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Chapter 1

The generalized Catalan
equation in positive
characteristic

Abstract

Let K = Fp(z1, . . . , zr) be a finitely generated field over Fp and fix a, b ∈ K∗. We study
the solutions of the generalized Catalan equation axm+byn = 1 to be solved in x, y ∈ K
and integers m,n > 1 coprime with p.

1.1 Introduction

In this article we will bound m and n for the generalized Catalan equation in character-
istic p > 0. Our main result is as follows.

Theorem 1.1.1. Let a, b ∈ K∗ be given. Consider the equation

axm + byn = 1 (1.1)

in x, y ∈ K and integers m,n > 1 coprime with p satisfying

(m,n) 6∈ {(2, 2), (2, 3), (3, 2), (2, 4), (4, 2), (3, 3)}. (1.2)

Then there is a finite set T ⊆ K2 such that for any solution (x, y,m, n) of (1.1), there
is a (γ, δ) ∈ T and t ∈ Z≥0 such that

axm = γp
t

, byn = δp
t

. (1.3)
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2 Chapter 1. The generalized Catalan equation in positive characteristic

In the case a = b = 1, a stronger and effective result was proven in [42] based on the
work of [6].

Let us now show that the conditions on m and n are necessary. If (1.2) fails, then (1.1)
defines a curve of genus 0 or 1 over K. It is clear that (1.3) can fail in this case. It is
also essential that m and n are coprime with p. Take for example a = b = 1. Then any
solution of

x+ y = 1

with x, y ∈ K and x, y 6∈ Fp gives infinitely many solutions of the form (1.3) after
applying Frobenius.

The generalized Catalan equation over function fields was already analyzed in [66], where
the main theorem claims that the generalized Catalan equation has no solutions for m
and n sufficiently large. Unfortunately, it is not hard to produce counterexamples to the
main theorem given there. Following the notation in [66], we choose k = Fp, K = k(u),
a = x = u, b = y = 1− u and m = n = pt − 1 for t ∈ Z≥0. Then we have

axm + byn = u · up
t−1 + (1− u) · (1− u)p

t−1 = 1

due to Frobenius, illustrating the need of (1.3).

1.2 Heights

Let K be a finitely generated extension of Fp. The algebraic closure of Fp in K is a
finite extension of Fp, say Fq with q = pn for some n ∈ Z>0. There exists a projective
variety V non-singular in codimension one defined over Fq with function field K.

Our goal will be to introduce a height function on K by using our variety V . For later
purposes it will be useful to do this in a slightly more general setting. So let X be a
projective variety, non-singular in codimension one, defined over a perfect field k. We
write L for the function field of X and we assume that k is algebraically closed in L.

Fix a projective embedding of X such that X ⊆ PMk for some positive integer M . Then
a prime divisor p of X over k is by definition an irreducible subvariety of codimension
one. Recall that for a prime divisor p the local ring Op is a discrete valuation ring, since
X is non-singular in codimension one. Following [47] we will define heights on X. To
do this, we start by defining a set of normalized discrete valuations

ML := {ordp : p prime divisor of X},

where ordp is the normalized discrete valuation of L corresponding to Op. If v = ordp is
in ML, we define for convenience deg v := deg p with deg p being the projective degree
in PMk . Then the set ML satisfies the sum formula for all x ∈ L∗∑

v

v(x) deg v = 0.
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If P is a point in Pr(L) with coordinates (y0 : . . . : yr) in L, then its (logarithmic) height
is

hL(P ) = −
∑
v

min
i
{v(yi)} deg v.

Furthermore we define for an element x ∈ L

hL(x) = hL(1 : x). (1.4)

We will need the following properties of the height.

Lemma 1.2.1. Let x, y ∈ L and n ∈ Z. The height defined by (1.4) has the following
properties:

(a) hL(x) = 0⇔ x ∈ k;

(b) hL(x+ y) ≤ hL(x) + hL(y);

(c) hL(xy) ≤ hL(x) + hL(y);

(d) hL(xn) = |n|hL(x);

(e) Suppose that k is a finite field and let C > 0 be given. Then there are only finitely
many x ∈ L∗ satisfying hL(x) ≤ C;

(f) hL(x) = hk·L(x).

Proof. Property (a) is Proposition 4 of [46] (p. 157), while properties (b), (c) and (d)
are easily verified. Property (e) is proven in [55]. Finally, property (f) can be found
after Proposition 3.2 in [47] (p. 63).

1.3 A generalization of Mason’s ABC-theorem

For our proof we will need a generalization of Mason’s ABC-theorem for function fields
in one variable to an arbitrary number of variables. Such a result is given in [36]. For
completeness we repeat it here.

Theorem 1.3.1. Let X be a projective variety over an algebraically closed field k of
characteristic p > 0, which is non-singular in codimension one. Let L = k(X) be its
function field and let ML be as above. Let L1, . . . , Lq, q ≥ n+1, be linear forms in n+1
variables over k which are in general position. Let X = (x0 : . . . : xn) ∈ Pn(L) be such
that x0, . . . , xn are linearly independent over Kpm for some m ∈ N. Then, for any fixed
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finite subset S of ML, the following inequality holds:

(q − n− 1)h(x0 : . . . : xn)

≤
q∑
i=1

∑
v 6∈S

deg vmin{npm−1, v(Li(X))− min
0≤j≤n

{v(xj)}}

+
n(n+ 1)

2
pm−1

(
CX +

∑
v∈S

deg v

)
,

where CX is a constant depending only on X.

Proof. This is the main theorem in [36].

1.4 Proof of Theorem 1.1.1

In this section we proof our main theorem.

Proof of Theorem 1.1.1. Let (x, y,m, n) be an arbitrary solution. Let us first dispose
with the case axm ∈ Fq. Then also byn ∈ Fq, so we simply add Fq ×Fq to T . From now
on we will assume axm 6∈ Fq and hence byn 6∈ Fq. It follows that

hK(axm), hK(byn) 6= 0,

so we may write

axm = γp
t

, byn = δp
s

for some t, s ∈ Z≥0 and γ, δ 6∈ Kp. After substitution we get

γp
t

+ δp
s

= 1.

Extracting p-th roots gives t = s and hence

γ + δ = 1. (1.5)

Our goal will be to apply the main theorem of [36] to (1.5). Note that Theorem 1.3.1
requires that the ground field k is algebraically closed. But a constant field extension
does not change the height by Lemma 1.2.1(f). Hence we can keep working with our
field K instead of Fp ·K. Define the following three linear forms in two variables X,Y

L1 = X

L2 = Y

L3 = X + Y.

We apply Theorem 1.3.1 with our V , the above L1, L2, L3 and X = (γ : δ) ∈ P1(K). We
claim that γ and δ are linearly independent over Kp. Suppose that there are e, f ∈ Kp

such that
eγ + fδ = 0.
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Together with γ + δ = 1 we find that

0 = eγ + fδ = e(1− δ) + fδ = e+ (f − e)δ.

If e 6= f , then this would imply that δ ∈ Kp, contrary to our assumptions. Hence e = f ,
but then we find

0 = eγ + fδ = e

and we conclude that e = f = 0 as desired.

We still have to choose the subset S of MK to which we apply Theorem 1.3.1. First we
need to make some preparations. From now on v will be used to denote an element of
MK . Define

N0 := {v : v(a) 6= 0 ∨ v(b) 6= 0}
N1 := {v : v(a) = 0, v(b) = 0, v(γ) > 0}
N2 := {v : v(a) = 0, v(b) = 0, v(δ) > 0}
N3 := {v : v(a) = v(b) = 0, v(γ) = v(δ) < 0}.

It is clear that N0, N1, N2 and N3 are finite disjoint sets. Before we proceed, we make
a simple but important observation in the form of a lemma.

Lemma 1.4.1. Let (γ, δ) be a solution of (1.5). If v(γ) < 0 or v(δ) < 0, then

v(γ) = v(δ) < 0.

Proof. Obvious.

Recall that

hK(γ) =
∑
v

max(0, v(γ)) deg v =
∑
v

−min(0, v(γ)) deg v

and
hK(δ) =

∑
v

max(0, v(δ)) deg v =
∑
v

−min(0, v(δ)) deg v.

Lemma 1.4.1 tells us that∑
v

−min(0, v(γ)) deg v =
∑
v

−min(0, v(δ)) deg v,

hence

hK(γ) = hK(δ) =
∑
v

max(0, v(γ)) deg v =
∑
v

−min(0, v(γ)) deg v (1.6)

=
∑
v

max(0, v(δ)) deg v =
∑
v

−min(0, v(δ)) deg v. (1.7)

We will use these different expressions for the height throughout. Let us now derive
elegant upper bounds for N1, N2 and N3. Again we will phrase it as a lemma.
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Lemma 1.4.2. Let (γ, δ) be a solution of (1.5). Then

hK(γ) = hK(δ) ≥ m
∑
v∈N1

deg v,

hK(γ) = hK(δ) ≥ n
∑
v∈N2

deg v,

hK(γ) = hK(δ) ≥ lcm(m,n)
∑
v∈N3

deg v.

Proof. We know that

hK(γ) = hK(δ) =
∑
v

max(0, v(γ)) deg v ≥
∑
v∈N1

max(0, v(γ)) deg v.

Now let v ∈ N1. This means that v(a) = v(b) = 0 and v(γ) > 0. Then axm = γp
t

implies
v(a) +mv(x) = ptv(γ)

and hence mv(x) = ptv(γ). But m and p are coprime by assumption, so we obtain
m | v(γ). Because v(γ) > 0, this gives v(γ) ≥ m and we conclude that

hK(γ) = hK(δ) ≥ m
∑
v∈N1

deg v.

Using

hK(γ) = hK(δ) =
∑
v

max(0, v(δ)) deg v ≥
∑
v∈N2

max(0, v(δ)) deg v,

we find in a similar way that

hK(γ) = hK(δ) ≥ n
∑
v∈N2

deg v.

It remains to be proven that

hK(γ) = hK(δ) ≥ lcm(m,n)
∑
v∈N3

deg v.

Now we use

hK(γ) = hK(δ) =
∑
v

−min(0, v(γ)) deg v =
∑
v

−min(0, v(δ)) deg v

≥
∑
v∈N3

−min(0, v(γ)) deg v =
∑
v∈N3

−min(0, v(δ)) deg v.

Now take v ∈ N3. Then v(γ) = v(δ) < 0. In the same way as before, we can show that
m | v(γ) and n | v(δ). But v(γ) = v(δ) < 0 by Lemma 1.4.1, so we find that

hK(γ) = hK(δ) ≥ lcm(m,n)
∑
v∈N3

deg v

as desired.
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Define
S := N0 ∪N1 ∪N2 ∪N3.

Suppose that v 6∈ S. We claim that

v(γ) = v(δ) = 0.

But v 6∈ S implies v 6∈ N0, so certainly v(a) = v(b) = 0. Furthermore, we have that
v 6∈ N1 and v 6∈ N2, which means that v(γ) ≤ 0 and v(δ) ≤ 0. If v(γ) < 0 or
v(δ) < 0, then Lemma 1.4.1 gives v ∈ N3, contradicting our assumption v 6∈ S. Hence
v(γ) = v(δ) = 0 as desired.

From our claim it follows that we have for v 6∈ S and i = 1, 2, 3

v(Li(γ, δ)) = min(v(γ), v(δ)).

Theorem 1.3.1 tells us that

hK(γ : δ) ≤ CW +
∑
v∈S

deg v,

where CW is a constant depending on W only. By Lemma 1.4.2 we find that∑
v∈S

deg v =
∑
v∈N0

deg v +
∑
v∈N1

deg v +
∑
v∈N2

deg v +
∑
v∈N3

deg v

≤ Ca,b +

(
1

m
+

1

n
+

1

lcm(m,n)

)
hK(γ),

where Ca,b is a constant depending on a and b only. Now (1.2) implies

1

m
+

1

n
+

1

lcm(m,n)
< 0.9,

hence
hK(γ : δ) ≤ 10(CW + Ca,b).

But γ + δ = 1 gives
hK(γ) = hK(δ) = hK(γ : δ).

The theorem now follows from Lemma 1.2.1(e).

1.5 Discussion of Theorem 1.1.1

The conclusion of Theorem 1 tells us that there is a finite set T ⊆ K2 such that for any
solution (x, y,m, n) of (1.1), there is a (γ, δ) ∈ T and t ∈ Z≥0 such that

axm = γp
t

, byn = δp
t

.

Since T is finite, we may assume that γ and δ are fixed in the above two equations. It
would be interesting to further study this equation.
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