Universiteit
Leiden
The Netherlands

Diophantine equations in positive characteristic

 Koymans, P.H.
Citation

Koymans, P. H. (2019, June 19). Diophantine equations in positive characteristic. Retrieved from https://hdl.handle.net/1887/74294

Version:	Not Applicable (or Unknown)
License:	Leiden University Non-exclusive license
Downloaded from:	$\underline{\text { https://hdl.handle.net/1887/74294 }}$

Note: To cite this publication please use the final published version (if applicable).

Universiteit Leiden

The handle http://hdl.handle.net/1887/74294 holds various files of this Leiden University dissertation.

Author: Koymans, P.H.
Title: Diophantine equations in positive characteristic
Issue Date: 2019-06-19

Chapter 1

The generalized Catalan equation in positive characteristic

Abstract

Let $K=\mathbb{F}_{p}\left(z_{1}, \ldots, z_{r}\right)$ be a finitely generated field over \mathbb{F}_{p} and fix $a, b \in K^{*}$. We study the solutions of the generalized Catalan equation $a x^{m}+b y^{n}=1$ to be solved in $x, y \in K$ and integers $m, n>1$ coprime with p.

1.1 Introduction

In this article we will bound m and n for the generalized Catalan equation in characteristic $p>0$. Our main result is as follows.

Theorem 1.1.1. Let $a, b \in K^{*}$ be given. Consider the equation

$$
\begin{equation*}
a x^{m}+b y^{n}=1 \tag{1.1}
\end{equation*}
$$

in $x, y \in K$ and integers $m, n>1$ coprime with p satisfying

$$
\begin{equation*}
(m, n) \notin\{(2,2),(2,3),(3,2),(2,4),(4,2),(3,3)\} . \tag{1.2}
\end{equation*}
$$

Then there is a finite set $\mathcal{T} \subseteq K^{2}$ such that for any solution (x, y, m, n) of (1.1), there is a $(\gamma, \delta) \in \mathcal{T}$ and $t \in \mathbb{Z}_{\geq 0}$ such that

$$
\begin{equation*}
a x^{m}=\gamma^{p^{t}}, b y^{n}=\delta^{p^{t}} \tag{1.3}
\end{equation*}
$$

In the case $a=b=1$, a stronger and effective result was proven in 42 based on the work of [6].
Let us now show that the conditions on m and n are necessary. If (1.2) fails, then (1.1) defines a curve of genus 0 or 1 over K. It is clear that 1.3 can fail in this case. It is also essential that m and n are coprime with p. Take for example $a=b=1$. Then any solution of

$$
x+y=1
$$

with $x, y \in K$ and $x, y \notin \overline{\mathbb{F}_{p}}$ gives infinitely many solutions of the form 1.3 after applying Frobenius.

The generalized Catalan equation over function fields was already analyzed in [66], where the main theorem claims that the generalized Catalan equation has no solutions for m and n sufficiently large. Unfortunately, it is not hard to produce counterexamples to the main theorem given there. Following the notation in [66], we choose $k=\mathbb{F}_{p}, K=k(u)$, $a=x=u, b=y=1-u$ and $m=n=p^{t}-1$ for $t \in \mathbb{Z}_{\geq 0}$. Then we have

$$
a x^{m}+b y^{n}=u \cdot u^{p^{t}-1}+(1-u) \cdot(1-u)^{p^{t}-1}=1
$$

due to Frobenius, illustrating the need of (1.3).

1.2 Heights

Let K be a finitely generated extension of \mathbb{F}_{p}. The algebraic closure of \mathbb{F}_{p} in K is a finite extension of \mathbb{F}_{p}, say \mathbb{F}_{q} with $q=p^{n}$ for some $n \in \mathbb{Z}_{>0}$. There exists a projective variety V non-singular in codimension one defined over \mathbb{F}_{q} with function field K.
Our goal will be to introduce a height function on K by using our variety V. For later purposes it will be useful to do this in a slightly more general setting. So let X be a projective variety, non-singular in codimension one, defined over a perfect field k. We write L for the function field of X and we assume that k is algebraically closed in L.

Fix a projective embedding of X such that $X \subseteq \mathbb{P}_{k}^{M}$ for some positive integer M. Then a prime divisor \mathfrak{p} of X over k is by definition an irreducible subvariety of codimension one. Recall that for a prime divisor \mathfrak{p} the local ring $\mathcal{O}_{\mathfrak{p}}$ is a discrete valuation ring, since X is non-singular in codimension one. Following [47] we will define heights on X. To do this, we start by defining a set of normalized discrete valuations

$$
M_{L}:=\left\{\operatorname{ord}_{\mathfrak{p}}: \mathfrak{p} \text { prime divisor of } X\right\}
$$

where $\operatorname{ord}_{\mathfrak{p}}$ is the normalized discrete valuation of L corresponding to $\mathcal{O}_{\mathfrak{p}}$. If $v=\operatorname{ord}_{\mathfrak{p}}$ is in M_{L}, we define for convenience $\operatorname{deg} v:=\operatorname{deg} \mathfrak{p}$ with $\operatorname{deg} \mathfrak{p}$ being the projective degree in \mathbb{P}_{k}^{M}. Then the set M_{L} satisfies the sum formula for all $x \in L^{*}$

$$
\sum_{v} v(x) \operatorname{deg} v=0
$$

If P is a point in $\mathbb{P}^{r}(L)$ with coordinates $\left(y_{0}: \ldots: y_{r}\right)$ in L, then its (logarithmic) height is

$$
h_{L}(P)=-\sum_{v} \min _{i}\left\{v\left(y_{i}\right)\right\} \operatorname{deg} v .
$$

Furthermore we define for an element $x \in L$

$$
\begin{equation*}
h_{L}(x)=h_{L}(1: x) . \tag{1.4}
\end{equation*}
$$

We will need the following properties of the height.
Lemma 1.2.1. Let $x, y \in L$ and $n \in \mathbb{Z}$. The height defined by (1.4) has the following properties:
(a) $h_{L}(x)=0 \Leftrightarrow x \in k$;
(b) $h_{L}(x+y) \leq h_{L}(x)+h_{L}(y)$;
(c) $h_{L}(x y) \leq h_{L}(x)+h_{L}(y)$;
(d) $h_{L}\left(x^{n}\right)=|n| h_{L}(x)$;
(e) Suppose that k is a finite field and let $C>0$ be given. Then there are only finitely many $x \in L^{*}$ satisfying $h_{L}(x) \leq C$;
(f) $h_{L}(x)=h_{\bar{k} \cdot L}(x)$.

Proof. Property (a) is Proposition 4 of 46] (p. 157), while properties (b), (c) and (d) are easily verified. Property (e) is proven in [55]. Finally, property (f) can be found after Proposition 3.2 in 47] (p. 63).

1.3 A generalization of Mason's ABC-theorem

For our proof we will need a generalization of Mason's ABC-theorem for function fields in one variable to an arbitrary number of variables. Such a result is given in [36]. For completeness we repeat it here.

Theorem 1.3.1. Let X be a projective variety over an algebraically closed field k of characteristic $p>0$, which is non-singular in codimension one. Let $L=k(X)$ be its function field and let M_{L} be as above. Let $L_{1}, \ldots, L_{q}, q \geq n+1$, be linear forms in $n+1$ variables over k which are in general position. Let $\mathbf{X}=\left(x_{0}: \ldots: x_{n}\right) \in \mathbb{P}^{n}(L)$ be such that x_{0}, \ldots, x_{n} are linearly independent over $K^{p^{m}}$ for some $m \in \mathbb{N}$. Then, for any fixed
finite subset S of M_{L}, the following inequality holds:

$$
\begin{aligned}
& (q-n-1) h\left(x_{0}: \ldots: x_{n}\right) \\
& \quad \leq \sum_{i=1}^{q} \sum_{v \notin S} \operatorname{deg} v \min \left\{n p^{m-1}, v\left(L_{i}(\mathbf{X})\right)-\min _{0 \leq j \leq n}\left\{v\left(x_{j}\right)\right\}\right\} \\
& \quad+\frac{n(n+1)}{2} p^{m-1}\left(C_{X}+\sum_{v \in S} \operatorname{deg} v\right),
\end{aligned}
$$

where C_{X} is a constant depending only on X.
Proof. This is the main theorem in 36.

1.4 Proof of Theorem 1.1.1

In this section we proof our main theorem.
Proof of Theorem 1.1.1. Let (x, y, m, n) be an arbitrary solution. Let us first dispose with the case $a x^{m} \in \mathbb{F}_{q}$. Then also $b y^{n} \in \mathbb{F}_{q}$, so we simply add $\mathbb{F}_{q} \times \mathbb{F}_{q}$ to \mathcal{T}. From now on we will assume $a x^{m} \notin \mathbb{F}_{q}$ and hence $b y^{n} \notin \mathbb{F}_{q}$. It follows that

$$
h_{K}\left(a x^{m}\right), h_{K}\left(b y^{n}\right) \neq 0,
$$

so we may write

$$
a x^{m}=\gamma^{p^{t}}, b y^{n}=\delta^{p^{s}}
$$

for some $t, s \in \mathbb{Z}_{\geq 0}$ and $\gamma, \delta \notin K^{p}$. After substitution we get

$$
\gamma^{p^{t}}+\delta^{p^{s}}=1
$$

Extracting p-th roots gives $t=s$ and hence

$$
\begin{equation*}
\gamma+\delta=1 \tag{1.5}
\end{equation*}
$$

Our goal will be to apply the main theorem of [36] to 1.5 . Note that Theorem 1.3.1 requires that the ground field k is algebraically closed. But a constant field extension does not change the height by Lemma 1.2 .1 (f). Hence we can keep working with our field K instead of $\overline{\mathbb{F}_{p}} \cdot K$. Define the following three linear forms in two variables X, Y

$$
\begin{aligned}
& L_{1}=X \\
& L_{2}=Y \\
& L_{3}=X+Y .
\end{aligned}
$$

We apply Theorem 1.3.1 with our V, the above L_{1}, L_{2}, L_{3} and $\mathbf{X}=(\gamma: \delta) \in \mathbb{P}^{1}(K)$. We claim that γ and δ are linearly independent over K^{p}. Suppose that there are $e, f \in K^{p}$ such that

$$
e \gamma+f \delta=0
$$

Together with $\gamma+\delta=1$ we find that

$$
0=e \gamma+f \delta=e(1-\delta)+f \delta=e+(f-e) \delta
$$

If $e \neq f$, then this would imply that $\delta \in K^{p}$, contrary to our assumptions. Hence $e=f$, but then we find

$$
0=e \gamma+f \delta=e
$$

and we conclude that $e=f=0$ as desired.
We still have to choose the subset S of M_{K} to which we apply Theorem 1.3.1. First we need to make some preparations. From now on v will be used to denote an element of M_{K}. Define

$$
\begin{aligned}
& N_{0}:=\{v: v(a) \neq 0 \vee v(b) \neq 0\} \\
& N_{1}:=\{v: v(a)=0, v(b)=0, v(\gamma)>0\} \\
& N_{2}:=\{v: v(a)=0, v(b)=0, v(\delta)>0\} \\
& N_{3}:=\{v: v(a)=v(b)=0, v(\gamma)=v(\delta)<0\} .
\end{aligned}
$$

It is clear that N_{0}, N_{1}, N_{2} and N_{3} are finite disjoint sets. Before we proceed, we make a simple but important observation in the form of a lemma.

Lemma 1.4.1. Let (γ, δ) be a solution of 1.5). If $v(\gamma)<0$ or $v(\delta)<0$, then

$$
v(\gamma)=v(\delta)<0
$$

Proof. Obvious.
Recall that

$$
h_{K}(\gamma)=\sum_{v} \max (0, v(\gamma)) \operatorname{deg} v=\sum_{v}-\min (0, v(\gamma)) \operatorname{deg} v
$$

and

$$
h_{K}(\delta)=\sum_{v} \max (0, v(\delta)) \operatorname{deg} v=\sum_{v}-\min (0, v(\delta)) \operatorname{deg} v .
$$

Lemma 1.4.1 tells us that

$$
\sum_{v}-\min (0, v(\gamma)) \operatorname{deg} v=\sum_{v}-\min (0, v(\delta)) \operatorname{deg} v
$$

hence

$$
\begin{align*}
h_{K}(\gamma)=h_{K}(\delta) & =\sum_{v} \max (0, v(\gamma)) \operatorname{deg} v=\sum_{v}-\min (0, v(\gamma)) \operatorname{deg} v \tag{1.6}\\
& =\sum_{v} \max (0, v(\delta)) \operatorname{deg} v=\sum_{v}-\min (0, v(\delta)) \operatorname{deg} v \tag{1.7}
\end{align*}
$$

We will use these different expressions for the height throughout. Let us now derive elegant upper bounds for N_{1}, N_{2} and N_{3}. Again we will phrase it as a lemma.

Lemma 1.4.2. Let (γ, δ) be a solution of (1.5). Then

$$
\begin{aligned}
& h_{K}(\gamma)=h_{K}(\delta) \geq m \sum_{v \in N_{1}} \operatorname{deg} v, \\
& h_{K}(\gamma)=h_{K}(\delta) \geq n \sum_{v \in N_{2}} \operatorname{deg} v, \\
& h_{K}(\gamma)=h_{K}(\delta) \geq \operatorname{lcm}(m, n) \sum_{v \in N_{3}} \operatorname{deg} v .
\end{aligned}
$$

Proof. We know that

$$
h_{K}(\gamma)=h_{K}(\delta)=\sum_{v} \max (0, v(\gamma)) \operatorname{deg} v \geq \sum_{v \in N_{1}} \max (0, v(\gamma)) \operatorname{deg} v .
$$

Now let $v \in N_{1}$. This means that $v(a)=v(b)=0$ and $v(\gamma)>0$. Then $a x^{m}=\gamma^{p^{t}}$ implies

$$
v(a)+m v(x)=p^{t} v(\gamma)
$$

and hence $m v(x)=p^{t} v(\gamma)$. But m and p are coprime by assumption, so we obtain $m \mid v(\gamma)$. Because $v(\gamma)>0$, this gives $v(\gamma) \geq m$ and we conclude that

$$
h_{K}(\gamma)=h_{K}(\delta) \geq m \sum_{v \in N_{1}} \operatorname{deg} v
$$

Using

$$
h_{K}(\gamma)=h_{K}(\delta)=\sum_{v} \max (0, v(\delta)) \operatorname{deg} v \geq \sum_{v \in N_{2}} \max (0, v(\delta)) \operatorname{deg} v,
$$

we find in a similar way that

$$
h_{K}(\gamma)=h_{K}(\delta) \geq n \sum_{v \in N_{2}} \operatorname{deg} v
$$

It remains to be proven that

$$
h_{K}(\gamma)=h_{K}(\delta) \geq \operatorname{lcm}(m, n) \sum_{v \in N_{3}} \operatorname{deg} v .
$$

Now we use

$$
\begin{aligned}
h_{K}(\gamma)=h_{K}(\delta) & =\sum_{v}-\min (0, v(\gamma)) \operatorname{deg} v=\sum_{v}-\min (0, v(\delta)) \operatorname{deg} v \\
& \geq \sum_{v \in N_{3}}-\min (0, v(\gamma)) \operatorname{deg} v=\sum_{v \in N_{3}}-\min (0, v(\delta)) \operatorname{deg} v .
\end{aligned}
$$

Now take $v \in N_{3}$. Then $v(\gamma)=v(\delta)<0$. In the same way as before, we can show that $m \mid v(\gamma)$ and $n \mid v(\delta)$. But $v(\gamma)=v(\delta)<0$ by Lemma 1.4.1, so we find that

$$
h_{K}(\gamma)=h_{K}(\delta) \geq \operatorname{lcm}(m, n) \sum_{v \in N_{3}} \operatorname{deg} v
$$

as desired.

Define

$$
S:=N_{0} \cup N_{1} \cup N_{2} \cup N_{3} .
$$

Suppose that $v \notin S$. We claim that

$$
v(\gamma)=v(\delta)=0
$$

But $v \notin S$ implies $v \notin N_{0}$, so certainly $v(a)=v(b)=0$. Furthermore, we have that $v \notin N_{1}$ and $v \notin N_{2}$, which means that $v(\gamma) \leq 0$ and $v(\delta) \leq 0$. If $v(\gamma)<0$ or $v(\delta)<0$, then Lemma 1.4.1 gives $v \in N_{3}$, contradicting our assumption $v \notin S$. Hence $v(\gamma)=v(\delta)=0$ as desired.

From our claim it follows that we have for $v \notin S$ and $i=1,2,3$

$$
v\left(L_{i}(\gamma, \delta)\right)=\min (v(\gamma), v(\delta))
$$

Theorem 1.3.1 tells us that

$$
h_{K}(\gamma: \delta) \leq C_{W}+\sum_{v \in S} \operatorname{deg} v
$$

where C_{W} is a constant depending on W only. By Lemma 1.4.2 we find that

$$
\begin{aligned}
\sum_{v \in S} \operatorname{deg} v & =\sum_{v \in N_{0}} \operatorname{deg} v+\sum_{v \in N_{1}} \operatorname{deg} v+\sum_{v \in N_{2}} \operatorname{deg} v+\sum_{v \in N_{3}} \operatorname{deg} v \\
& \leq C_{a, b}+\left(\frac{1}{m}+\frac{1}{n}+\frac{1}{\operatorname{lcm}(m, n)}\right) h_{K}(\gamma)
\end{aligned}
$$

where $C_{a, b}$ is a constant depending on a and b only. Now 1.2 implies

$$
\frac{1}{m}+\frac{1}{n}+\frac{1}{\operatorname{lcm}(m, n)}<0.9
$$

hence

$$
h_{K}(\gamma: \delta) \leq 10\left(C_{W}+C_{a, b}\right)
$$

But $\gamma+\delta=1$ gives

$$
h_{K}(\gamma)=h_{K}(\delta)=h_{K}(\gamma: \delta) .
$$

The theorem now follows from Lemma 1.2.1(e).

1.5 Discussion of Theorem 1.1.1

The conclusion of Theorem 1 tells us that there is a finite set $\mathcal{T} \subseteq K^{2}$ such that for any solution (x, y, m, n) of 1.1 , there is a $(\gamma, \delta) \in \mathcal{T}$ and $t \in \mathbb{Z}_{\geq 0}$ such that

$$
a x^{m}=\gamma^{p^{t}}, b y^{n}=\delta^{p^{t}} .
$$

Since \mathcal{T} is finite, we may assume that γ and δ are fixed in the above two equations. It would be interesting to further study this equation.

