Universiteit

4 Leiden
The Netherlands

Diophantine equations in positive characteristic
Koymans, P.H.

Citation
Koymans, P. H. (2019, June 19). Diophantine equations in positive characteristic. Retrieved
from https://hdl.handle.net/1887/74294

Version: Not Applicable (or Unknown)
License: Leiden University Non-exclusive license
Downloaded from: https://hdl.handle.net/1887/74294

Note: To cite this publication please use the final published version (if applicable).


https://hdl.handle.net/1887/license:3
https://hdl.handle.net/1887/74294

Cover Page

The handle http://hdl.handle.net/1887/74294 holds various files of this Leiden University
dissertation.

Author: Koymans, P.H.

Title: Diophantine equations in positive characteristic
Issue Date: 2019-06-19


https://openaccess.leidenuniv.nl/handle/1887/1
http://hdl.handle.net/1887/74294
https://openaccess.leidenuniv.nl/handle/1887/1�

Chapter 7

Vinogradov’s three primes
theorem with primes having
given primitive roots

Joint work with Christopher Frei and Efthymios Sofos
Abstract

The first purpose of this chapter is to show how Hooley’s celebrated method leading to
his conditional proof of the Artin conjecture on primitive roots can be combined with the
Hardy-Littlewood circle method. We do so by studying the number of representations
of an odd integer as a sum of three primes, all of which have prescribed primitive roots.
The second purpose is to analyse the singular series. In particular, using results of
Lenstra, Stevenhagen and Moree, we provide a partial factorisation as an Euler product
and prove that this does not extend to a complete factorisation.

7.1 Introduction

Can we represent an odd integer as a sum of 3 odd primes all of which have 27 as a
primitive root? Lenstra [51] was the first to address the problem of primes with a fixed
primitive root and lying in an arithmetic progression. One of his results [51, Th.(8.3)]
states that if b # 5 (mod 12) then either there are no primes p = b (mod 12) having 27
as a primitive root or there is exactly one such prime, namely p = 2. Hence, unless
n = 3 (mod 12), no such representation exists.

In this chapter, we are interested in the converse direction, at least for all sufficiently
large values of n. The existence of infinitely many primes with a given primitive root
a is currently not known unconditionally for any a € Z, so we need to be content with
working under the assumption of a certain generalised Riemann Hypothesis, sometimes
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120 Chapter 7. Vinogradov’s three primes theorem with primes having given primitive roots

called Hooley’s Riemann Hypothesis. For any non-zero integer a, we will write HRH(a)
for the hypothesis that

for all square-free k € N, the Dedekind zeta function of the number field
Q(Ck, ¥a), where ¢, € C is a primitive k-th root of unity, satisfies the Rie-
mann hypothesis.

Our main theorem can be seen as a combination of the classical conditional result of
Hardy and Littlewood [30] towards ternary Goldbach with Hooley’s [35] conditional
proof of Artin’s conjecture.

Theorem 7.1.1. Let a = (ay,as,a3) € Z* such that no a; is —1 or a perfect square.
Assuming HRH(a;) fori=1,2,3, we have

3
Z H logp; = Aa(n)n?® +o(n?), as n — 4oo, (7.1)

P1‘+Pg‘+p3:’ﬂ =1
Vi: Iﬁ‘pi:<ai)

with an explicit factor Aa(n) € R>q that satisfies Aa(n) > 1 whenever Aa(n) > 0.

The bulk of this chapter will be devoted to the description and investigation of the
factor A, (n). In particular, a product decomposition of A,(n) will allow us to interpret
Theorem|[7.1.1]as a local-global principle and gives the following as a simple consequence.

Corollary 7.1.2. Assume HRH(27). Let n be a sufficiently large odd integer. Then
there are odd primes p1,p2,ps with 27 as a primitive root and n = py + p2 + p3 if and
only if n = 3 mod 12.

We can also get an explicit saving in the error term, for the price of working under a
stronger generalised Riemann hypothesis. Let HRH’(a) be the hypothesis that

for each square-free k > 0 all Hecke L-functions of the number field Q((, /a)
satisfy the Riemann hypothesis.

Theorem 7.1.3. Let ay,as, a3 be three integers none of which is —1 or a perfect square.

Assuming HRH(a;) fori=1,2,3, we have for g € (0,1),

3

Z H log pi = Aa(n)n? + O s(n*(logn)=#), (7.2)
p1+p2t+ps=ni=1
Vi: ]F;i:<ai>

where the implied constant is effective and depends at most on ay,as,as3 and 3.

Before returning to the explicit description of our factor A,(n), let us briefly review
the relevant literature on Artin’s conjecture and the ternary Goldbach problem, and
introduce some necessary notation along the way.
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7.1.1 Artin’s conjecture

Fix an integer a # —1 which is not a perfect square. A question going back to Gauss
regards the infinitude of primes having a as a primitive root. It was realised by Artin
that the question admits an interpretation through algebraic number theory. Denote
by (x a primitive kth root of unity and define for any positive square-free integer k the
number field

G = Q(a'/* (). (7.3)

Artin’s criterion states that the prime p has a as a primitive root if and only if for
every prime g the rational prime p does not split completely in G, 4. This led to the
formulation of the following conjecture via a collective effort due to Artin, Lehmer and
Heilbronn. Define

v
!

= Disc(Q(v/a)), the discriminant of Q(v/a) (7.4)
7.5

>
S
I

max {m € N:a is an mth power}7 .
1 1
A, = (1 - ) (1 - ) 7.6
11 p—1 1 pp—1) (76)
plha
and for positive integers ¢ let
fo=( T e-2)( II e*-»-17"). (7.7)
pla,plha plg,ptha

Here, and throughout the chapter, the letter p is reserved for rational primes. We
furthermore define

Lo:=Aa- (L4 p2Au) f2(1AG]), (7.8)

where p is the M6bius function. Artin’s conjecture then states that

. #p<a:Fy=(a)}

= L,. (7.9)

This conjecture is of substantial difficulty: there is no value of @ for which the limit is
known to be positive. In fact, it is not even known whether for every integer a that is
not a square or —1 there exists a prime having primitive root a.

A significant step in the subject has been the, conditional under HRH(a), resolution
of Artin’s conjecture by Hooley [35]. His method is pivotal in the present work. No-
table progress was later made by Heath-Brown [32], who building on work of Gupta and
Murty [28], showed unconditionally that at least > x/(log z)? primes p < z have prim-
itive root ¢,r or s, where {q,r, s} is any set of non-zero integers which is multiplicative
independent and such that none of q,r, s, —3qr, —3¢qs, —3rs or qrs is a square. There is
a rather extensive list of further results, as well as certain cryptographic applications;
the reader is referred to the comprehensive survey of Moree [60]. Lenstra [51] used Hoo-
ley’s method to show, conditionally on HRH(a), the existence of the Dirichlet density of
primes in an arithmetic progression and with a as primitive root. An explicit formula
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for these densities was given later by Moree [59]. To describe Moree’s result we need the
following notation. Let

Aq
Bed(a,.80) " )
sl (D) ged(g,An), i ogay = 1(mod 2) (7.10)
1 otherwise,

and observe that (,(q) is a fundamental discriminant in case A,/ ged(g, A,) = 1 mod 2.
For positive integers ¢ let

fHg) = plgq (1 - pi1> - ngq (1 - p(pl—1)> o (7.11)

Definition 7.1.4. Assume that a # —1 is a non-square integer, let A,, h, be as
in (7.4), (7.5) and assume that x, ¢ are integers with ¢ > 0. We define

fia) 1 . _ _
Aq(zmod q) := A, - {‘M) Hpia-1.01a (1 B 5)’ if ged(z —1,9,ha) = ged(@, q) =1,

0, otherwise,
(7.12)

fa <gcd(Aq,a|Aa)> )

where ¢(-) is the Euler totient function and (—) is the Kronecker quadratic symbol.

and

s atenmal1 0 (i055) (%)

Moree’s result [59] states that, conditionally under HRH(a), the Dirichlet density of
primes in an arithmetic progression and with a as primitive root equals d,(zmod q).
His work will prove of central importance in our interpretation of the Artin factor for
the ternary Diophantine problem under study.

7.1.2 Ternary Goldbach problem

The ternary Goldbach problem has been one of the most central subjects in analytic
number theory; it asserts that every odd integer greater than 5 is the sum of 3 primes.
Hardy and Littlewood [30] used the circle method to provide the first serious approach
to the problem; they proved an asymptotic formula for the number of representations of
n as a sum of k primes (k > 3) conditionally on the veracity of the generalised Riemann
hypothesis. This hypothesis was removed later by Vinogradov [74]. His result states
that for every 8 > 0 one has for all odd integers n that

3
S Jespi = ;(ngm))# + 03(n(logn) ™),

p1+p2+ps=ni=1
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where the product is over all primes, the implied constant depends at most on 3, and

op(n) 5P< Z (p_ll)?,> (7.13)

b1,b2,b3€(Z/pZ)*
b1+b2+bz=n(mod p)

This can be thought as the ratio of the probability that a random vector b € ((Z/pZ)*)?3
satisfies Y, ;3 b; = n(mod p) to the probability that a random vector b € (Z/pZ)?3
satisfies 3, ;4 b;i = n (mod p), as made clear from

. ( 3 pla> , (7.14)

b1,b2,b3(mod p)
b1+ba+bs=n(mod p)

It should be mentioned that Helfgott [34] recently settled the ternary Goldbach prob-
lem. Using recent developments in additive combinatorics, Shao [65] provided general
conditions for an infinite subset P of the primes that allow solving n = p; + p2 + p3
for large odd n with each p; in P. The result most related to our work is [65, Th.1.3];
it states that if there exists § > 0 such that the intersection of P with each invertible
residue class modulo every integer ¢ has density at least §/¢(q), then, under suitable
additional assumptions, n = p; + p2 + p3 is soluble within P. This does not cover our
situation, since if h, > 1 then the densities d,(1mod h,) vanish. Furthermore, if h, = 1
then these densities could become arbitrarily close to zero. Indeed, if ¢ is of the form
Hp<Tp for some T' > 2 then it is easy to see that

Sullmod g)o(a) < [] (1- 1) <

g
ot A oglogg

It would be interesting to modify his approach in order to recover some of our results,
for example a lower bound of the correct order of magnitude as the one provided by
Theorem This approach would still require HRH(a;) and besides the focal point
of the chapter is the ‘Artin factor’ A,(n) in Theorem A further result related to
ours is that of Kane [38]. A very special case of his work provides an asymptotic for
the number of solutions of n = p; + ps + p3 when each p; lies in a prefixed Chebotarev
class of a Galois extension of Q. Primes with a prescribed primitive root do admit a
Chebotarev description, however the number of conditions involved is not fixed.

7.1.3 The factor A,(n)

Let us now describe the representation of A,(n) that is obtained directly from the
proof of Theorem [7.1.1] Define for ¢ > 0 and square-free k& > 0 the number field
Fogr = Q(Cq,gk,al/k) , so that G, = Fy i k- Moreover, for b € Z with ged(b, ¢) =1,
we let cq,q,k(b) := 1 if the restriction of the automorphism oy, : (g = ¢2 of Q(¢g) to
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Q(¢y) N Gy is the identity and we otherwise let cq4%(b) := 0. We use the usual
notation e, (z) := exp(2miz/q), for z € C,¢q € N. The exponential sum

Sa,q.k(2) == Z Ca,q.k:(b)eq(2b) (7.15)
be(Z/qZ)*

and the entities

agk H Sasak: (7.16)

3
[

Foigr : Q) (7.17)
i=1

3
da,k(‘]) = H

will play a central role throughout this chapter. For positive square-free ki, ko, k3 we

define
=1
Gax(n) =
7k( ) ;da,k(Q)

> eg(—n2)Lagx(2). (7.18)
z€L/qL
ged(z,q)=1
It will be made clear in §7.2]that this is the singular series for the representation problem
n = p1 + p2 + p3 where for each ¢ the prime p; splits completely in G, x,. The absolute
convergence of the sum over ¢ will be verified in Lemma With this notation in
place, the leading factor in Theorem and Theorem is given by

Aat) = 5 (3 nlbouthn () Sas) ). (7.19)

keN3

The sum over k will be shown to be absolutely convergent in Lemmal[7.3.2] It is desirable
to describe the integers n for which Aa(n) # 0. An important remark is that if the
method of Hooley works in an Artin conjecture-related problem then it provides a leading
constant which is an infinite alternating sum of Euler products that is not obviously
equal to the conjectured Artin constant. Such a phenomenon is well documented and
can be observed for instance in the work of Lenstra [5I], who studied the density of
primes in arithmetic progressions and with a prescribed primitive root, as well as the
work of Serre [64], who studied the density of primes p for which the reduction of an
elliptic curve over I, is cyclic. Artin constants have not been studied in the context
of Diophantine problems prior to the present work, however, we will show that A4,(n)
factorises partially and we shall provide an interpretation for A,(n). For every positive
integer d we define the densities

3
Tan(d) = d( 3 | R Oa (bi mod d) mOd d) ) (7.20)

bl,bg,bg(mod d) i=1
b1+b2+b3£n(mod d)
The factor d has an explanation that is identical to the explanation of the factor p
in - - Let [-] denote the least common multiple, v,(-) be the p-adic valuation
and define

Da 2m1n{1/2(A ;):1<i<3}—max{va (A, )1<1,<3}[A A, Ay ] (721)

ay a»
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Theorem 7.1.5. The factor Aa(n) in Theorems and [7.1. factorises as follows,

3

1
Aa(n) = 5(Hcal.)a.,lyn(:ga) I e (7.22)

i=1 PIDa

Furthermore, whenever Aa(n) > 0, we have
¢(ha,)

3
Aa(n) > ] W (7.23)
i=1 Tl

with an absolute implied constant.

For an interpretation of the right side of (7.22)) see §7.1.4. The proof of (7.22) (that
will be provided in §7.4.1) requires adroit manoeuvring. This is because the densities

0q(b;mod d) in ([7.20]) have a complicated dependence on b; and also do not exhibit good
factorisation properties with respect to d.

Let us furthermore comment that in contrast to the usual applications of the circle
method, the constant in does not factorise as an Fuler product, see for a
precise statement of this phenomenon. The following consequence of Theorem [7.1.1] and
Theorem [7.1.5| can be interpreted as a local-global principle.

Corollary 7.1.6. Let a1, as,asz be three integers none of which is —1 or a perfect square,
and assume HRH(a;) for i = 1,2,3. For every sufficiently large odd integer n, the
following statements are equivalent:

1. There are primes p1,p2,p3 not dividing 6A,, Ay, Aa, such that each a; is a prim-
itive root modulo p; and p1 + p2 + p3 = n.

2. For d € {3,D,}, there are primes p1,pa, p3 with ged(p1paps, 2d) = 1 such that a;
is a primitive root for p; for every i =1,2,3 and p1 + p2 + p3 = n mod d.

Though part (2) of Corollary may not look like a purely local statement, it is one.
In fact, for any d in N, solubility of the congruence modulo d in primes not dividing
2d with prescribed primitive roots is equivalent to the statement that o, q(n) > 0. In
Lemma we shall see that o, (p) > 0 whenever p { 3A,, Ay, Aq,. Moreover, it is
clear from the definition in (7.20)), that whether o4 4(n) = 0 or not is a local condition
modulo d.

7.1.4 Interpretation of the Artin factor for the ternary Goldbach
problem

Studying the constants in any counting problem of flavour similar to that of Artin’s
conjecture is a non-trivial task and has been analysed rather extensively. The problems
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involve primes with a fixed primitive root, primes in progressions and with a fixed
primitive root and primes such that the reduction of a fixed elliptic curve over the
corresponding finite field is cyclic, see the work of Serre [64]. The reader that is interested
in an overview of the work that has been done on these constants so far is directed at
the work of and Lenstra—Stevenhagen—Moree [52], as well as the survey of Moree [60).

We now focus on the interpretation of the “Artin-factor” Aa(n) with the help of (7.22).
First, the factor 1/2 is related to the density of solutions in R of >°,_,.;2; = n and it
has the exact same interpretation as in the classical situation of ternary Goldbach, and
therefore, we do not further comment on this.

The term
Lo Loyl

in (7.22) should be thought of as the “probability” that for all i = 1,2,3, a random
prime p; has primitive root a;, see (7.9)).

The factors oa,(d) for d € {Da} U {p prime : p { D,} admit an explanation that
is comparable to the analogous densities in the classical case of the ternary Goldbach
problem, see ([7.13]). There is only one difference, namely that one has to use the weight

8., (b;mod d)
L,

instead of 1/(p — 1). This new weight equals the conditional probability that a random
prime lies in the arithmetic progression b; (mod d) given that it has primitive root a;.

It would be desirable to use algebraic considerations (for example, the approach of
‘entanglement’ of splitting fields as in the work of Lenstra—Stevenhagen—Moree [52]), to
provide a prediction for A, (n) with a method that is different to the one in §7.4.1|

7.1.5 The case where all primitive roots are equal

In our next theorem, we provide an explicit description of the local conditions in Corol-
lary but for space considerations we do so only in the important case where

a1 = az = az =: a.

The first row of the following table contains the discriminant of Q(y/a) and the second
row contains the power properties of a. For example, if a is a cube but not a fifth power
we shall write a € Z3 \ Z5.

Theorem 7.1.7. Let a # —1 be a non-square integer and n € N. Then the ’Artin
factor’

A(a,a,a) (n)

1s strictly positive if and only if n satisfies one of the congruence conditions in the third
row of the following table. The second to last row refers to all integers a mot considered
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in a row above it, as long as a is a third power. The last row refers to every integer a
not considered in a row above it.

Disc(Q(1/a)) Power properties of a Congruence conditions for n
-3 Z\ ({-1}yuz? 3 (mod 6)
—4 Z\ ({-1}uzZ?) 1 (mod 4)
5 Z\ ({-1}uz?) 1 (mod 2) and not 0 (mod 5)
12 Z\ ({-1}UZ2 U Z?%) 3,5,7,9 (mod 12)
12 73\ ({-1yuz?) 3 (mod 12)
—15 Z\ ({-1yuz?uz*JUZ® 1(mod 2) and not 0 (mod 15)
—-15 73\ ({-1}uZ?uzZd) 1 (mod 2) and 3,6,9,12 (mod 15)
-15 Z5\ ({-1yuzruz?) 1 (mod 2) and not
0,1,2,7,8,14 (mod 15)
—15 78\ ({-1}uz?) 12 (mod 15)
—20 75\ ({-1yuz?) 1 (mod 2) and not 1 (mod 20)
21 7'\ ({-1}uzZ?uzZ?) 1 (mod 2) and not 8 (mod 21)
21 Z3\ ({-1}yuz?uzm) 3 (mod 6)
21 72\ ({-1}uz?) 1 (mod 2) and 3,6,12,15 (mod 21)
+24 3\ ({-1}uz?) 3 (mod 6)
60 73\ ({-1yuz?) 3 (mod 6)
60 75\ ({-1}yuz?uz?) 1 (mod 2) and not 31,41 (mod 60)
—84 Z3\ ({-1yuz?) 3 (mod 6)
105 Z3\ ({-1}yuz?) 3 (mod 6)
+120 73\ ({1} U Z?) 3 (mod 6)
+168 73\ ({-1yuz?) 3 (mod 6)
—420 73\ ({~1} UZ?) 3 (mod 6)
+840 Z3\ ({-1yuz?) 3 (mod 6)
other values 73\ ({-1}uz?) 3 (mod 6)
every other value 7\ ({—1} UZ?) 1 (mod 2)

Theorem enables one to describe all large enough integers having a representation
as a sum of 3 primes with a prescribed primitive root.One such example is Corollary

whose proof we give now.

Proof of Corollary[7.1.2. If n is a sum of 3 odd primes all of which have primitive
root 27, we saw in the first paragraph of this chapter that n must be 3 mod 12. For
the opposite direction we observe that if @ = 27 then we have Disc(Q(v/a)) = 12 and
a € 73\ ({—1} UZ?), hence alluding to the fifth row in the table of Theorem we
see that, conditionally on HRH(27), every sufficiently large integer n = 3 (mod 12) is a
sum of three odd primes with primitive root 27. O

7.1.6 Structure of the chapter

We study a generalisation of the ternary Goldbach problem in where each of the
three primes involved satisfies certain splitting conditions in a different number field
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extension of Q. The main result of is Proposition whose proof is given
n 723

Next, §7.3.1| contains the first steps for the combination of Hooley’s argument [35] and
the Hardy—Littlewood circle method. Theorem will be proved in §7.3.2] while
Theorem [7.1.3] is verified in

The rest of our chapter, namely deals with the ‘Artin factor’ Aa(n). The former

part of Theorem viz. ((7.22)), is verified in §7.4.1} while the latter part, viz. (7.23),
is established in §7.4.2 Corollary and Theorem are proved in §7.4.4] and
§7.4.5| respectively. Finally, we show that A, (n) does not factorise as an Euler product

in {715

Notation 7.1.8. The letters p and ¢ will always denote a rational prime. The entities
@i, ha;, Ag, are considered constant throughout our work, thus the dependence of implied
constants on them will not be recorded. On several occasions our implied constants are
absolute, this will always be specified. Finally, we will use the notation

e(z) := exp(2miz) and ey(z) := exp(2miz/q), (z € C,q € N).

Acknowledgements. This work was completed while Christopher Frei and Peter Koy-
mans were visiting the Max Planck Institute in Bonn, the hospitality of which is greatly
acknowledged.

7.2 Uniform ternary Goldbach with certain splitting
conditions

In this section the letters k, k; shall refer exclusively to positive square-free integers.

Recall (7.3)) and define
Spl (G.k) := {p prime in N : p splits completely in G, i} (7.24)

We study the asymptotics of the representation function

3
Vak(n) = Z H log p;. (7.25)

p1t+p2+ps=n i=1
Vi: pi€Spl(Gay k; )

We will see that the singular series related to the estimation of V, k(n) is the series
Ga,k(n) introduced in (7.18). Kane [38] studied a very general set of problems, one case
of which is that of evaluating V4 x(n) asymptotically. His work provides a function f,
such that for each B > 0 and square-free ki, ko, k3 we have

Va,k (n) =

1 9 n?
§6a,k(n)n +0Op <|fa(k)|(logn)g> ; (7.26)
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where the implied constant depends at most on a and B. This can be deduced by taking
N:=n, X:=n, k:=3, a;:=1, K; :=Gq,, and C; := idG%ki

in [38, Th.2]. With this choice the constant C in [38, Th.2] equals n?/2 and a long but
straightforward computation allows one to show that the ‘singular series’ G, k(n) can
be factored into the remaining parts of the main term in the asymptotic formula [38]
Eq.(1.2)].

Our aim in this section is to prove the following result, conditional on the hypothesis
HRH’(a;) introduced before Theorem [7.1.3] It constitutes a version of that has a
power saving in the error term and an explicit and polynomial dependence on the k;. As
is surely familiar to circle method experts, an error term of this quality is currently out
of reach unconditionally even in the setting of the classical ternary Goldbach problem.

Proposition 7.2.1. Assume HRH(a;) for i =1,2,3. The following estimate holds for
all square-free ki, ko, ks with 1 < ki, ko, k3 < n and with an implied constant depending
at most on a,

1
Vax(n) = 5Ga’k(n)nz +0 (nll/ﬁ(log n)6 ( 1r£1?<xs ki)6> .

7.2.1 Algebraic considerations

We shall need explicit bounds for certain algebraic quantities associated to Gg . This
subsection is mostly devoted to providing the necessary estimates.

Recall the definitions of A, and h,, given in (7.4) and (7.5)). We begin by determining
the degree of the number field F, , ;, defined at the start of §7.1.3| (see [59, Lemma 2.3]).

Lemma 7.2.2. For k square-free, set k' := k/ ged(k, hy). Then we have

[qu,k : Q] = klgb([% k])/e(q’ k),

where
2, if2|k and A4 ||g, K],
6(q, k) { f | | [q ]

1, otherwise.

Lemma 7.2.3. Let k' = k/ged(k, hy) and a = g%Cd(k’h“)

Then

g%, with g free of k'-th powers.

log |Disc(Fa,q,k)| /
— 2 Zlogk’ + log([g, k]) + 210 .
Foor Q) g s([g, k]) g g1l
Proof. We have [Disc(Faq.k)| = MAR, , /0, )IDiSC(Q(g,r))|Frar@Car)] where
I is the absolute norm of an ideal and A Fa 0.6/ Q(Clq.n)) is the relative discriminant ideal.
Any k'-th root o € Fy ¢ of g1 generates Fy g over Q(([q,x]), so it’s different d(c) # 0 is
in the different ideal of Fy, g x/Q((jg,%]). Since the minimal polynomial of a over Q({jq,x)
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divides z¥ — gy, we find that ¥’a®¥ =1 is a multiple of d(a) in Op, ,,, and thus in the

different ideal as well. Hence,

q,k?

m(AFa,q,k/Q(C[q,k])) < |NFa1qvk/Q(k/Otk‘ 71)|

< (k') FaariQ| g, | (' =De(la:k])

< (K FaawiQl| g | 2Faa Q|

Now use

|Disc(Q(Clg,x)))| = [q, k]#UakD Hp*w([q,kD/(p*l) < [q, K]#UaRD

plak
to complete the proof. O
Clearly, the intersection Q((q) N G, contains Q(Ceed(q,rx)). More precisely, it is deter-
mined as follows (see [59, Lemma 2.4]).

Lemma 7.2.4. We have

2 if 2|k, Astk and A, (g, K]
1 otherwise.

[Q(¢) NGk : Qlgearg.m)] = {

In the first case, the integer B,(q) defined in (7.10) is a fundamental discriminant and
we have Q(Cq) N Ga,k = @(Cgcd(q,k)7 V ﬁa(q))

Since both Q(¢,) and G, & are normal, the same holds for their compositum F, 4 5. We
investigate the existence of certain elements of the Galois group Gal(F, ,1/Q). Recall
the definitions of o3, and cq,q,x(b) from the start of §7.1.3]

Lemma 7.2.5. Let b € Z with ged(b, q) = 1. The following are equivalent:

1. there is an automorphism o € Gal(Fy q,1/Q) with

oloe,) =op and olg,, =idg, (7.27)
2. Ca,q,k(b) = 1,
3. with B.(q) defined in (7.10)), we have
b=1(mod ged(q,k)), and (7.28)
2|k, Agtk, Agllg, k] implies that (5(1()(6])) =1 (7.29)

Moreover, if o as in (1) exists, it is unique and in the center of Gal(F, 4 1)/Q.
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Proof. Write I := Q((;) NG k. The map o +— (olg(,),lc, ) provides an isomorphism

Gal(Fy,q,1/Q) = {(01,02) € Gal(Q((y)/Q) x Gal(Gok/Q) : o1]1 = 02[1}.

Thus, an automorphism o with (7.27) exists if and only if ¢, q.x(b) = 1, proving the
equivalence of (1) and (2). In this case o is necessarily unique and clearly in the center
of Gal(Fy,q,x/Q), because the Galois group Gal(Q((,)/Q) is abelian and idg, , is in the
center of Gal(G, ,/Q). Thus, let us study the conditions under which ¢, 4.1 (b) = 1.

Since Q((ged(q,k)) C 1 and Ub|@(<gcd(q,k)) coincides with the automorphism given by

¢ s (¢b(mod ged(a:k)) the condition is clearly necessary. Thus, we assume it to
hold from now on, Whence TblQ(Cpeaiany) = 1dg - If the antecedent in (7.29) is false,

then we have I = Q((ged(q,k)) bY Lemma and thus c, q.k(b) = 1. If the antecedent
in (7.29) holds, then, invoking Lemma once more, we find that \/5,(q) € Q({y)
and ¢q,q,5(b) = 1 is equivalent to

o5(v/Ba(2)) = V/Balq). (7.30)

Since B,(q) is a fundamental discriminant, we may invoke [59, Lemma 2.2] to see that

(7.30]) is equivalent to ('B“T@> =1. O

7.2.2 Consequences of HRH’(a)
In this section we use the hypothesis HRH’(a) to provide estimates for certain exponen-
tial sums related to the estimation of V, x(n).

Lemma 7.2.6. Assume HRH’(a). For any square-free k and coprime integers ¢,q we
have

- x(O)r 2 /gE(log qz)?).
1; (log p)eq(cp) = P DCor T X(ﬂ% q)x( )7(x) + O(k/gz(log g)°)

pESPL(Ga,i) xoMN=x0

Here, x runs through all Dirichlet characters modulo q for which x o N, considered as a
ray class character modulo qOg, , , is the trivial ray class character xo. Moreover, T(x)

denotes the Gauss sum 7(x) = Zy(mod o X(W)eq(y).
Proof. We have

> (ogpleg(ep) = Y (logp)ey(cp) + O((log q)*). (7.31)
p<z p<z,plq
pESPL(Ga,k) pESPL(Ga,k)
Bringing into play the Dirichlet characters modulo ¢ allows us to inject, for p 1t ¢,

1 1
Cq r Z Z (b):@ Z x(ep)7(x)

b(mod ¢) x(mod q) X(mod gq)
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into ([7.31]), thus acquiring the validity of

> (logp)eg(cp) =

p<z
peSPI(Ga,k)

Y X(OT()¢ar(@.X) +O((logg)®),  (7.32)

v(q) oo &

where

bar@) = S (ogpx(®) = o S (logMp)x(Mp)

p<z (G Q) Np<a
peSpf(Ga k) deg(p)=1
= Gor Z A(n)x(9n) + O(v/zlog z).

MNn<x

Here and for the rest of this section p denotes a prime ideal in Og, , , deg(p) denotes its
inertia degree over Q, n denotes an ideal in Og, ,, and A is the von Mangoldt function
on ideals of Og, , , defined by A(p¢) := log Np for e > 1 and A(n) := 0 in all other cases.
Observing that x o 01 defines a character of the ray class group of G, modulo ¢O¢
we consider its Hecke L-function,

Lis,0) = 3 x(9n) (9tm) .
n#0

a,k?

It is now easy to see that
—L'(s,x)/L(s,x) = ZA MNn)~°.
n#0

The Ramanujan—Petersson conjecture is obviously true for L(s, x), since it is true for
any Hecke L-function. Hence Theorem 5.15 from [37] implies that

> A@)x(On) = ryex + O (log 2) log(xl+Ug(x))),
Nn<lx

where r, is the order of the pole of L(s, x) at s = 1. For the definition of q(x), see page
95 of [37]. Furthermore, on page 129 of [37] it is proven that

q(x) < 4%+ Dise(Gy 4 ) gl Fen .

Our next task is to make explicit the value of r,.. If x 091 is the trivial ray class character
Xo modulo Og, ,, then we have r, = 1; otherwise we have r, = 0. Using |7(x)| < /g
and Lemma we can substitute in (7.32)) to find that

-1

L TT T, X) = % 767’
o) X(n%; q)x( )T(X)Va,k (7, X) Gor O X(%é q)x( )T(X)+

O([Gar : Qly/gz(log gz)?),

thus concluding our proof upon observing that [Ga . : Q] = [Fa .k : Q] < k2. O
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Although it is possible to directly evaluate the main term in Lemmal[7.2.6, we will instead
use the following trick.

Lemma 7.2.7. Under the same conditions as in Lemma[7.2.6] we have

S, c
Z (logp)eq(cp) = [Fq%x +0g.x(2), as x — +oo.
< @R -
pESgl_(ga,k)

Proof. Partitioning in progressions modulo ¢ we see that, owing to ([7.31]), the sum over
p in our lemma is equal to the following quantity up to an error of size o4 (),

Z eq(bc) Z log p.

be(Z/qZ)* p<zx
p=b(mod q)
p€SPUGa,k)

By Lemma there exists an automorphism o of F, ;5 satisfying
oloe,) =op and olg,, =idg,,

if and only if cq,4,%(b) = 1. Furthermore, if such an automorphism exists, it is unique.
The lemma is now a consequence of Chebotarev’s density theorem. O

Combining Lemma [7.2.6] and Lemma proves the following lemma.

Lemma 7.2.8. Under the same assumptions as in Lemma [7.2.6 we have

S, c)x
Z (logp)eq(cp) = m + O(]g2 /ql‘ 10g2 q:]j)
<z @R
peSglfGa,k)

Define for a square-free integer k > 0 the exponential sum

far(a) = Z (logp)e(ap), (a €R). (7.33)
pesglg(ga,k)

The next lemma is easily proved via partial summation and Lemma [7.2.8]

Lemma 7.2.9. Assume HRH(a). Let k be square-free integer and define a = ¢/q + 3,
where (¢,q) = 1. Then

Sa,q.k(C)

= ne xT)ax 2 n n(1o n2 .
fuale) = B [ e(@a)an +0 (1(1-+ 81n) ya(log n)?)

It will be necessary to gain a better understanding of the exponential sums S, ¢ x(c).
We start by studying ¢, 4% () in the next lemma, whose proof flows directly from (7.28))

and (729).
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Lemma 7.2.10. Let b,q be coprime integers and factor q as q = dHﬁlefi with d an
integer composed of primes dividing A, and p; distinct prime numbers not dividing A, .

Then we have for any square-free integer k,

l

Ca’q’k(b) = Ca,d,k(b) H Ca,p:i ,k(b)

=1

Lemma 7.2.11. Let k be square-free, assume that b, q are coprime integers and suppose
that ¢ = q1q2, b = b1ga +baqy, with g1, g2 coprime. If ged(q1, Ay) = 1 or ged(ga, Ag) =1
then we have

Sa,q,ka’) = Sa,q17k(b1)5a,qz,k(b2)-

Proof. By the Chinese remainder theorem we can write each element y € Z/qZ as
Y192 + Y2q1, where y; € Z/q;Z, thus showing that e, (by) = e4 (b1y1¢2)eq, (b2y2¢1). This
leads to

Sa7q7k(b) = Z Ca,q,k(y)eq(by)
y€E(Z/qZ)*
= Z eq: (b19142) Z €gs (b29241)Caq, k(Y102 + Y2q1).-
y1€(Z/nZ)* y2€(Z/q2Z)*

By Lemma [7.2.10| we have cq,q,k(y192 + ¥241) = Ca,q0 k(Y102 + Y201)Ca,q0, k(Y102 + Y201)-
The entity cq,q,1(y) is periodic (mod ¢) as a function of y, thus we can write S, 4 1(b) as

Z eq, (b1142)Ca,q, 1 (Y12) Z eqa (b21/241)Ca g0,k (Y2G1)
y1€(Z/nZ)* y2€(Z/q2Z)*

and a simple linear change of variables in each sum completes the proof. O

Lemma 7.2.12. For k square-free, b an integer and p a prime with p 1 bA, we have

v o 1, 57=1
Sowa®l={ o 151

Proof. Let us observe that always holds for ¢ = p’ as in the lemma, as the
antecedent is never satisfied. We first handle the case j = 1. If p t k then by Lemmal/7.2.5)
Sa,p.k(b) is the classical Ramanujan sum and the result follows, while in the remaining
case, p | k, the result is also immediate from . Now suppose j > 1. Again, if p1 k,
the sum in the lemma is a Ramanujan sum and the result follows. We are therefore free
to assume that p | k. Writing y = 1 + px we see that

Sapi k(D) = Z epi (by) = e (b) Z epi—1(bx),
y(mod pj> z(mod pi—1t)
y=1(mod p)

which is clearly sufficient since the inner sum vanishes. O
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Lemma 7.2.13. Let r,Q,c € Z be such that rQ # 0,ged(c, Q) = 1, r divides Q and
assume that a function f : Z — C has period |r|. If we have |r| < |Q| then the following

sum vanishes,
> eqibe) (D).
b(mod |Q])

Proof. The claim becomes clear upon writing the sum in our lemma as
> eqboo)fbo) D> eqymlac)
bo(mod |rl) z(mod [Q/r|)
and observing that if |Q)/r| # 1 then each exponential sum over z vanishes. O

Lemma 7.2.14. Let k be a square-free integer, suppose that q is composed of primes
dividing A, and let b be an integer with ged(b, q) = 1. If ¢t A4, then Sy q.5(b) = 0.

Proof. First suppose 21k or A, | k or A, {[g, k] and write ¢ = pi* - - - p;’. We have

l

Ca,q,k(b) = H Ca,p:i ,k(b)7

i=1
therefore S, 4 1 (b) = 0 can now be easily proved as before, as our hypotheses imply that
e; > 1 for at least one j.
Now suppose that 2 | k and A, 1 k and A, | [¢,k]. For y € Z, let f(y) := 1 if
y = 1 mod ged(k,q) and (B“T@)) =1, and f(y) := 0 otherwise. By Lemma |7.2.5 we

have

Sa,qk(b) = Z f(y)eq(by).

y(mod gq)

Since ged(k, q) | ged(Aq, q) = |Ba(q)] and S.(q) is a fundamental discriminant, we see
that f has period gcd(Ag,q), strictly dividing ¢ by our hypotheses. Apply Lemma
[C2.13 O
Combining Lemmas [7.2.11] [7.2.12] and [7.2.14] allows us to conclude that

Sa,qk(b) <1, (7.34)

where the implied constant depends at most on a.

7.2.3 Proof of Proposition [7.2.1
Recall (7.33)). Our starting point is the circle method identity,

3 1
Z H(logpi) :/O fa1,k1(a)fa2,k2(a)fasnkz(a)e(_na)da' (735)

p1+p2+ps=n i=1
Pi espl(Gai‘ki )
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Corollary 7.2.15. Assume HRH’(a), and suppose o, c,q fulfil |a — ¢/q| < ¢ 'n=2/3,
ged(e,q) = 1, ¢ < n?/3 and that k is square-free. Then we have

far(@) < (n/q+ E*n°/%)(logn)?.

Proof. Observe that Lemma [7.2.2] gives
[Fagn : Q7" < olg, k)™ < o(@)™ < (loga)g™",
hence, by Lemma, and one obtains
far(@) < n(logn)g 4+ k2(1 +n'/3¢7Y)/qn(logn)>.

Our proof can then be concluded by using ¢ < n?/3. O

Define P := n”, for an absolute constant v € (0,1/6] that will be chosen later. In our
situation the major arc M(c, q) is defined for coprime ¢, ¢ via

Mg c) :={a:|a—c/q < g 'n"?7},

while we let 9t be the union of all M(q,c) with 1 <¢g < P, 1 <¢<gq,ged(c,q) =1 and
define the minor arcs through m := [0,1] \ 91. We note here that the major arcs are
disjoint owing to (g¢') =" > (qn?/3)~! + (¢'n?/3)~! that can be proved for all n > 8 due
to q,q’ < nl'/3.

Corollary 7.2.16. Assume HRH’(a;) for 1 <i < 3. Then

[ V140 (@) (@)l < 02 (o) i .
m

Proof. By Dirichlet’s approximation theorem, for each « there exist coprime integers c, g
with [a—c/q| < ¢~ 'n"2/3and 1 < ¢ < n?/3. If a € mthen ¢ > n”, hence Corollarym
yields the estimate f, () < k?n'~"(logn)?. We may assume k1 < ko, k3 with no loss
of generality, therefore the integral in our lemma is

1
< K2l (logn)? / [Fan () f ey (1) L,
0

thus Cauchy’s inequality yields the following bound for the last integral,

<(/ e @paa) ([ s (@)Pda

Both integrals are at most >, (log p)? < nlogn, which provides the desired result. [J

1/2 1/2

Note that if 3 + ¢/q € M(q, c) for some ¢ < n'/? then Lemma shows that

Saiw‘]»ki (C)

n n5/6
o) = el [ e(pa)da + 0 (U logn)? )
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Hence the estimates

Sa,q,k(c)

-1
For: O < p(q)

/" e(fz)dr < min{n, |8~} and
0

Show that fo, i (/0+0) Fos a0/ 0+ 9) 0/ 0+9) = L (i)~ (f3 e(Bw)az)”

is
(2 |B]—21 55/6 15/6
mm{n( ’)fl i n1/2 (logn)? max k? + L(log n)® max k¢, (7.36)
»Yla q v v

G372
The major arcs make the following contribution towards ([7.35]),

—-1,,-2/3

os fal,k1 (C/q+ﬂ)fa2,k2 (C/q+ﬁ)fa3,k3 (C/Q+6)e(_n(C/Q+5))dﬁa

q

> ¥

1<q<nv 1<e<q J—a7'nT
ged(c,q)=1

and a straightforward analysis utilising ([7.36)) reveals that the last expression equals

—1,,-2/3

LT S [ ([ semar) scnmas

1<g<n¥ 1<c<gq
ged(c,q)=1

o <n11/6(1ogn>6) |

max; k; 6

The integral over 3 can be estimated as n2/2 4+ O(¢*n*/3), thus by (7.34) the sum over
q is Gax(n)n?/2 + O((n*3*t" + n?7")(logn)?) and the choice v = 1/6 concludes the
proof of Proposition [7.2.1

7.3 The circle method and Hooley’s approach

7.3.1 Opening phase

The aim of is to prove Theorem and Theorem We commence in this
subsection by calling upon parts of Hooley’s work [35] that will prove useful. We will
make an effort to keep the notation in line with his as much as possible. In this section,
the letters p, ¢ will be reserved for primes. Two primes p, g are said to satisfy the property
R.(g,p) if both of the following conditions hold,

q|(p — 1);a is a gth power residue (mod p).

A standard index calculus argument shows that for a prime p { a the integer a is a
primitive root (mod p) if and only if R, (g, p) fails for all primes ¢q. For any 7,11, 72 € Rsg
we define

Nu(n,n) := #{p < n: Rq(q,p) fails for all primes g < 77}
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and
M, (n,n1,m2) :== #{p < n: there exists ¢ € (11, 792] such that R,(q,p) holds}.

Letting
No(n) := #{p < n:ais a primitive root modulo p}

we see from the work of Hooley [35], Eq.(1)] that for each &, &3,&5 € R with
1< < <és<n—1
we have
Nu(n) = Na(n, &) + O(Ma(n,fl,fg) + M, (n,&2,&3) + My (n, &3,n — 1)) (7.37)

Hooley makes specific choices for the parameters £;; we will keep the same choice for &;
and &3, namely & = nz (logn)=2, &3 := nz log n, however, we shall later choose a differ-
ent value for £;. For the moment we shall only demand that 1 < & < (logn)(loglogn)~!.

The estimates proved in [35] Eq.(2), Eq.(3)] provide us with
Na(n) = Na(n, &) + O(Ma(n, &1, &2) 4+ n(loglogn)(logn) ). (7.38)

The argument in [35, Eq.(33)] shows that for each & as above, one has under HRH(a)
that

Ma(n7€17£2) < & Z i + &

2 2 7
logn S¢ @° log'n

which, once combined with the simple estimate > 0>Er <& b and (7.38) provides
us with

(7.39)

Na<n>—Na<n,gl>+o< n_1 nloglogn)

logn a log®n
with an implied constant depending at most on a.

Lemma 7.3.1. For any € (0,1) and any sets of primes P; C [1,n] of cardinality
e(P;)n/logn the following estimate holds with an implied constant that depends at most

on B,
3
Z Hlogpi <5 n?(maxe(P;))P.

p1+p2tp3=ni=1
Jizp; €P;

Proof. Define rao(m) := #{(p1,p2) : p; prime,p; + p» = m}. The sum in the lemma is

at most
3

3
(logn)® >~ > 1=(logn)®> > 1p(p)ra(n—p)

i=1 p1+p2+p3=n i=1 p<n
pi€P;

and using Holder’s inequality with exponents (1/5,1/(1 — 3)) allows us to bound the
inner sum on the right by

e(Pi)’n” (logn) =7 (Y ra(n —p)t /=)0,

p<n
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Straightforwardly, there exists ¢ = ¢(8) > 0 with (1 — 2)/(1 — 22) < (1 + cz)*~? for all
0 < z < 1/3. Using this for z = 1/p’ and alluding to the following classical bound (that
can be found in [29, Eq. (7.2)], for example),

m p—1
ra(m) < (log m)? H ;

p'|m,p’ #2

yields

ra{m) < log (logm)? 1 ( )1ﬁ'

/‘m

Therefore the quantity in the lemma is

< <1ogn>3(mnifgi;<7’i>)ﬁ(((logn )”“ S I« 1+C/P)

p<np'|n—p

and to finish our proof it remains to show that

Z H (1+c/p) <<c

p<np'|n—p
Rewriting this sum as Y, u(d)?c*Dd~ #{p < n : p = n(mod d)} we see that the
contribution from integers d > n'/? is < 32,172 g<, “@Dd7(n/d + 1) < nt/2H1/100,
By Brun—Titchmarsh, the contribution of terms with d < nl/? is
< n(logn)™" Y ¢ D(dg(d) " < nlogn)~,
d§n1/2

thus concluding our proof. O

Let us define the set
Pi = {p : p|ai} U {p <n: R, (g,p) holds for some prime g > 51}.

The arguments bounding M, (n, &1,n—1) in the deduction of ([7.39) show under HRH(a)

that
nloglogn

& 108; n log®n
We can now apply Lemma and to do so let us observe that by (7.40) we have

#P; < (7.40)

logn 1 loglogn 1
Shup < — 4 280 ¢~
&1 logn &1
Therefore, under HRH(a;) for ¢ = 1,2, 3, and for each fixed 8 € (0,1) we acquire the
validity of

€(Pi) =

3 2
Z H log pi = Z H logp; + Op (5—5) (7.41)
1

P1+p2tp3=ni=1 p1tp2+ps=n,pifa; =1
I, =(a:) Vi, Vq<&1: Ra,(q,pi) fails
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Bringing into play the following quantity for each square-free positive integer k;,

3
Pak(n) == Z Hlogpi, (7.42)

p1+p2t+ps=n, pifa; =1
Vi: qlki=Ra, (g, pL) holds

makes the following estimate available, once the inclusion-exclusion principle has been
used,

3
S JLespi= 3 M(kl)u(kg)u(kg)Pa,k(n)+0g(n2§1‘5). (7.43)
p1+p2+p3=ni=1 keN?
vi: T, =(ai) plkikzks=p<é

The entity P, k(n) is analogous to P,(k) that is present in the work of Hooley [35]
§3]. Indeed, the inclusion-exclusion argument above is inspired by the argument leading
to [35, Eq.(5)].

Using the arguments in [35, §4] we shall first translate the Ry, (g, p;)-condition present
in ([7.42)) into a condition related to the factorisation properties of the prime p; in certain
number fields. Recall the definition of h, given in ([7.5)). For any positive square-free
integer k; we define kf := k;/ gcd(kq, he,). Then, as explained in [35, Eq.(8)], for a prime
p1ta; and a square-free integer k;, the conditions R, (g, p) hold for all ¢ | k; if and only
if
2% = q; (mod p) is soluble and p=1(mod k;).

It is then proved following [35], Eq.(8)] that, in light of the Kummer—Dedekind theorem,
this is in turn equivalent to the property that p is completely split in the number field

Q(q; L/k; ,Ck;)- Recall ([7.3) and let us see why

1/k;

Gai’ki = Q( a,; 7Ck )

It is clearly sufficient to show that a; 1k

€ Q(a; L/k; . (k,). Writing a; = b+ and using
w(ki)? = 1, we see that ged(hq, gcd(kz, ha;), ki

)\hal, hence there are integers x,y with
ha; ged(ki, ha, )z + kiy = hq,

This leads to the equality a Moo= (pV/kiYhes = by (a}/ki/)’”, which completes the argu-
ment.

Recalling the definition of Spl (G, ;) in , we infer by (7.42) that for all k € N?
with each k; square-free we have

Pax(n) = > Hlogpz— (n) + Op(n*((logn)/n)?),
p1+p2+p3=n, pita; i=1
Vi: pi€Spl(Gay .k, )
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for any § € (0,1). For the second equality, recall (7.25)) and use Lemma Inject-
ing this into (7.43) we have proved that whenever 1 < & < (logn)(loglogn)~! and
0 < 8 <1 then

3
S loeni= Y wtkoutka)utks)Vax(n) + 0s(n?67), (7.4

P1+pa+pz=ni=1 keNS
iz By, =(ai) plk1kaks=p<ér

where, for 2 — 8 < § < 2, the estimate

S etk u(ka)in® <n®( 3 (u(h)]) = niz#Ee)

keN? keN
plk1kaks=p<&; plk=p<&

< n eBEl < fn6+ Tog log n

<p.5 n*(logn) P (loglogn)? < n2§f5

Before concluding the proofs of Theorem [7.1.1]and Theorem[7.1.3] we need a preparatory

lemma.

Lemma 7.3.2. The series defining Sax(n) in (7.18) and representing Aa(n) in (7.19)

are absolutely convergent. For each ¢ > 0 and z > 1 we have

) |6a,k<n>|(f[|u<ki>|)sz (ﬁlu(kﬂ)ida,l

Y [Lagx(@)

keN?® i=1 kend  i=1 q=1 k(9) z€(Z/qZ)*
3i,p: plkiand p>z Ji: k;>z
1
<<E 2:176’

with an tmplied constant depending at most on a and €.

Proof. The first inequality is clear by (7.18). Observe that k. > k;/h,, > k;, hence by
Lemma [7.2.2] we obtain

3 3
1 1 1 p(ged(g, ki)
< =
q) 1;[1 kip(lg, ki]) — w(a)® 1;[1 kip(ki)
Combining this with (7.34]) we see by (7.18]) that for ¢ > 0 and square-free k;,

oo 1 oo Cd ,kl cd 7]€2 cd ,k
Zda,k(q) > el |<<Hk Z@g (¢, k1)) e(ged(g, k2))p(ged(q, ks))

2
q=1 z€(Z/qZ)* q ¢(q)
ng(k1,k2,/€3)
< (kikoks)?—c

Therefore, the inner sum our lemma is

|1 (K1) |1u(ke2)| |(k3)| ged klak%kd)
<) e DY JREE > P
k1>z 1 ko €N 2 kseN
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Using the estimates

—<eTe € If 4
> lulks)| ged(ks, m)ks *" < m®  and 2“112 16 H
ks€N P

concludes our proof of the desired bound, which implies absolute convergence of the sum

in (7.19). 0

7.3.2 The proof of Theorem [7.1.1

Recall . Now note that, replacing fa(x) by a larger function if necessary, we may
assume in the statement of that fa([1,00)3) is a subset of (1,00). Fix any B > 0.
The function
zlog(l+z)+ > falk)
1<ks k2, ks <w

is strictly increasing, hence it has an inverse, which we call h,(z). Define the function
&1 : (1,00) — R through

1 . log x B
= = Y 1 a 1 /2 4
61(0) = g -in { 2B og(ha((loz0)”%) | (7.45)
and observe that
Jm &i(z) = +oo, (7.46)

however, owing to the non-explicit error term in [38, Th.2] we cannot have any further
control on the rate of divergence in the last limit. For n > 1, the definition of & implies

> fa(k) < (logn)B/2.

1<k1 kg ,kz<e2¢1(m)

Noting that a square-free integer with all of its prime factors bounded by &;(n) must be

at most [ ¢ (,)p < exp(2£1(n)) and injecting (7.26) into (7.44) yields the following
with an implied constant depending on 3 and B,

3 TL2 3
Z HIngi =3 Z (Hﬂ(ki))6a,k(n)+
i—1

p1+p2+pz=ni=1 keN?
n? n?
O(glﬂ * (logn)B ( Z fa(k)))

Vi By =(as) plk1k2ks=p<E1(n)
keN3

Vi kb <e61(m)

T (s ro( e i)

keN®
plki1kaks=>p<&1 (")
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An application of Lemma with € = 1 — 3 shows that

3
> Thown - 5( X stonthantte)ain) )

pi1+p2+p3=ni=1 keN3
Vi: ]F;_L_ =(a;)

n2

min{(logn)B/2,& (n)#}’

and the proof of Theorem is concluded upon invoking (7.46[), up to the assertion
that Aa(n) >, 1 whenever A,(n) > 0. This follows immediately from Theorem
proved in Moreover, we have confirmed the shape of Aa(n) given in (7.19)). O

<3,B

Note that the reason for the non-explicit error term in Theorem is that the function

&1 in ((7.45)) is not explicit.

7.3.3 The proof of Theorem

Let § be any real number in (0,1) and define

logn

&n) = loglogn’

Injecting Proposition into (7.44]) provides us with

3 2
Z H log p; — % Z Gak(n) H w(k;)

p1+p2t+p3=ni=1 plkikaks=p<E1 1=1

Vi: ]F;i:<ai>
n (logn) 5
<s F Tt 16 ( E:k |k ) :
& keN
plk=p<&

For n > 1, each k in the sum satisfies k < Hp<§1 p < nlongogn, hence the cube of the

sum over k is at most n®EleEn for some absolute positive constant 6. This shows that
the right side above is <g n2§f6. Appealing to Lemma completes the proof of
Theorem [Z.1.3] O

7.4 Artin’s factor for ternary Goldbach

In this section, we study in detail the leading factor A, (n) in Theorems and |7 -
and thus prove Theorem Corollary [7.1.6) and Theorem [T Recall that we have
already confirmed the equahty in the proof of Theorem [7.1.1| n in
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7.4.1 The proof of ([7.22)

Recall the definitions of F, 4 1(b) and cq q,%(b) from the start of §7.1.3] It was shown by
Lenstra [51l Th.(3.1),Eq.(2.15)] conditionally under HRH(a), that for all integers b and
q > 0 the Dirichlet density of the primes p satisfying the following conditions exists,

I, = (a) and p = b(mod q),
and, furthermore, that it equals Y-, o pu(k)ca,q.k(b)[Fa,qr : Q" This topic was later
revisited by Moree [59], who showed that

ke g i) _
= d,(bmod q), (7.47)
i Fagr - Q

where d,(bmod ¢) is the arithmetic function given in Definition We will make
consistent use of Moree’s result in this section.

Lemma 7.4.1. We have

3wt S = 3= 3 [T 5 et )

keNs q=1 ce(Z/qZ)* i=1

Proof. Recall (7.15)) and (7.18). Lemma allows us to rearrange terms, thus we can
rewrite the sum over k in our lemma as

o0 3
> % ] (X )
q=1 ceZ/qZ i=1 \k;eN Faiqk
ged(e,q)=1
By (7.15)) the sum over k; equals
ki)ca, o1 (b;
Y b)Y w
bi€Z/qZ k; €N [ a;,q,k; - Q]

ged(bi,q)=1

and using (7.47) concludes our proof. O

The difficulty of converting the sum over k in (7.19)) into a product comes from the
fact that the terms d,,(b;mod ¢) in Lemma are not a multiplicative function of g.
These terms would be multiplicative in the classical Vinogradov setting, where one has

Lged(s,,q)=1(bi)/@(q) in place of o4, (b;mod gq).
For brevity, we will write from now on f;(¢) and A; for 5,,(q) and A,,.

Lemma 7.4.2. If the odd part of a positive integer q is not square-free then the following

expression vanishes,
3
H( > eg(bic)da, (bimod q)>.
i=1 \b;€Z/qZ

Furthermore, the expression vanishes if v2(q) > min{va(4;) 1 i =1,2,3}.
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Proof. In the present proof we write [P] := 1 if a proposition P holds, and [P] := 0
otherwise. For 1 < ¢ < 3, we factorise each positive integer ¢ as ¢ = ¢;,0¢;,1, where the
positive integers g; o, ¢;,1 are uniquely defined through the conditions p | g; o = p|A; and
ged(gin, A;) = 1. Now owing to Definition the quantity d,, (b;mod ¢)/A,, equals

T (g;
([ng(bMi,l) ged(bi — 1,¢i1, ha,) = 1] Jali1) I1 (1 _ 1)) y

(15(612‘,1) plbi—1,plqi1 p

T,
(g(izgo)) H (1 — ;)) X [gcd(bi, gi0) ged(b; — 1, gi0, ha;) = 1] X

"7 plbi—1,plgi0

<1 + (’Bi(lii’())> p <gcd(2q|if,Ai)> I (gfai('q?,ci[ﬁi)) )

The integers g;,0 and g;,1 are coprime, hence we may write b; = g;,0b:,1 + ¢;,1b5,0 and use
the Chinese remainder theorem to write the sum over b; in the lemma as the product of

T (0 T (g;
Aai . fai (qz,0> fai (qz,l) Z e(bi,lc/qu) H (1 _ 1)

Qb(Qi,O) (b((h’l) bi,1(mod g;1) p|(bi,1qi,0—1,gi,1) p

ged(bi,1,94,1)=1
ged(bi,19i,0—1,g5,1,ha;)=1

and

X

Z e(bi /i)
1\—
HP|(bi,oqi,171’qi)0)(1 — 5) 1

@'(%,0)) < 2|1A;] > ¢< |A] )
<1+<bi,0%‘,1 H ged(gi0, As) fa, ged(gi0,0:)) )

To study the sum over b; ; we use Lemma [7.2.13| with

bi,o(mod gi,0)
ged(bi,0,94,0)=1
ged(bi,09i,1—1,4:,0,ha;)=1

Q=g ri= I p 70)=[acdbr)gedd~Lrho) =1 [] (1-2)

p
plai plb—1,p|r

to deduce that if the expression in our lemma is non-vanishing then for each i the integer
¢i1 must be square-free. Now assume that the prime p satisfies p § ged(Aq, Ag, Ag).
Then there exists ¢ € {1,2,3} such that p t+ A; and then the non-vanishing of the
expression in the lemma implies that ¢; 1 must be square-free, thus v,(¢) = vp(g;1) < 1.

Now the sum over b; ¢ can be studied via Lemma [7.2.13|with @ := ¢; 0, r := gcd (g0, Ai)
and with f(b) being the product of [ged(b, ) ged(bg; 1 — 1,7, hg,) = 1] and

b () (22 Y (2 ) T eh)

p|(bgi,1—1,7)




146 Chapter 7. Vinogradov’s three primes theorem with primes having given primitive roots

We have used the fact that p | ¢;0 < p | r and that the Kronecker symbol has period
|B(gi0)] = r. Lemma shows that unless the expression in our lemma vanishes,
we have ged(gi,0, Ai) = ¢i0, thus for every ¢ we must have ¢; 0 | A;. Now if a prime p
satisfies p | ged(A1, Ag, Az) we have that for every i, vp(q) = Vp(¢i0) < Vp(A;), thus
vp(q) < min{w,(A;) 1 i =1,2,3}. If p # 2 then this shows that 1,(q) < 1 since the
odd part of a fundamental discriminant is square-free, while if p = 2 then we must have
v2(q) < min{we(4;) :i=1,2,3}. O

Lemma allows us to simplify the summation over ¢ in Lemma since the only
integers ¢ making a contribution towards the sum must satisfy

Vp,i: plAiplg = vp(q) S vp(A;)  and  plg,pt A1A2Az = 1(g) < 1.
To keep track of every factorisation we introduce for every ¢ € N and w € {0,1}? the
positive integer
gw):= [ »@
Vi: p|Af<,::>w(i):O

so that ¢ = Hwng q(w). Furthermore, w # u implies ged(g(w), ¢(u)) = 1. Note that
for a given ¢, ¢(w) is uniquely characterised by the properties

ged(g(w), [ 4 and  g(w) | ged{A; : w(i) = 0}. (7.48)
zw(z) 1

In the case w = (1, 1,1), the latter condition is interpreted as vacuous. It may be that
for certain values of a; and for all ¢ some ¢(w) are equal to 1; for example, this happens
if ay = ag = as, in Which case we have w ¢ {(0,0,0), (1,1,1)} = ¢(w) = 1. We now use
the definition of ¢(w), Lemma [7.4.1] n and Lemma |7.4.2) - to infer

> wlky)p(ks) p(ks)Sa(n) = > > e(—ne [ a(w)™")x
keNs g(w))eN®,  ¢(mod I, a(w) w
holds gc(d(c,l_[w q(w)):)l
N(‘Z((lvlal)))2:1
3

H( Z (bch ) al(b mod Hq )) (7.49)

=1 \yp, (mod jg - q(w))
Noting that the integers [ ]y, ;—o ¢(W) and [](;—; (W) are coprime, that

ged (An Hq(W)) H q(w
w w(i)=

and recalling Definition [7.1.4] we see that

da, (bi mod Hq(w)) = 0, (bi mod H q(w)).Aai (bi mod H q(w))A;il.

w(i)=0 w(i)=1
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Writing b; = b; [

rem we obtain

3 (bch ) (b mod Hq )

b; (mod Hw q(w))

= > ( Hq )al(b’Hq moqu)

19(wW) + b7 [ 1 (i)—0 2(w) and using the Chinese remainder theo-

w(i)=

b;: (mod Hw(q‘,):() Q(W)) w(i)= w(i)= w(i)=
X 3 (b” I aw ) lAal<b” g(w)ymod ] q(W)).
bg/(mod Hw(i):l q(w)) w(i)=1 w(i)=0 w(i)=1

For the further analysis of the expressions above, we introduce for » € N, ¢ € Z the
quantity

Maer) ::Aia S ep(be)Aa(bmod 1), (7.50)

b(mod )

and for r € N¥, ¢ € ZF define
Dy(c,r) := Z e{b( E)}5@(bmod rieeeTE).

Hence, writing

we{0,1}3 V#EW

we see that [, ;)= Ma, (c™], g(w)) equals

At Z e(b;’c H q(w)_1>Aai(b2’ H q(w)mod H q(w))

b;'(mod [Mwey=1 q(w)) w(i)=1 w(i)=0 w(i)=1

and that D, (™), . (a(W)),)-) I8

Z e(bgc H q(w)_l)éai(bg q(w) mod H q(w)).

b (mod TTu(i)=o a(W)) w()=0 w(i)=1 w(i)=0

Let us bring into play the entities

Aw — H pmin{up(Ai,) : w(i):O}’
Pﬂ_[w(i,):l A

which we interpret as 1 in case w = (1,1, 1), and note that [, Aw coincides with the
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entity D, introduced in (7.21]). We see that the sum in (|7.49) becomes

Z Z (Heq(w)(—nc[w])> X

(g(w))eN® (eDell,, (Z/a(w)Z)* W
w#(1,1L,1)=q(wW)|Aw

H(Q((l’lvl)))2:1
ged(g((1,1,1)),A1A2A5)=1

3
< TP (oo (@) ) TT Ml a(w)) }.

w(i)=1

Clearly, the terms corresponding to ¢((1,1,1)) can be separated, thus, in light of (7.49)),
we are led to

> nlkn)p(kz)u(ks)Sax(n) = Sao(n)Sa(n), (7.51)

keN3

where

Sa,0(n) = Z Z ( H eq(w)(—nc[w]))x

(@(W))w(1,1,1)EN” (D€l Twar(1,1,1)(Z/a(w)Z)*  w#(1,1,1)

a(w)|Aw
3
H {Dai((c[W])w(i):Ov (Q(W))w(i):O) H Mai (C[WJ7Q(W))}
i=1 w(i)=1
w#(1,1,1)
and
Sa,1(n) = > m(q((1,1,1)))*x
ng(q((l,l,l)),AlAgAg):l
3
> eq(cr. 1,0 (= BN TT Mo, (00 g((1,1,1))). (7.52)
1D e(Z/q((1,1,1))2)* i=1

Lemma 7.4.3. For any q € N and w € {0,1}? define dw := Aw/q(w).
1. Leti € {1,2,3} and for each w with w(i) = 0 let ™ € (Z/q(w)Z)*. Then
Dai((c[w])w(i):Oa (@(W))w(i)=0) = Dai((c[w]dw)w(i):m (Aw)w(i)=0)-
2. Leti € {1,2,3}, w € {0,1}>\ {(1,1,1)} with w(i) = 1 and ™ € (Z/q(w)Z)*.
Then
Mai(c[w]7Q(W)) = Mai<c[W]dW? Aw).

Proof. (1): Define
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If we assume HRH(a;) then it is immediately clear from Moree’s interpretation of d,, as
Dirichlet densities [59] that the following holds,

84, (mmod Q) = Z 84, (bmod D).
b(mod D)
b=m(mod Q)

One can also prove this unconditionally directly from Definition via a tedious but
straightforward calculation that we do not reproduce here. To conclude the proof we
observe that

[w]
C
Pu( iy (i) = 5= e 5 o mod @
m(mod Q) w:w(i)=0 q
[w]
> e(b Z CAjw>5ai(bmodD)
b(mod D) w:w (7)=0

:Dai ((C[w] dw)w(i):Oa (Aw)w(i):O)-
(2): Due to the assumption that w(i) = 1 we have gcd(Aw, A;) = 1, and thus,

Ag,(mmod Ay)  dg,(mmod Ay)
'Aai a ‘Caqz .

We similarly have

Ag,(mmod Ay /dw) 4, (mmod Ay /dy)
'Aai ‘C(lqz .

By HRH(a;) it then follows that

Ay, (mmod Ay, /dw) = Z Ag, (bmod Ay),

b(mod Ay)
b=m(mod Aw/dw)

which can also be shown unconditionally as above. The rest of the proof is conducted
as in the first part. O

For the analysis of Sa1(n), we recall the definition of 0, ,(d) in (7.20) and use the
following lemma.

Lemma 7.4.4. If pt A1 AsAs, then
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Proof. The easily verified equality Zb mod p) Aa,; (bmod p) = A,, shows that the expres-
sion on the right-hand side is equal to

3 3

cEL/pL i=1 be(z/pz)® \i=1 !

> eplelby + b2+ bs —n)),

c€L/pZ

which is in turn equal to

» Z a7 (b; modp

be(Z/pZ)? =1
Zf’ 1 bi=n(mod p)

Since p 1 A1AzA3, we see that Ag, (b; mod p)/A,, = dq,(b; mod d)/L,,. O

Using (7.52)), multiplicativity and Lemma [7.4.4] we infer that

Sani(n) = H (1+ Z —nc HMQL c p)) H gan(p). (7.53)

pIA1 A A3 €(Z/pZ)* pIA1 A A3

We now turn our attention to S (n). Letting dyw 1= Ay /¢(w) we use Lemma to
obtain

Sao(n) = Z Z ( H e( - nc[w]dw/Aw)> X

(dw)w(1,1,1)EN" (clw] ) w#(1,1,1)
dw|A

3

H {,Dai ((C[w] dw)w(i):07 (Aw)w(i):o) H M, (C{w] dw, Aw)}
i=1 i)=1
w# ((1) 1,1)

Z
Yellusa,nny (e

For any dy, with dy | Ay the elements y™! (mod A,) that satisfy the condition
ged(y™), Ay) = dyw are exactly those of the form

Z *
W] — W] [w] =
Y ¢Tdw, 7€ ((Aw/dw)Z) '

We thus obtain that the sum over dy, ™) equals

Z ( H e(—ny[w]/Aw))x
(y[w])enw¢(1,1,1)(Z/AwZ) w#(1,1,1)
3

< TT{Pe @™o Awdwir=o) ] May™. 20}

w(i)=1
w#(1,1,1)
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By definition, A¢1,1) = 1, s0 Da = Hw;é(l,l,l) Ay. Note that ged(Aw,Ay) = 1 for
w # v. Using the Chinese remainder theorem and writing every y (mod HV#I,LI) Aw)
as
y= > ™ JI A
w#£(1,1,1) vg{w,(1,1,1)}

we see that the sum over y™! equals

3
> e(—ny/Da) H( > (biy/Da)éai(bimodDa))

y(mod Dj,) =1 \ b;(mod Dj)

This is clearly
3

Da > I 6a. (b mod D),

b(mod D,) =1
>3 bi=n(mod D,)

thus, recalling ([7.20]), we have shown that

Sa0(n) = oan(Da) H La,. (7.54)

The proof of ([7.22)) is concluded upon combining ([7.51)), (7.53)) and (7.54)).

7.4.2 The proof of ([7.23)

We begin by finding an explicit expression for oa ,(p), for p{ A1AgsAg, that is explicit
in terms of n and the h,,. Define

1, ifp]| hg,
Ga(p) = .
%, if pthg.

Lemma 7.4.5. For an integer ¢ and a prime p with p { ¢ we have

1+ 0.0)e(0)
Male:?) = =0T 0,0)

Proof. Combining ([7.12)) and (7.50) we immediately infer
1 1
Mg(e,p) = ————— e, (be 1—-).
) = 1= 0.0) 2 oo 11 ( f>

b(mod p) £ prime
ged(b,p)=1 £|ged(b—1,p)
ged(b—1,p,hq)=1

It is now easy to see that the sum over b equals —1 —e,(c) or —1 — e,(c)/p according to
whether p | hy or p1 hy. O
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Let us denote the elementary symmetric polynomials in 6,, (p) by

Zo(p) =1,

E1(p) := ba, (p) + 0a, (p) + 0ay(p),

Ea(p) 1= Oay (P)0ay (P) + Oy (p)0ay (p) + bay (9)0as (),
E3(p) := Oay (£)0ay (p)0as (p)-

Lemma 7.4.6. For every odd integer n and prime p { Hle A, we have

H1§i§3(pfl_9ai(p))( 2 )+ 11 ( iiﬁal -zp))'

0<j<3 1<i<3
j=n(mod p)

Ua,n(p) =1-

Proof. By Lemma and Lemma we see that

[Ti<i<s (p—l 1—10,,(p)) Z ep(—cn) H (1404, (p)ep(c)).

ce(Z/pT)* 1<i<3

Tan(p) =1—

The sum over ¢ equals

S Y el-m=p( X Zm)- [ 0+0um)
0<j<3 c€(Z/pL)* 0<j<3 1<i<3
j=n(mod p)

and the proof is complete. O

Lemma 7.4.7. Let n be an odd integer. If 3 | A1AsAg, then []yn A n, Tan(p) # 0.
If 31 A1AgAg, then the following are equivalent:

L HpmlArzA3 Tan(p) =0,
2. 0an(3)=0,
3. One of the following two conditions holds,
3 divides every element in the set {hq,,Nay, hag} and 3tn,  or

3 divides exactly two elements in the set {ha,, Pay, has}, and n=1(mod 3).

Furthermore, [[n, a,n, Tan(p) # 0 implies []n, aya, Tan(p) > 1, with an absolute
implied constant.

Proof. For a prime p{ A1 AsAg with p > 5 there exists at most one 0 < j < 3 satisfying
j = n(mod p), therefore
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Invoking Lemma we obtain
3p 1
+ .
(=27 (-1
Recall that no a; is a square, hence 24 hy, ho,ha,. The fact that n is odd implies that

- - —_ 13
>, ES@=2@)+50) =
0<5<3
j=n(mod 2)

hence if A1A2A3 is odd we can use Lemma to show that o, ,(2) = 2. We have
shown that for odd n one has

oan(p) >1—

[T canp)>1
PIA1Az A3
p#3
with an absolute implied constant and it remains to study ¢an(3). One can find an
explicit formula for this density by fixing the congruence class of n (mod 3). For example,
in the case that n = 1 (mod 3) we have

3(0u (3) + 0 (3) + 6, (3)) 146,,(3)
Mores @ 00.03) H (=5m)

and we can check that 0,,(3) = 0 if and only if at most one of the 6; is equal to
1/3. A case by case analysis reveals that if n = 2 (mod 3) then 0a,(3) = 0 if and only
if (6,,(3)); = (1,1,1) and that if n = 0(mod 3) then o, ,(3) never vanishes. Noting
that 0a,,(3) attains only finitely many values as it only depends on n (mod 3) and the
choice of (6,,(3)); € {1, 1}3, we see that there exists an absolute constant ¢ such that if
0an(3) > 0 then 0, ,(3) > ¢, thus concluding our proof. O

Oan(3)=1-—

We next provide a lower bound for S, o(n), see . One could proceed by finding
explicit expressions, however, this will lead to rather more complicated formulas than
the one for S, 1(n) in Lemma We shall instead opt to bound the densities d,(b;
mod D,) from below in and then count the number of solutions of the equation
n =21 + x3 + 3 (mod D,) such that for every i we have §,(z;mod D,) # 0.

Lemma 7.4.8. For any integers q and x such that q is positive and 6,(xmod ¢) > 0 we

have
¢(ha)

da d
(xmod q) > aha

Y

with an absolute implied constant.

Proof. Under the assumptions of our lemma we have the following due to Definition[7.1.4]

_1 9(q) 1\t
dq(xmod q)A; % H (1— ];) =

(2Bl () gy (B,

plz—1,plq
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The right-hand side is either > 1 or equal to 1— f(|A,| ged(g, Ay)™1). In the latter case,
since the right-hand side must be positive and fi(|A,|ged(g, A,) 1)t is an integer, we
see that the right-hand side is > 1/2. Therefore, under the assumptions of our lemma
we have

5a(mmodq)2éf‘l(q) H (1—1).

2

XD e P

It is obvious that A,fl(q) > ¢(ha)/ha, with an implied absolute constant. This is
sufficient for our lemma owing to [, 4 ,1,(1— %) > ¢(q)/q. O

Recalling ([7.20]) we see that

3

3
O'a,n(@a) H Lai =D, Z H 5% (bz mod @a),
=1

b1,b2,b3(mod D,) i=1
b1+ba+bs=n(mod Da)

thus, if 0a ,(Da) > 0 then there exist z1, 2, 3 (mod D,) such that

3

H‘Sai (x; mod ®,) >0

i=1

and z1 +x2 +z3 = n (mod D,). Invoking Lemmamwe see that if 0, ,,(Da) > 0 then

- d(ha,)
Tan(Da) H Lo,

p(h
(l K2 d 2
(2 mod @,) > D, || ™
Recalling ([7.21)) we obtain D, < [Al,Ag,Ag] < |A1A2Ag], hence

i=1

u’:]w

Tan(D Hﬁal > H \A th (7.55)

with an absolute implied constant. Combined with Lemma [7.4.7] this concludes the

proof of (7.23).

7.4.3 The proof of Theorem

The proof of the first part of Theorem which is (7.22) is spread throughout §7.4.1}
The proof of the second (and last) part of Theorem [7.1.5) which is (7.23), is spread

throughout §7.4.2)

7.4.4 The proof of Corollary

Obviously, (1) implies (2). For the reverse direction, let d € {3,D,} and let p1,p2,ps3
be primes not dividing 2d, such that each a; is a primitive root modulo p; and

p1 + p2 + p3 = n mod d.
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Thus, for every i = 1,2, 3 the progression p; (mod d) satisfies ged(p;,d) = 1 and contains
an odd prime having a; as a primitive root. We can now use the following observation
due to Lenstra [51], p.g.216]: if ged(z,d) = 1 and d,(xmod d) = 0 then either there is no
prime p = z (mod d) with F}, = (a) or there is one such prime, which must be equal to 2.
This shows that we must have d,(z;mod d) > 0 for every ¢ = 1,2, 3. Using the fact that
x1 + x2 + x3 = n(mod d), as well as Definition shows that 04, (Da)oan(3) > 0.
By Lemma [7.4.7, we get Aa(n) > 0, and thus Aa(n) > 1 by (7.23). Thus, (1) follows
immediately from Theorem [7.I.1] and the trivial estimate

3
Z <Hlogpi> < n(logn)?.

p1t+p2+p3=n =1
Hi: Pi |6A1 A2A3

7.4.5 The proof of Theorem

First note that ®(4,q,q) = |Aq|. It is clear that for the proof of Theorem we need
to find equivalent conditions for n to satisfy

U(a,a,a),n(|AaD H U(a,a,a),n(p) > 0.
pfAa
By Lemma the condition Hp’an O(a,a,a),n(P) # 0 is equivalent to

= if A
{n 3(mod 6), if 3|he and 31 A, (7.56)

n =1(mod 2), otherwise.
Hence it remains to find equivalent conditions for n to satisfy (4,q,q),n(|Qal) >0
Proposition 7.4.9. Assume that n is an odd positive integer.
1. If 31 ged(Agyha) or 3| n, and if A, has a prime divisor that is greater than 7,
then o(q,q,0),n(|Aa]) > 0.
2. If 3| gcd(Aq, ha) and 31 n, then 0(4.q,0),n(|Aa|) =

Proof. Tt can be seen directly from Definition that the quantity d,(z; mod |A,]) is
non-zero if and only if

ged(z; — 1, Ag, he) = 1, ged(x;, Ag) =1 and (Aa> =-1 (7.57)
z;

In view of Definition[7.20] we need to find conditions under which there are z1, x2, x5 € Z
with 21 + 22 + 23 = n mod A, such that each x; satisfies ((7.57).

To prove (2), we observe that the first two conditions in (7.57) imply that x; = 2 mod 3,
hence 3 | n.
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Let us now prove (1). We can write A, = [], o, Dp, where Dy € {-8,—4,8} and

D, = (=1)P=V/2p for p > 3. Let p’ > 7 be the largest prime divisor of A,. For every

p < p', we find xgp), :Egp)7 xép) mod D, that solve the congruence m&p)—i—xép)—i—xép) = n mod

D,, and satisfy gcd(:rl(p) —1,A4he) = gcd(zgp),Aa) = 1. If p > 3, this is possible for
every n by a simple application of the Cauchy-Davenport Theorem. If p = 3, it is
possible precisely by our assumption that then 3 { h, or 3 | n. Finally, for p = 2, it is
possible since 2 { nhy,.

Let us now define =", Consider the sets

9

T

R:= {:c cZ/pT (p/) =1,z # 1 (mod p) } N = {x 2/ : (;) - —1}.

If [T1a. (%) = 1, we pick xl(p/) € N, and if [],a, (?;) = —1, we pick xl(pl) € R.
p<p’ , , p<p’ i
We can always do so and achieve 27 4+ 2% 4 2% = n mod p/, as the sets

i

R+R+R, R+R+N, R+ N+ N, N+ N+ N

cover all of Z/p'Z. This follows from a direct computation if p’ = 11 and from the
Cauchy—Davenport Theorem if p’ > 13.

To finish our proof of (1), we pick integers x; that satisfy x; = xl(p) mod Dy, forall p | A,.
Then quadratic reciprocity ensures that

A, x(-p,) D
&)-()(5)--
! plag 7

i

p<p’

for all 4. Hence, the x; satisfy ((7.57)), and moreover z1 + z2 + x3 = n mod A,. O

Proof of Theorem [7.1.7. First let us note that the fundamental discriminants with
every prime smaller than 11 are of the form

Dy (=3)"250 (—7),

where D is an integer in the set {—4, 8, —8} and every exponent ¢; is either 0 or 1. This
gives a finite set of values for A, and it is straightforward to use a computer program
that finds all congruence classes n (mod A,) such that n = x1 + x3 + 23 (mod A,) for
some x € (Z/A,Z)? satisfying all of the conditions for 1 <4 <3.

By Definition these conditions are equivalent to dq(z;mod |A,]) # 0 and when
combined with ([7.56)) they provide the congruence classes for n in every row of the table

in Theorem apart from the last two rows. For the last two rows, A, has a prime
factor greater than 7, so one sees by Proposition that we only have to provide
conditions on n that are equivalent to HM A, O(a,a,a),n(p) > 0, which was already done

in (7.56). 0
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7.4.6 Non-factorisation of A,(n)

We finish by showing that the right side in does not always factorise as an Euler
product of a specific form. Namely, assume that for every non-square integer a # —1
we are given a sequence of real numbers )\, : Z? — [0,00) such that for every prime p
and integers z, ' we have

do(zmod p) > 0= A(z,p) >0 (7.58)

and
x =2’ (mod p) = \.(z,p) = \u(2/,p).

Now, in parallel with ([7.20) let us define

- x dbes)( x 4)

bl,bg,bg(mod p) i=1 b17b27b3(m0d p)
b1 +bz+bz=n(mod p) b1+bz+bz=n(mod p)

The fact that the quantities wy 4(n) are well-defined follows from the periodicity of A,.
We will see that one cannot have the following factorisation for all odd integers n,

L300 aayn(Bal) = [T @paln). (7.59)
plAq

Indeed, if a := (—15)° = —759375 then by Definition we easily see that
d_759375(xmod 15) > 0 < x (mod 15) € {7,13,14 (mod 15)},

hence for all integers n = 7 (mod 15) we have 0(4,q,a),n(|Aa]) = 0 due to (7.20) and

the fact that for all x € {7,13,14}® one has 3>, #; # 7(mod 15). Definition
furthermore implies that

0_750375(zmod 3) > 0 < x (mod 3) € {1,2 (mod 3)}

and
5_759375(ym0d 5) >0&y (InOd 5) € {2, 3,4 (InOd 5)},

therefore whenever n = 7 (mod 15) then the vectors x = (1,1,2) and y = (4,4, 4) satisfy

3 3

Zmizn(mod 3), Zyl = n (mod 5)

i=1 i=1

and
3

H5—759375($z' mod 3)d_759375(y; mod 5) > 0.

i=1
By (7.58) this implies that ws _759375(n) > 0 and ws _759375(n) > 0. This contradicts
equation (7.59) due to 0(4,q,4),n(|Aal) = 0.
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