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8

Double-magnet cantilevers for

increased magnetic field

gradients

Ever since its first conception, the goal of MRFM was to reach levels of sensitivity sufficient

to measure the properties of a single nuclear spin [1]. One of the approaches to increase

the sensitivity of MRFM is to increase the spin signals by increasing the magnetic field

gradients. In this chapter, we motivate this approach, and describe our attempt to increase

the magnetic field gradient in such a way that it requires minimal change to the experimental

setup, and reduces the effects of potential drawbacks.

125



8

8 Double-magnet cantilevers for increased magnetic field gradients

8.1 Introduction

There has been a wide variety of methods to maximize the magnetic field gradients

in MRFM. The standard approach of growing a magnetic structure on top of the

RF source is widely used and has been very successful [16, 57, 197]. The fabrication

of these structures is relatively straightforward, and by creating sharp edges, very

large field gradients of up to 6 MT/m can be achieved using a variety of magnetic

materials, such as dysprosium and iron-cobalt. The most extreme example of this

approach was the utilization of a commercial disk drive write head, resulting in a

record magnetic field gradient of 28 MT/m, with the added advantage of dynamic

control of the gradient with frequencies up to 1 GHz [42]. However, this approach

has the drawback of a complex resonant slice shape, and positioning the sample to

within 100 nm of these structures can be challenging.

A more innovative approach of creating the magnetic field gradients is by using a

current-focusing field gradient source (CFFGS), in which a constriction in a current-

carrying wire is used to generate time-dependent field gradients of up to 1 MT/m,

but at the cost of significant dissipation [17, 114, 198]. The maximum field gradients

are limited by the breakdown current density in the wire. Once again, the experiment

has to be performed very close (within 50 nm) to the wire.

The methods described above are all based on the sample-on-tip approach for

MRFM. There has also been work focused on the magnet-on-tip approach. Micron-

sized SmCo-particles have been used to generate gradients of up to 0.5 MT/m [19,

63, 199]. Higher field gradients can be achieved by using focused ion beam milling

to shape magnetic particles [200–202] or using e-beam lithography [203], with the

record set at 5.4 MT/m [41]. A big issue for all of these approaches is the positioning

of the magnetic tip with respect to the sample. Furthermore, due to our SQUID-

based detection, the problem is intensified as we are even incapable of detecting the

cantilever motion at all when the cantilever is not positioned close enough to the

pickup loop.

In an attempt to evade this issue, we have decided to combine two NdFeB magnets

with different radii on the same cantilever: a small one to create higher field gradients

than our group has achieved in the past, and a large one to have a high coupling to

the SQUID-based detection system, which eases positioning and reduces the detec-

tion noise. This approach requires minimal changes to the experimental setup, and

reduces the effects of potential drawbacks. We calculate the expected magnetic fields

originating from these new cantilevers, and how this influences the flux coupling to

the pickup loop. We end the chapter by analyzing how the spin-induced dissipation
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8.2 Intuition about magnetic field gradients

is affected by the higher magnetic field gradients.

8.2 Intuition about magnetic field gradients

The purpose of this section is to create some intuition about how the signals in MRFM

scale with the size of the magnet used to generate the magnetic field gradient. In this

section we will use the following simplifications:

• To be completely correct one has to always consider only the component of the

force in the soft-direction of the cantilever, which in our case is the horizontal

direction parallel to the magnetization of the magnet. However, in order to

be able to gain some insight in the various scaling laws, we will consider the

magnetic field gradient in the radial direction instead. This simplification will

be justified in Sec. 8.5.

• We neglect the dynamics of the spin in the cantilever’s magnetic field, assuming

that the moment of the spin µs is always perfectly aligned with the field. In that

case, the interaction between the spin and the magnetic field can be determined

from the interaction energy E = − (µs ·B), instead of from the full analysis by

De Voogd et al. [52].

An intuitive picture of how the radius of the magnet influences the expected signals

is given by Garner [204]. When a single spin with magnetic moment µs is placed in a

magnetic field B originating from the magnet on the tip of the cantilever, this creates

a force between the spin and the cantilever, given by:

F = ∇ (µs ·B) = µs · ∇B (8.1)

This force induces a shift of the stiffness of the cantilever:

ks = µs · ∇2B (8.2)

which results in a measurable frequency shift according to

∆f =
1

2

ks

k0
f0 (8.3)

To use these equations, we need to know the distribution of the magnetic field

originating from the magnet. As discussed in Ch. 2, we can describe the spherical
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Figure 8.1: (a) Schematic of a magnet with radius R positioned above a sample with a

resonant slice at a distance d from the surface of the magnet. (b) Calculated gradient versus

radius of the magnet for a given d. The gradient is maximal for R = 3d.

magnet at the tip of the cantilever as a magnetic dipole with magnetic moment m,

for which the field is given by [146]

B(r) =
µ0

4π

m

r3
[3 (m̂ · r̂) r̂ − m̂] (8.4)

Here r = |r| is the distance to the center of the magnet positioned at the origin,

which can be rewritten as r = R + d, with R the radius of the magnet and d the

distance between the surface of the magnet and the resonant slice. The situation is

sketched in Fig. 8.1(a). The magnetic moment, in turn, can be rewritten in terms of

the saturation magnetization M = Br/µ0 and the volume V of the spherical magnet1:

m =
Br

µ0
V =

4π

3

1

µ0
BrR

3 (8.5)

Thus, B ∝ R3/ (R+ d)
3
. Considering this, the first derivative of the magnetic field,

for simplicity calculated in the radial direction, then scales as

∂B

∂r
∝ R3

r4
=

R3

(R+ d)
4 (8.6)

Let us now consider the implications of these equations for maximizing the mag-

netic field gradient, and thereby the MRFM signals. First, imagine that we can

perform our experiment right at the surface of the magnet, so d = 0. Then the gra-

dient scales as R−1, and we should take the smallest possible magnet to obtain the

largest magnetic field gradient.

1For our magnetic material, NdFeB, Br is equal to 1.15 - 1.3 T [51, 59]
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8.3 Signal-to-noise ratio

However, in practice it is not possible to measure so close to the surface of the

magnet, as non-contact friction reduces the sensitivity of the experiment [51, 52, 68].

When we therefore demand that d is a constant value larger than 0, we can maximize

the gradient to find that for a given d there is an optimal radius R = 3d [204]. A plot

of the gradient is shown in Fig. 8.1(b). When the radius is much smaller than 3d,

the gradient roughly scales with R3, as the decreasing radius reduces the magnetic

moment. So, for measurements where d > R/3, one would be better off using a larger

magnet. On the other hand, when the radius is much larger than 3d, the gradient

scales with R−1, and a smaller magnet would give a higher signal per spin. So,

decreasing the size of the magnetic particle is only beneficial when the experiment

can be performed within d < R/3.

There is a second important aspect to consider, namely the total MRFM signal.

Let’s say that we are always measuring at a distance d that is proportional to the

radius. In other words, when the radius is increased, the distance between the magnet

and the sample is increased proportionally. Then the force per spin increases as the

size of the magnetic particle is reduced, proportional to R−1. However, the volume of

the resonant slice, and thus the number of spins within it, increases with the size of

the magnetic particle, proportional to R3. Therefore, even though the signal per spin

and the volume sensitivity are improved, the total MRFM signal in the experiment

decreases when a smaller magnet is used.

8.3 Signal-to-noise ratio

As usual in MRFM, the right experimental parameters depend on the specific exper-

iment in mind. A measurement based on using spins to drive the amplitude of the

cantilever, a so-called force measurement, has different optimal parameters than a

frequency shift measurement.

We start from the assumption that our experiment is thermally limited, i.e. the

dominant noise factor is the thermal force noise, given by

SF = 4kBTΓ (8.7)

with Γ = k/(ω0Q) the damping of the cantilever. The signal-to-noise ratio (SNR) for

a force experiment on a single spin with magnetic moment µs is then given by

SNRF = µs
∂B

∂x
(4kBTΓ BW )

− 1
2 (8.8)
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with BW the bandwidth of the measurement2.

For a frequency shift measurement we want to find the frequency noise. First, we

can calculate the noise in the stiffness of the cantilever using Hooke’s law as transfer

function, leading to

Sk =
SF

A2
=

4kBTΓ

A2
(8.9)

with A the rms amplitude of the cantilever motion. From this, we can find the

frequency noise using

Sδf0(f) =

(
1

2

f0

k0

)2

Sk =
kBTΓf2

0

k2
0A

2
(8.10)

Note that this equation is only valid for f � f0/(2Q). We can combine this with

Eqs. 8.2 and 8.3 to find the frequency shift SNR:

SNRδf0 =
f0

2

µs

k0

∂2B

∂x2

(
kBTΓf2

0 BW

k2
0A

2

)− 1
2

(8.11)

Using Eqs. 8.8 and 8.11, we can compare the relative signal-to-noise ratios of the

two experiments for different experimental parameters when both experiments are

operated in the thermal limit:

SNRF

SNRδf0

∝ R0

A
(8.12)

Here we assume the experiments are performed at the optimal height as described in

Sec. 8.2. Frequency shift experiments become more interesting for smaller magnets

and large driving amplitudes. However, given that the radius of the magnetic particle

is on the order of several micrometers, and that the driven cantilever amplitude is

roughly 1 - 100 nm, direct force measurements remain more sensitive for our range of

experimental parameters.

8.4 Fabrication of double-magnet cantilevers

Based on considerations from the previous sections, we have fabricated MRFM can-

tilevers that combine a small diameter particle at the tip of the cantilever for a high

2Here we assume a single-shot experiment (no averaging) where we reduce the spin magnetic moment

to zero, as would be the case in a saturation experiment.
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8.4 Fabrication of double-magnet cantilevers

Figure 8.2: Scanning electron microscope image of the double magnet cantilever. The inset

shows a zoom on the tip of the cantilever.

field gradient with a larger diameter particle a bit higher up the cantilever to maintain

a high coupling strength to the SQUID. In selecting the appropriate combination of

cantilever and magnet sizes, a trade-off is made between the sensitivity, for which a

low stiffness is required, and keeping the resonance frequency high enough to stay

within the effective range of the vibration isolation. We aim for finished cantilevers

with a resonance frequency close to 3 kHz, similar to the conventional cantilevers in

our group.

In total, three cantilevers were made with slightly different parameters. In the

remainder of this chapter, we will base our calculations on the parameters of one

of these finished double-magnet cantilevers, which is shown in Fig. 8.2. This new

cantilever has a length of 138 µm and carries two magnets: at the very end, a small

magnet with radius R1 = 0.95 µm, and at about 7.3 µm from the tip a second larger

magnet with a radius R2 = 1.82 µm. The magnets are attached to the cantilever

using the same method as described in Sec. 2.3.

The resonance frequency of the cantilever can be calculated using the familiar

equation ω2
0 = k0/m, but with a modified effective mass which takes into account

the new mass distribution ρ(l). When we assume the magnetic particles to be point

masses, we find for the effective mass

m =

∫ l

0

x2

l2
ρ(x)dx = m1

x2
1

l2
+m2

x2
2

l2
+
ρSilwt

4
, (8.13)

with m1 and m2 the masses of the small and large magnets, respectively, and x1
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and x2 their respective positions measured from the base of the cantilever. The last

term represents the effective mass of the silicon cantilever itself, with ρSi the density

of silicon3. Using this equation with the parameters obtained from Fig. 8.2, the

calculated natural frequency of the double-magnet cantilever is 3086.7 Hz, very close

to the 3085.1 Hz measured at 4 K.4

8.5 Magnetic field distribution

The main purpose of the large top magnet is to increase the coupling strength between

the cantilever and the SQUID, as will be discussed in Sec. 8.6. However, a potential

downside is that the large magnet might have an effect on the field at the position

of the sample, thereby complicating the shape of the resonant slice. To check this,

we calculate the total magnetic field resulting from both particles. A contour plot

of the field distribution is shown in Fig. 8.3(a). The figure shows that the field of

the large top particle falls off sufficiently quick that the amplitude and shape of the

resonant slices (constant B0) below the bottom magnet are hardly affected, allowing

us to do our simulations using a simple single dipole model. This is confirmed in

figure 8.3(b), where we compare the magnitude of the field directly below the bottom

magnet with and without the top magnet. We find that at small heights, where all of

the experiments are performed, the magnitude of the magnetic field is unaltered by

the presence of the large upper magnet.

Of course, the main goal of going for smaller magnetic particles is to increase

the magnetic field gradient. Fig. 8.4(a) shows a contour plot of the derivative of

the magnetic field in the X-direction for a magnet with a radius of 0.95 µm5. As

expected, the derivative is zero directly below the magnet, but increases to values of

several hundred mT/µm at positions right in front of or behind the magnet.

A cross section of the contour plot along the line Z = R0/3 is show in Fig. 8.4(b),

calculated for two magnets with different radii of 0.85 µm and 1.9 µm. From this im-

age, we find the following: First of all, the maximum field gradient is indeed inversely

proportional to the radius of the magnet; secondly, the distance to the optimum of

∂B/∂x scales with the radius of the magnet, so a smaller particle reduces the effective

field of view of the MRFM. Both of these observations match the predictions from Sec.

8.3 where we looked at the radial component of the magnetic field gradient, showing

3ρSi = 2330 kg/m3 and ρNdFeB = 7400 kg/m3.
4Note: this calculation is only valid for the fundamental mode.
5reminder: the Z-direction is the vertical direction along the axis of the cantilever, and the X-direction

is pointed along the soft direction of the cantilever and the magnetization of the magnets.
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(radii 0.95 µm and 1.82 µm). The gray circles indicate the positions of the magnets. The

labels indicate the magnitude of the field (mT) for the different contour lines. (b) B-field

versus the distance between the sample and the surface of the magnet for a single magnet

(blue) and the double magnet (red) configurations, calculated directly below the magnet.
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Figure 8.4: (a) Contourplot of ∂B/∂x in the Y = 0 plane for a magnet with radius 0.95 µm.
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located at Z = 0. (b) Cross-section of Fig. (a) for two different magnets, one with radius 0.95

µm (blue) and the other with radius 1.9 µm (red), along Z = R0/3 (following Garner). As

predicted, the magnitude of ∂B/∂x scales with the inverse of the radius of the magnet, while

the distance between the center of the magnet and the optimum of ∂B/∂x scales linearly

with the radius.
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Figure 8.5: Calculation of the improved coupling of the double magnet cantilevers (solid

red) compared to a single magnet cantilever (solid blue), with (a) the coupling along the red

dashed line in (c) at 20 µm above the surface, and (b) the coupling versus the height at the

position marked by the star in (c), 5 µm outside the pickup loop at X = 15 µm.

that this was a valid simplification to find the general scaling laws concerning the

radius of the magnet.

8.6 Enhanced coupling strength to pickup loop

Where traditional MRFM setups utilizing a laser readout of the cantilever motion

have a constant detection sensitivity, with our SQUID readout this sensitivity is highly

dependent on the position of the magnetic particle with respect to the pickup loop,

and on the amplitude of the oscillation of the cantilever. This coupling is obviously

very small when the cantilever is far away from the pickup loop, as is the case when we

are still determining the exact position of the cantilever. A bit less obvious is the fact

that the coupling also becomes small when the magnet is very close the surface of the

detection chip. This is because the vertical component of the magnetic field from the

magnet is zero in the horizontal plane crossing the magnet. Both of these situations

with low coupling should be improved by the second magnet: In the far-field limit the

second particle increases the total magnetic moment and thereby the coupling, and

close to the pickup loop, when the bottom magnet is nearly touching the surface of

the chip, the top particle is still high above the pickup loop with a strong coupling.
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8.7 Spin-induced dissipation

These intuitive ideas are checked by a calculation of the coupling from both par-

ticles using the equations outlined in Sec. 2.2. The result is shown in Fig. 8.5. The

coupling at large distances from the pickup loop (20 µm above the pickup loop) is

shown in Fig. 8.5(a), where we find that the ratio between signals of the single and

double magnet cantilever is simply equal to the ratio of the volumes of the magnets,

since to first order the coupling is proportional to the magnetic moment m = V Br

µ0
,

with Br the saturation magnetization. Fig. 8.5(b) shows the coupling versus the

height at a typical position where an MRFM experiment could be performed. While

it is clear that the coupling for the single magnet decreases rapidly as the height of

the magnet is reduced, the coupling of the double magnet to the pickup loop keeps

rising, with a maximum increase in coupling of a factor of 3.

We can get some intuition about these values for the coupling by looking at the

signals that we would get from the thermal motion of the cantilever. A cantilever

with spring constant k0 = 80 µN/m at a temperature of 20 mK has a mean thermally

driven amplitude of about 50 pm. In order to be able to detect the thermal motion,

this motion has to be multiplied by the coupling strength, and then compared to the

SQUID flux noise floor of about 1 µΦ0/
√

Hz, while taking into account that we only

have about 3% of efficiency in transferring the signal from the pickup loop to the

SQUID (see Sec. 2.2.1). So, a detection noise of 1 µΦ0/
√

Hz at the SQUID means

a detection limit of about 30 µΦ0/
√

Hz at the pickup loop. This implies that the

coupling has to be larger than

30 µΦ0

50 pm
= 0.6 mΦ0/nm (8.14)

for the thermal motion to be detectable within a 1 Hz bandwidth.

8.7 Spin-induced dissipation

We will now present experimental data demonstrating that the new double-magnet

cantilevers work, i.e. retain their magnetization, based on measurements of the spin-

induced dissipation of the cantilever when coupled to the 2D spin system on the

surface of a silicon substrate. This experiment was first performed by Den Haan

et al. using a force sensor with a single magnet[77]. In Ref. [77], it is described how

the coupling between paramagnetic spins and the magnet on the cantilever opens a

dissipation channel for the energy in the cantilever, inducing a shift of the inverse

quality factor given by:

∆
1

Q
= C

2πf0T1

1 + (2πf0T1)
2 , (8.15)
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Figure 8.6: Quality factor versus temperature for the new double-magnet cantilever coupled

to the electron spins on a silicon substrate. The solid lines are fits to the data for a collective

spin density σ and relaxation time T1. Q0 is extrapolated from the high temperature limit

for each height individually. The dashed red line shows the results of a calculation for a 3.4

µm diameter magnet at h = 1.5 µm for identical parameters.

with

C =
σµ2

k0kBT

∫
S

(
B̂(r) · ∂B(r)

∂x

)2

cosh2 (µB(r)
kBT

)
d2r (8.16)

The quality factor of the cantilever is then given by Q−1 = Q−1
0 + ∆Q−1. Using this

theory, Den Haan et al. were able to extract a spin density of 0.14 spins/nm2, with a

spin-lattice relaxation time T1 = 0.39 ms.

We have repeated this experiment with the double-magnet cantilever shown in Fig.

8.2 positioned above one of the silicon detection chips. The measurement consists of

measuring the properties (resonance frequency and quality factor) of the cantilever

for various temperatures and heights above the surface, in our case by performing

frequency sweeps around the cantilever resonance frequency using a piezoelectric ele-

ment to drive the cantilever. The resulting quality factor measured in this experiment

is shown in Fig. 8.6. During this experiment, some unintended charging of the can-

tilever tip or sample induced large 1/f frequency noise, leading to sudden jumps in

the cantilever resonance frequency every couple of minutes. For this reason, we were

unable to obtain reliable frequency shift data. The 1/f noise does not influence the

measurement of the cantilever quality factor, as long as no frequency jump occured

during the sweep.
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The solid lines in Fig. 8.6 are fits to Eq. 8.15, assuming a magnet with a radius

of 0.95 µm and a saturation magnetization of 1.15 T. We cannot extract independent

values for the spin density and relaxation time, as this requires reliable frequency shift

data. When only the quality factor data is available, the two parameters can balance

each other. However, in the limit of ω0T1 � 1, the shift of the inverse quality factor is

proportional to σ/T1, so this factor is still a meaningful way to compare the dissipative

properties of various surfaces. For the data presented in Fig. 8.6, we find σ/T1 = 1.04

nm−2ms−1, a value three times higher than what was reported by Den Haan et al.,

indicating that the surface of the used detection chip was contaminated, most likely

caused by residue of e-beam lithography resist on the surface of the chip. However,

considering the poor quality of the surface, the smaller magnets indeed lead to less

dissipation of the energy in the cantilever for equal heights, as visible when comparing

the solid red line in Fig. 8.6 with the dashed red line, which indicates the calculated

quality factor using the same parameters as the other curves but for a magnet with

a radius of 1.7 µm.

In the analysis of this data, we have made the following assumptions:

• The minima of the dissipation curves can be used to calibrate the height or

saturation magnetization of the magnet. We had to add 300 nm to the assumed

height to match the data with the calculations. This height error can be caused

by a systematic error in our height calibration method6, or by a dead layer

of the magnet, which reduces the effective radius and then requires a higher

saturation magnetization. We believe the problem lies in the height calibration,

as the MRFM experiments described in Ch. 4 showed a similar height mismatch.

• Q0 has been determined individually for each height curve, by extrapolation of

the data to high temperatures using that the spin-dependent dissipation has a

1/T dependence for high T . We find a quality factor of over 37 000 for the largest

heights, and a gradually decreasing quality factor as the height decreases. We

attribute this temperature-independent dissipation to the fluctuating charges at

the cantilever frequency, whose low frequency counterparts are held responsible

for the 1/f frequency noise.

The results from Fig. 8.6 suggest big improvements in the quality factor close to

the sample when using smaller magnets. This is made more explicit in Fig. 8.7(a),

where we show the calculated spin-induced dissipation for the cantilever coupled to

6The height calibration consists of a touch measurement, where the cantilever is slowly approached

to the surface until it’s motion cannot be detected anymore. Errors can be introduced when, for

instance, charging causes the cantilever to bend when close to the sample, or when the cantilever

is not aligned perfectly perpendicular to the surface of the detection chip.
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Figure 8.7: Calculation of the spin induced dissipation (= ∆Q−1) using the parameters

found in Fig. 8.6 for two different magnet radii, plotted versus (a) the height above the

sample and (b) the Larmor frequency of the electron spins in the field from the two magnets.

a 2D spin system at a temperature of 30 mK as a function of the height. However,

this presentation of the data is misleading since this compares equal heights. In re-

ality, when using a smaller magnet the experiments have to be performed at smaller

distances. Therefore, a better comparison is by looking at constant Larmor frequen-

cies instead, as shown in Fig. 8.7(b). The translation between height and Larmor

frequency was done by calculating the magnitude of the magnetic field directly below

the magnet for all heights.

We find that the spin-induced dissipation presented in this way is completely

independent of the radius of the magnet. This can be understood following the same

arguments we used in Sec. 8.3. The dissipation per spin is determined by the square of

the field gradient, which is roughly proportional to R−2
0 when evaluated at a constant

Larmor frequency7. At the same time, the total number of spins for a 2D system scales

as R2
0, so the increasing dissipation per spin is perfectly balanced by the decreasing

number of contributing spins, making the total dissipation independent of the radius

of the magnet.

Note that this finding is only valid when the dissipation originates from a 2D

system. In the case that the dissipation originates from the bulk of the sample a

7This is equivalent to using a height proportional to the radius.
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smaller magnet will lead to reduced dissipation proportional to the radius, and thus

a higher quality factor.

8.8 Conclusions

To summarize, we have succeeded in the fabrication of MRFM cantilevers with two

magnetic particles, one at the end of the tip with a small radius to generate large field

gradients, and a second larger particle several micrometers higher on the cantilever to

reduce the detection noise. Initial experiments measuring the spin-induced dissipation

show that the new cantilevers are fully functional and should be suited for MRFM

experiments. To date, the true MRFM experiments have yet to be done.

With the enhanced field gradients, more sensitive MRFM experiments become

possible. In Ch. 4, the prospects for these new cantilevers for the imaging of protons

is discussed. However, one should keep in mind that even though the signal per spin

increases, the total signal is decreased due to the small detection volumes. Further-

more, the issue of a reduced quality factor of the cantilever by the magnetic coupling

to an approximately 2D spin-system is not solved by using these new cantilevers.

A follow up to the fabrication of these cantilevers to get even higher field gradients

was attempted in collaboration with the Marohn Group from Cornell University.

Although some cantilevers were made, unfortunately they broke before they could be

tested in our MRFM setup [205].
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