtain

Jr(µ) = G∗
r (ν)ε

2 + O(ε3), G∗
r (ν) =

1
2

∫ ∞

0
Er(dt) ν2(t).� (3.35)

Lastly, we know that (see figure 1)

K1(u∗r + v(t)ε) ∼ 1
2

v(t)2 K′′
1 (u

∗
r )ε

2.� (3.36)

(As observed below (2.11), K1 is strictly convex and smooth on the interior of its domain.) 
Hence the last term in the variational formula becomes

(r + mε)

∫ ∞

0
Er(dt) [1 + ν(t)ε]K1(u∗r + v(t)ε) = H∗

r (v)ε
2 + O(ε3),

H∗
r (v) =

r
2

K′′
1 (u

∗
r )

∫ ∞

0
Er(dt) v(t)2.

�

(3.37)

It follows that

χ(φ∗
r + ε) = Crε

2 + O(ε3)� (3.38)

with

Cr = inf
(m,ν,v)∈Φ

{
F∗

r (m) + G∗
r (ν) + H∗

r (v)
}

,� (3.39)

where

Φ =

{
(m, ν, v) :

∫ ∞

0
Er(dt) ν(t) = 0, r

∫ ∞

0
Er(dt)

[m
r
+ ν(t) + v(t)

]
tα = 1

}
.� (3.40)

The last constraint guarantees that n
∫∞

0 µ(dt)w(t) = φ∗
r + ε+ O(ε2), and arises from (3.22) 

and (3.23) after inserting (3.32) and letting ε ↓ 0, all for the special case in (3.18). Finally, it 
is easy to check that the same argument works when (3.18) is replaced by (3.30). In that case, 
tα in (3.40) becomes tL(t).

Note that F∗
r , G∗

r  and H∗
r  need not be finite everywhere. However, for the variational form

ula in (3.39) clearly only their finite values matter. Also note that the perturbation is possible 
only for ε < 0 (φ < φ∗

r ), since there is no minimiser to expand around for ε > 0 (φ > φ∗
r ), as 

is seen from theorem 3.2.
We have Cr  >  0, because the choice m  =  0, ν(·) ≡ 0, v(·) ≡ 0 does not match the last con-

straint. We also have Cr < ∞, because we can choose m = rα/Γ(1 + α), ν(·) ≡ 0, v(·) ≡ 0, 
which gives F∗

r (m) = r2α−1/2(Γ(1 + α))2, G∗
r (ν) = 0, H∗

r (v) = 0.� □ 
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4.  Positive occupation time

We now apply the results of section 3 to the three functionals of rBM defined in (1.4). We start 
with the positive occupation time, defined as

AT =

∫ T

0
1[0,∞)(Wr

t ) dt.� (4.1)

This random variable has a density with respect to the Lebesgue measure, which we denote 
by pA

r (a), i.e.

pA
r (a) =

Pr(AT ∈ da)
da

, a ∈ (0, T).� (4.2)

Without resetting, this density is

pA
0 (a) =

1
π
√

a(T − a)
, a ∈ (0, T),� (4.3)

which is the derivative of the famous arcsine law found by Lévy [22]. The next theorem shows 
how this result is modified under resetting.

Theorem 4.1.  The positive occupation time of rBM has density

pA
r (a) =

r
T

e−rT W
(
r
√

a(T − a)
)
, a ∈ (0, T),� (4.4)

where

W(x) =
1
x

∞∑
j=0

x j

Γ( j+1
2 )2

= I0(2x) +
1

xπ 1F2
(
{1}, {1

2
,

1
2
}, x2), x ∈ (0,∞),

� (4.5)

with I0(y ) the modified Bessel function of the first kind with index 0 and 1F2({a}, {b, c}, y) the 
generalized hypergeometric function [1, section 9.6, formula 15.6.4].

Proof.  In what follows, the regions of convergence of the generating functions will be obvi-
ous, so we do not specify them.

The non-reset generating function in (2.1) for the occupation time started at X0  =  0 is 
known to be [24]

G̃0(k, s) =
1√

s(s − k)
.� (4.6)

This can be explicitly inverted to obtain the density in (4.3).
To find the Laplace transform of the reset generating function, we use theorem 2.1. Insert-

ing (4.6) into (2.3), we find

G̃r(k, s) =
1√

(s + r)(s + r − k)− r
.� (4.7)
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This can be explicitly inverted to obtain the density in (4.4), as follows. Write

pA
r (a) = e−rTH(aT , (1 − a)T),� (4.8)

where H is to be determined. Substituting this form into (2.2), we get

G̃r(k, s) =
∫ ∞

0
dT

∫ 1

0
da ekTa e−(s+r)T H(aT , (1 − a)T).� (4.9)

Performing the change of variable t1  =  aT and t2  =  (1  −  a)T, we get

G̃r(k, s) =
∫ ∞

0
dt1

∫ ∞

0
dt2 e−(r+s−k)t1 e−(r+s)t2 H(t1, t2).� (4.10)

Let λ1 = r + s − k  and λ2 = r + s. Then (4.10), along with the right-hand side of (4.7), gives
∫ ∞

0
dt1

∫ ∞

0
dt2 e−λ1t1−λ2t2 H(t1, t2) =

1√
λ1λ2 − r

.� (4.11)

To invert the Laplace transform in (4.11), we expand the right-hand side in r,
∫ ∞

0
dt1

∫ ∞

0
dt2 e−λ1t1−λ2t2 H(t1, t2) =

∞∑
j=0

r j

(λ1λ2)( j+1)/2 ,� (4.12)

and invert term by term using the identity

1
Γ(α)

∫ ∞

0
dt tα−1e−λt =

1
λα

, α > 0.� (4.13)

This leads us to the expression

H(t1, t2) =
∞∑

j=0

r j

Γ( j+1
2 )2

(t1t2)( j−1)/2 = r
∞∑

j=0

(r
√

t1t2) j−1

Γ( j+1
2 )2

.� (4.14)

Substituting this expression into (4.8), we find the result in (4.4) and (4.5).� □ 

The arcsine density in (4.3) is recovered in the limit r ↓ 0 by noting that W(x) ∼ (πx)−1 as 
x ↓ 0. On the other hand, we have

W(x) ∼ 1
2
√
πx

e2x, x → ∞.� (4.15)

Consequently,

T pA
r (aT) ∼

√
r

2
√
π T (a(1 − a))1/4 e−r T

(
1−2

√
a(1−a)

)
, a ∈ (0, 1), T → ∞.

� (4.16)
Keeping only the exponential term, we thus find that (T−1AT)T>0 satisfies the LDP with speed 
T and with rate function χA

r  given by

χA
r (a) = r

(
1 − 2

√
a(1 − a)

)
, a ∈ [0, 1].� (4.17)
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The rate function χA
r  is plotted in figure 2. As argued in [27], (4.17) can also be obtained by 

noting that the largest real pole of G̃(k, s) in the s-complex plane is

λr(k) =
1
2

(
k − 2r +

√
k2 + 4r2

)
, k ∈ R,� (4.18)

which defines the scaled cumulant generating function of AT as T → ∞ (see (6.24) below). 
Since this function is differentiable for all k ∈ R, we can use the Gärtner–Ellis theorem [16, 
chapter V] to identify χA

r  as the Legendre transform of λr.
Note that the positive occupation time does not satisfy the LDP when r  =  0, since pA

0 (a) 
is not exponential in T and does not concentrate as T → ∞. Thus, here resetting is ‘strong 
enough’ to force concentration of T−1AT  on the value 1

2, with fluctuations around this 
value that are determined by the LDP and the rate function χA

r  in (4.17). In particular, since 
χA

r (0) = χA
r (1) = r , the probability that rBM always stays positive or always stays negative is 

determined on the large deviation scale by the probability e−rT of having no reset up to time T.
Note that φ∗

r = 1
2 for r � 0. Hence the positive occupation time does not satisfy the condi-

tion in theorem 3.2.

5.  Area

We next consider the area of rBM, defined as

BT =

∫ T

0
Wr

t dt.� (5.1)

Its density with respect to the Lebesgue measure is denoted by pB
r (b), b ∈ R. The full distribu-

tion for T fixed is not available, and therefore we start by computing a few moments.

Theorem 5.1.  For every T ∈ (0,∞), the area of rBM for r  >  0 has vanishing odd moments 
and non-vanishing even moments. The first two even moments are

Er[B2
T ] =

2
r3

(
rT − 2 + e−rT(2 + rT)

)
,

Er[B4
T ] =

1
r6

(
12(rT)2 + 120rT − 840 + e−rT [9(rT)4 + 68(rT)3 + 288(rT)2 + 720 rT + 840]

)
.

� (5.2)

Figure 2.  Rate function a �→ χA
r (a) for the positive occupation time of rBM.
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Proof.  The result follows directly from the renewal formula (2.3) and the Laplace transform 
of the generating function of BT without resetting,

Q̃0(k, s) =
∫ ∞

0
dT e−sTE0[ekBT ] =

∫ ∞

0
dT e

1
6 k2T3−sT ,� (5.3)

because BT is a Gaussian random variable with mean 0 and variance 1
3 T3. Expanding the ex-

ponential in k and using (2.3), we obtain the following expansion for the Laplace transform of 
the characteristic function with resetting:

Q̃r(k, s) =
1
s
+

1
s2(r + s)2 k2 +

(r + 10s)
s3(r + s)5 k4 + O(k6).� (5.4)

Taking the inverse Laplace transform, we find that the odd moments are all zero, because there 
are no odd powers of k, and that the even moments are given by the inverse Laplace transforms 
L−1 of the corresponding even powers of k. Thus,

Er[B2
T ] = L−1

[ 2!
s2(r + s)2

]
,

Er[B4
T ] = L−1

[4!(r + 10s)
s3(r + s)5

]
,

� (5.5)

which yields the results shown in (5.2).� □ 

The second moment, which gives the variance, shows that there is a crossover in time from 
a reset-free regime characterized by

Er[B2
T ] ∼

1
3

T3, T ↓ 0,� (5.6)

which is the variance obtained for r  =  0, to a reset regime characterized by

Er[B2
T ] ∼

2T
r2 , T → ∞.� (5.7)

The crossover where the two regimes meet is given by T =
√

6/r, which is proportional to the 
mean reset time. This gives, as illustrated in figure 3, a rough estimate of the time needed for 
the variance to become linear in T because of resetting.

The small fluctuations of BT of order 
√

T  around the origin are Gaussian-distributed. This 
is confirmed by noting that the even moments of BT scale like

Er[Bn
T ] ∼

(2n)!
n!

(√
T

r

)n

, T → ∞,� (5.8)

so that

Er

[(
BT√

T

)n]
∼ (2n)!

n!rn , T → ∞,� (5.9)

for n even. This implies that the cumulants all asymptotically vanish, except for the variance. 
Indeed, it can be verified that
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κ2 = lim
T→∞

Er[T−1B2
T ] =

2
r2 ,� (5.10)

while

κ4 = lim
T→∞

Er[T−2B4
T ]− 3Er[T−1B2

T ]
2 =

12
r4 − 3

(
2
r2

)2

= 0� (5.11)

and similarly for all higher even cumulants. This suggests the following central limit theorem.

Theorem 5.2.  The area of rBM satisfies the central limit theorem,

lim
T→∞

σ
√

T pB
r

(
b

σ
√

T

)
= N(0, 1)� (5.12)

with N(0, 1) the standard Gaussian distribution and σ = 2/r2.

Proof.  We start from the Laplace inversion formula of the renewal formula,

pB
r (b) = e−rT

∫

R

dk
2π

e−ikb
∫ c+i∞

c−i∞

ds
2πi

esT Q̃0(k, s)
1 − rQ̃0(k, s)

,� (5.13)

where c is any value in the region of convergence of Q̃0(k, s) in the s-complex plane. Rescaling 
b by b = b̄

√
T , as is standard in proofs of the central limit theorem, we obtain

pB
r (b̄

√
T) =

e−rT
√

T

∫

R

dl
2π

e−ilb̄
∫ c+i∞

c−i∞

ds
2πi

esT Q̃0(l/
√

T , s)
1 − rQ̃0(l/

√
T , s)

,� (5.14)

where l = k/
√

T . Given a fixed l and letting T → ∞, we then use the known expression of 
E0[eikBT ] in (5.3) to Taylor-expand Q̃0(k, s) around k  =  0,

Q̃0(k, s) =
1
s
− k2

s4 + O(k4),� (5.15)

Figure 3.  Log–log plot of the variance of the area BT of rBM, showing the crossover 
from the T3-scaling (black line) to the T-scaling (dashed lines) for various values of r. 
The filled circles show the location of the crossover time T =

√
6/r.

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001



17

to obtain

Q̃0(l/
√

T , s)
1 − rQ̃0(l/

√
T , s)

=
1 + O(l2/T)

s − r + rl2
s3T + O(l4/T2)

.� (5.16)

This expression has a simple pole at

s∗ = r − l2

r2T
+ O(l4/T2),� (5.17)

so that, deforming the Bromwich contour through that pole, we get

√
T pB

r (b̄
√

T) = e−rT
∫

R

dl
2π

e−ilb̄es∗T =

∫

R

dl
2π

e−ilb̄e−l2/r2+O(l4/T).� (5.18)

As T → ∞, only the quadratic term remains in the exponential, which yields a Gaussian dis-
tribution with variance 2/r2.� □ 

The convergence to the Gaussian distribution can be much slower than the mean reset time, 
as can be seen in figure 3, especially for small reset rates. From simulations, we have found 
that the distribution of T−1/2BT  is well approximated by a Gaussian distribution near the ori-
gin. However, the tails are strongly non-Gaussian, even for large T, indicating that there are 
important finite-time corrections to the central limit theorem, related to rare events involving 
few resets and, therefore, to large Gaussian excursions characterised by the T 3-variance.

These corrections can be analysed, in principle, by going beyond the dominant scaling in 
time of the moments shown in (5.8), so as to obtain corrections to the cumulants, which do not 
vanish for finite T. It also seems possible to obtain information about the tails by performing a 
saddle-point approximation of the combined Laplace–Fourier inversion formula for values of 
BT scaling with T3/2. We have attempted such an approximation, but have found no results sup-
ported by numerical simulations performed to estimate pB

r (b). More work is therefore needed 
to find the tail behavior of this density in the intermediate regime where T1/2 � b � T3/2.

At this point, we can only establish that (T−1BT)T>0 follows a weak LDP with χB
r ≡ 0, 

implying that pB
r (b) decays slower than exponentially on the scale T. This follows from the 

general upper bound

χr(φ) � χ0(φ) + r ∀φ ∈ R, r > 0� (5.19)

found in [28]. We know that χB
0 ≡ 0, since for every M ∈ (0,∞) the probability that the 

Brownian motion stays above M after a time of order M2 decays like 1/
√

T  as T → ∞. Hence 
it follows that χB

r � r  on the whole of R . Since rate functions are typically convex, the latter 
can only mean that χB

r ≡ 0.
Note, incidentally, that (5.19) is satisfied by the rate function χA

r  of the positive occupation 
time (see (4.17) and figure 2).

6.  Absolute area

We finally consider the absolute area of rBM, defined as

CT =

∫ T

0
|Wr

t | dt,� (6.1)
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which can also be seen as the area of an rBM reflected at the origin. Its density with respect 
to the Lebesgue measure is denoted by pC

r (c), c ∈ [0,∞). This density was studied for pure 
BM (r  =  0) by Kac [18] and Takács [35] (see also [36]). It satisfies the LDP with speed T, 
when CT is rescaled by T, but with a divergent mean, which translates into the rate function 
tending to zero at infinity (see figure 4). The effect of resetting is to bring the mean of T−1CT  
to a finite value. Below the mean, we find that the LDP holds with speed T and a non-trivial 
rate function derived from theorem 2.1, whereas above the mean we find that the rate function 
vanishes, in agreement with theorem 3.2. This indicates that the upper tail of T−1CT  decays 
slower than exponentially in T.

As a prelude, we show how the mean and variance of CT are affected by resetting. We do 
not know the full distribution, and also the scaling remains elusive.

Theorem 6.1.  The absolute area of rBM has a mean and a variance given by

Er[CT ] = T3/2f1(rT), Varr[CT ] = T3f2(rT), r > 0,� (6.2)

where

f1(ρ) =
1√
2π

[
e−ρ

ρ
+

√
π

2(ρ)3/2 (2ρ− 1) erf[
√
ρ ]

]
� (6.3)

and

f2(ρ) =
1

8π(ρ)3

[
2π

(
2ρ2 + ρ− 6 + (5ρ+ 6)e−ρ

)
−
(
2
√
ρ e−ρ +

√
π(2ρ− 1)erf[

√
ρ]
)2
]

.� (6.4)

Proof.  The absolute area of pure BM (r  =  0) is known to scale as T3/2, so it is convenient 
to rescale CT as

CT = T3/2
∫ 1

0
dt |Wr

t | = T3/2 D,� (6.5)

which defines a new random variable D. Expanding (2.2) in terms of k, we get

G̃0(k, s) =
∫ ∞

0
dTe−sT

[
1 + kT3/2 E0[D] +

1
2

k2T3 E0[D2] + O(k3)

]

=
1
s
+

E0[D] Γ( 5
2 ) k

s5/2 +
3E0[D2] k2

s4 + O(k3).

� (6.6)

Abbreviate a = E0[D] Γ( 5
2 ) and b = E0[D2] [17]. Inserting (6.6) into (2.3), we find

G̃r(k, s) =
1

s+r +
ak

(s+r)5/2 +
3bk2

(s+r)4 + O(k3)

1 − r
[ 1

s+r +
ak

(s+r)5/2 +
3bk2

(s+r)4 + O(k3)
] =

1
s

[
1 + ak

(s+r)3/2 +
3bk2

(s+r)3 + O(k3)
]

1 − rak
s(s+r)3/2 − 3rbk2

s(s+r)3 + O(k3)
.� (6.7)

Inserting (1 + ck + dk2)−1 = 1 − ck + (c2 − d)k2 + O(k3), we obtain

G̃r(k, s) =
1
s
+

a
s2(s + r)1/2 k +

(
b

s2(s + r)2 +
ra2

s3(s + r)2

)
k2 + O(k3).

� (6.8)
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We can also expand G̃r(k, s) directly from its definition:

G̃r(k, s) =
1
s
+ k

∫ ∞

0
dT e−sT Er[CT ] +

k2

2

∫ ∞

0
dT e−sT Er[C2

T ] + O(k3).

� (6.9)

Comparing (6.7) and (6.9), we find
∫ ∞

0
dT e−sT Er[CT ] =

a
s2(s + r)1/2 ,

1
2

∫ ∞

0
dT e−sT Er[C2

T ] =
b

s2(s + r)2 +
ra2

s3(s + r)2 .

�

(6.10)

To calculate the first and the second moment, we simply need to invert the Laplace trans-
forms. For the mean we find

Er[CT ] = T3/2f1(rT),� (6.11)

where we use that E0[D] = 4
3
√

2π
 by [35, table 3]. For the second moment we use E0[D2] = b = 3

8 
from the same reference to find

Er[C2
T ] = T3f3(rT)� (6.12)

with

f3(rT) =
1

4(rT)3

[
2(rT)2 + rT − 6 + (5rT + 6)e−rT

]
.� (6.13)

The variance is therefore found to be

Varr[CT ] = T3f3(rT)− T3f 2
1 (rT) = T3f2(rT).� (6.14)

� □ 

The result for the mean converges to E0[D] when rT ↓ 0 and scales like 34E0[D]
√

π
rT  when 

rT → ∞. Therefore

Figure 4.  Left: SCGF of the absolute area of rBM as a function of k for r  =  1 (full 
line) and r  =  0 (dashed line). Right: Corresponding rate function obtained by Legendre 
transform for r  =  1 (full line) and r  =  0 (dashed line). Above the mean c∗r = 1/

√
2r, 

χC
r (c) is flat.
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lim
T→∞

Er[T−1CT ] = c∗r =
1√
2r

.� (6.15)

The same analysis for the variance yields

lim
T→∞

T−1Varr[CT ] = lim
T→∞

T Varr[T−1CT ] =
3

4r2 .� (6.16)

These two results suggest that (T−1CT)T>0 satisfies the LDP. To compute the corresponding 
rate function, we define the function

H(x) = −21/3 AI(x)
Ai′(x)

,� (6.17)

where

AI(x) =
∫ ∞

x
Ai(t) dt� (6.18)

is the integral Airy function and Ai(x) is the Airy function [1, section 10.4] defined, for exam-
ple, by

Ai(x) =
1
π

∫ ∞

0
cos

(
1
3

t3 + xt
)

dt.� (6.19)

The next theorem gives an explicit representation of the rate function of (T−1CT)T>0 for val-
ues below its mean.

Theorem 6.2.  Let c∗r = 1/
√

2r, and let s∗k  be the largest real root in s of the equation

r
(−k)2/3 H

(
21/3(s + r)
(−k)2/3

)
= 1, k < 0.� (6.20)

Then (T−1CT)T>0 satisfies the LDP on (0, c∗r ) with speed T and with rate function given by the 
Legendre transform of s∗k .

Proof.  With the same rescaling as in (6.5), the generating function for CT can be written as

G0(k, T) = E0[ekT3/2D].� (6.21)

Using [17, equation (173)], we have
∫ ∞

0
e−sTE0[e−

√
2T3/2ξCT ]dT = − AI[ξ−2/3s]

ξ2/3Ai′[ξ−2/3s]
, ξ > 0,� (6.22)

so that the Laplace transform of G0(k,T) has the explicit expression

G̃0(k, s) =
1

(−k)2/3 H
(

21/3s
(−k)2/3

)
, k < 0,� (6.23)

where H(x) is the function defined in (6.17).
With this result, we follow the method detailed in [27]: we insert the expression for G̃0(k, s) 

into (2.3) to find the expression for G̃r(k, s) and locate the largest real pole of that function, 
which is known to determine the scaled cumulant generating function (SCGF) of CT, defined as
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λr(k) = lim
T→∞

1
T
logGr(k, T).� (6.24)

Due to the form of G̃r(k, s) in (2.3), this pole must be given by the largest real root of the equa-
tion rG̃0(k, s + r) = 1, which yields the equation shown in (6.20). From there we apply the 
Gärtner–Ellis theorem [16] by noting that λr(k) = s∗k  is finite and differentiable for all k  <  0. 
Consequently, the rate function is given by the Legendre transform

χC
r (ck) = kck − λr(k),� (6.25)

where ck = λ′
r(k) for all k  <  0. It can be verified that λ′

r(k) → 0 as k → −∞ and λ′
r(k) → c∗r  

as k ↑ 0. Thus, the rate function is identified on (0, c∗r ).� □ 

The plot on the left in figure 4 shows the SCGF λr(k), while the plot on the right shows the 
rate function χC

r (c) obtained by solving (6.20) numerically and by computing the Legendre 
transform in (6.25). The rate function is compared with the rate function without resetting, 
which is given by

χC
0 (c) =

2|ζ ′0|3

27 c2 ,� (6.26)

where ζ ′0 is the first zero of the derivative of the Airy function. The derivation of χC
0  also fol-

lows from the Gärtner–Ellis theorem and is given in appendix B.
Comparing the two rate functions, we see that T−1CT  has a finite mean c∗r  with resetting. 

Above this value, it is not possible to obtain χC
r (c) from Gr(k,T), since the latter function is 

not defined for k  >  0, which indicates that χC
r (c) is either non-convex or has a zero branch for 

c > c∗r  (see [37, section 4.4]). Since this is a special case of theorem 3.2, the second alterna-
tive applies, i.e. χC

r (c) = 0 for all c > c∗r , which implies that the right tail of T−1CT  decays 
slower than e−T .

Similar rate functions with zero branches also arise in stochastic collision models [13, 21], 
as well as in non-Markovian random walks [14], and are related to a speed in the LDP that 
grows slower than T. For the absolute area of rBM, we do not know what the exact decay of 
the density of T−1CT  is above the mean or whether, in fact, this density satisfies the LDP. This 
is an open problem.

7.  Conclusion

In this paper, we have studied the statistical properties of additive functionals of a variant of 
Brownian motion that is reset at the origin at random intervals, and have provided explicit 
results for three specific functionals, namely, the occupation time, the area, and the absolute 
area. Functionals of standard Brownian motion have been studied extensively in the past, and 
come with numerous applications in physics and computer science [24, 25]. In view of these 
applications, we expect our results for reset Brownian motion to be relevant in a variety of 
different contexts, in particular, in search-related problems, queuing theory, and population 
dynamics, which have all been analysed in the last few years in connection with resetting.
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Appendix A.  Large deviation principle

Let S  be a Polish (i.e. complete separable metric) space. A family (PT)T>0 of probability dis-
tributions on S  is said to satisfy the strong large deviation principle (LDP) with speed T and 
with rate function I when the following three properties hold:

	(1)	�I �≡ ∞. The level sets of I, defined by {s ∈ S : I(s) � c}, c ∈ [0,∞), are compact.
	(2)	�lim supT→∞ T−1 logPT(C) � −I(C) for all C ⊂ S  Borel and closed.
	(3)	�lim infT→∞ T−1 logPT(O) � −I(O) for all O ⊂ S Borel and open.

Here

I(S) = inf
s∈S

I(s), S ⊂ S.� (A.1)

The family (PT)T>0 is said to satisfy the weak LDP when in (1) we only require the level 
sets to be closed and in (2) we only require the upper bound to hold for compact sets. The 
weak LDP together with exponential tightness, i.e.

lim
K↑S

K compact

lim sup
T→∞

T−1 logPT(S \ K) = −∞,� (A.2)

implies the strong LDP. For further background on large deviation theory, the reader is referred 
to [16, chapter III] and [16, 37].

Appendix B.  Rate function of the absolute area for BM

The SCGF, defined in (6.24), is known to be given for BM without resetting by the principal 
eigenvalue of the following differential operator:

Lk =
σ2

2
d2

dx2 + k|x|, x ∈ R,� (B.1)

called the tilted generator, so that

(Lkψk)(x) = λ(k)ψk(x),� (B.2)

where ψk(x) is the associated eigenfunction satisfying the natural (Dirichlet) boundary condi-
tions ψ(x) → 0 as x → ±∞ [38]. Since |Wt| has the same distribution as BM reflected at zero, 
we can also obtain λ(k) as the principal eigenvalue of

Lk =
σ2

2
d2

dx2 + kx, x � 0,� (B.3)

F den Hollander et alJ. Phys. A: Math. Theor. 52 (2019) 175001



23

with the Neumann boundary condition ψ′
k(0) = 0, which accounts for the fact that there 

is no current at the reflecting barrier, in accordance with the Dirichlet boundary condition 
ψk(∞) = 0.

The solution ψk(x) of both eigenvalue problems is given in terms of the Airy function, 
Ai(ζ), with

ζ =
(−2k

σ2

)1/3(
x − λ(k)

k

)
.� (B.4)

Imposing the boundary conditions, we get a discrete eigenvalue spectrum, given by

λ(i)(k) =
(σ2

2

)1/3
(−k)2/3ζ ′i ,� (B.5)

where ζ ′i  is the ith zero of Ai′(x).
The largest eigenvalue λ(0)(k) corresponds to the SCGF λ0(k) without resetting (see fig-

ure 4), which yields the rate function χC
0  shown in (6.26), after applying the Legendre trans-

form shown in (6.25). The function λ0(k) is defined only for k � 0, but since it is steep at 
k  =  0, the Gärtner–Ellis theorem can be applied in this case.

Note that the spectral method can also be used to find the rate function χC
r  of the absolute 

area of rBM, following the method explained in [27]. However, the expression for the generat-
ing function G̃0(k, s) in this case is explicit, so it is more convenient to use this expression, as 
is done in the proof of theorem 6.1, in combination with the renewal formula of theorem 2.1.
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