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Chapter 1

The generalized Catalan
equation in positive
characteristic

Abstract

Let K =Fp(21,..., 2 ) be a finitely generated field over [, and fix a,b € K*. We study
the solutions of the generalized Catalan equation ax™ +by™ = 1 to be solved in z,y € K
and integers m,n > 1 coprime with p.

1.1 Introduction

In this article we will bound m and n for the generalized Catalan equation in character-
istic p > 0. Our main result is as follows.

Theorem 1.1.1. Let a,b € K* be given. Consider the equation
az™ +by" =1 (1.1)
inx,y € K and integers m,n > 1 coprime with p satisfying
(m,n) €{(2,2),(2,3),(3,2),(2,4),(4,2),(3,3)}. (1.2)

Then there is a finite set T C K? such that for any solution (x,y,m,n) of , there
is a(v,0) €T andt € Z>o such that

ax™ = th,by" — 57", (1.3)
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2 Chapter 1. The generalized Catalan equation in positive characteristic

In the case a = b = 1, a stronger and effective result was proven in [42] based on the
work of [6].

Let us now show that the conditions on m and n are necessary. If fails, then (|1.1))
defines a curve of genus 0 or 1 over K. It is clear that can fail in this case. It is
also essential that m and n are coprime with p. Take for example a = b = 1. Then any
solution of

r+y=1

with z,y € K and z,y ¢ F, gives infinitely many solutions of the form 1) after
applying Frobenius.

The generalized Catalan equation over function fields was already analyzed in [66], where
the main theorem claims that the generalized Catalan equation has no solutions for m
and n sufficiently large. Unfortunately, it is not hard to produce counterexamples to the
main theorem given there. Following the notation in [66], we choose k = F),, K = k(u),
a=z=u,b=y=1—wand m=n=p'—1fort € Zsg. Then we have

az™ +by" =u-uP "+ (I—wu)-(1- u)pt_1 =1

due to Frobenius, illustrating the need of (1.3)).

1.2 Heights

Let K be a finitely generated extension of F,. The algebraic closure of F), in K is a
finite extension of F;,, say F, with ¢ = p™ for some n € Z~(. There exists a projective
variety V' non-singular in codimension one defined over IF, with function field K.

Our goal will be to introduce a height function on K by using our variety V. For later
purposes it will be useful to do this in a slightly more general setting. So let X be a
projective variety, non-singular in codimension one, defined over a perfect field k. We
write L for the function field of X and we assume that k is algebraically closed in L.

Fix a projective embedding of X such that X C P,JCW for some positive integer M. Then
a prime divisor p of X over k is by definition an irreducible subvariety of codimension
one. Recall that for a prime divisor p the local ring O, is a discrete valuation ring, since
X is non-singular in codimension one. Following [47] we will define heights on X. To
do this, we start by defining a set of normalized discrete valuations

M, = {ord, : p prime divisor of X},
where ord; is the normalized discrete valuation of L corresponding to O,. If v = ord, is

in My, we define for convenience degv := degp with degp being the projective degree
in ]P’Q/[ . Then the set M7, satisfies the sum formula for all x € L*

Z v(x)degv = 0.

v



1.3. A generalization of Mason’s ABC-theorem 3

If P is a point in P"(L) with coordinates (yo : ... : ¥,) in L, then its (logarithmic) height
is

hL(Fﬁ::—7j£:n?n{vgﬁ)}degv.

Furthermore we define for an element x € L
hr(z) =hp(1: ). (1.4)
We will need the following properties of the height.

Lemma 1.2.1. Let z,y € L and n € Z. The height defined by has the following
properties:

(a) hp(z) =0z € k;

(b) he(z+y) < hp(x) +he(y);
(¢) hr(zy) < hr(x) +he(y);
(d) hp(z") = [nlhy(z);

(e) Suppose that k is a finite field and let C' > 0 be given. Then there are only finitely
many x € L* satisfying hy(z) < C;

(f) hr(x) = hg. (o).

Proof. Property (a) is Proposition 4 of [46] (p. 157), while properties (b), (¢) and (d)
are easily verified. Property (e) is proven in [55]. Finally, property (f) can be found
after Proposition 3.2 in [47] (p. 63). O

1.3 A generalization of Mason’s ABC-theorem

For our proof we will need a generalization of Mason’s ABC-theorem for function fields
in one variable to an arbitrary number of variables. Such a result is given in [36]. For
completeness we repeat it here.

Theorem 1.3.1. Let X be a projective variety over an algebraically closed field k of
characteristic p > 0, which is non-singular in codimension one. Let L = k(X) be its
Junction field and let My, be as above. Let L1, ..., Ly, ¢ > n+1, be linear forms in n+1
variables over k which are in general position. Let X = (zg : ... : x,) € P*(L) be such
that x, ..., x, are linearly independent over K?" for some m € N. Then, for any fized
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finite subset S of My, the following inequality holds:

(g—n—1Dh(xg:...:xn)

< Z Zdegvmin{npmfl,v(Li(X)) — min {v(z;)}}

i=1vgS o=jsn
1
+ %pmfl <C’X + %degv) ,

where C'x is a constant depending only on X.

Proof. This is the main theorem in [30]. O

1.4 Proof of Theorem [1.1.1]

In this section we proof our main theorem.

Proof of Theorem[1.1.1] Let (x,y,m,n) be an arbitrary solution. Let us first dispose
with the case az™ € F,. Then also by" € F,, so we simply add F; x F; to 7. From now
on we will assume az™ ¢ F; and hence by™ ¢ F,. It follows that

hi(ax™), hx(by™) # 0,
SO we may write
ax™ = ’ypt,by" = o7
for some t,s € Z>g and 7,6 ¢ KP. After substitution we get
ypt + 6 =1.
Extracting p-th roots gives ¢ = s and hence
y+8=1. (1.5)

Our goal will be to apply the main theorem of [36] to . Note that Theorem m
requires that the ground field k is algebraically closed. But a constant field extension
does not change the height by Lemma f). Hence we can keep working with our
field K instead of F, - K. Define the following three linear forms in two variables X, Y

Li=X
Lo=Y
Ly=X4Y.

We apply Theoremwith our V, the above Ly, Ly, L3 and X = (v : §) € P}Y(K). We
claim that v and § are linearly independent over KP. Suppose that there are e, f € KP
such that

ey+ fé6=0.



1.4. Proof of Theorem [[.1.1] 5

Together with v+ d = 1 we find that
O=ey+fi=e(l-08)+fo=e+ (f—e)d

If e # f, then this would imply that § € KP, contrary to our assumptions. Hence e = f,
but then we find
O=ey+ foi=ce

and we conclude that e = f = 0 as desired.

We still have to choose the subset S of Mg to which we apply Theorem [1.3.1] First we
need to make some preparations. From now on v will be used to denote an element of
Mg . Define

Ny :={v:v(a) #0Vo(b) #0}

Ny :={v:v(a) =0,v(b) = 0,v(y) > 0}

Ny :={v:v(a) =0,v(b) = 0,v(§) > 0}

N3 :={v:v(a) =v(b) =0,v(y) =v(d) < 0}.

It is clear that Ny, N1, Ny and N3 are finite disjoint sets. Before we proceed, we make
a simple but important observation in the form of a lemma.

Lemma 1.4.1. Let (v, 6) be a solution of (1.5). If v(y) < 0 or v(6) <0, then
v(y) = v(0) < 0.

Proof. Obvious. O

Recall that

hic(v) = 3" max(0,v(7)) degv = 3 — min(0, v(7)) deg v

v

and

hi(0) = Zmax(o, v(0)) degv = Z —min(0,v(d)) degv.

v

Lemma [L47] tells us that
Z —min(0,v(y)) degv = Z —min(0,v(d)) degv,
hence

hk(v) = hk(6) = Zmax(o,v(v)) degv = Z —min(0,v(y)) degv (1.6)

v

= Z max(0,v(d)) degv = Z —min(0,v(d)) degv. (1.7)

v

We will use these different expressions for the height throughout. Let us now derive
elegant upper bounds for Ny, No and N3. Again we will phrase it as a lemma.
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Lemma 1.4.2. Let (v,0) be a solution of (1.5). Then

hi(y) = hk(0 >mZdegv

veEN;
hi () = hi(0 >nZdegu
vEN,
hi(v) = hx(8) > lem(m,n) Z degv.

vEN3
Proof. We know that

hr(y) =hi(d Zmax (0,v(y)) degv > Z max(0,v(vy)) degv.

vEN7
Now let v € N;. This means that v(a) = v(b) = 0 and v(y) > 0. Then az™ = ¥’
implies
v(a) +mo(z) = p'v(y)
and hence mv(z) = p'v(y). But m and p are coprime by assumption, so we obtain
m | v(7y). Because v() > 0, this gives v(y) > m and we conclude that

hix(y) =hk(0) >m Z dego.
vEN1

Using

hk(y) = hk(5) = Zmax(O,v(&)) degv > Z max(0,v(9)) deg v,
v vENy

we find in a similar way that
hix(y) =hk(0) >n Z degv.
vEN2
It remains to be proven that
hi(7) = hi(8) > lem(m,n) > degv.
vEN3

Now we use

hi(y) =hk(6) = Z —min(0,v(y)) degv = Z —min(0,v(d)) deg v

> Z —min(0,v(y)) degv = Z —min(0,v(d)) deg v.
vEN3 vEN3

Now take v € N3. Then v(vy) = v(d) < 0. In the same way as before, we can show that
m | v(y) and n | v(d). But v(y) = v(d) < 0 by Lemma so we find that

hi(y) = hi(0) > lem(m, n) Z deg v
vEN3

as desired. ]
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Define
S = NOUN1 UNQUNg.

Suppose that v € S. We claim that
v(y) = v(0) = 0.

But v ¢ S implies v € Ny, so certainly v(a) = v(b) = 0. Furthermore, we have that
v & Ny and v € N, which means that v(y) < 0 and v(§) < 0. If v(y) < 0 or
v(8) < 0, then Lemma [1.4.1] gives v € N3, contradicting our assumption v ¢ S. Hence
v(y) = v(d) = 0 as desired.

From our claim it follows that we have for v ¢ S and i =1,2,3
v(Li(7,0)) = min(v(7),v(3)).
Theorem [[L.3.T] tells us that
hg(v:6) < Cw + Zdegu
vES
where Cyy is a constant depending on W only. By Lemma [T.4:2] we find that

Zdegvz Z degv + Z degv + Z degv + Z degwv

veS vENy vEN; vE N> vEN3

1 1 1
< Cop + ( + =+ ) hr (),
m

n  lem(m,n)
where Cyp is a constant depending on a and b only. Now (L.2)) implies
1 1 1
— = <09,
m  n  lem(m,n)

hence
hi(y:6) <10(Cw + Cyp).

But v+ 6 =1 gives
hi(v) = hk(6) = hi (v : 6).
The theorem now follows from Lemma [1.2.1{(e). O

1.5 Discussion of Theorem [1.1.1]

The conclusion of Theorem 1 tells us that there is a finite set 7 C K2 such that for any
solution (z,y,m,n) of (1.1)), there is a (,d) € T and t € Z>( such that

ar™ = 'ypt,by” ="

Since 7 is finite, we may assume that v and § are fixed in the above two equations. It
would be interesting to further study this equation.
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