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Preface

In this preface we shall give a mathematical introduction to the various topics in the
thesis. The thesis consists of three parts. The first part is devoted to exponential
Diophantine equations in positive characteristic, while the second part revolves around
class number statistics. These two parts form the main body of the thesis, whence the
title of this thesis. The final and third part is a paper that solves the ternary Goldbach
problem for Artin primes.

An exponential Diophantine equation is an equation where some of the variables occur
as exponents. Famous examples of such equations are the Fermat equation

xN + yN = zN in integers N > 2, xyz 6= 0,

where N occurs as an exponent, and the Catalan equation

xm − yn = 1 in integers x, y,m, n > 1,

where m and n occur as exponents. There is a well-known analogy between number
fields and global function fields. Therefore, it is natural to solve these equations over
global (or even more general) function fields instead of number fields. The advantage of
global function fields is that one can use derivations, and this allows us to use elementary
methods to establish our results.

Let K be a finitely generated field over Fp and fix a, b ∈ K∗. In the first chapter we
shall study the generalized Catalan equation

axm + byn = 1 in x, y ∈ K and integers m,n coprime with p.

This equation was already studied by Silverman [66], but his main theorem is false as we
shall demonstrate in the first chapter. We will prove that there are only finitely many
solutions up to a natural equivalence relation provided that the pair (m,n) does not
belong to an explicit finite list.

In the next chapter we shall study the so-called unit equation. Let K be a field of
characteristic 0 and let G be a multiplicative subgroup of K∗ ×K∗. Then the equation

x+ y = 1 in (x, y) ∈ G

v
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is an exponential Diophantine equation. Siegel and Mahler showed finiteness of the
solution set in important special cases, while Lang proved finiteness in general. Mahler
and later Evertse [17] gave upper bounds for the solution sets in important special cases,
while Beukers and Schlickewei [3] gave an upper bound in full generality. Namely, they
showed that there are at most 28r+8 solutions, where r is the rank of G. In characteristic
p > 0 the situation turns out to be rather different. Indeed, if we have

x+ y = 1 for some (x, y) ∈ G,

we can apply Frobenius to find another solution

xp + yp = 1.

Voloch [78] gave an upper bound for the number of solutions up to a natural equivalence
relation. His upper bound depends on both r and p, and he asked if the dependence
on p could be removed. Together with Pagano I gave the upper bound 31 · 19r, which
answers Voloch’s question. To do so, we adapt the method of Beukers and Schlickewei
to positive characteristic.

The final chapter of the first part studies the Fermat surface

xN + yN + zN = 1, (1)

where x, y, z ∈ Fp(t) and N is a positive integer. The main result is that there are in-
finitely many primes N for which equation (1) has no solutions satisfying x, y, z 6∈ Fp(tp)
and x/y, x/z, y/z 6∈ Fp(tp). We also show that the conditions on x, y and z can not be
removed. This chapter is also joint work with Pagano.

The second part of the thesis revolves around the 2-part of the class groups of imaginary
quadratic number fields. Cohen and Lenstra [10] put forward conjectures about the
average behavior of such class groups. Let p be an odd prime. Their conjecture predicts
that for all finite abelian p-groups A

lim
X→∞

|{K imaginary quadratic : |DK | < X and Cl(K)[p∞] ∼= A}|
|{K imaginary quadratic : |DK | < X}|

=

∏∞
i=1

(
1− 1

pi

)
|Aut(A)|

,

where DK and Cl(K) are respectively the discriminant and narrow class group of K.
Although Cohen and Lenstra stated their conjecture already in 1984, there are very few
proven instances despite significant effort. Davenport and Heilbronn [14] obtained partial
results in the case p = 3, and the case p > 3 is still wide open. Although the conjecture
was originally stated only for odd p, Gerth proposed the following modification; instead
of Cl(K)[2∞], it is (2Cl(K))[2∞] that behaves randomly. This was recently proven by
Smith [69] and can be considered a major breakthrough in the area.

One way to study Cl(K)[2∞] is by the use of governing fields. Let k ≥ 1 and d 6≡ 2 mod 4
be integers. Then Cohn and Lagarias [11] conjectured that there exists a finite normal
field extension Md,k over Q such that

dimF2

2k−1Cl(Q(
√
dp))

2kCl(Q(
√
dp))
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is determined by the splitting of p in Md,k. Such a hypothetical field Md,k is called
a governing field. Stevenhagen [70] showed in his thesis that governing field exists for
k ≤ 3 and all values of d. If one is able to give an explicit description of Md,3, then one
can get density results for Cl(Q(

√
dp))[8] using the Chebotarev density theorem, where

p varies over the primes.

It is a natural question to ask what happens for Cl(Q(
√
dp))[16], and we analyze this

problem for d = −4 and d = −8. This leads to the following density theorems, and we
devote a chapter to each theorem.

Theorem (joint work with Milovic). Let h(−2p) be the class number of Q(
√
−2p).

Then we have

lim
X→∞

|{p ≤ X : p prime, p ≡ 1 mod 4 and 16 | h(−2p)}|
|{p ≤ X : p prime}|

=
1

16
.

Theorem. Let h(−p) be the class number of Q(
√
−p). Then we have

lim
X→∞

|{p ≤ X : p prime and 16 | h(−p)}|
|{p ≤ X : p prime}|

=
1

16
.

The proof of both theorems do not make any appeal to the theory of L-functions. Instead
they rely on a method due to Vinogradov. This suggests that there is no governing field.
The following theorem, which is proven in the final chapter of the second part, provides
even more evidence towards the non-existence of governing fields.

Theorem (joint work with Milovic). Assume a short character sum conjecture. Then
the field M−4,4 does not exist.

In the final part of this thesis we combine two classical problems in analytic number
theory. The first problem is the well-known ternary Goldbach conjecture which states
that every odd integer n > 5 can be written as the sum of three primes, i.e.

n = p1 + p2 + p3

for primes p1, p2 and p3. Vinogradov [74] showed that every sufficiently large odd
integer admits such a representation, and Helfgott [34] settled the full ternary Goldbach
conjecture. Another famous problem in analytic number theory is Artin’s conjecture
on primitive roots. Let g be an integer that is neither a square nor −1. Then Artin’s
conjecture states that there are infinitely many primes p such that g is a primitive root
modulo p, or in other words g generates the group (Z/pZ)∗. Hooley [35] showed the
veracity of Artin’s conjecture conditional on GRH.

We are interested in writing n as a sum of three primes, all of which have g as primitive
root. The following is a simple corollary of our work that is particularly pleasing to
state.

Corollary (joint with Frei and Sofos). Assume GRH. Then there is a constant C > 0
such that for all odd integers n > C we have the following equivalence: there are odd
primes p1, p2, p3 with 27 as primitive root and n = p1+p2+p3 if and only if n ≡ 3 mod 12.
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