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Chapter 2

On the equation x1 + x2 = 1 in
finitely generated
multiplicative groups in
positive characteristic1

Joint work with Carlo Pagano

Abstract

Let K be a field of characteristic p > 0 and let G be a subgroup of K∗ × K∗ with
dimQ(G⊗ZQ) = r finite. Then Voloch proved that the equation ax+by = 1 in (x, y) ∈ G
for given a, b ∈ K∗ has at most pr(pr + p − 2)/(p − 1) solutions (x, y) ∈ G, unless
(a, b)n ∈ G for some n ≥ 1. Voloch also conjectured that this upper bound can be
replaced by one depending only on r. Our main theorem answers this conjecture pos-
itively. We prove that there are at most 31 · 19r+1 solutions (x, y) unless (a, b)n ∈ G
for some n ≥ 1 with (n, p) = 1. During the proof of our main theorem we generalize
the work of Beukers and Schlickewei to positive characteristic, which heavily relies on
diophantine approximation methods. This is a surprising feat on its own, since usually
these methods can not be transferred to positive characteristic.

2.1 Introduction

Let G be a subgroup of C∗ × C∗ with coordinatewise multiplication. Assume that the
rank dimQ G⊗Z Q = r is finite. Beukers and Schlickewei [3] proved that the equation

x1 + x2 = 1

1A slightly modified version of this chapter appeared in the Quarterly Journal of Mathematics,
volume 68, issue 3, pages 923-934.
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10 Chapter 2. Unit equations in positive characteristic

in (x1, x2) ∈ G has at most 28r+8 solutions. A key feature of their upper bound is that
it depends only on r.

In this chapter we will analyze the characteristic p case. To be more precise, let p > 0
be a prime number and let K be a field of characteristic p. Let G be a subgroup of
K∗ ×K∗ with dimQ G⊗Z Q = r finite. Then Voloch proved in [78] that an equation

ax1 + bx2 = 1 in (x1, x2) ∈ G

for given a, b ∈ K∗ has at most pr(pr + p − 2)/(p − 1) solutions (x1, x2) ∈ G, unless
(a, b)n ∈ G for some n ≥ 1.

Voloch also conjectured that this upper bound can be replaced by one depending only
on r. Our main theorem answers this conjecture positively.

Theorem 2.1.1. Let K, G, r, a and b be as above. Suppose that there is no positive
integer n with gcd(n, p) = 1 such that (a, b)n ∈ G. Then the equation

ax1 + bx2 = 1 in (x1, x2) ∈ G (2.1)

has at most 31 · 19r+1 solutions.

Our main theorem will be a consequence of the following theorem.

Theorem 2.1.2. Let K be a field of characteristic p > 0 and let G be a finitely generated
subgroup of K∗ ×K∗ of rank r. Then the equation

x1 + x2 = 1 in (x1, x2) ∈ G (2.2)

has at most 31 · 19r solutions (x1, x2) satisfying (x1, x2) 6∈ Gp.

Clearly, the last condition is necessary to guarantee finiteness. Indeed if we have any

solution to x1 + x2 = 1, then we get infinitely many solutions xp
k

1 + xp
k

2 = 1 for k ∈ Z≥0

due to the Frobenius operator.

The set-up of the chapter is as follows. We start by introducing the basic theory about
valuations that is needed for our proofs. Then we derive Theorem 2.1.2 by generalizing
the proof of Beukers and Schlickewei [3] to positive characteristic. We remark that their
proof heavily relies on techniques from diophantine approximation. Most of the methods
from diophantine approximation can not be transferred to positive characteristic, so that
this is possible with the method of Beukers and Schlickewei is a surprising feat on its
own. It was more convenient for us to follow [18], which is directly based on the proof
of Beukers and Schlickewei. In the final section we shall prove that Theorem 2.1.1 is a
simple consequence of Theorem 2.1.2.

2.2 Valuations and heights

Our goal in this section is to recall the basic theory about valuations and heights with-
out proofs. To prove Theorem 2.1.2 we may assume without loss of generality that
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K = Fp(G). Thus, K is finitely generated over Fp. Note that Theorem 2.1.2 is trivial if
K is algebraic over Fp, so from now on we further assume that K has positive transcen-
dence degree over Fp. The algebraic closure of Fp in K is a finite field, which we denote
by Fq. Then there is an absolutely irreducible, normal projective variety V defined over
Fq such that its function field Fq(V ) is isomorphic to K.

Fix a projective embedding of V such that V ⊆ PMFq for some positive integer M . A
prime divisor p of V over Fq is by definition an irreducible subvariety of V of codimension
one. Recall that for a prime divisor p the local ring Op is a discrete valuation ring, since
V is non-singular in codimension one. Following [47] we will define heights on V . To do
this, we start by defining a set of normalized discrete valuations

MK := {ordp : p prime divisor of V },

where ordp is the normalized discrete valuation of K corresponding to Op. If v = ordp

is in MK , we set deg v := deg p with deg p being the projective degree in PMFq . Then the
set MK satisfies the sum formula ∑

v∈MK

v(x) deg v = 0

for x ∈ K∗. This is indeed a well-defined sum, since for x ∈ K∗ there are only finitely
many valuations v satisfying v(x) 6= 0. Furthermore, we have v(x) = 0 for all v ∈ MK

if and only if x ∈ F∗q . If P is a point in An+1(K) \ {0} with coordinates (y0, . . . , yn) in
K, then its homogeneous height is

Hhom
K (P ) = −

∑
v∈MK

min
i
{v(yi)} deg v

and its height

HK(P ) = Hhom
K (1, y0, . . . , yn).

We will need the following properties of the height.

Lemma 2.2.1. Let P ∈ An+1(K) \ {0}. The height defined above has the following
properties:
1) Hhom

K (λP ) = Hhom
K (P ) for λ ∈ K∗.

2) Hhom
K (P ) ≥ 0 with equality if and only if P ∈ Pn(Fq).

2.3 Proof of Theorem 2.1.2

This section is devoted to the proof of Theorem 2.1.2. We will follow the proof in
[18], see Section 6.4, with some crucial modifications to take care of the presence of the
Frobenius map. The general strategy of the proof in characteristic 0, and how we adapt
it to characteristic p, will be explained after Lemma 2.3.9. Let us start with a simple
lemma.
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Lemma 2.3.1. The equation

x1 + x2 = 1 in (x1, x2) ∈ G (2.3)

has at most pr solutions (x1, x2) satisfying x1 6∈ Kp and x2 6∈ Kp.

Proof. Let x = (x1, x2) and y = (y1, y2) be two solutions of (2.3). We claim that x ≡ y
mod Gp implies x = y. Indeed, if x ≡ y mod Gp, we can write y1 = x1γ

p and y2 = x2δ
p

with (γ, δ) ∈ G. In matrix form this means that(
1 1
γp δp

)(
x1

x2

)
=

(
1
1

)
.

For convenience we define

A :=

(
1 1
γp δp

)
.

If A is invertible, we find that x1, x2 ∈ Kp contrary to our assumptions. So A is not
invertible, which implies that γ = δ = 1. This proves the claim.

The claim implies that the number of solutions is at most |G/Gp|. Let Fq be the algebraic
closure of Fp in K. It is a finite extension of Fp, since K is finitely generated over Fp.
It follows that Gtors ⊆ F∗q × F∗q . Hence |Gtors| | (q − 1)2, which is co-prime to p. We
conclude that |G/Gp| = pr as desired.

Lemma 2.3.1 gives the following corollary.

Corollary 2.3.2. The equation

x1 + x2 = 1 in (x1, x2) ∈ G (2.4)

has at most pr solutions (x1, x2) satisfying (x1, x2) 6∈ Gp.

Proof. Define

G′ := {(x1, x2) ∈ K ×K : (xN1 , x
N
2 ) ∈ G for some N ∈ Z>0}.

It is a well known fact that G′ is finitely generated if G and K are. It follows that G′

is a finitely generated group of rank r. Our goal is to give an injective map from the
solutions (x1, x2) ∈ G of (2.4) satisfying (x1, x2) 6∈ Gp to the solutions (x′1, x

′
2) ∈ G′ of

(2.3) satisfying (x′1, x
′
2) 6∈ Kp and then apply Lemma 2.3.1.

So let (x1, x2) ∈ G be a solution of (2.4) satisfying (x1, x2) 6∈ Gp. We start by remarking
that x1, x2 6∈ Fq. Hence we can repeatedly take p-th roots until we get x′1, x

′
2 6∈ Kp.

Using heights one can prove that this indeed stops after finitely many steps. Then it is
easily verified that (x′1, x

′
2) ∈ G′ is a solution of (2.3) and that the map thus defined is

injective. Now apply Lemma 2.3.1.
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By Corollary 2.3.2 we may assume that p is sufficiently large throughout, say p > 7.
Both the proof in [18] and our proof rely on very special properties of the family of
binary forms {WN (X,Y )}N∈Z>0

defined by the formula

WN (X,Y ) =

N∑
m=0

(
2N −m
N −m

)(
N +m

m

)
XN−m(−Y )m.

We have for all positive integers N that WN (X,Y ) ∈ Z[X,Y ]. Furthermore, setting
Z = −X − Y , the following statements hold in Z[X,Y ].

Lemma 2.3.3. 1) WN (Y,X) = (−1)NWN (X,Y ).
2) X2N+1WN (Y,Z) + Y 2N+1WN (Z,X) + Z2N+1WN (X,Y ) = 0.
3) There exist a non-zero integer cN such that

det

(
Z2N+1WN (X,Y ) Y 2N+1WN (Z,X)
Z2N+3WN+1(X,Y ) Y 2N+3WN+1(Z,X)

)
= cN (XY Z)2N+1(X2 +XY + Y 2).

Proof. This is Lemma 6.4.2 in [18], which is a variant of Lemma 2.3 in [3].

Since the formulas in the previous lemma hold in Z[X,Y ] they hold in every field K.
But if char(K) = p > 0 and p | cN , then part 3) of Lemma 2.3.3 tells us that

det

(
Z2N+1WN (X,Y ) Y 2N+1WN (Z,X)
Z2N+3WN+1(X,Y ) Y 2N+3WN+1(Z,X)

)
= 0

in K[X,Y ]. The following remarkable identity will be handy later on, when we need
that cN does not vanish modulo p.

Lemma 2.3.4. For every positive integer N , one has WN (2,−1) = 4N
( 3

2N
N

)
.

Proof. It is enough to evaluate
∑N
i=0

(
2N−i
N

)(
N+i
N

)
2−i. We have

N∑
i=0

(
2N − i
N

)(
N + i

N

)
2−i =

(
2N

N

)
F

(
−N,N + 1,−2N,

1

2

)
,

where F (a, b, c, z) is the hypergeometric function defined by the power series

F (a, b, c, z) :=

∞∑
i=0

(a)i(b)i
i!(c)i

zn.

Here we define for a real t and a non-negative integer i (t)i = 1 if i = 0 and for i positive
(t)i = t(t + 1) · . . . · (t + i − 1). Now the desired result follows from Bailey’s formulas
where special values of the function F are expressed in terms of values of the Γ-function,
see [48] page 297.

We obtain the following corollary.
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Corollary 2.3.5. Let p be an odd prime number and let N be a positive integer with
N < p

3 − 2. Then cN 6≡ 0 mod p.

Proof. Indeed one has that

det

(
Z2N+1WN (X,Y ) Y 2N+1WN (Z,X)
Z2N+3WN+1(X,Y ) Y 2N+3WN+1(Z,X)

)
evaluated at (X,Y, Z) = (2,−1,−1) gives up to sign 2WN (2,−1)WN+1(2,−1). By the
previous proposition, this is a power of 2 times the product of two binomial coefficients
whose top terms are less than p, hence it can not be divisible by p.

We now state and prove the analogues of Lemmata 6.4.3-6.4.5 from [18] for function
fields of positive characteristic. These are variants of respectively Lemma 2.1, Corollary
2.2 and Lemma 2.3 from [3].

Lemma 2.3.6. Let a, b, c be non-zero elements of K, and let (αi, βi, γi) for i = 1, 2 be
two K-linearly independent vectors from K3 such that aαi + bβi + cγi = 0 for i = 1, 2.
Then

Hhom
K (a, b, c) ≤ Hhom

K (α1, β1, γ1) +Hhom
K (α2, β2, γ2).

Proof. The vector (a, b, c) is K-proportional to the vector with coordinates given by
(β1γ2 − γ1β2, γ1α2 − α1γ2, α1β2 − β1α2). So we have

Hhom
K (a, b, c) = Hhom

K (β1γ2 − γ1β2, γ1α2 − α1γ2, α1β2 − β1α2)

=
∑
v∈MK

−min(v(β1γ2 − γ1β2), v(γ1α2 − α1γ2), v(α1β2 − β1α2)) deg v

≤
∑
v∈MK

(−min(v(β1), v(γ1), v(α1))−min(v(γ2), v(α2), v(β2))) deg v

= Hhom
K (α1, β1, γ1) +Hhom

K (α2, β2, γ2),

which was the claimed inequality.

We apply Lemma 2.3.6 to the equation x1 + x2 = 1.

Lemma 2.3.7. Suppose x = (x1, x2) ∈ G and y = (y1, y2) ∈ G satisfy x1 + x2 = 1 and
y1 + y2 = 1. Then we have HK(x) ≤ HK(yx−1).

Proof. Apply Lemma 2.3.6 with (a, b, c) = (x1, x2,−1), (α1, β1, γ1) = (1, 1, 1) and
(α2, β2, γ2) = (y1x

−1
1 , y2x

−1
2 , 1). Finally use the fact that Hhom

K (1, 1, 1) = 0.

The next Lemma takes advantage of the properties of WN (X,Y ) listed in Lemma 2.3.3
and the non-vanishing of cN modulo p obtained in Corollary 2.3.5.

Lemma 2.3.8. Let x, y be as in Lemma 2.3.7. Let N < p
3 − 2. Then there exists

M ∈ {N,N + 1} such that HK(x) ≤ 1
M+1HK(yx−2M−1).
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Proof. The proof is almost the same as in Lemma 6.4.5 in [18], with only few necessary
modifications. For completeness we give the full proof.

If x1, and thus both x1 and x2 are roots of unity, we have that HK(x) = 0 so the lemma
is trivially true. By Lemma 2.3.3 part 2) we get that

x2M+1
1 WM (x2,−1) + x2M+1

2 WM (−1, x1)−WM (x1, x2) = 0

for M ∈ {N,N + 1} as well as

x2M+1
1 (y1x

−2M−1
1 ) + x2M+1

2 (y2x
−2M−1
2 )− 1 = 0.

Now we claim that there is M ∈ {N,N + 1} such that the vectors

(y1, y2,−1) and (x1
2M+1WM (x2,−1), x2

2M+1WM (−1, x1),−WM (x1, x2)) (2.5)

are linearly independent. Clearly, to prove the claim it is enough to prove that the two
vectors

(x2M+1
1 WM (x2,−1), x2M+1

2 WM (−1, x1),−WM (x1, x2)) (M ∈ {N,N + 1}) (2.6)

are linearly independent. But we know that for M ∈ {N,N + 1} we have cM 6≡ 0 mod p
by Corollary 2.3.5 and the assumption that N < p

3 − 2. Furthermore, x1 and x2 are not
algebraic over Fp. Thus the identity Lemma 2.3.3 part 3) gives us the non-vanishing of
the first 2×2 minor of the vectors in 2.6, which proves the claimed independence. So by
applying to (2.5) the diagonal transformation that divides the first coordinate by x2M+1

1

and the second by x2M+1
2 , we deduce that the two vectors

(y1x
−2M−1
1 , y2x

−2M−1
2 ,−1)

and
(WM (x2,−1),WM (−1, x1),−WM (x1, x2)) =: (w1, w2, w3)

are linearly independent. So by Lemma 2.3.6 we get that

(2M + 1)HK(x) ≤ HK(yx−2M−1) +Hhom
K (w1, w2, w3)

But now the inequality
Hhom
K (w1, w2, w3) ≤M ·HK(x)

follows immediately from the non-archimedean triangle inequality. So we indeed get

(M + 1)HK(x) ≤ HK(yx−2M−1),

completing the proof.

Define
Sol(G) := {(x1, x2) ∈ G \Gtors : x1 + x2 = 1}

and
Prim-Sol(G) := {(x1, x2) ∈ G \Gp : x1 + x2 = 1}.
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It is easily seen that Prim-Sol(G) ⊆ Sol(G). Finally define

S := {v ∈MK : there is (x1, x2) ∈ G with v(x1) 6= 0 or v(x2) 6= 0}.

The set S is clearly finite. Write s := |S|, S = {v1, . . . , vs}. Then we have a homomor-
phism ϕ : G→ Zs × Zs ⊆ Rs × Rs defined by sending (g1, g2) ∈ G to

(v1(g1) deg v1, . . . , vs(g1) deg vs, v1(g2) deg v1, . . . , vs(g2) deg vs).

Note that ϕ(G) is a subgroup of Zs × Zs of rank r.

Let u, v ∈ Sol(G) be such that ϕ(u) = ϕ(v). Suppose that u 6= v. Then Lemma
2.3.7 implies that HK(u) ≤ 0. Hence by Lemma 2.2.1 part 2) it follows that u and
thus v are in Gtors. This implies that the restriction of ϕ to Sol(G) is injective. In
particular the restriction of ϕ to Prim-Sol(G) is injective. We now call S := ϕ(Sol(G))
and PS := ϕ(Prim-Sol(G)). To prove Theorem 2.1.2 it suffices to bound the cardinality
of PS.

Let || · || be the norm on Rs × Rs that is the average of the || · ||1 norms on Rs. More
precisely, we define for u = (u1, u2) ∈ Rs × Rs

||u|| = 1

2
(||u1||+ ||u2||).

We now state the most important properties of S.

Lemma 2.3.9. The set S ⊆ Zs × Zs has the following properties:
1) For any two distinct u, v ∈ S, we have that ||u|| ≤ 2||v − u||.
2) For any two distinct u, v ∈ S and any positive integer N such that N < p

3 − 2, there
is M ∈ {N,N + 1} such that ||u|| ≤ 2

M+1 ||v − (2M + 1)u||.
3) pS ⊆ S.

Proof. Let x = (x1, x2) ∈ G. By construction we have

||ϕ(x)|| = Hhom
K (1, x1) +Hhom

K (1, x2).

Note the basic inequalities

Hhom
K (x1, x2) ≤ Hhom

K (1, x1) +Hhom
K (1, x2) ≤ 2Hhom

K (x1, x2).

It is now clear that Lemma 2.3.7 implies part 1) and Lemma 2.3.8 implies part 2).
Finally, part 3) is due to the action of the Frobenius operator.

Denote by V the real span of ϕ(G). Then V is an r-dimensional vector space over R.
We will keep writing || · || for the restriction of || · || to V .

Recall that our goal is to bound |PS|. We sketch the ideas behind our strategy here. Let
us first describe the strategy in characteristic 0 as used in [3] and [18]. In their work the
set S satisfies part 1) of Lemma 2.3.9 and part 2) of Lemma 2.3.9 without the condition
N < p

3 − 2.
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To finish the proof, they subdivide the vector space V in Br cones for some absolute
constant B. In each cone one can use part 1) of Lemma 2.3.9 to show that two distinct
points u, v ∈ S are not too close. But part 2) of Lemma 2.3.9 shows that inside the
same cone two points u, v ∈ S can not be too far apart. Together with a lower bound
for the height of u, v ∈ S, this proves that there are at most finitely many points u ∈ S,
say A, in each cone. Hence we get an upper bound of the shape A ·Br.

Now we describe how to modify this to characteristic p. Again we subdivide V in Br

cones for some absolute constant B. From now on we only consider points u ∈ PS inside
a fixed cone C. Our goal is to show that there are at most A points u ∈ PS ∩C, where
A is an absolute constant. It follows that then all points v ∈ S ∩ C are of the shape
v = pku for u ∈ PS and k ∈ Z≥0.

Part 1) of Lemma 2.3.9 tells us that two distinct points u, v ∈ PS are not too close.
Using part 3) of Lemma 2.3.9 we can multiply two points u, v ∈ PS with a power of p

in such a way that the then obtained u′, v′ ∈ S satisfy 1 ≤ ||u
′||

||v′|| ≤
√
p. Then we are in

the position to apply part 2) of Lemma 2.3.9, which shows that ||u′|| and ||v′|| are not
too far apart. This allows us to deduce that PS ∩ C contains at most A points.

The following lemma subdivides the vector space V in Br cones for some absolute
constant B.

Lemma 2.3.10. Given a real number θ > 0, one can find a set E ⊆ {u ∈ V : ||u|| = 1}
satisfying
1) |E| ≤ (1 + 2

θ )r,
2) for all 0 6= u ∈ V there exists e ∈ E satisfying || u||u|| − e|| ≤ θ.

Proof. See Lemma 6.3.4 in [18], which is an improvement of Corollary 3.8 in [3].

Let θ ∈ (0, 1
9 ) be a parameter and fix a corresponding choice of a set E satisfying the

above properties. Given e ∈ E , we define the cone

Se :=

{
u ∈ S :

∣∣∣∣∣∣∣∣ u||u|| − e
∣∣∣∣∣∣∣∣ ≤ θ} , PSe := Se ∩ PS.

Fix e ∈ E . We proceed to bound |PSe|. We start by deducing a so-called gap principle
from part 1) of Lemma 2.3.9.

Lemma 2.3.11. Let u1, u2 be distinct elements of Se, with ||u2|| ≥ ||u1||. Then
||u2|| ≥ 3−θ

2+θ ||u1||.

Proof. Write λi := ||ui|| for i = 1, 2. Then we have ui = λie+ u′i where ||u′i|| ≤ θλi, by
definition of Se. Part 1) of Lemma 2.3.9 gives

λ1 ≤ 2||(λ2 − λ1)e+ (u′2 − u′1)|| ≤ 2(λ2 − λ1) + θ(λ2 + λ1),

and after dividing by λ1 we get that

1 ≤ 2

(
λ2

λ1
− 1

)
+ θ

(
λ2

λ1
+ 1

)
.
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This can be rewritten as 3−θ
2+θ ≤

λ2

λ1
.

From part 2) of Lemma 2.3.9 we can deduce the following crucial Lemma.

Lemma 2.3.12. Let u1, u2 be distinct elements of Se. Suppose that ||u2||
||u1|| <

2
3p − 3.

Then ||u2||
||u1|| ≤

10
θ .

Proof. We follow the proof of Lemma 6.4.9 of [18] part (ii) with a few modifications.
For completeness we write out the full proof.

Again define λi = ||ui|| and u′i = ui − λie, for i = 1, 2. Assume that λ2 ≥ 10
θ λ1. Let N

be the positive integer with 2N + 1 ≤ λ2

λ1
< 2N + 3. Then 2N + 1 < 2

3p− 3 and hence
N < p

3 −2. Applying part 2) of Lemma 2.3.9 gives an integer M ∈ {N,N +1} satisfying

λ1 ≤
2

M + 1
||(λ2 − (2M + 1)λ1)e+ u′2 − (2M + 1)u′1||.

Furthermore, we have that

|λ2 − (2M + 1)λ1| ≤ 2λ1

and M > 4
θ from the assumption λ2 ≥ 10

θ λ1. Hence

λ1 ≤
2

M + 1
||(λ2 − (2M + 1)λ1)e+ u′2 − (2M + 1)u′1||

≤ 2

M + 1
(2λ1 + λ2θ + (2M + 1)λ1θ)

≤ 2

M + 1
(2 + (4M + 4)θ)λ1 =

(
4

M + 1
+ 8θ

)
λ1 < 9θλ1.

It follows that λ1 < 1
1−9θ . Now observe that for any non-negative integer h the el-

ements phu1, p
hu2 of Se satisfy all the assumptions made so far. We conclude that

also phλ1 <
1

1−9θ for every non-negative integer h, which implies that ||u1|| = 0. This
contradicts the fact that u1 ∈ Se, completing the proof.

Remark 2.3.13. In characteristic 0, the analogue of Lemma 2.3.12 holds only when
both u1, u2 have norms at least 1

1−9θ . Then one deals with the remaining points in Se
by using the analogue of part 1) of Lemma 2.3.9, together with a separate argument to
deal with the “very small” solutions. In characteristic p, it is because of the additional
tool given by the action of Frobenius that the condition that u1, u2 have norm at least

1
1−9θ has disappeared.

Assume without loss of generality that PSe is not empty, and fix a choice of u0 ∈ PSe
with ||u0|| minimal. For any u ∈ PSe, denote by k(u) the smallest non-negative integer

such that ||u||
pk(u)||u0||

< p and denote λ(u) := ||u||
pk(u)||u0||

.

We define PSe(1) := {u ∈ PSe : λ(u) ≤ √p} and PSe(2) := {u ∈ PSe : λ(u) >
√
p}.

Since we may assume p > 7 by Corollary 2.3.2, we have 2p
3 − 3 >

√
p.
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Lemma 2.3.14. 1) Let i ∈ {1, 2} and let u1, u2 be distinct elements of PSe(i) with
λ(u2) ≥ λ(u1). Then λ(u2) ≥ 3−θ

2+θλ(u1) and λ(u2) ≤ 10
θ λ(u1).

2) λ(PSe(2)) ⊆ [ θp10 , p).
3) λ is an injective map on PSe.

Proof. 1) If k(u2) ≥ k(u1), we put u′1 := pk(u2)−k(u1)u1, u′2 := u2, and if instead
k(u2) < k(u1), we put u′1 := u1, u′2 := pk(u1)−k(u2)u2. Now apply Lemma 14 and
Lemma 15 to u′1, u

′
2. We stress that u′1, u

′
2 are distinct elements of Se, since u1, u2 are

distinct elements of PSe(i).
2) This follows from Lemma 2.3.12 applied to the pair (u1, p

k(u1)+1u0) for each u1 in
PSe(2).
3) Use part 1) and the fact that 3−θ

2+θ > 1 for θ ∈ (0, 1
9 ).

Proof of Theorem 2.1.2. By part 3) of Lemma 2.3.14 it suffices to bound |λ(PSe)|. By
part 1) and 2) of Lemma 2.3.14 it will follow that we can bound |λ(PSe)| purely in terms
of θ: thus collecting all the bounds for e varying in E we obtain a bound depending only
on r. We now give all the details.

For any θ ∈ (0, 1
9 ) we have

3− θ
2 + θ

>
26

19
.

Then we find that |λ(PSe(1))| is at most the biggest n such that(
26

19

)n−1

≤ 10

θ

and similarly for |λ(PSe(2))|. We conclude that

|PSe| ≤ 2 + 2
log( 10

θ )

log( 26
19 )

.

Multiplying by |E| gives that for every θ ∈ (0, 1
9 )

|PS| ≤ 2

(
1 +

log( 10
θ )

log( 26
19 )

)(
1 +

2

θ

)r
.

So letting θ increase to 1
9 we obtain

|PS| ≤ 2

(
1 +

log(90)

log( 26
19 )

)
19r < 31 · 19r.

This completes the proof of Theorem 2.1.2.
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2.4 Proof of Theorem 2.1.1

First suppose that G and K are finitely generated. Before we can start with the proof of
Theorem 2.1.1, we will rephrase Theorem 2.1.2. Recall that we write Fq for the algebraic
closure of Fp in K.

Then Theorem 2.1.2 implies that there is a finite subset T of G with |T | ≤ 31 · 19r such
that any solution of

x1 + x2 = 1, (x1, x2) ∈ G

with x1 6∈ Fq and x2 6∈ Fq satisfies (x1, x2) = (γ, δ)p
t

for some t ∈ Z≥0 and (γ, δ) ∈ T .

Now let (x1, x2) ∈ G be a solution to

ax1 + bx2 = 1.

If ax1 ∈ Fq or bx2 ∈ Fq, it follows that both ax1 ∈ Fq and bx2 ∈ Fq, which implies that
(a, b)q−1 ∈ G. This contradicts the condition on (a, b) in Theorem 2.1.1.

Hence ax1 6∈ Fq and bx2 6∈ Fq. Define G′ to be the group generated by G and the tuple
(a, b). Then the rank of G′ is at most r+ 1. Let T ⊆ G′ be as above, so |T | ≤ 31 · 19r+1.
We can write

(ax1, bx2) = (γ, δ)p
t

with t ∈ Z≥0 and (γ, δ) ∈ T . Since T ⊆ G′, we can write

(γ, δ) = (aky1, b
ky2)

with k ∈ Z and (y1, y2) ∈ G. This means that

(ax1, bx2) = (aky1, b
ky2)p

t

,

which implies (a, b)kp
t−1 ∈ G. If kpt − 1 is co-prime to p, we have a contradiction with

the condition on (a, b) in Theorem 2.1.1. But p can only divide kpt − 1 if t = 0. Then
we find immediately that there are at most |T | ≤ 31 · 19r+1 solutions as desired.

We still need to deal with the case that K is an arbitrary field of characteristic p and
G is a subgroup of K∗ ×K∗ with dimQ G⊗Z Q = r finite. Suppose that ax1 + bx2 = 1
has more than 31 · 19r+1 solutions (x1, x2) ∈ G. Then we can replace G by a finitely
generated subgroup of G with the same property. We can also replace K by a subfield,
finitely generated over its prime field, containing the coordinates of the new G and a, b.
This gives the desired contradiction.
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Addendum
Joint work with Carlo Pagano

On the 22nd October of 2018 Professor Felipe Voloch brought to our attention the
unpublished master thesis of Yi-Chih Chiu, written under the supervision of Professor
Ki-Seng Tan. In this work, Chiu establishes a special case of our main theorems [44,
Theorem 1.1, Theorem 1.2]. We shall begin by explaining his result, and we will next
compare it to our result.

Let p be a prime number. For a field extension K of Fp with transcendence degree equal
to 1, we let k be the algebraic closure of Fp in K. Denote by ΩK the set of valuations of
K. Let S be a finite subset of ΩK and fix α, β ∈ K∗. The following theorem is proven
in Chiu’s master thesis.

Theorem 2.5.1. The S-unit equation to be solved in x, y ∈ O∗S

αx+ βy = 1,

has at most 3 ·72|S|−2 pairwise inequivalent non-trivial solutions if α, β ∈ O∗S. If instead
α, β are not both in O∗S, then it has at most 39 · 72|S|−2 non-trivial solutions.

Here a solution (x, y) is called trivial if αx
βy ∈ k. Two solutions (x1, y1), (x2, y2) are said

to be equivalent if there exists n ∈ Z≥0 with

(αx1)p
n

= αx2, (βy1)p
n

= βy2 or (αx2)p
n

= αx1, (βy2)p
n

= βy1.

This result is a special case with slightly better constants of our theorems that we state
now for the reader’s convenience, see [44, Theorem 1.1, Theorem 1.2].

Theorem 2.5.2. Let K be a field of characteristic p > 0. Take α, β ∈ K∗ and let G be
a finitely generated subgroup of K∗ ×K∗ of rank r := dimQG⊗Q. Then the equation

αx+ βy = 1,

to be solved in (x, y) ∈ G, has at most 31 ·19r pairwise inequivalent non-trivial solutions
if (α, β)n ∈ G for some n > 0. If instead (α, β)n 6∈ G for all n > 0, then it has at most
31 · 19r+1 non-trivial solutions.

Note that Theorem 2.5.2 applies to any finitely generated subgroup in any field of
characteristic p. In contrast, Chiu’s theorem applies only to the case of S-units of fields
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of transcendence degree 1 (with some care Chiu’s theorem can be extended to S-units
of function fields of projective varieties).

The reason for this difference in generality comes from the fact that Chiu’s work is an
adaptation of Evertse’s work [17] to characteristic p. Our work is instead an adaptation
of the work of Beukers and Schlickewei [3] to characteristic p. In both works [3, 17],
there is a key use of a certain set of identities coming from hypergeometric functions,
see [44, Lemma 3.3, Lemma 3.4]. In characteristic p these identities can be used only in
a limited range, see [9, Proposition 2] and [44, Corollary 3.5] respectively.

Correspondingly, the solutions to the unit equations need to be counted only up to
equivalence. One of the most important steps is to use this equivalence relation in such
a way that one is inside this limited range. It is this step that allows one to obtain an
upper bound that is independent of p. The reader can find this step in the two papers
respectively at [9, Lemma 4] and at [44, Lemma 3.9].


