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Chapter 6

Joint distribution of spins

Joint work with Djordjo Milovic

Abstract

We answer a question of Iwaniec, Friedlander, Mazur and Rubin [24] on the joint distri-
bution of spin symbols. As an application we give a negative answer to a conjecture of
Cohn and Lagarias on the existence of governing fields for the 16-rank of class groups
under the assumption of a short character sum conjecture.

6.1 Introduction

One of the most fundamental and most prevalent objects in number theory are extensions
of number fields; they arise naturally as fields of definitions of solutions to polynomial
equations. Many interesting phenomena are encoded in the splitting of prime ideals in
extensions. For instance, if p and q are distinct prime numbers congruent to 1 modulo
4, the statement that p splits in Q(

√
q)/Q if and only if q splits in Q(

√
p)/Q is nothing

other than the law of quadratic reciprocity, a common ancestor to much of modern
number theory.

Let K be a number field, p a prime ideal in its ring of integers OK , and α an element
of the algebraic closure K. Suppose we were to ask, as we vary p, how often p splits
completely in the extension K(α)/K. If α is fixed as p varies over all prime ideals
in OK , a satisfactory answer is provided by the Chebotarev Density Theorem, which
is grounded in the theory of L-functions and their zero-free regions. The Chebotarev
Density Theorem, however, often cannot provide an answer if α varies along with p in
some prescribed manner. The purpose of this chapter is to fill this gap for quadratic
extensions in a natural setting that arises in many applications. This setting, which we
now describe, is inspired by the work of Friedlander, Iwaniec, Mazur, and Rubin [24]
and is amenable to sieve theory involving sums of type I and type II, as opposed to the
theory of L-functions.
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96 Chapter 6. Joint distribution of spins

Let K/Q be a Galois extension of degree n. Unlike in [24], we do not impose the very
restrictive condition that Gal(K/Q) is cyclic. For the moment, let us restrict to the
setting where K is totally real and where every totally positive unit in OK is a square,
as in [24]. To each non-trivial automorphism σ ∈ Gal(K/Q) and each odd principal
prime ideal p ⊂ OK , we attach the quantity spin(σ, p) ∈ {−1, 0, 1}, defined as

spin(σ, p) =

(
π

σ(π)

)
K,2

, (6.1)

where π is any totally positive generator of p and
( ·
·
)
K,2

denotes the quadratic residue

symbol in K. If we let α2 = σ−1(π), then spin(σ, p) governs the splitting of p in K(α),
i.e., spin(σ, p) = 1 (resp., −1, 0) if p is split (resp., inert, ramified) in K(α)/K. In [24],
under the assumptions that σ generates Gal(K/Q), that n ≥ 3, and that the technical
Conjecture Cn (see Section 6.2.5) holds true, Friedlander et al. prove that the natural
density of p that are split (resp., inert) in K(

√
α)/K is 1

2 (resp., 1
2 ), just as would be

the case were α not to vary with p.

More generally, suppose S is a subset of Gal(K/Q) and consider the joint spin

sp =
∏
σ∈S

spin(σ, p),

defined for principal prime ideals p = πOK . If we let α2 =
∏
σ∈S σ

−1(π), then sp is
equal to 1 (resp., −1, 0) if p is split (resp., inert, ramified) in K(α)/K. If σ−1 ∈ S
for some σ ∈ S, then the factor spin(σ, p)spin(σ−1, p) falls under the purview of the
usual Chebotarev Density Theorem as suggested in [24, p. 744] and studied precisely
by McMeekin [56]. We therefore focus on the case that σ 6∈ S whenever σ−1 ∈ S and
prove the following equidistribution theorem concerning the joint spin sp, defined in full
generality, also for totally complex fields, in Section 6.2.3.

Theorem 6.1.1. Let K/Q be a Galois extension of degree n. If K is totally real, we
further assume that every totally positive unit in OK is a square. Suppose that S is a
non-empty subset of Gal(K/Q) such that σ ∈ S implies σ−1 6∈ S. Foe each non-zero ideal
a in OK , define sa as in (6.6). Assume Conjecture C|S|n holds true with δ = δ(|S|n) > 0
(see Section 6.2.5). Let ε > 0 be a real number. Then for all X ≥ 2, we have∑

N(p)≤X
p prime

sp � X
1− δ

54|S|2n(12n+1)
+ε
,

where the implied constant depends only on ε and K.

It may be possible to weaken our condition on S and instead require only that there
exists σ ∈ S with σ−1 6∈ S.

The main theorem in [24] is the special case of Theorem 6.1.1 where Gal(K/Q) = 〈σ〉,
n ≥ 3, and S = {σ}. After establishing their equidistribution result, Friedlander et al.
[24, p. 744] raise the question of the joint distribution of spins, and in particular the case
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of spin(σ, p) and spin(σ2, p) where again Gal(K/Q) = 〈σ〉, but S = {σ, σ2} and n ≥ 5.
The following corollary of Theorem 6.1.1 applied to the set S = {σ, σ2} answers their
question.

Theorem 6.1.2. Let K/Q be a totally real Galois extension of degree n such that every
totally positive unit in OK is a square. Suppose that S = {σ1, . . . , σt} is a non-empty
subset of Gal(K/Q) such that σ ∈ S implies σ−1 6∈ S. Assume Conjecture Ctn holds
true (see Section 6.2.5). Let = (e1, . . . , et) ∈ Ft2. Then, as X →∞, we have

|{p principal prime ideal in OK : N(p) ≤ X, spin(σi, p) = (−1)ei for 1 ≤ i ≤ t}|
|{p principal prime ideal in OK : N(p) ≤ X}|

∼ 1

2t
.

We expect that Theorem 6.1.1 has several algebraic applications; see for example the
original work of Friedlander et al. [24], but also [41], [43], and [58]. Here we give one
such application by giving a negative answer to a conjecture of Cohn and Lagarias [11].
Given an integer k ≥ 1 and a finite abelian group A, we define the 2k-rank of A as

rk2kA = dimF2 2k−1A/2kA.

Cohn and Lagarias [11] considered the one-prime-parameter families of quadratic number
fields {Q(

√
dp)}p, where d is a fixed integer 6≡ 2 mod 4 and p varies over primes such

that dp is a fundamental discriminant. Bolstered by ample numerical evidence as well
as theoretical examples [11], they conjectured that for every k ≥ 1 and d 6≡ 2 mod 4,
there exists a governing field Md,k for the 2k-rank of the narrow class group C`(Q(

√
dp))

of Q(
√
dp), i.e., there exists a finite normal extension Md,k/Q and a class function

φd,k : Gal(Md,k/Q)→ Z≥0

such that

φd,k(ArtMd,k/Q(p)) = rk2kC`(Q(
√
dp)), (6.2)

where ArtMd,k/Q(p) is the Artin conjugacy class of p in Gal(Md,k/Q). This conjecture
was proven for all k ≤ 3 by Stevenhagen [70], but no governing field has been found
for any value of d if k ≥ 4. Interestingly enough, Smith [69] recently introduced the
notion of relative governing fields and used them to deal with distributional questions
for C`(K)[2∞] for imaginary quadratic fields K. Our next theorem, which we will prove
in Section 6.5, is a relatively straightforward consequence of Theorem 6.1.1.

Theorem 6.1.3. Assume conjecture Cn for all n. Then there is no governing field for
the 16-rank of Q(

√
−4p); in other words, there does not exist a field M−4,4 and class

function φ−4,4 satisfying (6.2).
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6.2 Prerequisites

Here we collect certain facts about quadratic residue symbols and unit groups in number
fields that are necessary to give a rigorous definition of spins of ideals and that are useful
in our subsequent arguments.

Throughout this section, let K be a number field which is Galois of degree n over Q.
Then either K is totally real, as in [24], or K is totally complex, in which case n is
even. An element α ∈ K is called totally positive if ι(α) > 0 for all real embeddings
ι : K ↪→ R; if this is the case, we will write α � 0. If K is totally complex, there are no
real embeddings of K into R, and so α � 0 for every α ∈ K vacuously. Let OK denote
the ring of integers of K. If K is totally real, we assume that

(O×K)2 =
{
u2 : u ∈ O×K

}
=
{
u ∈ O×K : u � 0

}
= (O×K)+, (6.3)

where the first and last equalities are definitions and the middle equality is the assump-
tion. This assumption, present in [24], implies that the narrow and the ordinary class
groups of K coincide, and hence that every non-zero principal ideal a in OK can be
written as a = αOK for some α � 0. If K is totally complex, then the narrow and the
ordinary class groups of K coincide vacuously. In either case, we will let C` = C`(K)
and h = h(K) denote the (narrow) class group and the (narrow) class number of K.

6.2.1 Quadratic residue symbols and quadratic reciprocity

We define the quadratic residue symbol in K in the standard way. That is, given an
odd prime ideal p of OK (i.e., a prime ideal having odd absolute norm), and an element

α ∈ OK , define
(
α
p

)
K,2

as the unique element in {−1, 0, 1} such that

(
α

p

)
K,2

≡ α
NK/Q(p)−1

2 mod p.

Given an odd ideal b of OK with prime ideal factorization b =
∏

p p
ep , define

(α
b

)
K,2

=
∏
p

(
α

p

)ep
K,2

.

Finally, given an element β ∈ OK , let (β) denote the principal ideal in OK generated
by β. We say that β is odd if (β) is odd and we define(

α

β

)
K,2

=

(
α

(β)

)
K,2

.

We will suppress the subscripts K, 2 when there is no risk of ambiguity. Although [24]
focuses on a special type of totally real Galois number fields, the version of quadratic
reciprocity stated in [24, Section 3] holds and was proved for a general number field. We
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recall it here. For a place v of K, finite or infinite, let Kv denote the completion of K
with respect to v. Let (·, ·)v denote the Hilbert symbol at v, i.e., given α, β ∈ K, we let
(α, β)v ∈ {−1, 1} with (α, β)v = 1 if and only if there exists (x, y, z) ∈ K3

v \ {(0, 0, 0)}
such that x2 − αy2 − βz2 = 0. As in [24, Section 3], define

µ2(α, β) =
∏
v|2

(α, β)v and µ∞(α, β) =
∏
v|∞

(α, β)v.

The following lemma is a consequence of the Hilbert reciprocity law and local consider-
ations at places above 2; see [24, Lemma 2.1, Proposition 2.2, and Lemma 2.3].

Lemma 6.2.1. Let α, β ∈ OK with β odd. Then µ∞(α, β)
(
α
β

)
depends only on the

congruence class of β modulo 8α. Moreover, if α is also odd, then(
α

β

)
= µ2(α, β)µ∞(α, β)

(
β

α

)
.

The factor µ2(α, β) depends only on the congruence classes of α and β modulo 8.

We remark that if K is totally complex, then (α, β)∞ = 1 for all α, β ∈ K. Also, if K is
a totally real Galois number field and β ∈ K is totally positive, then again (α, β)∞ = 1
for all α ∈ K.

6.2.2 Class group representatives

As in [24, p. 707], we define a set of ideals C` and an ideal f of OK as follows. Let Ci,
1 ≤ i ≤ h, denote the h ideal classes. For each i ∈ {1, . . . , h}, we choose two distinct
odd ideals belonging to Ci, say Ai and Bi, so as to ensure that, upon setting

C`a = {A1, . . . ,Ah}, C`b = {B1, . . . ,Bh}, C` = C`a ∪ C`b,

and

f =
∏
c∈C`

c =

h∏
i=1

AiBi,

the norm
f = N(f)

is squarefree. We define
F := 22h+3fDK , (6.4)

where DK is the discriminant of K.

6.2.3 Definition of joint spin

We define a sequence {sa}a of complex numbers indexed by non-zero ideals a ⊂ OK as
follows. Let S be a non-empty subset of Gal(K/Q) such that σ 6∈ S whenever σ−1 ∈ S.
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We define r(a) to be the indicator function of an ideal a of OK to be odd and principal,
i.e.,

r(a) =

{
1 if there exists an odd α ∈ OK such that a = αOK
0 otherwise.

Define r+(α) to be the indicator function of an element α ∈ K to be totally positive,
i.e.,

r+(α) =

{
1 if α � 0

0 otherwise.

Note that if K is a totally complex number field, then vacuously r+(α) = 1 for all α in
K. If α ∈ K is odd and r+(α) = 1, then we define

spin(σ, α) =

(
α

σ(α)

)
.

Fix a decomposition O×K = TK × VK , where TK ⊂ O×K is the group of units of OK of
finite order and VK ⊂ O×K is a free abelian group of rank rK (i.e., rK = n − 1 if K is
totally real and rK = n

2 − 1 if K is totally complex). With F as in (6.4), suppose that

ψ : (OK/FOK)× → C (6.5)

is a map such that ψ(α mod F ) = ψ(αu2 mod F ) for all α ∈ OK coprime to F and all
u ∈ O×K . We define

sa = r(a)
∑
t∈TK

∑
v∈VK/V 2

K

r+(tvα)ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα), (6.6)

where α is any generator of the ideal a satisfying r(a) = 1. The averaging over VK/V
2
K

makes the spin sa a well-defined function of a since, for any unit u ∈ O×K , any totally
positive α ∈ OK of odd absolute norm, and any σ ∈ S, we have

spin(σ, u2α) =

(
u2α

σ(u2α)

)
=

(
u2α

σ(α)

)
=

(
α

σ(α)

)
= spin(σ, α).

If K is a totally real (in which case we assume that K satisfies (6.3)), then, for an
ideal a = αOK , there is one and only one choice of t ∈ TK and v ∈ VK/V 2

K such that
r+(tvα) = 1. Hence in this case

sa = r(a)ψ(α mod F )
∏
σ∈S

spin(σ, α),

where α is any totally positive generator of a. If in addition n ≥ 3, Gal(K/Q) = 〈σ〉,
and S = {σ}, then sa coincides with spin(σ, a) in [24, (3.4), p. 706]. If we take instead
S = {σ, σ2} and assume n ≥ 5, then the distribution of sa has implications for [24,
Problem, p. 744].

If K is totally complex, then vacuously r+(tvα) = 1 for all t ∈ TK and v ∈ VK/V 2
K , so

the definition of sa specializes to

sa = r(a)
∑
t∈TK

∑
v∈VK/V 2

K

ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα).
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6.2.4 Fundamental domains

We will need a suitable fundamental domain D for the action of the units on elements
in OK .

In case that K is totally real and satisfies (6.3), we take D ⊂ Rn+ to be the same as in
[24, (4.2), p. 713]. We fix a numbering of the n real embeddings ι1, . . . , ιn : K ↪→ R, and
we say that α ∈ D if and only if (ι1(α), . . . , ιn(α)) ∈ D. Hence every non-zero α ∈ D is
totally positive. Because of the assumption (6.3), every non-zero principal ideal in OK
has a totally positive generator, and D is a fundamental domain for the action of (OK)×+
on the totally positive elements in OK , in the sense of [24, Lemma 4.3, p. 715].

In case that K is totally complex, we take D ⊂ Rn to be the same as in [41, Lemma
3.5, p. 10]. In this case, we fix an integral basis {η1, . . . , ηn} for OK . For an element
α = a1η1 + · · · + anηn ∈ K with a1, . . . , an ∈ Q we say that α ∈ D if and only if
(a1, . . . , an) ∈ D. Every non-zero principal ideal a in OK has exactly |TK | generators in
D; moreover, if one of the generators of a in D is α, say, then the set of generators of a
in D is {tα : t ∈ TK}.

The main properties of D are listed in [24, Lemma 4.3, Lemma 4.4, Corollary 4.5] and
[43, Lemma 3.5]. We will often use the property that if an element α ∈ D∩OK of norm
N(α) ≤ X is written in an integral basis η = {η1, . . . , ηn} as α = a1η1 + · · ·+anηn ∈ OK ,
a1, . . . , an ∈ Z, then

|ai| � X
1
n

for 1 ≤ i ≤ n where the implied constant depends only on η.

6.2.5 Short character sums

The following is a conjecture on short character sums appearing in [24]. It is essential
for the estimates for sums of type I.

Conjecture 6.2.2. For all integers n ≥ 3 there exists δ(n) > 0 such that for all ε > 0
there exists a constant C(n, ε) > 0 with the property that for all integers M , all integers

Q ≥ 3, all integers N ≤ Q
1
n and all real non-principal characters χ of modulus q ≤ Q

we have ∣∣∣∣∣∣
∑

M<m≤M+N

χ(m)

∣∣∣∣∣∣ ≤ C(n, ε)Q
1−δ(n)
n +ε.

Instead of working directly with Conjecture Cn, we need a version of it for arithmetic

progressions. If q is odd and squarefree, we let χq be the real Dirichlet character
(
·
q

)
.

Corollary 6.2.3. Assume Conjecture Cn. Then for all integers n ≥ 3 there exists
δ(n) > 0 such that for all ε > 0 there exists a constant C(n, ε) > 0 with the property

that for all odd squarefree integers q > 1, all integers N ≤ q
1
n , all integers M , l and k
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with q - k, we have ∣∣∣∣∣∣∣
∑

M<m≤M+N
n≡l mod k

χq(m)

∣∣∣∣∣∣∣ ≤ C(n, ε)q
1−δ(n)
n .

Proof. This is an easy generalization of Corollary 7 in [41].

6.2.6 The sieve

We will prove the following oscillation results for the sequence {sa}a. First, for any
non-zero ideal m ⊂ OK and any ε > 0, we have∑

N(a)≤X
a≡0 mod m

sa �ε X
1− δ

54n|S|2
+ε
, (6.7)

where δ is as in Conjecture Cn. Second, for any ε > 0, we have∑
N(a)≤x

∑
N(b)≤y

vawbsab �ε

(
x−

1
6n + y−

1
6n

)
(xy)

1+ε
, (6.8)

for any pair of bounded sequences of complex numbers {vm} and {wn} indexed by non-
zero ideals in OK . Then [24, Proposition 5.2, p. 722] implies that for any ε > 0, we
have ∑

N(p)≤X
p prime ideal

sp �ε X
1−θ+ε,

where

θ :=
δ(|S|n)

54|S|2n(12n+ 1)
.

Hence, in order to prove Theorem 6.1.1, it suffices to prove the estimates (6.7) and (6.8).
We will deal with (6.7) in Section 6.3 and with (6.8) in Section 6.4.

6.3 Linear sums

We first treat the case that K is totally real. Let m be an ideal coprime with F and
σ(m) for all σ ∈ S. Following [24] we will bound

A(x) =
∑

Na≤x
(a,F )=1,m|a

r(a)ψ(α mod F )
∏
σ∈S

spin(σ, α), (6.9)
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where α is any totally positive generator of a. We pick for each ideal a with r(a) = 1 its
unique generator α satisfying a = (α) and α ∈ D∗, where D∗ is the fundamental domain
from Friedlander et al. [24]. After splitting (6.9) in residue classes modulo F we obtain

A(x) =
∑

ρ mod F
(ρ,F )=1

ψ(ρ)A(x; ρ) + ∂A(x),

where by definition

A(x; ρ) :=
∑

α∈D,Nα≤x
α≡ρ mod F
α≡0 mod m

∏
σ∈S

spin(σ, α). (6.10)

The boundary term ∂A(x) can be dealt with using the argument in [24, p. 724], which

gives ∂A(x) � x1− 1
n . Here and in the rest of our arguments the implied constant

depends only on K unless otherwise indicated. We will now estimate A(x; ρ) for each
ρ mod F , (ρ, F ) = 1. Let 1, ω2, . . . , ωn be an integral basis for OK and define

M := ω2Z + · · ·+ ωnZ.

Then, just as in [24, p. 725], we can decompose α uniquely as

α = a+ β, with a ∈ Z, β ∈M.

Hence the summation conditions in (6.10) can be rewritten as

a+ β ∈ D, N(a+ β) ≤ x, a+ β ≡ ρ mod F, a+ β ≡ 0 mod m. (∗)

From now on we think of a as a variable satisfying (∗) while β is inactive. We have the
following formula

spin(σ, α) =

(
α

σ(α)

)
=

(
a+ β

a+ σ(β)

)
=

(
β − σ(β)

a+ σ(β)

)
.

If β = σ(β) for some σ ∈ S we get no contribution. So from now on we can assume
β 6= σ(β) for all σ ∈ S. Define c(σ, β) to be the part of the ideal (β − σ(β)) coprime to
F . Then, as explained on [24, p. 726], quadratic reciprocity gives

A(x; ρ) =
∑
β∈M
±T (x; ρ, β),

where T (x; ρ, β) is given by

T (x; ρ, β) :=
∑
a∈Z

a+β sat. (∗)

∏
σ∈S

(
a+ σ(β)

c(σ, β)

)
=

∑
a∈Z

a+β sat. (∗)

∏
σ∈S

(
a+ β

c(σ, β)

)

=
∑
a∈Z

a+β sat. (∗)

(
a+ β∏

σ∈S c(σ, β)

)
. (6.11)
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Define c :=
∏
σ∈S c(σ, β) and factor c as

c = gq, (6.12)

where by definition g consists of those prime ideals p dividing c that satisfy one of the
following three properties

• p has degree greater than one;

• p is unramified of degree one and some non-trivial conjugate of p also divides c;

• p is unramified of degree one and p2 divides c.

Note that there are no ramified primes dividing c, since c is coprime to the discriminant
by construction of F . Putting all the remaining prime ideals in q, we note that q := Nq
is a squarefree number and g := Ng is a squarefull number coprime with q. The Chinese
Remainder Theorem implies that there exists a rational integer b with b ≡ β mod q.
We stress that c, g, q, g, q and b depend only on β. Define g0 to be the radical of g.
Then the quadratic residue symbol (α/g) is periodic in α modulo g0. Hence the symbol
((a+β)/g) as a function of a is periodic of period g0. Splitting the sum (6.11) in residue
classes modulo g0 we obtain

|T (x; ρ, β)| ≤
∑

a0 mod g0

∣∣∣∣∣∣∣∣
∑

a≡a0 mod g0

a+β sat. (∗)

(
a+ b

q

)∣∣∣∣∣∣∣∣ . (6.13)

Following the argument on [24, p. 728], we see that (6.13) can be written as n incomplete

character sums of length � x
1
n and modulus q � x|S|. Furthermore, the conditions (∗)

and a ≡ a0 mod g0 imply that a runs over a certain arithmetic progression of modulus
k dividing g0Fm, where m := Nm. So if q - k, Corollary 6.2.3 yields

T (x; ρ, β)�ε g0x
1−δ
n +ε (6.14)

with δ := δ(|S|n) > 0. Since q | k implies q | m, we see that (6.14) holds if q - m.
Recalling (6.12) we conclude that (6.14) holds unless

p |
∏
σ∈S

N(β − σ(β))⇒ p2 | mF
∏
σ∈S

N(β − σ(β)). (6.15)

Our next goal is to count the number of β ∈ M satisfying both (∗) for some a ∈ Z and
(6.15). For β an algebraic integer of degree n, we denote by β(1), . . . , β(n) the conjugates

of β. Now if β satisfies (∗) for some a ∈ Z, we have |β(i)| � x
1
n . So to achieve our goal,

it suffices to estimate the number of β ∈M satisfying |β(i)| ≤ x 1
n and (6.15).

To do this, we will need two lemmas. So far we have followed [24] rather closely, but we
will have to significantly improve their estimates for the various error terms given on [24,
p. 729-733]. One of the most important tasks ahead is to count squarefull norms in a
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certain Z-submodule of OK . This problem is solved in [24] by simply counting squarefull
norms in the full ring of integers. For our application this loss is unacceptable. In our
first lemma we directly count squarefull norms in this submodule, a problem described
in [24, p. 729] as potentially “very difficult”.

Lemma 6.3.1. Factor c(σ, β) as

c(σ, β) = g(σ, β)q(σ, β)

just as in (6.12). Let Kσ be the subfield of K fixed by σ and let OKσ be its ring of
integers. Decompose OK as

OK = OKσ ⊕M′.

Let ord(σ) be the order of σ in Gal(K/Q). If g0(σ, β) is the radical of Ng(σ, β), then we
have for all ε > 0

|{β ∈M′ : |β(i)| ≤ x 1
n , g0(σ, β) > Z}| �ε x

1− 1
ord(σ)

+εZ−1+ 2
ord(σ) .

Proof. The argument given here is a generalization of [41, p. 17-18]. We start with the
simple estimate

|{β ∈M′ : |β(i)| ≤ x 1
n , g0(σ, β) > Z}| ≤

∑
g

g0>Z

Ag, (6.16)

where

Ag := |{β ∈M′ : |β(i)| ≤ x 1
n , β − σ(β) ≡ 0 mod g}|.

Let M′′ be the image of M′ under the map β 7→ β − σ(β) and fix a Z-basis η1, . . . , ηr

of M′′. We remark that r = n
(

1− 1
ord(σ)

)
, which will be important later on. Because

|β(i)| ≤ x
1
n , we can write β − σ(β) as β − σ(β) =

∑r
i=1 aiηi with |ai| ≤ CKx

1
n , where

CK is a constant depending only on K. Hence we have

Ag ≤ |Λg ∩ Sx|,

where by definition

Λg := {γ ∈M′′ : γ ≡ 0 mod g}

Sx := {γ ∈M′′ : γ =

r∑
i=1

aiηi, |ai| ≤ CKx
1
n }.

Using our fixed Z-basis η1, . . . , ηr we can view M′′ as a subset of Rr via the map ηi 7→ ei,
where ei is the i-th standard basis vector. Under this identification M′′ becomes Zr and
Λg becomes a sublattice of Zr. We have

Ag ≤ |Λg ∩ Tx|, (6.17)
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where

Tx := {(a1, . . . , ar) ∈ Rr : |ai| ≤ CKx
1
n }.

Let us now parametrize the boundary of Tx. We start off by observing that Tx = x
1
nT1,

which implies that Vol(Tx) = x
r
nVol(T1). Because T1 is an r-dimensional hypercube,

we conclude that its boundary ∂T1 can be parametrized by Lipschitz functions with
Lipschitz constant L depending only on K. Therefore ∂Tx can also be parametrized by
Lipschitz functions with Lipschitz constant x

1
nL. Theorem 5.4 of [79] gives∣∣∣∣|Λg ∩ Tx| −

Vol(Tx)

det Λg

∣∣∣∣�L max
0≤i<r

x
i
n

λg,1 · . . . · λg,i
, (6.18)

where λg,1, . . . , λg,r are the successive minima of Λg. Since L depends only on K, it
follows that the implied constant in (6.18) depends only on K, so we may simply write
� by our earlier conventions.

Our next goal is to give a lower bound for λg,1. So let γ ∈ Λg be non-zero. By definition
of Λg we have g | γ and hence g | Nγ. Write

γ =

r∑
i=1

aiηi.

If a1, . . . , ar ≤ C ′Kg
1
n for a sufficiently small constant C ′K , we find that Nγ < g. But

this is impossible, since g | Nγ and Nγ 6= 0. So there is an i with ai > C ′Kg
1
n . If we

equip Rr with the standard Euclidean norm, we conclude that the length of γ satisfies
||γ|| � g

1
n and hence

λg,1 � g
1
n . (6.19)

Minkowski’s second theorem and (6.19) imply that

det Λg � g
r
n . (6.20)

Combining (6.18), (6.19), (6.20) and g ≤ x gives

|Λg ∩ Tx| �
x
r
n

g
r
n

+
x
r−1
n

g
r−1
n

� x
r
n

g
r
n
. (6.21)

Plugging (6.17) and (6.21) back in (6.16) yields

|{β ∈M′ : |β(i)| ≤ x 1
n , g0(σ, β) > Z}| ≤

∑
g

g0>Z

Ag ≤
∑
g

g0>Z

|Λg ∩ Tx| �
∑
g

g0>Z

x
r
n

g
r
n
.

If we define τK(g) to be the number of ideals of K of norm g, we can bound the last
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sum as follows∑
g

g0>Z

x
r
n

g
r
n

= x
r
n

∑
g≤x

g squarefull
g0>Z

τK(g)

g
r
n
�ε x

r
n+ε

∑
g≤x

g squarefull
g0>Z

1

g
r
n

= x
r
n+ε

∑
g≤x

g squarefull
g0>Z

g
1
2−

r
n

1

g
1
2

≤ x rn+εZ1− 2r
n

∑
g≤x

g squarefull
g0>Z

1

g
1
2

≤ x rn+εZ1− 2r
n

∑
g≤x

g squarefull

1

g
1
2

�ε x
r
n+εZ1− 2r

n .

Recalling that r = n
(

1− 1
ord(σ)

)
completes the proof of Lemma 6.3.1.

Lemma 6.3.2. Let σ, τ ∈ S be distinct. Recall that

OK = Z⊕M.

Fix an integral basis ω2, . . . , ωn of M and define the polynomials f1, f2 ∈ Z[x2, . . . , xn]
by

f1(x2, . . . , xn) = N

(
n∑
i=2

xi(σ(ωi)− ωi)

)

f2(x2, . . . , xn) = N

(
n∑
i=2

xi(τ(ωi)− ωi)

)
.

For β ∈ M with β =
∑n
i=2 aiωi we define f1(β) := f1(a2, . . . , an) = N(σ(β)− β) and

similarly for f2(β). Then

|{β ∈M : |β(i)| ≤ x 1
n , gcd(f1(β), f2(β)) > Z}| �ε x

n−1
n +εZ−

1
18 + x

n−2
n + Z

2n−4
3 .

Proof. Let Y be the closed subscheme of An−1
Z defined by f1 = f2 = 0. We claim that Y

has codimension 2, i.e. f1 and f2 are relatively prime polynomials. Suppose not. Note
that f1 and f2 factor in K[x2, . . . , xn] as

f1(x2, . . . , xn) =
∏

σ′∈Gal(K/Q)

(
n∑
i=2

xi(σ
′σ(ωi)− σ′(ωi))

)

f2(x2, . . . , xn) =
∏

τ ′∈Gal(K/Q)

(
n∑
i=2

xi(τ
′τ(ωi)− τ ′(ωi))

)
.

Hence if f1 and f2 are not relatively prime, there are σ′, τ ′ ∈ Gal(K/Q) and κ ∈ K∗
such that

n∑
i=2

xi(σ
′σ(ωi)− σ′(ωi)) = κ

n∑
i=2

xi(τ
′τ(ωi)− τ ′(ωi))
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for all x2, . . . , xn ∈ Z. Put β =
∑n
i=2 xiωi. Then we can rewrite this as

σ′σ(β)− σ′(β) = κ(τ ′τ(β)− τ ′(β)) (6.22)

for all β ∈ M. But this implies that (6.22) holds for all β ∈ K. Now we apply the
Artin-Dedekind Lemma, which gives a contradiction in all cases due to our assumptions
σ, τ ∈ S and σ 6= τ .

Having established our claim, we are in position to apply Theorem 3.3 of [4]. We embed
M in Rn−1 by sending ωi to ei, the i-th standard basis vector. Note that the image
under this embedding is Zn−1. Write β =

∑n
i=2 aiωi. Since |β(i)| ≤ x

1
n , it follows that

|ai| ≤ CKx
1
n for some constant CK depending only on K. Let B be the compact region

in Rn−1 given by B := {(a2, . . . , an) : |ai| ≤ CK}. Theorem 3.3 of [4] with our B, Y

and r = x
1
n gives

|{β ∈M : |β(i)| ≤ x 1
n , p | gcd(f1(β), f2(β)), p > M}| � x

n−1
n

M logM
+ x

n−2
n , (6.23)

where M is any positive real number. Factor

f1(β) := g1q1, (g1, q1) = 1, g1 squarefull, q1 squarefree

f2(β) := g2q2, (g2, q2) = 1, g2 squarefull, q2 squarefree.

By Lemma 6.3.1 we conclude that for all A > 0 and ε > 0

|{β ∈M : |β(i)| ≤ x 1
n , g1 > A}| �ε x

n−1
n +εA−

1
2 + 1

ord(σ) .

With the same argument applied to τ we obtain

|{β ∈M : |β(i)| ≤ x 1
n , g1 > A or g2 > A}| �ε x

n−1
n +εA−

1
2 + 1

ord(σ) + x
n−1
n +εA−

1
2 + 1

ord(τ) .
(6.24)

We discard those β that satisfy (6.23) or (6.24). From (6.24) we deduce that the remain-
ing β certainly satisfy gcd(q1, q2) > Z

A2 . Furthermore, by discarding those β satisfying
(6.23), we see that gcd(q1, q2) has no prime divisors greater than M . This implies that
gcd(q1, q2) is divisible by a squarefree number between Z

A2 and ZM
A2 . So we must still

give an upper bound for∣∣∣∣{β ∈M : |β(i)| ≤ x 1
n , r | gcd(q1, q2),

Z

A2
< r ≤ ZM

A2

}∣∣∣∣ . (6.25)

Let r be a squarefree integer and let r1, r2 be two ideals of K with norm r. Define

Er1,r2 :=
∣∣∣{β ∈M : |β(i)| ≤ x 1

n , r1 | σ(β)− β, r2 | τ(β)− β
}∣∣∣ .

We will give an upper bound for Er1,r2 following [24, p. 731-733]. Write β =
∑n
i=2 aiωi.

Then |β(i)| ≤ x 1
n implies ai � x

1
n and

n∑
i=2

ai(σ(ωi)− ωi) ≡ 0 mod r1 (6.26)

n∑
i=2

ai(τ(ωi)− ωi) ≡ 0 mod r2. (6.27)
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We split the coefficients a2, . . . , an according to their residue classes modulo r. Suppose
that p | r and let p1, p2 be the unique prime ideals of degree one dividing r1 and r2
respectively. Then we get

n∑
i=2

ai(σ(ωi)− ωi) ≡ 0 mod p1 (6.28)

n∑
i=2

ai(τ
′τ(ωi)− τ ′(ωi)) ≡ 0 mod p1, (6.29)

where τ ′ satisfies τ ′−1(p1) = p2. If we further assume that p1 is unramified, we claim
that the above two equations are linearly independent over Fp. Indeed, consider the
isomorphism

OK/p ∼= Fp × · · · × Fp.

Note that τ ′τ 6∈ {id, σ} or τ ′ 6∈ {id, σ} due to our assumption that σ and τ are distinct
elements of S. Let us deal with the case τ ′τ 6∈ {id, σ}, the other case is dealt with
similarly. Then there exists β ∈ OK such that β ≡ 1 mod p1, β ≡ 1 mod σ−1(p1),
β ≡ 1 mod τ ′−1(p1) and β is divisible by all other conjugates of p1. By our assumption
on τ ′τ it follows that β ≡ 0 mod τ−1τ ′−1(p1). Hence we obtain

σ(β)− β ≡ 0 mod p1, τ ′τ(β)− τ ′(β) ≡ −1 mod p1.

However, for p1 an unramified prime, we know that σ(β)−β ≡ 0 mod p1 can not happen
for all β ∈ OK , unless σ is the identity. This proves our claim.

If we further split the coefficients a2, . . . , an according to their residue classes modulo
p, our claim implies that there are pn−3 solutions a2, . . . , an modulo p satisfying (6.28)
and (6.29), provided that p is unramified. For ramified primes we can use the trivial
upper bound pn−1. Then we deduce from the Chinese Remainder Theorem that there
are � rn−3 solutions a2, . . . , an modulo r satisfying (6.26) and (6.27). This yields

Er1,r2 � rn−3

(
x

1
n

r
+ 1

)n−1

� x
n−1
n r−2 + rn−3.

Therefore we have the following upper bound for (6.25)∑
Z
A2<r≤ZMA2

∑
r1,r2

Nr1=Nr2=r

Er1,r2 �
∑

Z
A2<r≤ZMA2

∑
r1,r2

Nr1=Nr2=r

x
n−1
n r−2 + rn−3

�ε x
ε

∑
Z
A2<r≤ZMA2

x
n−1
n r−2 + rn−3

�ε x
ε

(
x
n−1
n
A2

Z
+

(
ZM

A2

)n−2
)
.

Note that σ ∈ S implies ord(σ) ≥ 3. Now choose A = M = Z
1
3 to complete the proof

of Lemma 6.3.2.
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With Lemma 6.3.1 and Lemma 6.3.2 in hand we return to estimating the number of
β ∈ M satisfying |β(i)| ≤ x

1
n and (6.15). We choose a σ ∈ S and we will consider it

as fixed for the remainder of the proof. Note that any integer n > 0 can be factored
uniquely as

n = q′g′r′,

where q′ is a squarefree integer coprime to mF , g′ is a squarefull integer coprime to mF
and r′ is composed entirely of primes from mF . This allows us to define sqf(n,mF ) := q′.
We start by giving an upper bound for∣∣∣{β ∈M : |β(i)| ≤ x 1

n , sqf(N(β − σ(β)),mF ) ≤ Z
}∣∣∣ .

To do this, we need a slight generalization of the argument on [24, p. 729]. Recall that
Kσ is the subfield of K fixed by σ and OKσ its ring of integers. Decompose OK as

OK = OKσ ⊕M′.

Then we have∣∣∣{β ∈M : |β(i)| ≤ x 1
n , sqf(N(β − σ(β)),mF ) ≤ Z

}∣∣∣
� x

1
ord(σ)

− 1
n

∣∣∣{β ∈M′ : |β(i)| ≤ x 1
n , sqf(N(β − σ(β)),mF ) ≤ Z

}∣∣∣ . (6.30)

The map M′ → OK given by β 7→ β−σ(β) is injective. Set γ := β−σ(β). Furthermore,

the conjugates of γ satisfy |γ(i)| ≤ 2x
1
n , which gives∣∣∣{β ∈M′ : |β(i)| ≤ x 1

n , sqf(N(β − σ(β)),mF ) ≤ Z
}∣∣∣

≤
∣∣∣{γ ∈ OK : |γ(i)| ≤ 2x

1
n , sqf(N(γ),mF ) ≤ Z

}∣∣∣ . (6.31)

Instead of counting algebraic integers γ, we will count the principal ideals they generate,
where each given ideal occurs no more than � (log x)n times. This yields the bound∣∣∣{γ ∈ OK : |γ(i)| ≤ 2x

1
n , sqf(N(γ),mF ) ≤ Z

}∣∣∣
� (log x)n |{b ⊆ OK : N(b) ≤ 2nx, sqf(N(b),mF ) ≤ Z}| .

We conclude that∣∣∣{γ ∈ OK : |γ(i)| ≤ 2x
1
n , sqf(N(γ),mF ) ≤ Z

}∣∣∣� (log x)n
∑
b≤2nx

sqf(b,mF )≤Z

τK(b), (6.32)

where we remind the reader that τK(b) denotes the number of ideals in K of norm b.

Let us count the number of b ≤ 2nx satisfying sqf(b,mF ) ≤ Z. We do this by counting
the number of possible g′, r′ ≤ 2nx that can occur in the factorization b = q′g′r′. First
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of all, there are � x
1
2 squarefull integers g′ satisfying g′ ≤ 2nx. To bound the number

of r′ ≤ 2nx, we observe that we may assume m ≤ x, because otherwise the sum in
(6.9) is empty. This implies that the number of integers r′ ≤ 2nx that are composed
entirely of primes from mF is �ε x

ε. Obviously there are at most Z squarefree integers
q′ coprime to mF satisfying q′ ≤ Z. We conclude that the number of b ≤ 2nx satisfying
sqf(b,mF ) ≤ Z is �ε Zx

1
2 +ε. Combined with the upper bound τK(b)�ε x

ε we obtain

(log x)n
∑
b≤2nx

sqf(b,mF )≤Z

τK(b)�ε Zx
1
2 +ε. (6.33)

Stringing together the inequalities (6.30), (6.31), (6.32) and (6.33) we conclude that∣∣∣{β ∈M : |β(i)| ≤ x 1
n , sqf(N(β − σ(β)),mF ) ≤ Z

}∣∣∣�ε Zx
1
2 + 1

ord(σ)
− 1
n+ε. (6.34)

Now in order to give an upper bound for the number of β satisfying |β(i)| ≤ x
1
n and

(6.15), that is

p |
∏
σ∈S

N(β − σ(β))⇒ p2 | mF
∏
σ∈S

N(β − σ(β)),

we start by picking Z = x
1

3n and discarding all β satisfying (6.34) for the σ ∈ S we fixed
earlier. For this σ ∈ S and varying τ ∈ S with τ 6= σ we apply Lemma 6.3.2 to obtain

|{β ∈M : |β(i)| ≤ x 1
n , gcd(N(β − σ(β)),N(β − τ(β))) > x

1
3n|S| }| �ε x

n−1
n −

1
54n|S|+ε.

(6.35)

We further discard all β satisfying (6.35) for some τ ∈ S with τ 6= σ. Now it is easily
checked that the remaining β do not satisfy (6.15). Hence we have completed our task

of estimating the number of β satisfying |β(i)| ≤ x 1
n and (6.15).

Let A0(x; ρ) be the contribution to A(x; ρ) of the terms α = a+ β for which (6.15) does
not hold and let A�(x; ρ) be the contribution to A(x; ρ) for which (6.15) holds. Then
we have the obvious identity

A(x; ρ) = A0(x; ρ) +A�(x; ρ).

Next we make a further partition

A0(x; ρ) = A1(x; ρ) +A2(x; ρ),

where the components run over α = a+ β, β ∈M with β such that

g0 ≤ Y in A1(x; ρ)

g0 > Y in A2(x; ρ).

Here Y is at our disposal and we choose it later. From (6.34) and (6.35) we deduce that

A�(x; ρ)�ε x
1− 1

54n|S|+ε.
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To estimate A1(x; ρ) we apply 6.14 and sum over all β ∈ M satisfying |β(i)| ≤ x
1
n ,

ignoring all other restrictions on β, to obtain

A1(x; ρ)�ε Y x
1− δ

n+ε.

We still have to bound A2(x; ρ). Recall that

c =
∏
σ∈S

c(σ, β),

leading to the factorization c = gq in (6.12). We further recall that g0 is the radical of
Ng. Now factor each term c(σ, β) as

c(σ, β) = g(σ, β)q(σ, β) (6.36)

just as in (6.12). The point of (6.36) is that

g |
∏
σ∈S

g(σ, β)
∏
σ,τ∈S
σ 6=τ

gcd(c(σ, β), c(τ, β))

and therefore

g0 |
∏
σ∈S

g0(σ, β)
∏
σ,τ∈S
σ 6=τ

gcd(c(σ, β), c(τ, β)).

We use Lemma 6.3.1 to discard all β satisfying g0(σ, β) > Y
1
|S|2 . Similarly, we use

Lemma 6.3.2 to discard all β satisfying gcd(c(σ, β), c(τ, β)) > Y
1
|S|2 . Then the remaining

β satisfy g0 ≤ Y . Furthermore, we have removed

�ε x
n−1
n +εY

− 1
18|S|2 + x

n−2
n + Y

2n−4

3|S|2 + x
n−1
n +εY

− 1
3|S|2

β in total and hence

A2(x; ρ)�ε x
1+εY

− 1
18|S|2 + x

n−1
n + x

1
nY

2n−4

3|S|2 + x1+εY
− 1

3|S|2 .

After picking Y = x
δ

2n we conclude that

A(x)�ε x
1− δ

54n|S|2
+ε
.

We will now sketch how to modify this proof for totally complex K. We have to bound

A(x) =
∑

Na≤x
(a,F )=1,m|a

r(a)
∑
t∈TK

∑
v∈VK/V 2

K

ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα). (6.37)
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We use the fundamental domain constructed for totally complex fields form subsection
6.2.4 and we pick for each principal a its generator in D. Then equation (6.37) becomes

A(x) =
∑
t∈TK

∑
v∈VK/V 2

K

∑
α∈D,Nα≤x
α≡ρ mod F
α≡0 mod m

ψ(tvα mod F )
∏
σ∈S

spin(σ, tvα)

=
∑
t∈TK

∑
v∈VK/V 2

K

∑
α∈tvD,Nα≤x
α≡ρ mod F
α≡0 mod m

ψ(α mod F )
∏
σ∈S

spin(σ, α).

We deal with each sum of the shape∑
α∈tvD,Nα≤x
α≡ρ mod F
α≡0 mod m

ψ(α mod F )
∏
σ∈S

spin(σ, α) (6.38)

exactly in the same way as for real quadratic fields K, where it is important to note
that the shifted fundamental domain tvD still has the essential properties we need.
Combining our estimate for each sum in equation (6.38), we obtain the desired upper
bound for A(x).

6.4 Bilinear sums

Let x, y > 0 and let {va}a and {wb}b be two sequences of complex numbers bounded in
modulus by 1. Define

B(x, y) =
∑

N(a)≤x

∑
N(b)≤y

vawbsab. (6.39)

We wish to prove that for all ε > 0, we have

B(x, y)�ε

(
x−

1
6n + y−

1
6n

)
(xy)

1+ε
, (6.40)

where the implied constant is uniform in all choices of sequences {va}a and {wb}b as
above.

We split the sum B(x, y) into h2 sums according to which ideal classes a and b belong
to. In fact, since sab vanishes whenever ab does not belong to the principal class, it
suffices to split B(x, y) into h sums

B(x, y) =

h∑
i=1

Bi(x, y), Bi(x, y) =
∑

N(a)≤x
a∈Ci

∑
N(b)≤y
b∈C−1

i

vawbsab.

We will prove the desired estimate for each of the sums Bi(x, y). So fix an index
i ∈ {1, . . . , h}, let A ∈ C`a be the ideal belonging to the ideal class C−1

i , and let
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B ∈ C`b be the ideal belonging to the ideal class Ci. The conditions on a and b above
mean that

aA = (α), α � 0

and

bB = (β), β � 0.

Since A ∈ C−1
i and B ∈ Ci, there exists an element γ ∈ OK such that

AB = (γ), γ � 0.

We are now in a position to use the factorization formula for spin(ab) appearing in [24,
(3.8), p. 708], which in turn leads to a factorization formula for sab. We note that the
formula [24, (3.8), p. 708] also holds in case K is totally complex, with exactly the same
proof. We have

spin(σ, αβ/γ) = spin(σ, γ)δ(σ;α, β)

(
αγ

σ(aB)

)(
βγ

σ(bA)

)(
α

σ(β)σ−1(β)

)
, (6.41)

where δ(σ;α, β) ∈ {±1} is a factor which comes from an application of quadratic reci-
procity and which depends only on σ and the congruence classes of α and β modulo
8.

If K is real quadratic, then we set

v′a = va
∏
σ∈S

(
αγ

σ(aB)

)
, w′b = wb

∏
σ∈S

(
βγ

σ(bA)

)
,

and

δ(α, β) = ψ(αβ mod F )
∏
σ∈S

δ(σ;α, β), s(γ) =
∏
σ∈S

spin(σ, γ),

so that we can rewrite the sum Bi(x, y) as

Bi(x, y) = s(γ)
∑
α∈D

N(α)≤xN(A)
α≡0 mod A

∑
β∈D

N(β)≤yN(B)
β≡0 mod B

δ(α, β)v′(α)/Aw
′
(β)/B

∏
σ∈S

(
α

σ(β)σ−1(β)

)
. (6.42)

Now set

vα = 1(α ≡ 0 mod A) · v′(α)/A

and

wβ = 1(β ≡ 0 mod B) · w′(β)/B,

where 1(P ) is the indicator function of a property P . Also, for α, β ∈ OK with β odd,
we define

φ(α, β) =
∏
σ∈S

(
α

σ(β)σ−1(β)

)
.
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Finally, we further split Bi(x, y) according to the congruence classes of α and β modulo
F , so as to control the factor δ(α, β), which now depends on congruence classes of α and
β modulo F due to the presence of ψ(αβ mod F ). We have

Bi(x, y) = s(γ)
∑

α0∈(OK/(F ))×

∑
β0∈(OK/(F ))×

δ(α0, β0)Bi(x, y;α0, β0),

where

Bi(x, y;α0, β0) =
∑

α∈D(xN(A))
α≡α0 mod F

∑
β∈D(yN(B))
β≡β0 mod F

vαwβφ(α, β).

To prove the bound (6.40), at least in the case that K is totally real, it now suffices to
prove, for each ε > 0, the bound

Bi(x, y;α0, β0)�ε

(
x−

1
6n + y−

1
6n

)
(xy)

1+ε
, (6.43)

where the implied constant is uniform in all choices of uniformly bounded sequences
of complex numbers {vα}α and {wβ}β indexed by elements of OK . Each of the sums
Bi(x, y;α0, β0) is of the same shape as B(M,N ;ω, ζ) in Chapter 4; in the notation of
Chapter 4, f = (F ), αw corresponds to vα, βz corresponds to wβ , and γ(w, z) corresponds
to φ(α, β) (unfortunately with the arguments α and β flipped). Our desired estimate
for Bi(x, y;α0, β0), and hence also B(x, y), would now follow from Proposition 4.3.6,
provided that we can verify properties (P1)-(P3) for the function φ(α, β).

We now verify (P1)-(P3), thereby proving the bound (6.43) and hence also the bound
(6.40). Property (P1) follows from the law of quadratic reciprocity, since for odd α and
β we have

φ(α, β) =
∏
σ∈S

(
α

σ(β)

)(
α

σ−1(β)

)
=
∏
σ∈S

µ(σ;α, β)

(
σ(β)

α

)(
σ−1(β)

α

)

=

(∏
σ∈S

µ(σ;α, β)

)
·
∏
σ∈S

(
β

σ−1(α)

)(
β

σ(α)

)

=

(∏
σ∈S

µ(σ;α, β)

)
· φ(β, α),

where µ(σ;α, β) depends only on σ and the congruence classes of α and β modulo 8.
Property (P2) follows immediately from the multiplicativity of each argument of the
quadratic residue symbol (·/·). Finally, for property (P3), since σ−1 6∈ S whenever
σ ∈ S, we see that

ϕ(β) =
∏
σ∈S

σ(β)σ−1(β)
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divides N(β) =
∏
σ∈Gal(K/Q) σ(β); thus, the first part of (P3) indeed holds true. It now

suffices to prove that ∑
ξ mod N(β)

(
ξ

ϕ(β)

)
vanishes if |N(β)| is not squarefull. The sum above is a multiple of the sum∑

ξ mod ϕ(β)

(
ξ

ϕ(β)

)
,

which vanishes if the principal ideal generated by ϕ(β) is not the square of an ideal. The
proof now proceeds as in [24, Lemma 3.1]. Supposing |N(β)| is not squarefull, we take a
rational prime p such that p | N(β) but p2 - N(β). This implies that there is a degree-one
prime ideal divisor p of β such that (β) = pc with c coprime to p, i.e., coprime to all the
conjugates of p. Hence ϕ(β) factors as

(ϕ(β)) =
∏
σ∈S

σ(p)σ−1(p)
∏
σ∈S

σ(c)σ−1(c),

where the evidently non-square
∏
σ∈S σ(p)σ−1(p) is coprime to

∏
σ∈S σ(c)σ−1(c), hence

proving that (ϕ(β)) is not a square. This proves that property (P3) holds true, and then
Proposition 4.3.6 implies the estimate (6.43) and hence also (6.40), at least in the case
that K is totally real.

If K is totally complex, fix t ∈ TK and v ∈ VK/V 2
K . Then replacing α by tvα in (6.41),

we get

spin(σ, tvαβ/γ) = spin(σ, γ)δ(σ; tvα, β)(
tvαγ

σ(aB)

)(
βγ

σ(bA)

)(
tv

σ(β)σ−1(β)

)(
α

σ(β)σ−1(β)

)
,

where now δ(σ;α, β; t, v) = δ(σ; tvα, β)
(

tv
σ(β)σ−1(β)

)
∈ {±1} depends only on σ, t, v,

and the congruence classes of α and β modulo 8. Then instead of (6.42), we have

Bi(x, y) = s(γ)
∑
t∈TK

∑
v∈VK/V 2

K

∑
α∈D

N(α)≤xN(A)
α≡0 mod A

∑
β∈D

N(β)≤yN(B)
β≡0 mod B

δ(α, β; t, v)

v(t, v)′(α)/Aw
′
(β)/B

∏
σ∈S

(
α

σ(β)σ−1(β)

)
, (6.44)

where now

v(t, v)′a = va
∏
σ∈S

(
tvαγ

σ(aB)

)
, w′b = wb

∏
σ∈S

(
βγ

σ(bA)

)
,

and

δ(α, β; t, v) = ψ(tvαβ mod F )
∏
σ∈S

δ(σ;α, β; t, v), s(γ) =
∏
σ∈S

spin(σ, γ).

The rest of the proof now proceeds identically to the case when K is totally real.
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6.5 Governing fields

Let E = Q(ζ8,
√

1 + i) and let h(−4p) be the class number of Q(
√
−4p). It is well-known

that E is a governing field for the 8-rank of Q(
√
−4p); in fact 8 divides h(−4p) if and

only if p splits completely in E. We assume that K is a hypothetical governing field for
the 16-rank of Q(

√
−4p) and derive a contradiction. If K ′ is a normal field extension of

Q containing K, then K ′ is also a governing field. Therefore we can reduce to the case
that K contains E. In particular, K is totally complex.

We have Gal(E/Q) ∼= D4 and we fix an element of order 4 in Gal(E/Q) that we call r.
Let p be a rational prime that splits completely in E. Since E is a PID, we can take π
to be a prime in OE above p. It follows from Proposition 6.2 of [41], which is based on
earlier work of Bruin and Hemenway [7], that there exists an integer F and a function
ψ0 : (OE/FOE)× → C such that for all p with (p, F ) = 1 we have

16 | h(−4p)⇔ ψ0(π mod F )

(
r(π)

π

)
E,2

= 1, (6.45)

where ψ0(α mod F ) = ψ0(αu2 mod F ) for all α ∈ OK coprime to F and all u ∈ O×K .
We take S equal to the inverse image of our fixed automorphism r under the natural
surjective map Gal(K/Q) → Gal(E/Q). Then it is easily seen that σ ∈ S implies
σ−1 6∈ S. If p is a principal prime of K with generator w of norm p, we have∏
σ∈S

spin(σ,w) =
∏
σ∈S

(
w

σ(w)

)
K,2

=

(
w

r(NK/E(w))

)
K,2

= ψ1(w mod 8)

(
r(NK/E(w))

w

)
K,2

= ψ1(w mod 8)

(
r(NK/E(w))

NK/E(w)

)
E,2

.

We are now going to apply Theorem 6.1.1 to the number field K, the function

ψ(w mod F ) := ψ1(w mod 8)ψ0

(
NK/E(w) mod F

)
.

and S as defined above. Then for a principal prime p of K with generator w and norm
p

sp =
∑
t∈TK

∑
v∈VK/V 2

K

ψ (tvw mod F )
∏
σ∈S

spin(σ, tvw)

= 2|TK ||VK/V 2
K |
(

116|h(−p) −
1

2

)
, (6.46)

since the equivalence in (6.45) does not depend on the choice of π. Theorem 6.1.1 shows
oscillation of the sum ∑

N(p)≤X
p principal

sp.

The dominant contribution of this sum comes from prime ideals of degree 1 and for
these primes equation (6.46) is valid. But if K were to be a governing field, sp has to be
constant on unramified prime ideals of degree 1, which is the desired contradiction.
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