

Diophantine equations in positive characteristic

Koymans, P.H.

Citation

Koymans, P. H. (2019, June 19). *Diophantine equations in positive characteristic*. Retrieved from https://hdl.handle.net/1887/74294

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/74294

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/74294</u> holds various files of this Leiden University dissertation.

Author: Koymans, P.H. Title: Diophantine equations in positive characteristic Issue Date: 2019-06-19

Chapter 6

Joint distribution of spins

Joint work with Djordjo Milovic

Abstract

We answer a question of Iwaniec, Friedlander, Mazur and Rubin [24] on the joint distribution of spin symbols. As an application we give a negative answer to a conjecture of Cohn and Lagarias on the existence of governing fields for the 16-rank of class groups under the assumption of a short character sum conjecture.

6.1 Introduction

One of the most fundamental and most prevalent objects in number theory are extensions of number fields; they arise naturally as fields of definitions of solutions to polynomial equations. Many interesting phenomena are encoded in the splitting of prime ideals in extensions. For instance, if p and q are distinct prime numbers congruent to 1 modulo 4, the statement that p splits in $\mathbb{Q}(\sqrt{q})/\mathbb{Q}$ if and only if q splits in $\mathbb{Q}(\sqrt{p})/\mathbb{Q}$ is nothing other than the law of quadratic reciprocity, a common ancestor to much of modern number theory.

Let K be a number field, \mathfrak{p} a prime ideal in its ring of integers \mathcal{O}_K , and α an element of the algebraic closure \overline{K} . Suppose we were to ask, as we vary \mathfrak{p} , how often \mathfrak{p} splits completely in the extension $K(\alpha)/K$. If α is fixed as \mathfrak{p} varies over all prime ideals in \mathcal{O}_K , a satisfactory answer is provided by the Chebotarev Density Theorem, which is grounded in the theory of L-functions and their zero-free regions. The Chebotarev Density Theorem, however, often cannot provide an answer if α varies along with \mathfrak{p} in some prescribed manner. The purpose of this chapter is to fill this gap for quadratic extensions in a natural setting that arises in many applications. This setting, which we now describe, is inspired by the work of Friedlander, Iwaniec, Mazur, and Rubin [24] and is amenable to sieve theory involving sums of type I and type II, as opposed to the theory of L-functions. Let K/\mathbb{Q} be a Galois extension of degree n. Unlike in [24], we do *not* impose the very restrictive condition that $\operatorname{Gal}(K/\mathbb{Q})$ is cyclic. For the moment, let us restrict to the setting where K is totally real and where every totally positive unit in \mathcal{O}_K is a square, as in [24]. To each non-trivial automorphism $\sigma \in \operatorname{Gal}(K/\mathbb{Q})$ and each odd principal prime ideal $\mathfrak{p} \subset \mathcal{O}_K$, we attach the quantity $\operatorname{spin}(\sigma, \mathfrak{p}) \in \{-1, 0, 1\}$, defined as

$$\operatorname{spin}(\sigma, \mathfrak{p}) = \left(\frac{\pi}{\sigma(\pi)}\right)_{K,2},$$
(6.1)

where π is any totally positive generator of \mathfrak{p} and $\left(\frac{\cdot}{\cdot}\right)_{K,2}$ denotes the quadratic residue symbol in K. If we let $\alpha^2 = \sigma^{-1}(\pi)$, then $\operatorname{spin}(\sigma, \mathfrak{p})$ governs the splitting of \mathfrak{p} in $K(\alpha)$, i.e., $\operatorname{spin}(\sigma, \mathfrak{p}) = 1$ (resp., -1, 0) if \mathfrak{p} is split (resp., inert, ramified) in $K(\alpha)/K$. In [24], under the assumptions that σ generates $\operatorname{Gal}(K/\mathbb{Q})$, that $n \geq 3$, and that the technical Conjecture C_n (see Section 6.2.5) holds true, Friedlander et al. prove that the natural density of \mathfrak{p} that are split (resp., inert) in $K(\sqrt{\alpha})/K$ is $\frac{1}{2}$ (resp., $\frac{1}{2}$), just as would be the case were α not to vary with \mathfrak{p} .

More generally, suppose S is a subset of $\operatorname{Gal}(K/\mathbb{Q})$ and consider the *joint spin*

$$s_{\mathfrak{p}} = \prod_{\sigma \in S} \operatorname{spin}(\sigma, \mathfrak{p}),$$

defined for principal prime ideals $\mathfrak{p} = \pi \mathcal{O}_K$. If we let $\alpha^2 = \prod_{\sigma \in S} \sigma^{-1}(\pi)$, then $s_\mathfrak{p}$ is equal to 1 (resp., -1, 0) if \mathfrak{p} is split (resp., inert, ramified) in $K(\alpha)/K$. If $\sigma^{-1} \in S$ for some $\sigma \in S$, then the factor $\operatorname{spin}(\sigma, \mathfrak{p})\operatorname{spin}(\sigma^{-1}, \mathfrak{p})$ falls under the purview of the usual Chebotarev Density Theorem as suggested in [24, p. 744] and studied precisely by McMeekin [56]. We therefore focus on the case that $\sigma \notin S$ whenever $\sigma^{-1} \in S$ and prove the following equidistribution theorem concerning the joint spin $s_\mathfrak{p}$, defined in full generality, also for totally complex fields, in Section 6.2.3.

Theorem 6.1.1. Let K/\mathbb{Q} be a Galois extension of degree n. If K is totally real, we further assume that every totally positive unit in \mathcal{O}_K is a square. Suppose that S is a non-empty subset of $\operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma \in S$ implies $\sigma^{-1} \notin S$. For each non-zero ideal \mathfrak{a} in \mathcal{O}_K , define $\mathfrak{s}_{\mathfrak{a}}$ as in (6.6). Assume Conjecture $C_{|S|n}$ holds true with $\delta = \delta(|S|n) > 0$ (see Section 6.2.5). Let $\epsilon > 0$ be a real number. Then for all $X \geq 2$, we have

$$\sum_{\substack{\mathbf{N}(\mathfrak{p}) \leq X\\ \mathfrak{p} \ prime}} s_{\mathfrak{p}} \ll X^{1 - \frac{\delta}{54|S|^2 n(12n+1)} + \epsilon},$$

where the implied constant depends only on ϵ and K.

It may be possible to weaken our condition on S and instead require only that there exists $\sigma \in S$ with $\sigma^{-1} \notin S$.

The main theorem in [24] is the special case of Theorem 6.1.1 where $\operatorname{Gal}(K/\mathbb{Q}) = \langle \sigma \rangle$, $n \geq 3$, and $S = \{\sigma\}$. After establishing their equidistribution result, Friedlander et al. [24, p. 744] raise the question of the joint distribution of spins, and in particular the case

of spin(σ, \mathfrak{p}) and spin(σ^2, \mathfrak{p}) where again Gal(K/\mathbb{Q}) = $\langle \sigma \rangle$, but $S = \{\sigma, \sigma^2\}$ and $n \geq 5$. The following corollary of Theorem 6.1.1 applied to the set $S = \{\sigma, \sigma^2\}$ answers their question.

Theorem 6.1.2. Let K/\mathbb{Q} be a totally real Galois extension of degree n such that every totally positive unit in \mathcal{O}_K is a square. Suppose that $S = \{\sigma_1, \ldots, \sigma_t\}$ is a non-empty subset of $\operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma \in S$ implies $\sigma^{-1} \notin S$. Assume Conjecture C_{tn} holds true (see Section 6.2.5). Let $= (e_1, \ldots, e_t) \in \mathbb{F}_2^t$. Then, as $X \to \infty$, we have

$$\frac{|\{\mathfrak{p} \text{ principal prime ideal in } \mathcal{O}_K : N(\mathfrak{p}) \leq X, \ \operatorname{spin}(\sigma_i, \mathfrak{p}) = (-1)^{e_i} \text{ for } 1 \leq i \leq t\}|}{|\{\mathfrak{p} \text{ principal prime ideal in } \mathcal{O}_K : N(\mathfrak{p}) \leq X\}|} \sim \frac{1}{2^t}$$

We expect that Theorem 6.1.1 has several algebraic applications; see for example the original work of Friedlander et al. [24], but also [41], [43], and [58]. Here we give one such application by giving a negative answer to a conjecture of Cohn and Lagarias [11]. Given an integer $k \geq 1$ and a finite abelian group A, we define the 2^k -rank of A as

$$\operatorname{rk}_{2^k} A = \dim_{\mathbb{F}_2} 2^{k-1} A / 2^k A.$$

Cohn and Lagarias [11] considered the one-prime-parameter families of quadratic number fields $\{\mathbb{Q}(\sqrt{dp})\}_p$, where d is a fixed integer $\neq 2 \mod 4$ and p varies over primes such that dp is a fundamental discriminant. Bolstered by ample numerical evidence as well as theoretical examples [11], they conjectured that for every $k \geq 1$ and $d \neq 2 \mod 4$, there exists a governing field $M_{d,k}$ for the 2^k -rank of the narrow class group $\mathcal{C}\ell(\mathbb{Q}(\sqrt{dp}))$ of $\mathbb{Q}(\sqrt{dp})$, i.e., there exists a finite normal extension $M_{d,k}/\mathbb{Q}$ and a class function

$$\phi_{d,k}$$
: $\operatorname{Gal}(M_{d,k}/\mathbb{Q}) \to \mathbb{Z}_{\geq 0}$

such that

$$\phi_{d,k}(\operatorname{Art}_{M_{d,k}/\mathbb{Q}}(p)) = \operatorname{rk}_{2^k} \mathcal{C}\ell(\mathbb{Q}(\sqrt{dp})), \tag{6.2}$$

where $\operatorname{Art}_{M_{d,k}/\mathbb{Q}}(p)$ is the Artin conjugacy class of p in $\operatorname{Gal}(M_{d,k}/\mathbb{Q})$. This conjecture was proven for all $k \leq 3$ by Stevenhagen [70], but no governing field has been found for any value of d if $k \geq 4$. Interestingly enough, Smith [69] recently introduced the notion of relative governing fields and used them to deal with distributional questions for $\mathcal{C}\ell(K)[2^{\infty}]$ for imaginary quadratic fields K. Our next theorem, which we will prove in Section 6.5, is a relatively straightforward consequence of Theorem 6.1.1.

Theorem 6.1.3. Assume conjecture C_n for all n. Then there is no governing field for the 16-rank of $\mathbb{Q}(\sqrt{-4p})$; in other words, there does not exist a field $M_{-4,4}$ and class function $\phi_{-4,4}$ satisfying (6.2).

Acknowledgments

The authors are very grateful to Carlo Pagano for useful discussions. We would also like to thank Peter Sarnak for making us aware of the useful reference [4].

6.2 Prerequisites

Here we collect certain facts about quadratic residue symbols and unit groups in number fields that are necessary to give a rigorous definition of spins of ideals and that are useful in our subsequent arguments.

Throughout this section, let K be a number field which is Galois of degree n over \mathbb{Q} . Then either K is totally real, as in [24], or K is totally complex, in which case n is even. An element $\alpha \in K$ is called *totally positive* if $\iota(\alpha) > 0$ for all real embeddings $\iota: K \hookrightarrow \mathbb{R}$; if this is the case, we will write $\alpha \succ 0$. If K is totally complex, there are no real embeddings of K into \mathbb{R} , and so $\alpha \succ 0$ for every $\alpha \in K$ vacuously. Let \mathcal{O}_K denote the ring of integers of K. If K is totally real, we assume that

$$(\mathcal{O}_K^{\times})^2 = \left\{ u^2 : u \in \mathcal{O}_K^{\times} \right\} = \left\{ u \in \mathcal{O}_K^{\times} : u \succ 0 \right\} = (\mathcal{O}_K^{\times})_+, \tag{6.3}$$

where the first and last equalities are definitions and the middle equality is the assumption. This assumption, present in [24], implies that the narrow and the ordinary class groups of K coincide, and hence that every non-zero principal ideal \mathfrak{a} in \mathcal{O}_K can be written as $\mathfrak{a} = \alpha \mathcal{O}_K$ for some $\alpha \succ 0$. If K is totally complex, then the narrow and the ordinary class groups of K coincide vacuously. In either case, we will let $\mathcal{C}\ell = \mathcal{C}\ell(K)$ and h = h(K) denote the (narrow) class group and the (narrow) class number of K.

6.2.1 Quadratic residue symbols and quadratic reciprocity

We define the quadratic residue symbol in K in the standard way. That is, given an odd prime ideal \mathfrak{p} of \mathcal{O}_K (i.e., a prime ideal having odd absolute norm), and an element $\alpha \in \mathcal{O}_K$, define $\left(\frac{\alpha}{\mathfrak{p}}\right)_{K,2}$ as the unique element in $\{-1, 0, 1\}$ such that

$$\left(\frac{\alpha}{\mathfrak{p}}\right)_{K,2} \equiv \alpha^{\frac{\mathcal{N}_{K/\mathbb{Q}}(\mathfrak{p})-1}{2}} \bmod \mathfrak{p}.$$

Given an odd ideal \mathfrak{b} of \mathcal{O}_K with prime ideal factorization $\mathfrak{b} = \prod_{\mathfrak{p}} \mathfrak{p}^{e_{\mathfrak{p}}}$, define

$$\left(\frac{\alpha}{\mathfrak{b}}\right)_{K,2} = \prod_{\mathfrak{p}} \left(\frac{\alpha}{\mathfrak{p}}\right)_{K,2}^{e_{\mathfrak{p}}}$$

Finally, given an element $\beta \in \mathcal{O}_K$, let (β) denote the principal ideal in \mathcal{O}_K generated by β . We say that β is odd if (β) is odd and we define

$$\left(\frac{\alpha}{\beta}\right)_{K,2} = \left(\frac{\alpha}{(\beta)}\right)_{K,2}.$$

We will suppress the subscripts K, 2 when there is no risk of ambiguity. Although [24] focuses on a special type of totally real Galois number fields, the version of quadratic reciprocity stated in [24, Section 3] holds and was proved for a general number field. We

recall it here. For a place v of K, finite or infinite, let K_v denote the completion of K with respect to v. Let $(\cdot, \cdot)_v$ denote the Hilbert symbol at v, i.e., given $\alpha, \beta \in K$, we let $(\alpha, \beta)_v \in \{-1, 1\}$ with $(\alpha, \beta)_v = 1$ if and only if there exists $(x, y, z) \in K_v^3 \setminus \{(0, 0, 0)\}$ such that $x^2 - \alpha y^2 - \beta z^2 = 0$. As in [24, Section 3], define

$$\mu_2(\alpha,\beta) = \prod_{v|2} (\alpha,\beta)_v$$
 and $\mu_\infty(\alpha,\beta) = \prod_{v|\infty} (\alpha,\beta)_v$.

The following lemma is a consequence of the Hilbert reciprocity law and local considerations at places above 2; see [24, Lemma 2.1, Proposition 2.2, and Lemma 2.3].

Lemma 6.2.1. Let $\alpha, \beta \in \mathcal{O}_K$ with β odd. Then $\mu_{\infty}(\alpha, \beta)\left(\frac{\alpha}{\beta}\right)$ depends only on the congruence class of β modulo 8α . Moreover, if α is also odd, then

$$\left(\frac{\alpha}{\beta}\right) = \mu_2(\alpha,\beta)\mu_\infty(\alpha,\beta)\left(\frac{\beta}{\alpha}\right).$$

The factor $\mu_2(\alpha, \beta)$ depends only on the congruence classes of α and β modulo 8.

We remark that if K is totally complex, then $(\alpha, \beta)_{\infty} = 1$ for all $\alpha, \beta \in K$. Also, if K is a totally real Galois number field and $\beta \in K$ is totally positive, then again $(\alpha, \beta)_{\infty} = 1$ for all $\alpha \in K$.

6.2.2 Class group representatives

As in [24, p. 707], we define a set of ideals $\mathcal{C}\ell$ and an ideal \mathfrak{f} of \mathcal{O}_K as follows. Let C_i , $1 \leq i \leq h$, denote the *h* ideal classes. For each $i \in \{1, \ldots, h\}$, we choose two distinct odd ideals belonging to C_i , say \mathfrak{A}_i and \mathfrak{B}_i , so as to ensure that, upon setting

$$\mathcal{C}\ell_a = \{\mathfrak{A}_1, \dots, \mathfrak{A}_h\}, \quad \mathcal{C}\ell_b = \{\mathfrak{B}_1, \dots, \mathfrak{B}_h\}, \quad \mathcal{C}\ell = \mathcal{C}\ell_a \cup \mathcal{C}\ell_b,$$

and

$$\mathfrak{f} = \prod_{\mathfrak{c} \in \mathcal{C}\ell} \mathfrak{c} = \prod_{i=1}^{h} \mathfrak{A}_i \mathfrak{B}_i$$

f = N(f)

the norm

is squarefree. We define

$$F := 2^{2h+3} f D_K, (6.4)$$

where D_K is the discriminant of K.

6.2.3 Definition of joint spin

We define a sequence $\{s_{\mathfrak{a}}\}_{\mathfrak{a}}$ of complex numbers indexed by non-zero ideals $\mathfrak{a} \subset \mathcal{O}_K$ as follows. Let S be a non-empty subset of $\operatorname{Gal}(K/\mathbb{Q})$ such that $\sigma \notin S$ whenever $\sigma^{-1} \in S$.

We define $r(\mathfrak{a})$ to be the indicator function of an ideal \mathfrak{a} of \mathcal{O}_K to be odd and principal, i.e.,

$$r(\mathfrak{a}) = \begin{cases} 1 & \text{if there exists an odd } \alpha \in \mathcal{O}_K \text{ such that } \mathfrak{a} = \alpha \mathcal{O}_K \\ 0 & \text{otherwise.} \end{cases}$$

Define $r_+(\alpha)$ to be the indicator function of an element $\alpha \in K$ to be totally positive, i.e.,

$$r_{+}(\alpha) = \begin{cases} 1 & \text{if } \alpha \succ 0\\ 0 & \text{otherwise.} \end{cases}$$

Note that if K is a totally complex number field, then vacuously $r_+(\alpha) = 1$ for all α in K. If $\alpha \in K$ is odd and $r_+(\alpha) = 1$, then we define

$$\operatorname{spin}(\sigma, \alpha) = \left(\frac{\alpha}{\sigma(\alpha)}\right).$$

Fix a decomposition $\mathcal{O}_K^{\times} = T_K \times V_K$, where $T_K \subset \mathcal{O}_K^{\times}$ is the group of units of \mathcal{O}_K of finite order and $V_K \subset \mathcal{O}_K^{\times}$ is a free abelian group of rank r_K (i.e., $r_K = n - 1$ if K is totally real and $r_K = \frac{n}{2} - 1$ if K is totally complex). With F as in (6.4), suppose that

$$\psi: (\mathcal{O}_K/F\mathcal{O}_K)^{\times} \to \mathbb{C}$$
(6.5)

is a map such that $\psi(\alpha \mod F) = \psi(\alpha u^2 \mod F)$ for all $\alpha \in \mathcal{O}_K$ coprime to F and all $u \in \mathcal{O}_K^{\times}$. We define

$$s_{\mathfrak{a}} = r(\mathfrak{a}) \sum_{t \in T_K} \sum_{v \in V_K/V_K^2} r_+(tv\alpha)\psi(tv\alpha \bmod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, tv\alpha), \tag{6.6}$$

where α is any generator of the ideal \mathfrak{a} satisfying $r(\mathfrak{a}) = 1$. The averaging over V_K/V_K^2 makes the *spin* $s_\mathfrak{a}$ a well-defined function of \mathfrak{a} since, for any unit $u \in \mathcal{O}_K^{\times}$, any totally positive $\alpha \in \mathcal{O}_K$ of odd absolute norm, and any $\sigma \in S$, we have

$$\operatorname{spin}(\sigma, u^2 \alpha) = \left(\frac{u^2 \alpha}{\sigma(u^2 \alpha)}\right) = \left(\frac{u^2 \alpha}{\sigma(\alpha)}\right) = \left(\frac{\alpha}{\sigma(\alpha)}\right) = \operatorname{spin}(\sigma, \alpha)$$

If K is a totally real (in which case we assume that K satisfies (6.3)), then, for an ideal $\mathfrak{a} = \alpha \mathcal{O}_K$, there is one and only one choice of $t \in T_K$ and $v \in V_K/V_K^2$ such that $r_+(tv\alpha) = 1$. Hence in this case

$$s_{\mathfrak{a}} = r(\mathfrak{a})\psi(\alpha \mod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, \alpha),$$

where α is any totally positive generator of \mathfrak{a} . If in addition $n \geq 3$, $\operatorname{Gal}(K/\mathbb{Q}) = \langle \sigma \rangle$, and $S = \{\sigma\}$, then $s_{\mathfrak{a}}$ coincides with $\operatorname{spin}(\sigma, \mathfrak{a})$ in [24, (3.4), p. 706]. If we take instead $S = \{\sigma, \sigma^2\}$ and assume $n \geq 5$, then the distribution of $s_{\mathfrak{a}}$ has implications for [24, Problem, p. 744].

If K is totally complex, then vacuously $r_+(tv\alpha) = 1$ for all $t \in T_K$ and $v \in V_K/V_K^2$, so the definition of s_a specializes to

$$s_{\mathfrak{a}} = r(\mathfrak{a}) \sum_{t \in T_K} \sum_{v \in V_K/V_K^2} \psi(tv\alpha \bmod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, tv\alpha)$$

6.2.4 Fundamental domains

We will need a suitable fundamental domain \mathcal{D} for the action of the units on elements in \mathcal{O}_K .

In case that K is totally real and satisfies (6.3), we take $\mathcal{D} \subset \mathbb{R}^n_+$ to be the same as in [24, (4.2), p. 713]. We fix a numbering of the *n* real embeddings $\iota_1, \ldots, \iota_n : K \hookrightarrow \mathbb{R}$, and we say that $\alpha \in \mathcal{D}$ if and only if $(\iota_1(\alpha), \ldots, \iota_n(\alpha)) \in \mathcal{D}$. Hence every non-zero $\alpha \in \mathcal{D}$ is totally positive. Because of the assumption (6.3), every non-zero principal ideal in \mathcal{O}_K has a totally positive generator, and \mathcal{D} is a fundamental domain for the action of $(\mathcal{O}_K)^{\times}_+$ on the totally positive elements in \mathcal{O}_K , in the sense of [24, Lemma 4.3, p. 715].

In case that K is totally complex, we take $\mathcal{D} \subset \mathbb{R}^n$ to be the same as in [41, Lemma 3.5, p. 10]. In this case, we fix an integral basis $\{\eta_1, \ldots, \eta_n\}$ for \mathcal{O}_K . For an element $\alpha = a_1\eta_1 + \cdots + a_n\eta_n \in K$ with $a_1, \ldots, a_n \in \mathbb{Q}$ we say that $\alpha \in \mathcal{D}$ if and only if $(a_1, \ldots, a_n) \in \mathcal{D}$. Every non-zero principal ideal \mathfrak{a} in \mathcal{O}_K has exactly $|T_K|$ generators in \mathcal{D} ; moreover, if one of the generators of \mathfrak{a} in \mathcal{D} is α , say, then the set of generators of \mathfrak{a} in \mathcal{D} is $\{t\alpha : t \in T_K\}$.

The main properties of \mathcal{D} are listed in [24, Lemma 4.3, Lemma 4.4, Corollary 4.5] and [43, Lemma 3.5]. We will often use the property that if an element $\alpha \in \mathcal{D} \cap \mathcal{O}_K$ of norm $N(\alpha) \leq X$ is written in an integral basis $\eta = \{\eta_1, \ldots, \eta_n\}$ as $\alpha = a_1\eta_1 + \cdots + a_n\eta_n \in \mathcal{O}_K$, $a_1, \ldots, a_n \in \mathbb{Z}$, then

$$|a_i| \ll X^{\frac{1}{n}}$$

for $1 \leq i \leq n$ where the implied constant depends only on η .

6.2.5 Short character sums

The following is a conjecture on short character sums appearing in [24]. It is essential for the estimates for sums of type I.

Conjecture 6.2.2. For all integers $n \ge 3$ there exists $\delta(n) > 0$ such that for all $\epsilon > 0$ there exists a constant $C(n, \epsilon) > 0$ with the property that for all integers M, all integers $Q \ge 3$, all integers $N \le Q^{\frac{1}{n}}$ and all real non-principal characters χ of modulus $q \le Q$ we have

$$\left|\sum_{M < m \le M+N} \chi(m)\right| \le C(n,\epsilon) Q^{\frac{1-\delta(n)}{n}+\epsilon}.$$

Instead of working directly with Conjecture C_n , we need a version of it for arithmetic progressions. If q is odd and squarefree, we let χ_q be the real Dirichlet character $\left(\frac{1}{q}\right)$.

Corollary 6.2.3. Assume Conjecture C_n . Then for all integers $n \geq 3$ there exists $\delta(n) > 0$ such that for all $\epsilon > 0$ there exists a constant $C(n, \epsilon) > 0$ with the property that for all odd squarefree integers q > 1, all integers $N \leq q^{\frac{1}{n}}$, all integers M, l and k

with $q \nmid k$, we have

$$\left| \sum_{\substack{M < m \le M+N \\ n \equiv l \mod k}} \chi_q(m) \right| \le C(n,\epsilon) q^{\frac{1-\delta(n)}{n}}.$$

Proof. This is an easy generalization of Corollary 7 in [41].

6.2.6 The sieve

We will prove the following oscillation results for the sequence $\{s_{\mathfrak{a}}\}_{\mathfrak{a}}$. First, for any non-zero ideal $\mathfrak{m} \subset \mathcal{O}_K$ and any $\epsilon > 0$, we have

$$\sum_{\substack{\mathcal{N}(\mathfrak{a}) \leq X\\ \mathfrak{a} \equiv 0 \mod \mathfrak{m}}} s_{\mathfrak{a}} \ll_{\epsilon} X^{1 - \frac{\delta}{54n|S|^2} + \epsilon}, \tag{6.7}$$

where δ is as in Conjecture C_n . Second, for any $\epsilon > 0$, we have

p

$$\sum_{\mathcal{N}(\mathfrak{a}) \le x} \sum_{\mathcal{N}(\mathfrak{b}) \le y} v_{\mathfrak{a}} w_{\mathfrak{b}} s_{\mathfrak{a}\mathfrak{b}} \ll_{\epsilon} \left(x^{-\frac{1}{6n}} + y^{-\frac{1}{6n}} \right) \left(xy \right)^{1+\epsilon}, \tag{6.8}$$

for any pair of bounded sequences of complex numbers $\{v_{\mathfrak{m}}\}$ and $\{w_{\mathfrak{n}}\}$ indexed by nonzero ideals in \mathcal{O}_K . Then [24, Proposition 5.2, p. 722] implies that for any $\epsilon > 0$, we have

$$\sum_{\substack{\mathcal{N}(\mathfrak{p}) \leq X\\ \text{prime ideal}}} s_{\mathfrak{p}} \ll_{\epsilon} X^{1-\theta+\epsilon},$$

where

$$\theta := \frac{\delta(|S|n)}{54|S|^2n(12n+1)}.$$

Hence, in order to prove Theorem 6.1.1, it suffices to prove the estimates (6.7) and (6.8). We will deal with (6.7) in Section 6.3 and with (6.8) in Section 6.4.

6.3 Linear sums

We first treat the case that K is totally real. Let \mathfrak{m} be an ideal coprime with F and $\sigma(\mathfrak{m})$ for all $\sigma \in S$. Following [24] we will bound

$$A(x) = \sum_{\substack{\mathrm{N}\mathfrak{a} \le x\\ (\mathfrak{a}, F) = 1, \mathfrak{m} \mid \mathfrak{a}}} r(\mathfrak{a})\psi(\alpha \bmod F) \prod_{\sigma \in S} \mathrm{spin}(\sigma, \alpha), \tag{6.9}$$

where α is any totally positive generator of \mathfrak{a} . We pick for each ideal \mathfrak{a} with $r(\mathfrak{a}) = 1$ its unique generator α satisfying $\mathfrak{a} = (\alpha)$ and $\alpha \in \mathcal{D}^*$, where \mathcal{D}^* is the fundamental domain from Friedlander et al. [24]. After splitting (6.9) in residue classes modulo F we obtain

$$A(x) = \sum_{\substack{\rho \bmod F \\ (\rho,F)=1}} \psi(\rho) A(x;\rho) + \partial A(x),$$

where by definition

$$A(x;\rho) := \sum_{\substack{\alpha \in \mathcal{D}, \mathrm{N}\alpha \leq x \\ \alpha \equiv \rho \mod F \\ \alpha \equiv 0 \mod \mathfrak{m}}} \prod_{\sigma \in S} \mathrm{spin}(\sigma,\alpha).$$
(6.10)

The boundary term $\partial A(x)$ can be dealt with using the argument in [24, p. 724], which gives $\partial A(x) \ll x^{1-\frac{1}{n}}$. Here and in the rest of our arguments the implied constant depends only on K unless otherwise indicated. We will now estimate $A(x; \rho)$ for each $\rho \mod F$, $(\rho, F) = 1$. Let $1, \omega_2, \ldots, \omega_n$ be an integral basis for \mathcal{O}_K and define

$$\mathbb{M} := \omega_2 \mathbb{Z} + \dots + \omega_n \mathbb{Z}.$$

Then, just as in [24, p. 725], we can decompose α uniquely as

$$\alpha = a + \beta$$
, with $a \in \mathbb{Z}, \beta \in \mathbb{M}$.

Hence the summation conditions in (6.10) can be rewritten as

$$a + \beta \in \mathcal{D}, \quad \mathcal{N}(a + \beta) \le x, \quad a + \beta \equiv \rho \mod F, \quad a + \beta \equiv 0 \mod \mathfrak{m}.$$
 (*)

From now on we think of a as a variable satisfying (*) while β is inactive. We have the following formula

$$\operatorname{spin}(\sigma, \alpha) = \left(\frac{\alpha}{\sigma(\alpha)}\right) = \left(\frac{a+\beta}{a+\sigma(\beta)}\right) = \left(\frac{\beta-\sigma(\beta)}{a+\sigma(\beta)}\right).$$

If $\beta = \sigma(\beta)$ for some $\sigma \in S$ we get no contribution. So from now on we can assume $\beta \neq \sigma(\beta)$ for all $\sigma \in S$. Define $\mathfrak{c}(\sigma, \beta)$ to be the part of the ideal $(\beta - \sigma(\beta))$ coprime to F. Then, as explained on [24, p. 726], quadratic reciprocity gives

$$A(x;\rho) = \sum_{\beta \in \mathbb{M}} \pm T(x;\rho,\beta),$$

where $T(x; \rho, \beta)$ is given by

$$T(x;\rho,\beta) := \sum_{\substack{a \in \mathbb{Z} \\ a+\beta \text{ sat. }(*)}} \prod_{\sigma \in S} \left(\frac{a+\sigma(\beta)}{\mathfrak{c}(\sigma,\beta)} \right) = \sum_{\substack{a \in \mathbb{Z} \\ a+\beta \text{ sat. }(*)}} \prod_{\sigma \in S} \left(\frac{a+\beta}{\mathfrak{c}(\sigma,\beta)} \right)$$
$$= \sum_{\substack{a \in \mathbb{Z} \\ a+\beta \text{ sat. }(*)}} \left(\frac{a+\beta}{\prod_{\sigma \in S} \mathfrak{c}(\sigma,\beta)} \right).$$
(6.11)

Define $\mathfrak{c} := \prod_{\sigma \in S} \mathfrak{c}(\sigma, \beta)$ and factor \mathfrak{c} as

$$\mathfrak{c} = \mathfrak{g}\mathfrak{q},\tag{6.12}$$

where by definition ${\mathfrak g}$ consists of those prime ideals ${\mathfrak p}$ dividing ${\mathfrak c}$ that satisfy one of the following three properties

- p has degree greater than one;
- p is unramified of degree one and some non-trivial conjugate of p also divides c;
- \mathfrak{p} is unramified of degree one and \mathfrak{p}^2 divides \mathfrak{c} .

Note that there are no ramified primes dividing \mathfrak{c} , since \mathfrak{c} is coprime to the discriminant by construction of F. Putting all the remaining prime ideals in \mathfrak{q} , we note that $q := \mathrm{N}\mathfrak{q}$ is a squarefree number and $g := \mathrm{N}\mathfrak{g}$ is a squarefull number coprime with q. The Chinese Remainder Theorem implies that there exists a rational integer b with $b \equiv \beta \mod \mathfrak{q}$. We stress that \mathfrak{c} , \mathfrak{g} , \mathfrak{q} , g, q and b depend only on β . Define g_0 to be the radical of g. Then the quadratic residue symbol (α/\mathfrak{g}) is periodic in α modulo g_0 . Hence the symbol $((a+\beta)/\mathfrak{g})$ as a function of a is periodic of period g_0 . Splitting the sum (6.11) in residue classes modulo g_0 we obtain

$$|T(x;\rho,\beta)| \le \sum_{a_0 \mod g_0} \left| \sum_{\substack{a \equiv a_0 \mod g_0 \\ a+\beta \text{ sat. } (*)}} \left(\frac{a+b}{\mathfrak{q}} \right) \right|.$$
(6.13)

Following the argument on [24, p. 728], we see that (6.13) can be written as n incomplete character sums of length $\ll x^{\frac{1}{n}}$ and modulus $q \ll x^{|S|}$. Furthermore, the conditions (*) and $a \equiv a_0 \mod g_0$ imply that a runs over a certain arithmetic progression of modulus k dividing $g_0 Fm$, where $m := N\mathfrak{m}$. So if $q \nmid k$, Corollary 6.2.3 yields

$$T(x;\rho,\beta) \ll_{\epsilon} g_0 x^{\frac{1-\delta}{n}+\epsilon}$$
(6.14)

with $\delta := \delta(|S|n) > 0$. Since $q \mid k$ implies $q \mid m$, we see that (6.14) holds if $q \nmid m$. Recalling (6.12) we conclude that (6.14) holds unless

$$p \mid \prod_{\sigma \in S} \mathcal{N}(\beta - \sigma(\beta)) \Rightarrow p^2 \mid mF \prod_{\sigma \in S} \mathcal{N}(\beta - \sigma(\beta)).$$
(6.15)

Our next goal is to count the number of $\beta \in \mathbb{M}$ satisfying both (*) for some $a \in \mathbb{Z}$ and (6.15). For β an algebraic integer of degree n, we denote by $\beta^{(1)}, \ldots, \beta^{(n)}$ the conjugates of β . Now if β satisfies (*) for some $a \in \mathbb{Z}$, we have $|\beta^{(i)}| \ll x^{\frac{1}{n}}$. So to achieve our goal, it suffices to estimate the number of $\beta \in \mathbb{M}$ satisfying $|\beta^{(i)}| \le x^{\frac{1}{n}}$ and (6.15).

To do this, we will need two lemmas. So far we have followed [24] rather closely, but we will have to significantly improve their estimates for the various error terms given on [24, p. 729-733]. One of the most important tasks ahead is to count squarefull norms in a

certain \mathbb{Z} -submodule of \mathcal{O}_K . This problem is solved in [24] by simply counting squarefull norms in the full ring of integers. For our application this loss is unacceptable. In our first lemma we directly count squarefull norms in this submodule, a problem described in [24, p. 729] as potentially "very difficult".

Lemma 6.3.1. Factor $\mathfrak{c}(\sigma,\beta)$ as

$$\mathfrak{c}(\sigma,\beta) = \mathfrak{g}(\sigma,\beta)\mathfrak{q}(\sigma,\beta)$$

just as in (6.12). Let K^{σ} be the subfield of K fixed by σ and let $\mathcal{O}_{K^{\sigma}}$ be its ring of integers. Decompose \mathcal{O}_{K} as

$$\mathcal{O}_K = \mathcal{O}_{K^{\sigma}} \oplus \mathbb{M}'.$$

Let $\operatorname{ord}(\sigma)$ be the order of σ in $\operatorname{Gal}(K/\mathbb{Q})$. If $g_0(\sigma,\beta)$ is the radical of $\operatorname{N}\mathfrak{g}(\sigma,\beta)$, then we have for all $\epsilon > 0$

$$|\{\beta \in \mathbb{M}': |\beta^{(i)}| \leq x^{\frac{1}{n}}, g_0(\sigma, \beta) > Z\}| \ll_{\epsilon} x^{1 - \frac{1}{\operatorname{ord}(\sigma)} + \epsilon} Z^{-1 + \frac{2}{\operatorname{ord}(\sigma)}}$$

Proof. The argument given here is a generalization of [41, p. 17-18]. We start with the simple estimate

$$|\{\beta \in \mathbb{M}' : |\beta^{(i)}| \le x^{\frac{1}{n}}, g_0(\sigma, \beta) > Z\}| \le \sum_{\substack{\mathfrak{g}\\g_0 > Z}} A_{\mathfrak{g}}, \tag{6.16}$$

where

$$A_{\mathfrak{g}} := |\{\beta \in \mathbb{M}' : |\beta^{(i)}| \le x^{\frac{1}{n}}, \beta - \sigma(\beta) \equiv 0 \mod \mathfrak{g}\}|.$$

Let \mathbb{M}'' be the image of \mathbb{M}' under the map $\beta \mapsto \beta - \sigma(\beta)$ and fix a \mathbb{Z} -basis η_1, \ldots, η_r of \mathbb{M}'' . We remark that $r = n\left(1 - \frac{1}{\operatorname{ord}(\sigma)}\right)$, which will be important later on. Because $|\beta^{(i)}| \leq x^{\frac{1}{n}}$, we can write $\beta - \sigma(\beta)$ as $\beta - \sigma(\beta) = \sum_{i=1}^r a_i \eta_i$ with $|a_i| \leq C_K x^{\frac{1}{n}}$, where C_K is a constant depending only on K. Hence we have

$$A_{\mathfrak{g}} \leq |\Lambda_{\mathfrak{g}} \cap S_x|,$$

where by definition

$$\Lambda_{\mathfrak{g}} := \{ \gamma \in \mathbb{M}'' : \gamma \equiv 0 \mod \mathfrak{g} \}$$
$$S_x := \{ \gamma \in \mathbb{M}'' : \gamma = \sum_{i=1}^r a_i \eta_i, |a_i| \le C_K x^{\frac{1}{n}} \}$$

Using our fixed \mathbb{Z} -basis η_1, \ldots, η_r we can view \mathbb{M}'' as a subset of \mathbb{R}^r via the map $\eta_i \mapsto e_i$, where e_i is the *i*-th standard basis vector. Under this identification \mathbb{M}'' becomes \mathbb{Z}^r and $\Lambda_{\mathfrak{g}}$ becomes a sublattice of \mathbb{Z}^r . We have

$$A_{\mathfrak{g}} \le |\Lambda_{\mathfrak{g}} \cap T_x|, \tag{6.17}$$

where

$$T_x := \{(a_1, \dots, a_r) \in \mathbb{R}^r : |a_i| \le C_K x^{\frac{1}{n}} \}.$$

Let us now parametrize the boundary of T_x . We start off by observing that $T_x = x^{\frac{1}{n}}T_1$, which implies that $\operatorname{Vol}(T_x) = x^{\frac{r}{n}}\operatorname{Vol}(T_1)$. Because T_1 is an *r*-dimensional hypercube, we conclude that its boundary ∂T_1 can be parametrized by Lipschitz functions with Lipschitz constant *L* depending only on *K*. Therefore ∂T_x can also be parametrized by Lipschitz functions with Lipschitz constant $x^{\frac{1}{n}}L$. Theorem 5.4 of [79] gives

$$\left| |\Lambda_{\mathfrak{g}} \cap T_x| - \frac{\operatorname{Vol}(T_x)}{\det \Lambda_{\mathfrak{g}}} \right| \ll_L \max_{0 \le i < r} \frac{x^{\frac{i}{n}}}{\lambda_{\mathfrak{g},1} \cdot \ldots \cdot \lambda_{\mathfrak{g},i}}, \tag{6.18}$$

where $\lambda_{\mathfrak{g},1},\ldots,\lambda_{\mathfrak{g},r}$ are the successive minima of $\Lambda_{\mathfrak{g}}$. Since *L* depends only on *K*, it follows that the implied constant in (6.18) depends only on *K*, so we may simply write \ll by our earlier conventions.

Our next goal is to give a lower bound for $\lambda_{\mathfrak{g},1}$. So let $\gamma \in \Lambda_{\mathfrak{g}}$ be non-zero. By definition of $\Lambda_{\mathfrak{g}}$ we have $\mathfrak{g} \mid \gamma$ and hence $g \mid N\gamma$. Write

$$\gamma = \sum_{i=1}^{r} a_i \eta_i.$$

If $a_1, \ldots, a_r \leq C'_K g^{\frac{1}{n}}$ for a sufficiently small constant C'_K , we find that $N\gamma < g$. But this is impossible, since $g \mid N\gamma$ and $N\gamma \neq 0$. So there is an *i* with $a_i > C'_K g^{\frac{1}{n}}$. If we equip \mathbb{R}^r with the standard Euclidean norm, we conclude that the length of γ satisfies $||\gamma|| \gg g^{\frac{1}{n}}$ and hence

$$\lambda_{\mathfrak{g},1} \gg g^{\frac{1}{n}}.\tag{6.19}$$

Minkowski's second theorem and (6.19) imply that

$$\det \Lambda_{\mathfrak{g}} \gg g^{\frac{r}{n}}.\tag{6.20}$$

Combining (6.18), (6.19), (6.20) and $g \leq x$ gives

$$|\Lambda_{\mathfrak{g}} \cap T_{x}| \ll \frac{x^{\frac{r}{n}}}{g^{\frac{r}{n}}} + \frac{x^{\frac{r-1}{n}}}{g^{\frac{r-1}{n}}} \ll \frac{x^{\frac{r}{n}}}{g^{\frac{r}{n}}}.$$
(6.21)

Plugging (6.17) and (6.21) back in (6.16) yields

$$|\{\beta \in \mathbb{M}' : |\beta^{(i)}| \le x^{\frac{1}{n}}, g_0(\sigma, \beta) > Z\}| \le \sum_{\substack{\mathfrak{g}\\g_0 > Z}} A_{\mathfrak{g}} \le \sum_{\substack{\mathfrak{g}\\g_0 > Z}} |\Lambda_{\mathfrak{g}} \cap T_x| \ll \sum_{\substack{\mathfrak{g}\\g_0 > Z}} \frac{x^{\frac{1}{n}}}{g^{\frac{r}{n}}}.$$

If we define $\tau_K(g)$ to be the number of ideals of K of norm g, we can bound the last

6.3. Linear sums

sum as follows

$$\begin{split} \sum_{\substack{\mathfrak{g}\\g_0>Z}} \frac{x^{\frac{r}{n}}}{g^{\frac{r}{n}}} &= x^{\frac{r}{n}} \sum_{\substack{g \leq x\\g \text{ squarefull}\\g_0>Z}} \frac{\tau_K(g)}{g^{\frac{r}{n}}} \ll \epsilon \; x^{\frac{r}{n}+\epsilon} \sum_{\substack{g \leq x\\g \text{ squarefull}\\g_0>Z}} \frac{1}{g^{\frac{r}{n}}} \\ &= x^{\frac{r}{n}+\epsilon} \sum_{\substack{g \leq x\\g \text{ squarefull}\\g_0>Z}} g^{\frac{1}{2}-\frac{r}{n}} \frac{1}{g^{\frac{1}{2}}} \leq x^{\frac{r}{n}+\epsilon} Z^{1-\frac{2r}{n}} \sum_{\substack{g \leq x\\g \text{ squarefull}\\g_0>Z}} \frac{1}{g^{\frac{1}{2}}} \\ &\leq x^{\frac{r}{n}+\epsilon} Z^{1-\frac{2r}{n}} \sum_{\substack{g \leq x\\g \text{ squarefull}}} \frac{1}{g^{\frac{1}{2}}} \ll x^{\frac{r}{n}+\epsilon} Z^{1-\frac{2r}{n}}. \end{split}$$

Recalling that $r = n \left(1 - \frac{1}{\operatorname{ord}(\sigma)}\right)$ completes the proof of Lemma 6.3.1.

Lemma 6.3.2. Let $\sigma, \tau \in S$ be distinct. Recall that

 $\mathcal{O}_K = \mathbb{Z} \oplus \mathbb{M}.$

Fix an integral basis $\omega_2, \ldots, \omega_n$ of \mathbb{M} and define the polynomials $f_1, f_2 \in \mathbb{Z}[x_2, \ldots, x_n]$ by

$$f_1(x_2, \dots, x_n) = N\left(\sum_{i=2}^n x_i(\sigma(\omega_i) - \omega_i)\right)$$
$$f_2(x_2, \dots, x_n) = N\left(\sum_{i=2}^n x_i(\tau(\omega_i) - \omega_i)\right).$$

For $\beta \in \mathbb{M}$ with $\beta = \sum_{i=2}^{n} a_i \omega_i$ we define $f_1(\beta) := f_1(a_2, \ldots, a_n) = \mathbb{N}(\sigma(\beta) - \beta)$ and similarly for $f_2(\beta)$. Then

$$|\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, \gcd(f_1(\beta), f_2(\beta)) > Z\}| \ll_{\epsilon} x^{\frac{n-1}{n} + \epsilon} Z^{-\frac{1}{18}} + x^{\frac{n-2}{n}} + Z^{\frac{2n-4}{3}}$$

Proof. Let Y be the closed subscheme of $\mathbb{A}^{n-1}_{\mathbb{Z}}$ defined by $f_1 = f_2 = 0$. We claim that Y has codimension 2, i.e. f_1 and f_2 are relatively prime polynomials. Suppose not. Note that f_1 and f_2 factor in $K[x_2, \ldots, x_n]$ as

$$f_1(x_2, \dots, x_n) = \prod_{\sigma' \in \operatorname{Gal}(K/\mathbb{Q})} \left(\sum_{i=2}^n x_i(\sigma'\sigma(\omega_i) - \sigma'(\omega_i)) \right)$$
$$f_2(x_2, \dots, x_n) = \prod_{\tau' \in \operatorname{Gal}(K/\mathbb{Q})} \left(\sum_{i=2}^n x_i(\tau'\tau(\omega_i) - \tau'(\omega_i)) \right)$$

Hence if f_1 and f_2 are not relatively prime, there are $\sigma', \tau' \in \text{Gal}(K/\mathbb{Q})$ and $\kappa \in K^*$ such that

$$\sum_{i=2}^{n} x_i(\sigma'\sigma(\omega_i) - \sigma'(\omega_i)) = \kappa \sum_{i=2}^{n} x_i(\tau'\tau(\omega_i) - \tau'(\omega_i))$$

for all $x_2, \ldots, x_n \in \mathbb{Z}$. Put $\beta = \sum_{i=2}^n x_i \omega_i$. Then we can rewrite this as

$$\sigma'\sigma(\beta) - \sigma'(\beta) = \kappa(\tau'\tau(\beta) - \tau'(\beta)) \tag{6.22}$$

for all $\beta \in \mathbb{M}$. But this implies that (6.22) holds for all $\beta \in K$. Now we apply the Artin-Dedekind Lemma, which gives a contradiction in all cases due to our assumptions $\sigma, \tau \in S$ and $\sigma \neq \tau$.

Having established our claim, we are in position to apply Theorem 3.3 of [4]. We embed \mathbb{M} in \mathbb{R}^{n-1} by sending ω_i to e_i , the *i*-th standard basis vector. Note that the image under this embedding is \mathbb{Z}^{n-1} . Write $\beta = \sum_{i=2}^{n} a_i \omega_i$. Since $|\beta^{(i)}| \leq x^{\frac{1}{n}}$, it follows that $|a_i| \leq C_K x^{\frac{1}{n}}$ for some constant C_K depending only on K. Let B be the compact region in \mathbb{R}^{n-1} given by $B := \{(a_2, \ldots, a_n) : |a_i| \leq C_K\}$. Theorem 3.3 of [4] with our B, Y and $r = x^{\frac{1}{n}}$ gives

$$|\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, p \mid \gcd(f_1(\beta), f_2(\beta)), p > M\}| \ll \frac{x^{\frac{n-1}{n}}}{M \log M} + x^{\frac{n-2}{n}}, \qquad (6.23)$$

where M is any positive real number. Factor

$$f_1(\beta) := g_1 q_1, \quad (g_1, q_1) = 1, \quad g_1 \text{ squarefull}, \quad q_1 \text{ squarefree}$$

 $f_2(\beta) := g_2 q_2, \quad (g_2, q_2) = 1, \quad g_2 \text{ squarefull}, \quad q_2 \text{ squarefree}.$

By Lemma 6.3.1 we conclude that for all A > 0 and $\epsilon > 0$

$$|\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, g_1 > A\}| \ll_{\epsilon} x^{\frac{n-1}{n} + \epsilon} A^{-\frac{1}{2} + \frac{1}{\operatorname{ord}(\sigma)}}.$$

With the same argument applied to τ we obtain

$$|\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, g_1 > A \text{ or } g_2 > A\}| \ll_{\epsilon} x^{\frac{n-1}{n} + \epsilon} A^{-\frac{1}{2} + \frac{1}{\operatorname{ord}(\sigma)}} + x^{\frac{n-1}{n} + \epsilon} A^{-\frac{1}{2} + \frac{1}{\operatorname{ord}(\tau)}}.$$
(6.24)

We discard those β that satisfy (6.23) or (6.24). From (6.24) we deduce that the remaining β certainly satisfy $gcd(q_1, q_2) > \frac{Z}{A^2}$. Furthermore, by discarding those β satisfying (6.23), we see that $gcd(q_1, q_2)$ has no prime divisors greater than M. This implies that $gcd(q_1, q_2)$ is divisible by a squarefree number between $\frac{Z}{A^2}$ and $\frac{ZM}{A^2}$. So we must still give an upper bound for

$$\left\{ \beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, r \mid \gcd(q_1, q_2), \frac{Z}{A^2} < r \le \frac{ZM}{A^2} \right\} \right|.$$
(6.25)

Let r be a squarefree integer and let $\mathfrak{r}_1, \mathfrak{r}_2$ be two ideals of K with norm r. Define

$$E_{\mathfrak{r}_1,\mathfrak{r}_2} := \left| \left\{ \beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, \mathfrak{r}_1 \mid \sigma(\beta) - \beta, \mathfrak{r}_2 \mid \tau(\beta) - \beta \right\} \right|.$$

We will give an upper bound for $E_{\mathfrak{r}_1,\mathfrak{r}_2}$ following [24, p. 731-733]. Write $\beta = \sum_{i=2}^n a_i \omega_i$. Then $|\beta^{(i)}| \leq x^{\frac{1}{n}}$ implies $a_i \ll x^{\frac{1}{n}}$ and

$$\sum_{i=2}^{n} a_i(\sigma(\omega_i) - \omega_i) \equiv 0 \mod \mathfrak{r}_1 \tag{6.26}$$

$$\sum_{i=2}^{n} a_i(\tau(\omega_i) - \omega_i) \equiv 0 \mod \mathfrak{r}_2.$$
(6.27)

We split the coefficients a_2, \ldots, a_n according to their residue classes modulo r. Suppose that $p \mid r$ and let $\mathfrak{p}_1, \mathfrak{p}_2$ be the unique prime ideals of degree one dividing \mathfrak{r}_1 and \mathfrak{r}_2 respectively. Then we get

$$\sum_{i=2}^{n} a_i(\sigma(\omega_i) - \omega_i) \equiv 0 \mod \mathfrak{p}_1 \tag{6.28}$$

$$\sum_{i=2}^{n} a_i(\tau'\tau(\omega_i) - \tau'(\omega_i)) \equiv 0 \mod \mathfrak{p}_1, \tag{6.29}$$

where τ' satisfies $\tau'^{-1}(\mathfrak{p}_1) = \mathfrak{p}_2$. If we further assume that \mathfrak{p}_1 is unramified, we claim that the above two equations are linearly independent over \mathbb{F}_p . Indeed, consider the isomorphism

$$\mathcal{O}_K/p \cong \mathbb{F}_p \times \cdots \times \mathbb{F}_p$$

Note that $\tau' \tau \notin \{ \mathrm{id}, \sigma \}$ or $\tau' \notin \{ \mathrm{id}, \sigma \}$ due to our assumption that σ and τ are distinct elements of S. Let us deal with the case $\tau' \tau \notin \{ \mathrm{id}, \sigma \}$, the other case is dealt with similarly. Then there exists $\beta \in \mathcal{O}_K$ such that $\beta \equiv 1 \mod \mathfrak{p}_1, \beta \equiv 1 \mod \sigma^{-1}(\mathfrak{p}_1),$ $\beta \equiv 1 \mod \tau'^{-1}(\mathfrak{p}_1)$ and β is divisible by all other conjugates of \mathfrak{p}_1 . By our assumption on $\tau' \tau$ it follows that $\beta \equiv 0 \mod \tau^{-1} \tau'^{-1}(\mathfrak{p}_1)$. Hence we obtain

$$\sigma(\beta) - \beta \equiv 0 \mod \mathfrak{p}_1, \quad \tau'\tau(\beta) - \tau'(\beta) \equiv -1 \mod \mathfrak{p}_1.$$

However, for \mathfrak{p}_1 an unramified prime, we know that $\sigma(\beta) - \beta \equiv 0 \mod \mathfrak{p}_1$ can not happen for all $\beta \in \mathcal{O}_K$, unless σ is the identity. This proves our claim.

If we further split the coefficients a_2, \ldots, a_n according to their residue classes modulo p, our claim implies that there are p^{n-3} solutions a_2, \ldots, a_n modulo p satisfying (6.28) and (6.29), provided that p is unramified. For ramified primes we can use the trivial upper bound p^{n-1} . Then we deduce from the Chinese Remainder Theorem that there are $\ll r^{n-3}$ solutions a_2, \ldots, a_n modulo r satisfying (6.26) and (6.27). This yields

$$E_{\mathfrak{r}_1,\mathfrak{r}_2} \ll r^{n-3} \left(\frac{x^{\frac{1}{n}}}{r} + 1\right)^{n-1} \ll x^{\frac{n-1}{n}}r^{-2} + r^{n-3}.$$

Therefore we have the following upper bound for (6.25)

$$\sum_{\frac{Z}{A^2} < r \le \frac{ZM}{A^2}} \sum_{\substack{\mathbf{r}_1, \mathbf{r}_2 \\ \mathbf{N}\mathbf{r}_1 = \mathbf{N}\mathbf{r}_2 = r}} E_{\mathbf{r}_1, \mathbf{r}_2} \ll \sum_{\frac{Z}{A^2} < r \le \frac{ZM}{A^2}} \sum_{\substack{\mathbf{r}_1, \mathbf{r}_2 \\ \mathbf{N}\mathbf{r}_1 = \mathbf{N}\mathbf{r}_2 = r}} x^{\frac{n-1}{n}} r^{-2} + r^{n-3}$$
$$\ll_{\epsilon} x^{\epsilon} \sum_{\frac{Z}{A^2} < r \le \frac{ZM}{A^2}} x^{\frac{n-1}{n}} r^{-2} + r^{n-3}$$
$$\ll_{\epsilon} x^{\epsilon} \left(x^{\frac{n-1}{n}} \frac{A^2}{Z} + \left(\frac{ZM}{A^2} \right)^{n-2} \right).$$

Note that $\sigma \in S$ implies $\operatorname{ord}(\sigma) \geq 3$. Now choose $A = M = Z^{\frac{1}{3}}$ to complete the proof of Lemma 6.3.2.

With Lemma 6.3.1 and Lemma 6.3.2 in hand we return to estimating the number of $\beta \in \mathbb{M}$ satisfying $|\beta^{(i)}| \leq x^{\frac{1}{n}}$ and (6.15). We choose a $\sigma \in S$ and we will consider it as fixed for the remainder of the proof. Note that any integer n > 0 can be factored uniquely as

$$n = q'g'r',$$

where q' is a squarefree integer coprime to mF, g' is a squarefull integer coprime to mFand r' is composed entirely of primes from mF. This allows us to define sqf(n, mF) := q'. We start by giving an upper bound for

$$\left|\left\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, \operatorname{sqf}(\mathcal{N}(\beta - \sigma(\beta)), mF) \le Z\right\}\right|.$$

To do this, we need a slight generalization of the argument on [24, p. 729]. Recall that K^{σ} is the subfield of K fixed by σ and $\mathcal{O}_{K^{\sigma}}$ its ring of integers. Decompose \mathcal{O}_{K} as

$$\mathcal{O}_K = \mathcal{O}_{K^{\sigma}} \oplus \mathbb{M}'.$$

Then we have

$$\left| \left\{ \beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, \operatorname{sqf}(\mathcal{N}(\beta - \sigma(\beta)), mF) \le Z \right\} \right| \\ \ll x^{\frac{1}{\operatorname{ord}(\sigma)} - \frac{1}{n}} \left| \left\{ \beta \in \mathbb{M}' : |\beta^{(i)}| \le x^{\frac{1}{n}}, \operatorname{sqf}(\mathcal{N}(\beta - \sigma(\beta)), mF) \le Z \right\} \right|.$$
(6.30)

The map $\mathbb{M}' \to \mathcal{O}_K$ given by $\beta \mapsto \beta - \sigma(\beta)$ is injective. Set $\gamma := \beta - \sigma(\beta)$. Furthermore, the conjugates of γ satisfy $|\gamma^{(i)}| \leq 2x^{\frac{1}{n}}$, which gives

$$\left| \left\{ \beta \in \mathbb{M}' : |\beta^{(i)}| \le x^{\frac{1}{n}}, \operatorname{sqf}(\mathbb{N}(\beta - \sigma(\beta)), mF) \le Z \right\} \right| \\ \le \left| \left\{ \gamma \in \mathcal{O}_K : |\gamma^{(i)}| \le 2x^{\frac{1}{n}}, \operatorname{sqf}(\mathbb{N}(\gamma), mF) \le Z \right\} \right|.$$
(6.31)

Instead of counting algebraic integers γ , we will count the principal ideals they generate, where each given ideal occurs no more than $\ll (\log x)^n$ times. This yields the bound

$$\begin{split} \left| \left\{ \gamma \in \mathcal{O}_K : |\gamma^{(i)}| \le 2x^{\frac{1}{n}}, \operatorname{sqf}(\mathcal{N}(\gamma), mF) \le Z \right\} \right| \\ \ll (\log x)^n \left| \left\{ \mathfrak{b} \subseteq \mathcal{O}_K : \mathcal{N}(\mathfrak{b}) \le 2^n x, \operatorname{sqf}(\mathcal{N}(\mathfrak{b}), mF) \le Z \right\} \right|. \end{split}$$

We conclude that

$$\left|\left\{\gamma \in \mathcal{O}_K : |\gamma^{(i)}| \le 2x^{\frac{1}{n}}, \operatorname{sqf}(\mathcal{N}(\gamma), mF) \le Z\right\}\right| \ll (\log x)^n \sum_{\substack{b \le 2^n x \\ \operatorname{sqf}(b, mF) \le Z}} \tau_K(b), \quad (6.32)$$

where we remind the reader that $\tau_K(b)$ denotes the number of ideals in K of norm b.

Let us count the number of $b \leq 2^n x$ satisfying $\operatorname{sqf}(b, mF) \leq Z$. We do this by counting the number of possible $g', r' \leq 2^n x$ that can occur in the factorization b = q'g'r'. First

of all, there are $\ll x^{\frac{1}{2}}$ squarefull integers g' satisfying $g' \leq 2^n x$. To bound the number of $r' \leq 2^n x$, we observe that we may assume $m \leq x$, because otherwise the sum in (6.9) is empty. This implies that the number of integers $r' \leq 2^n x$ that are composed entirely of primes from mF is $\ll_{\epsilon} x^{\epsilon}$. Obviously there are at most Z squarefree integers q' coprime to mF satisfying $q' \leq Z$. We conclude that the number of $b \leq 2^n x$ satisfying $\operatorname{sqf}(b, mF) \leq Z$ is $\ll_{\epsilon} Zx^{\frac{1}{2}+\epsilon}$. Combined with the upper bound $\tau_K(b) \ll_{\epsilon} x^{\epsilon}$ we obtain

$$(\log x)^n \sum_{\substack{b \le 2^n x \\ \operatorname{sqf}(b,mF) \le Z}} \tau_K(b) \ll_{\epsilon} Z x^{\frac{1}{2} + \epsilon}.$$
(6.33)

Stringing together the inequalities (6.30), (6.31), (6.32) and (6.33) we conclude that

$$\left|\left\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, \operatorname{sqf}(\mathcal{N}(\beta - \sigma(\beta)), mF) \le Z\right\}\right| \ll_{\epsilon} Z x^{\frac{1}{2} + \frac{1}{\operatorname{ord}(\sigma)} - \frac{1}{n} + \epsilon}.$$
 (6.34)

Now in order to give an upper bound for the number of β satisfying $|\beta^{(i)}| \leq x^{\frac{1}{n}}$ and (6.15), that is

$$p \mid \prod_{\sigma \in S} \mathcal{N}(\beta - \sigma(\beta)) \Rightarrow p^2 \mid mF \prod_{\sigma \in S} \mathcal{N}(\beta - \sigma(\beta)),$$

we start by picking $Z = x^{\frac{1}{3n}}$ and discarding all β satisfying (6.34) for the $\sigma \in S$ we fixed earlier. For this $\sigma \in S$ and varying $\tau \in S$ with $\tau \neq \sigma$ we apply Lemma 6.3.2 to obtain

$$|\{\beta \in \mathbb{M} : |\beta^{(i)}| \le x^{\frac{1}{n}}, \operatorname{gcd}(\mathcal{N}(\beta - \sigma(\beta)), \mathcal{N}(\beta - \tau(\beta))) > x^{\frac{1}{3n|S|}}\}| \ll_{\epsilon} x^{\frac{n-1}{n} - \frac{1}{54n|S|} + \epsilon}.$$
(6.35)

We further discard all β satisfying (6.35) for some $\tau \in S$ with $\tau \neq \sigma$. Now it is easily checked that the remaining β do not satisfy (6.15). Hence we have completed our task of estimating the number of β satisfying $|\beta^{(i)}| \leq x^{\frac{1}{n}}$ and (6.15).

Let $A_0(x; \rho)$ be the contribution to $A(x; \rho)$ of the terms $\alpha = a + \beta$ for which (6.15) does not hold and let $A_{\Box}(x; \rho)$ be the contribution to $A(x; \rho)$ for which (6.15) holds. Then we have the obvious identity

$$A(x;\rho) = A_0(x;\rho) + A_{\Box}(x;\rho).$$

Next we make a further partition

$$A_0(x;\rho) = A_1(x;\rho) + A_2(x;\rho),$$

where the components run over $\alpha = a + \beta$, $\beta \in \mathbb{M}$ with β such that

$$g_0 \le Y \text{ in } A_1(x;\rho)$$

$$g_0 > Y \text{ in } A_2(x;\rho).$$

Here Y is at our disposal and we choose it later. From (6.34) and (6.35) we deduce that

$$A_{\Box}(x;\rho) \ll_{\epsilon} x^{1-\frac{1}{54n|S|}+\epsilon}.$$

To estimate $A_1(x;\rho)$ we apply 6.14 and sum over all $\beta \in \mathbb{M}$ satisfying $|\beta^{(i)}| \leq x^{\frac{1}{n}}$, ignoring all other restrictions on β , to obtain

$$A_1(x;\rho) \ll_{\epsilon} Y x^{1-\frac{\delta}{n}+\epsilon}.$$

We still have to bound $A_2(x; \rho)$. Recall that

$$\mathfrak{c} = \prod_{\sigma \in S} \mathfrak{c}(\sigma, \beta),$$

leading to the factorization $\mathfrak{c} = \mathfrak{gq}$ in (6.12). We further recall that g_0 is the radical of Ng. Now factor each term $\mathfrak{c}(\sigma,\beta)$ as

$$\mathfrak{c}(\sigma,\beta) = \mathfrak{g}(\sigma,\beta)\mathfrak{q}(\sigma,\beta) \tag{6.36}$$

just as in (6.12). The point of (6.36) is that

$$\mathfrak{g} \mid \prod_{\sigma \in S} \mathfrak{g}(\sigma, \beta) \prod_{\substack{\sigma, \tau \in S \\ \sigma \neq \tau}} \gcd(\mathfrak{c}(\sigma, \beta), \mathfrak{c}(\tau, \beta))$$

and therefore

$$g_0 \mid \prod_{\sigma \in S} g_0(\sigma, \beta) \prod_{\substack{\sigma, \tau \in S \\ \sigma \neq \tau}} \operatorname{gcd}(\mathfrak{c}(\sigma, \beta), \mathfrak{c}(\tau, \beta)).$$

We use Lemma 6.3.1 to discard all β satisfying $g_0(\sigma,\beta) > Y^{\frac{1}{|S|^2}}$. Similarly, we use Lemma 6.3.2 to discard all β satisfying $gcd(\mathfrak{c}(\sigma,\beta),\mathfrak{c}(\tau,\beta)) > Y^{\frac{1}{|S|^2}}$. Then the remaining β satisfy $g_0 \leq Y$. Furthermore, we have removed

$$\ll_{\epsilon} x^{\frac{n-1}{n}+\epsilon} Y^{-\frac{1}{18|S|^2}} + x^{\frac{n-2}{n}} + Y^{\frac{2n-4}{3|S|^2}} + x^{\frac{n-1}{n}+\epsilon} Y^{-\frac{1}{3|S|^2}}$$

 β in total and hence

$$A_2(x;\rho) \ll_{\epsilon} x^{1+\epsilon} Y^{-\frac{1}{18|S|^2}} + x^{\frac{n-1}{n}} + x^{\frac{1}{n}} Y^{\frac{2n-4}{3|S|^2}} + x^{1+\epsilon} Y^{-\frac{1}{3|S|^2}}$$

After picking $Y = x^{\frac{\delta}{2n}}$ we conclude that

$$A(x) \ll_{\epsilon} x^{1 - \frac{\delta}{54n|S|^2} + \epsilon}.$$

We will now sketch how to modify this proof for totally complex K. We have to bound

$$A(x) = \sum_{\substack{\mathrm{N}\mathfrak{a} \le x\\ (\mathfrak{a},F)=1,\mathfrak{m}|\mathfrak{a}}} r(\mathfrak{a}) \sum_{t \in T_K} \sum_{v \in V_K/V_K^2} \psi(tv\alpha \bmod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, tv\alpha).$$
(6.37)

We use the fundamental domain constructed for totally complex fields form subsection 6.2.4 and we pick for each principal \mathfrak{a} its generator in \mathcal{D} . Then equation (6.37) becomes

$$\begin{split} A(x) &= \sum_{t \in T_K} \sum_{\substack{v \in V_K/V_K^2 \\ \alpha \equiv \rho \mod F \\ \alpha \equiv 0 \mod \mathfrak{m}}} \psi(tv\alpha \mod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, tv\alpha) \\ &= \sum_{t \in T_K} \sum_{\substack{v \in V_K/V_K^2 \\ \alpha \equiv \rho \mod F \\ \alpha \equiv \rho \mod F}} \sum_{\substack{\sigma \in \sigma \mod F \\ \alpha \equiv \rho \mod \mathfrak{m}}} \psi(\alpha \mod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, \alpha). \end{split}$$

We deal with each sum of the shape

$$\sum_{\substack{\alpha \in tv\mathcal{D}, \mathrm{N}\alpha \leq x \\ \alpha \equiv \rho \mod F \\ \alpha \equiv 0 \mod \mathfrak{m}}} \psi(\alpha \mod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, \alpha)$$
(6.38)

exactly in the same way as for real quadratic fields K, where it is important to note that the shifted fundamental domain $tv\mathcal{D}$ still has the essential properties we need. Combining our estimate for each sum in equation (6.38), we obtain the desired upper bound for A(x).

6.4 Bilinear sums

Let x, y > 0 and let $\{v_{\mathfrak{a}}\}_{\mathfrak{a}}$ and $\{w_{\mathfrak{b}}\}_{\mathfrak{b}}$ be two sequences of complex numbers bounded in modulus by 1. Define

$$B(x,y) = \sum_{\mathcal{N}(\mathfrak{a}) \le x} \sum_{\mathcal{N}(\mathfrak{b}) \le y} v_{\mathfrak{a}} w_{\mathfrak{b}} s_{\mathfrak{a}\mathfrak{b}}.$$
(6.39)

We wish to prove that for all $\epsilon > 0$, we have

$$B(x,y) \ll_{\epsilon} \left(x^{-\frac{1}{6n}} + y^{-\frac{1}{6n}} \right) (xy)^{1+\epsilon}, \qquad (6.40)$$

where the implied constant is uniform in all choices of sequences $\{v_{\mathfrak{a}}\}_{\mathfrak{a}}$ and $\{w_{\mathfrak{b}}\}_{\mathfrak{b}}$ as above.

We split the sum B(x, y) into h^2 sums according to which ideal classes \mathfrak{a} and \mathfrak{b} belong to. In fact, since $s_{\mathfrak{a}\mathfrak{b}}$ vanishes whenever $\mathfrak{a}\mathfrak{b}$ does not belong to the principal class, it suffices to split B(x, y) into h sums

$$B(x,y) = \sum_{i=1}^{h} B_i(x,y), \quad B_i(x,y) = \sum_{\substack{\mathcal{N}(\mathfrak{a}) \leq x \\ \mathfrak{a} \in C_i}} \sum_{\substack{\mathcal{N}(\mathfrak{b}) \leq y \\ \mathfrak{b} \in C_i^{-1}}} v_{\mathfrak{a}} w_{\mathfrak{b}} s_{\mathfrak{a}\mathfrak{b}}.$$

We will prove the desired estimate for each of the sums $B_i(x, y)$. So fix an index $i \in \{1, \ldots, h\}$, let $\mathfrak{A} \in \mathcal{C}\ell_a$ be the ideal belonging to the ideal class C_i^{-1} , and let

 $\mathfrak{B} \in \mathcal{C}\ell_b$ be the ideal belonging to the ideal class C_i . The conditions on \mathfrak{a} and \mathfrak{b} above mean that

$$\mathfrak{a}\mathfrak{A} = (\alpha), \quad \alpha \succ 0$$

and

$$\mathfrak{bB} = (\beta), \quad \beta \succ 0.$$

Since $\mathfrak{A} \in C_i^{-1}$ and $\mathfrak{B} \in C_i$, there exists an element $\gamma \in \mathcal{O}_K$ such that

$$\mathfrak{AB} = (\gamma), \quad \gamma \succ 0.$$

We are now in a position to use the factorization formula for $spin(\mathfrak{ab})$ appearing in [24, (3.8), p. 708], which in turn leads to a factorization formula for $s_{\mathfrak{ab}}$. We note that the formula [24, (3.8), p. 708] also holds in case K is totally complex, with exactly the same proof. We have

$$\operatorname{spin}(\sigma, \alpha\beta/\gamma) = \operatorname{spin}(\sigma, \gamma)\delta(\sigma; \alpha, \beta) \left(\frac{\alpha\gamma}{\sigma(\mathfrak{a}\mathfrak{B})}\right) \left(\frac{\beta\gamma}{\sigma(\mathfrak{b}\mathfrak{A})}\right) \left(\frac{\alpha}{\sigma(\beta)\sigma^{-1}(\beta)}\right), \quad (6.41)$$

where $\delta(\sigma; \alpha, \beta) \in \{\pm 1\}$ is a factor which comes from an application of quadratic reciprocity and which depends only on σ and the congruence classes of α and β modulo 8.

If K is real quadratic, then we set

$$v_{\mathfrak{a}}' = v_{\mathfrak{a}} \prod_{\sigma \in S} \left(\frac{\alpha \gamma}{\sigma(\mathfrak{a}\mathfrak{B})} \right), \quad w_{\mathfrak{b}}' = w_{\mathfrak{b}} \prod_{\sigma \in S} \left(\frac{\beta \gamma}{\sigma(\mathfrak{b}\mathfrak{A})} \right),$$

and

$$\delta(\alpha,\beta) = \psi(\alpha\beta \bmod F) \prod_{\sigma \in S} \delta(\sigma;\alpha,\beta), \quad s(\gamma) = \prod_{\sigma \in S} \operatorname{spin}(\sigma,\gamma),$$

so that we can rewrite the sum $B_i(x, y)$ as

$$B_{i}(x,y) = s(\gamma) \sum_{\substack{\alpha \in \mathcal{D} \\ N(\alpha) \le xN(\mathfrak{A}) \\ \alpha \equiv 0 \mod \mathfrak{A}}} \sum_{\substack{\beta \in \mathcal{D} \\ N(\beta) \le yN(\mathfrak{B}) \\ \beta \equiv 0 \mod \mathfrak{B}}} \delta(\alpha,\beta) v'_{(\alpha)/\mathfrak{A}} w'_{(\beta)/\mathfrak{B}} \prod_{\sigma \in S} \left(\frac{\alpha}{\sigma(\beta)\sigma^{-1}(\beta)}\right).$$
(6.42)

Now set

$$v_{\alpha} = \mathbf{1}(\alpha \equiv 0 \mod \mathfrak{A}) \cdot v'_{(\alpha)/\mathfrak{A}}$$

and

$$w_{\beta} = \mathbf{1}(\beta \equiv 0 \mod \mathfrak{B}) \cdot w'_{(\beta)/\mathfrak{B}},$$

where $\mathbf{1}(P)$ is the indicator function of a property P. Also, for $\alpha, \beta \in \mathcal{O}_K$ with β odd, we define

$$\phi(\alpha,\beta) = \prod_{\sigma\in S} \left(\frac{\alpha}{\sigma(\beta)\sigma^{-1}(\beta)}\right).$$

Finally, we further split $B_i(x, y)$ according to the congruence classes of α and β modulo F, so as to control the factor $\delta(\alpha, \beta)$, which now depends on congruence classes of α and β modulo F due to the presence of $\psi(\alpha\beta \mod F)$. We have

$$B_i(x,y) = s(\gamma) \sum_{\alpha_0 \in (\mathcal{O}_K/(F))^{\times}} \sum_{\beta_0 \in (\mathcal{O}_K/(F))^{\times}} \delta(\alpha_0,\beta_0) B_i(x,y;\alpha_0,\beta_0),$$

where

$$B_i(x, y; \alpha_0, \beta_0) = \sum_{\substack{\alpha \in \mathcal{D}(x\mathbf{N}(\mathfrak{A})) \\ \alpha \equiv \alpha_0 \mod F}} \sum_{\substack{\beta \in \mathcal{D}(y\mathbf{N}(\mathfrak{B})) \\ \beta \equiv \beta_0 \mod F}} v_\alpha w_\beta \phi(\alpha, \beta).$$

To prove the bound (6.40), at least in the case that K is totally real, it now suffices to prove, for each $\epsilon > 0$, the bound

$$B_i(x,y;\alpha_0,\beta_0) \ll_{\epsilon} \left(x^{-\frac{1}{6n}} + y^{-\frac{1}{6n}}\right) (xy)^{1+\epsilon}, \qquad (6.43)$$

where the implied constant is uniform in all choices of uniformly bounded sequences of complex numbers $\{v_{\alpha}\}_{\alpha}$ and $\{w_{\beta}\}_{\beta}$ indexed by elements of \mathcal{O}_{K} . Each of the sums $B_{i}(x, y; \alpha_{0}, \beta_{0})$ is of the same shape as $B(M, N; \omega, \zeta)$ in Chapter 4; in the notation of Chapter 4, $\mathfrak{f} = (F)$, α_{w} corresponds to v_{α} , β_{z} corresponds to w_{β} , and $\gamma(w, z)$ corresponds to $\phi(\alpha, \beta)$ (unfortunately with the arguments α and β flipped). Our desired estimate for $B_{i}(x, y; \alpha_{0}, \beta_{0})$, and hence also B(x, y), would now follow from Proposition 4.3.6, provided that we can verify properties (P1)-(P3) for the function $\phi(\alpha, \beta)$.

We now verify (P1)-(P3), thereby proving the bound (6.43) and hence also the bound (6.40). Property (P1) follows from the law of quadratic reciprocity, since for odd α and β we have

$$\begin{split} \phi(\alpha,\beta) &= \prod_{\sigma \in S} \left(\frac{\alpha}{\sigma(\beta)}\right) \left(\frac{\alpha}{\sigma^{-1}(\beta)}\right) \\ &= \prod_{\sigma \in S} \mu(\sigma;\alpha,\beta) \left(\frac{\sigma(\beta)}{\alpha}\right) \left(\frac{\sigma^{-1}(\beta)}{\alpha}\right) \\ &= \left(\prod_{\sigma \in S} \mu(\sigma;\alpha,\beta)\right) \cdot \prod_{\sigma \in S} \left(\frac{\beta}{\sigma^{-1}(\alpha)}\right) \left(\frac{\beta}{\sigma(\alpha)}\right) \\ &= \left(\prod_{\sigma \in S} \mu(\sigma;\alpha,\beta)\right) \cdot \phi(\beta,\alpha), \end{split}$$

where $\mu(\sigma; \alpha, \beta)$ depends only on σ and the congruence classes of α and β modulo 8. Property (P2) follows immediately from the multiplicativity of each argument of the quadratic residue symbol (·/·). Finally, for property (P3), since $\sigma^{-1} \notin S$ whenever $\sigma \in S$, we see that

$$\varphi(\beta) = \prod_{\sigma \in S} \sigma(\beta) \sigma^{-1}(\beta)$$

divides $N(\beta) = \prod_{\sigma \in Gal(K/\mathbb{Q})} \sigma(\beta)$; thus, the first part of (P3) indeed holds true. It now suffices to prove that

$$\sum_{\xi \bmod N(\beta)} \left(\frac{\xi}{\varphi(\beta)}\right)$$

vanishes if $|N(\beta)|$ is not squarefull. The sum above is a multiple of the sum

$$\sum_{\xi \bmod \varphi(\beta)} \left(\frac{\xi}{\varphi(\beta)}\right),\,$$

which vanishes if the principal ideal generated by $\varphi(\beta)$ is not the square of an ideal. The proof now proceeds as in [24, Lemma 3.1]. Supposing $|\mathcal{N}(\beta)|$ is not squarefull, we take a rational prime p such that $p | \mathcal{N}(\beta)$ but $p^2 \nmid \mathcal{N}(\beta)$. This implies that there is a degree-one prime ideal divisor \mathfrak{p} of β such that $(\beta) = \mathfrak{pc}$ with \mathfrak{c} coprime to p, i.e., coprime to all the conjugates of \mathfrak{p} . Hence $\varphi(\beta)$ factors as

$$(\varphi(\beta)) = \prod_{\sigma \in S} \sigma(\mathfrak{p}) \sigma^{-1}(\mathfrak{p}) \prod_{\sigma \in S} \sigma(\mathfrak{c}) \sigma^{-1}(\mathfrak{c}),$$

where the evidently non-square $\prod_{\sigma \in S} \sigma(\mathfrak{p}) \sigma^{-1}(\mathfrak{p})$ is coprime to $\prod_{\sigma \in S} \sigma(\mathfrak{c}) \sigma^{-1}(\mathfrak{c})$, hence proving that $(\varphi(\beta))$ is not a square. This proves that property (P3) holds true, and then Proposition 4.3.6 implies the estimate (6.43) and hence also (6.40), at least in the case that K is totally real.

If K is totally complex, fix $t \in T_K$ and $v \in V_K/V_K^2$. Then replacing α by $tv\alpha$ in (6.41), we get

$$\operatorname{spin}(\sigma, tv\alpha\beta/\gamma) = \operatorname{spin}(\sigma, \gamma)\delta(\sigma; tv\alpha, \beta) \left(\frac{tv\alpha\gamma}{\sigma(\mathfrak{a}\mathfrak{B})}\right) \left(\frac{\beta\gamma}{\sigma(\mathfrak{b}\mathfrak{A})}\right) \left(\frac{tv}{\sigma(\beta)\sigma^{-1}(\beta)}\right) \left(\frac{\alpha}{\sigma(\beta)\sigma^{-1}(\beta)}\right),$$

where now $\delta(\sigma; \alpha, \beta; t, v) = \delta(\sigma; tv\alpha, \beta) \left(\frac{tv}{\sigma(\beta)\sigma^{-1}(\beta)}\right) \in \{\pm 1\}$ depends only on σ, t, v , and the congruence classes of α and β modulo 8. Then instead of (6.42), we have

$$B_{i}(x,y) = s(\gamma) \sum_{t \in T_{K}} \sum_{v \in V_{K}/V_{K}^{2}} \sum_{\substack{\alpha \in \mathcal{D} \\ N(\alpha) \leq xN(\mathfrak{A}) } \sum_{\substack{N(\beta) \leq yN(\mathfrak{B}) \\ \alpha \equiv 0 \mod \mathfrak{A}}} \sum_{\substack{\beta \in \mathcal{D} \\ \beta \equiv 0 \mod \mathfrak{B}}} \delta(\alpha,\beta;t,v)$$
$$v(t,v)'_{(\alpha)/\mathfrak{A}} w'_{(\beta)/\mathfrak{B}} \prod_{\sigma \in S} \left(\frac{\alpha}{\sigma(\beta)\sigma^{-1}(\beta)}\right), \quad (6.44)$$

where now

$$v(t,v)'_{\mathfrak{a}} = v_{\mathfrak{a}} \prod_{\sigma \in S} \left(\frac{tv\alpha\gamma}{\sigma(\mathfrak{a}\mathfrak{B})} \right), \quad w'_{\mathfrak{b}} = w_{\mathfrak{b}} \prod_{\sigma \in S} \left(\frac{\beta\gamma}{\sigma(\mathfrak{b}\mathfrak{A})} \right),$$

and

$$\delta(\alpha,\beta;t,v) = \psi(tv\alpha\beta \bmod F) \prod_{\sigma \in S} \delta(\sigma;\alpha,\beta;t,v), \quad s(\gamma) = \prod_{\sigma \in S} \operatorname{spin}(\sigma,\gamma)$$

The rest of the proof now proceeds identically to the case when K is totally real.

6.5 Governing fields

Let $E = \mathbb{Q}(\zeta_8, \sqrt{1+i})$ and let h(-4p) be the class number of $\mathbb{Q}(\sqrt{-4p})$. It is well-known that E is a governing field for the 8-rank of $\mathbb{Q}(\sqrt{-4p})$; in fact 8 divides h(-4p) if and only if p splits completely in E. We assume that K is a hypothetical governing field for the 16-rank of $\mathbb{Q}(\sqrt{-4p})$ and derive a contradiction. If K' is a normal field extension of \mathbb{Q} containing K, then K' is also a governing field. Therefore we can reduce to the case that K contains E. In particular, K is totally complex.

We have $\operatorname{Gal}(E/\mathbb{Q}) \cong D_4$ and we fix an element of order 4 in $\operatorname{Gal}(E/\mathbb{Q})$ that we call r. Let p be a rational prime that splits completely in E. Since E is a PID, we can take π to be a prime in \mathcal{O}_E above p. It follows from Proposition 6.2 of [41], which is based on earlier work of Bruin and Hemenway [7], that there exists an integer F and a function $\psi_0: (\mathcal{O}_E/F\mathcal{O}_E)^{\times} \to \mathbb{C}$ such that for all p with (p, F) = 1 we have

$$16 \mid h(-4p) \Leftrightarrow \psi_0(\pi \bmod F) \left(\frac{r(\pi)}{\pi}\right)_{E,2} = 1, \tag{6.45}$$

where $\psi_0(\alpha \mod F) = \psi_0(\alpha u^2 \mod F)$ for all $\alpha \in \mathcal{O}_K$ coprime to F and all $u \in \mathcal{O}_K^{\times}$. We take S equal to the inverse image of our fixed automorphism r under the natural surjective map $\operatorname{Gal}(K/\mathbb{Q}) \to \operatorname{Gal}(E/\mathbb{Q})$. Then it is easily seen that $\sigma \in S$ implies $\sigma^{-1} \notin S$. If \mathfrak{p} is a principal prime of K with generator w of norm p, we have

$$\begin{split} \prod_{\sigma \in S} \operatorname{spin}(\sigma, w) &= \prod_{\sigma \in S} \left(\frac{w}{\sigma(w)} \right)_{K,2} = \left(\frac{w}{r(\mathcal{N}_{K/E}(w))} \right)_{K,2} \\ &= \psi_1(w \bmod 8) \left(\frac{r(\mathcal{N}_{K/E}(w))}{w} \right)_{K,2} = \psi_1(w \bmod 8) \left(\frac{r(\mathcal{N}_{K/E}(w))}{\mathcal{N}_{K/E}(w)} \right)_{E,2}. \end{split}$$

We are now going to apply Theorem 6.1.1 to the number field K, the function

 $\psi(w \bmod F) := \psi_1(w \bmod 8)\psi_0\left(\mathcal{N}_{K/E}(w) \bmod F\right).$

and S as defined above. Then for a principal prime $\mathfrak p$ of K with generator w and norm p

$$s_{\mathfrak{p}} = \sum_{t \in T_{K}} \sum_{v \in V_{K}/V_{K}^{2}} \psi (tvw \bmod F) \prod_{\sigma \in S} \operatorname{spin}(\sigma, tvw) = 2|T_{K}||V_{K}/V_{K}^{2}| \left(\mathbf{1}_{16|h(-p)} - \frac{1}{2}\right),$$
(6.46)

since the equivalence in (6.45) does not depend on the choice of π . Theorem 6.1.1 shows oscillation of the sum

$$\sum_{\substack{\mathcal{N}(\mathfrak{p}) \leq X\\ \mathfrak{p} \text{ principal}}} s_{\mathfrak{p}}$$

The dominant contribution of this sum comes from prime ideals of degree 1 and for these primes equation (6.46) is valid. But if K were to be a governing field, s_p has to be constant on unramified prime ideals of degree 1, which is the desired contradiction.