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Feasibility of imaging in nuclear

Magnetic Resonance Force

Microscopy using Boltzmann

polarization

We report on magnetic resonance force microscopy measurements of the Boltzmann polar-

ization of nuclear spins in copper by detecting the frequency shift of a soft cantilever. We use

the time-dependent solution of the Bloch equations to derive a concise equation describing

the effect of radio-frequent (RF) magnetic fields on both on- and off-resonant spins in high

magnetic field gradients. We then apply this theory to saturation experiments performed on

a 100 nm thick layer of copper, where we use the higher modes of the cantilever as source of

the RF field. We demonstrate a detection volume sensitivity of only (40 nm)3, correspond-

ing to about 1.6·104 polarized copper nuclear spins. We propose an experiment on protons

where, with the appropriate technical improvements, frequency-shift based magnetic reso-

nance imaging with a resolution better than (10 nm)3 could be possible. Achieving this

resolution would make imaging based on the Boltzmann polarization competitive with the

more traditional stochastic spin-fluctuation based imaging, with the possibility to work at

milliKelvin temperatures.

This chapter has been published as M. de Wit et al., “Feasibility of imaging in nuclear Magnetic

Resonance Force Microscopy using Boltzmann polarization”, Journal of Applied Physics, Vol. 125,

p. 083901, Feb. 2019
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4 Feasibility of imaging in nuclear MRFM using Boltzmann polarization

4.1 Introduction

Magnetic Resonance Force Microscopy (MRFM) is a technique that combines mag-

netic resonance protocols with an ultra sensitive cantilever to measure the forces

exerted by extremely small numbers of spins, with the immense potential of imaging

biological samples with nanometer resolution [4, 5, 62]. In the last 20 years, great

steps have been taken towards this goal, with some milestones including the detec-

tion of a single electron spin [12], the magnetic resonance imaging of a tobacco mosaic

virus with a spatial resolution of 4 nm [16], and more recently the demonstration of a

one-dimensional slice thickness below 2 nm for the imaging of a polystyrene film [17].

The experiments are typically performed by modulating the sample magnetization in

resonance with the cantilever, and then measuring either the resulting change in the

oscillation amplitude (force-based) or the frequency shift (force-gradient based).

Both the force-based and force-gradient based experiments have some severe tech-

nical drawbacks, mainly associated to the cyclic inversion of the spin ensemble. For the

coherent manipulation of the magnetization, alternating magnetic fields on the order

of several mT are required [57, 114]. The dissipation associated with the generation

of these fields is significant and prevents experiments from being performed at mil-

liKelvin temperatures, even for low duty-cycle MRMF protocols like cyclic-CERMIT

[11, 14]. Furthermore, the requirement that the magnetization is inverted continu-

ously during the detection of the signal means only samples with a long rotating-frame

spin-lattice relaxation time T1ρ are suitable.

For imaging of nuclei, previous experiments have almost exclusively focused on

measuring the statistical polarization of the spin ensemble. However, the possibility

to use the Boltzmann polarization instead would dramatically improve the efficiency

of the measurement, as averaging N times enhances the power signal-to-noise ratio

(SNR) by a factor of N for Boltzmann based measurements, compared to
√
N for

statistical polarization signals. There have been MRFM experiments based on the

Boltzmann polarization, for instance in order to measure the relaxation times of nuclei

[11, 35, 37], but these experiments lacked the volume sensitivity required for imaging

with a spatial resolution comparable to the statistical experiments.

In this work, we present measurements of the Boltzmann polarization of a copper

sample at a temperature of 21 mK by detecting the frequency shift induced by a

saturation experiment. We derive the time-dependent solution to the Bloch equations

appropriate for typical MRFM experiments, obtaining a concise equation for the non-

equilibrium response of both on- and off-resonant spins to a radio-frequent (RF) pulse.

Furthermore, we demonstrate that we can use higher modes of the cantilever as the
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source of the alternating field in order to generate the required RF fields to saturate

the magnetization of the spins with minimal dissipation [50]. These results suggest

that imaging based on the Boltzmann polarization could be possible, allowing for the

first MRFM imaging experiments performed at temperatures down to 10 mK and

using the magnet-on-tip geometry, as opposed to the sample-on-tip geometry more

commonly found. We substantiate this claim by using the specifications of the current

experiments to calculate the resolution for an imaging experiment on protons based

on measuring the Boltzmann polarization.

4.2 Methods

4.2.1 Experimental setup

We improve on earlier measurements in our group on nuclear spins in a copper sample.

The setup and measurement procedure strongly resemble those used in that previous

work [37]. The operating principle of the MRFM is shown in Fig. 4.1(a). The heart of

the setup is a soft single-crystal silicon cantilever (spring constant k0 = 70 µNm−1) [7]

with a magnetic particle at the end with a radius R0 = 1.7 µm, resulting in a natural

resonance frequency f0 = ω0/(2π) ∼ 3.0 kHz, an intrinsic Q-factor Q0 ∼ 3 ·104, and a

thermal force noise at 20 mK of 0.4 aN/
√

Hz. The magnet induces a static magnetic

field B0 which can be well approximated by the field of a perfect magnetic dipole. The

strength of the field of the magnet reduces quickly as the distance to the center of the

magnet increases, creating a large magnetic field gradient. For typical experimental

parameters the magnetic field is of the order of a few tens to a few hundred mT, with

magnetic field gradients of approximately 100 mT/µm. When the cantilever is placed

at a height h above a sample, spins in the sample couple to the resonator via the

magnetic field gradient, inducing a frequency shift (see Sec. 4.2.5). An RF pulse with

frequency ωRF can be used to remove the polarization of the spins that are resonant

with this pulse, i.e. the spins that are within the resonant slice where |B0| = ωRF/γ,

with γ the gyromagnetic ratio of the spins (in Fig. 4.1(a) the resonant slice is marked

in red). We will refer to this procedure as a saturation experiment or saturation pulse.

The theoretical background of the saturation experiment is given in Sec. 4.2.4.

Our particular MRFM setup is designed to be operated at temperatures close

to 10 mK using a detection scheme based on a pickup loop (shown in Fig. 4.1(b))

and superconducting quantum interference device (SQUID) [47]. Additionally, we

use a superconducting NbTiN RF wire to send RF currents to the sample [55]. The

MRFM setup is mounted at the bottom of a mechanical vibration isolation stage, and
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Figure 4.1: (a) Schematic of the measurement setup. An RF wire is used to generate an RF

field BRF directly or to excite higher modes of the cantilever to generate BRF fields with

minimal dissipation. The RF pulse removes the Boltzmann polarization of spins located

within and near the resonant slice (red region), inducing mHz shifts of the cantilever’s fun-

damental resonance frequency. (b) Optical microscope image of the detection chip, showing

the NbTiN pickup loop and RF wire, and the copper sample with a thickness of 100 nm.

the cryostat has been modified to reduce vibrations originating from the pulse tube

refrigerator [77].

The RF pulse can be applied using two methods, both shown in Fig. 4.1(a).

First of all, we can use an RF wire to send an alternating current, which generates

a magnetic field directly. This allows for precise control of the pulse shape and

amplitude, but at the cost of some heating of the sample due to AC dissipation in the

superconducting RF wire. The amplitude of the RF field is given by BRF = µ0I/2πr,

with r the distance to the RF wire, dictating that all measurements have to be done

as close to the RF wire as possible (preferably within several micrometers). At a

distance of 5 µm from the RF wire, we can generate magnetic fields (in the rotating

frame of the spins, see Sec. 4.2.4) of up to 0.3 mT. An alternative method to generate

the required RF field is by using the higher modes of the cantilever, the proof of

concept of which was recently demonstrated by Wagenaar et al. [50]. Generating RF

fields using the higher modes can be done with a much smaller current in the RF wire

to generate a magnetic drive field, or by using a piezo at the base of the cantilever,

allowing experiments at larger distances from the RF wire, or even without one. In

our experiment, we use a small current in the RF wire (on the order of ∼ 10 µA) to

60



4

4.2 Methods

excite one of the higher modes of the cantilever, as illustrated in Fig. 4.1(a). The

motion of the higher mode induces a small rotation of the magnet, which results

in the generation of an amplified BRF at the frequency of the excited higher mode

perpendicular to the tip field. In this way, RF fields can be generated with negligible

dissipation.

The copper sample used in the experiment is patterned on the detection chip close

to both the RF wire and the pickup loop, as shown in Fig. 4.1(b). The copper sample

is a sputtered film with a thickness of 100 nm, capped with a 20 nm layer of gold to

prevent oxidation. The thickness of the sample was chosen to be 100 nm in order to

reduce eddy currents in the copper, which deteriorate the Q-factor of the cantilever

and thereby the measurement sensitivity (for metal films with a thickness less than

the skin depth, eddy current dissipation scales with the cube of the thickness [115]).

Copper overlaps with the RF wire in order to give the sample a well defined poten-

tial. Besides the thermal conductance of the silicon substrate, there is no additional

thermalization used to cool the copper. The cantilever can be positioned above the

copper with a lateral accuracy of several micrometers. The relevant nuclear magnetic

resonance (NMR) properties of copper for an MRFM experiment are detailed in the

supplementary material.

4.2.2 Frequency noise

We have employed a series of improvements to the setup to enhance the frequency

noise floor of the measurement, and thus increase the sensitivity. The improvement

is obvious when looking at the noise spectrum of the frequency, as shown in Fig.

4.2. The spectrum is measured by driving the cantilever with an amplitude of 43

nmrms and tracking the resonance frequency using a phase-locked loop (PLL) of a

Zurich Instruments lock-in amplifier with a detection bandwidth of 40 Hz. The PLL

feedback signal is sent to a spectrum analyzer. In black we see the frequency noise

spectrum of the current setup, while in red we see the frequency noise spectrum from

the experiment in 2016 on a 300 nm thick copper film performed in our group [37].

Both spectra were measured at a height of 1.3 µm above a copper sample. The total

frequency noise is given by the sum of the thermal noise, the detection noise, and the

1/f noise typically attributed to the sample [37, 116]:

Pδf(f) = P thermal
δf + P det

δf f2 + P sample
δf f−1 (4.1)

The noise reduction of nearly 2 orders of magnitude is due to a combination of several

technical improvements. Improved vibration isolation and cantilever thermalization

have reduced the thermodynamic temperature of the cantilever from 132 mK to less
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Figure 4.2: Frequency noise spectrum Pδf measured at a height of 1.3 µm. In red we see

the frequency noise spectrum from the initial experiment in our group, measured with a

cantilever amplitude of 110 nmrms[37]. In black we see the current experiment, measured

with a cantilever amplitude of 43 nmrms. The roll-off of the noise at higher frequencies in

the black spectrum is due to the bandwidth of the PLL, which was set at 40 Hz.

than 50 mK. An improved design of the pickup loop resulted in an amplitude de-

tection noise floor of 30 pm/
√

Hz, determined from the measured transfer between

the cantilever motion and the SQUID’s output voltage. This allows for a much lower

cantilever drive amplitude with the same detection frequency noise. The biggest im-

provement seems to be the reduction of the thickness of the copper film. Because the

dissipated power of the eddy currents in the film scales strongly with the thickness of

the film, we find that the measured Q-factor at 1.3 µm from the sample has increased

from 317 for the 300 nm film to almost 5000 for the 100 nm film. This reduces all

three contribution to the frequency noise, particularly the 1/f noise which is mainly

attributed to eddy currents in the sample1. The thermal noise floor using these pa-

rameters is estimated to be 0.7 mHz/
√

Hz, so the data in Fig. 4.2 are not thermally

limited. With a 1 Hz detection bandwidth, the integrated frequency noise is as low

as 1.8 mHz.

1The conjecture that the eddy currents dominate the 1/f noise follows from the dependence of the

1/f noise on the Q-factor, as discussed in Fig. 2 in the paper by Wagenaar et al.[37].
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Figure 4.3: Example of a typical measurement (at T = 40 mK) where we show the frequency

shift ∆f with respect to the equilibrium frequency f0. The light blue line shows a single

measurement of the frequency shift (after a 1 Hz low-pass filter). The dark blue line shows

50 averages. The red solid line is an exponential fit to the data following Eq. 4.2. The green

and orange vertical lines indicate the start and end of the saturation pulse.

4.2.3 Measurement procedure

A typical saturation recovery measurement (performed at a temperature T = 40

mK) is shown in Fig. 4.3. Again a PLL is used to measure the frequency shift

∆f = f(t)− f0. At t = 0, an RF pulse with a certain duration tp and strength BRF

is turned on. The start and end are indicated by the green and orange vertical lines

in Fig. 4.3. During the pulse, we observe frequency shifts that we attribute to a

combination of electrostatic effects and slight local heating of the sample. After the

pulse, the frequency shift relative to f0 is measured. The obtained recovery curve can

be fitted to

∆f(t) = ∆f0 e
−(t−t0)/T1 , (4.2)

with ∆f0 the direct frequency shift at time t0, the end of the pulse. The light blue

curve in Fig. 4.3 shows the result of a single measurement of the frequency shift (with

a 1 Hz low-pass filter), and the dark blue curve shows the result of 50 averages. In

red we show the best fit to the data using Eq. 4.2.
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4.2.4 Spin dynamics in MRFM

In order to fully understand the observed frequency shifts, we need to find the final

magnetization of the spins coupled to the magnetic field of our cantilever after a satu-

ration pulse. The behaviour of spins in alternating magnetic fields is well understood

from conventional NMR, but the analysis is often limited to steady-state solutions

[117]. This limit works well for most NMR applications where the alternating fields

are of sufficient strength and duration that the magnetization of the spin ensemble has

reached an equilibrium during the pulse, but this does not necessarily work for MRFM

due to the large magnetic field gradient, resulting large number of off-resonant spins,

and the often weak oscillating magnetic fields. Therefore, we will derive equations

for the time dependence of the magnetization of spins during an RF pulse, also for

spins not meeting the resonance condition. These equations are then used to derive

the effective resonant slice thickness in an MRFM experiment, a crucial component

trying to decrease the detection volume and thereby optimize the imaging resolution.

The time evolution of spins subjected to a large static magnetic field (B0) and a

small alternating magnetic field (BRF) perpendicular to the static field has long been

understood using the Bloch equations [118]. In the rotating frame, the equations of

motion of the magnetization m(t) subjected to an effective magnetic field Beff =

(B0 − ω/γ) k̂ +BRFî are given by

dmx

dt
= −∆ωmy −

mx(t)

T2

dmy

dt
= ω1mz + ∆ωmx −

my(t)

T2

dmz

dt
= −ω1my −

mz(t)−m0

T1

(4.3)

Here γ is the gyromagnetic ratio of the spins, T1 and T2 are the spin-lattice (longi-

tudinal) and spin-spin (transverse) relaxation times, the detuning ∆ω ≡ ω − ω0 with

ω0 = γB0 the Larmor frequency, and ω1 ≡ γBRF. m0 is the initial magnetization in

thermal equilibrium. k̂ is the unit vector pointing in the direction of the B0 field. To

solve this system of differential equations, it is convenient to rewrite them in vector

notation as

ṁ = Am+ b, (4.4)
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with the source term b = m0

T1
k̂, and A given by

A =


− 1
T2
−∆ω 0

∆ω − 1
T2

ω1

0 −ω1 − 1
T1

 (4.5)

The steady state solution is now easy to derive by solving the differential equation after

setting ṁ = 0. Note that mx and my are rotating with the Larmor frequency around

the z-axis. As the resonance frequencies of the cantilevers used in MRFM are typically

much lower than the Larmor frequency, any coupling of these two components to

the cantilever averages out over time. Therefore, we are only interested in the z-

component of the magnetization, which is the same in the rotating frame as in the

laboratory frame [117, 119]:

mz,∞ =
1 + ∆ω2T 2

2

1 + ∆ω2T 2
2 + ω2

1T1T2
m0

≡ pzm0

(4.6)

In the last line we defined pz as the fraction of the magnetization that is removed by

the BRF field if it is left on continuously.

In MRFM experiments the steady state solution described by Eq. 4.6 is often

not enough, as the RF pulses are not necessarily of sufficient strength and duration

to fully saturate the magnetization of a spin ensemble. The time-dependent solution

where ṁ 6= 0 is given by the sum of the homogeneous solution (b = 0) and the

non-homogeneous steady state solution:

mz = mz,∞ + (m0 − pzm0)eλzt

= pzm0 + (m0 − pzm0)e−
t

T1pz ,
(4.7)

where λz = 1/(T1pz) is the third eigenvalue of the matrix A. Inserting this equation

into Eq. 4.4 confirms that it is a valid solution. The equation above gives the time-

dependent z-magnetization of a spin ensemble after an RF magnetic field is turned on

and left on. In deriving it, we have assumed that T2 � T1 and that the strength of the

RF field is weak such that ω1T2 � 1. These assumptions give us a concise equation

much more convenient for saturation experiments in MRFM than the expressions

found in the general case [120, 121].

The consequences of Eq. 4.7 can be seen in Fig. 4.4. Depending on the precise

pulse parameters, even the spins that do not meet the resonance condition by a detun-

ing ∆ω can lose (part of) their magnetization due to the RF pulse. The calculation is

done assuming T1 = 25 s and T2 = 0.15 ms, typical values for copper at T = 40 mK
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Figure 4.4: Calculated magnetization mz after three different RF pulses: In black after a 1

s pulse with a strength of 3 µT, in red an infinitly long pulse with the same strength, and in

blue a 1 s pulse with a strength of 10 µT. The bottom axis shows the detuning ∆ω, while

the bottom axis shows the corresponding distance to the resonant slice, calculated using Eq.

4.8 assuming a magnetic field gradient ∇rB0 = 5 · 104 T/m.

[37]. The detuning can be translated to a distance to the resonant slice (the region

where ∆ω = 0) using

d ≈ ∆ω

γ∇rB0
(4.8)

where ∇rB0 is the gradient of the magnetic field in the radial direction.

4.2.5 Calculation of frequency shifts

To calculate the frequency shift ∆f0 due to the saturation of the magnetization of the

spins in resonance, we first look at the shift of the cantilever resonance frequency due

to the coupling with a single spin. For this we follow a recent theoretical analysis of

the magnetic coupling between a paramagnetic spin and the cantilever by De Voogd

et al. [52]. In our case, where the frequency of the RF pulse ωRF � 1
T2

and ωT1 � 1,

a single spin induces a stiffness shift given by

∆k = 〈m〉
(
|B′′

||B0
|+ 1

B0
|B′

⊥B0
|2
)

(4.9)
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The primes and double primes refer to the first and second derivatives, respectively,

with respect to the fundamental direction of motion of the cantilever. |B′′
||B0
| is the

component along B0. |B′
⊥B0
| is the perpendicular component. 〈m〉 is the mean

Boltzmann polarization.

The effect of an RF pulse is to partially remove the magnetization of the spins by

an amount given by:

∆m = 〈m〉 −mz (4.10)

= 〈m〉 (1− pz)
(

1− e−
tp

T1pz

)
, (4.11)

where we set m0 equal to 〈m〉, i.e., we assume the system is in thermal equilibrium

before the pulse such that the initial magnetization is equal to the Boltzmann polar-

ization. Please be reminded that ∆m is position dependent via pz due to the detuning

∆ω, which increases with the distance to the resonant slice and also depends on the

precise RF pulse parameters. We can calculate the total measured frequency shift

after an RF pulse by integrating over all spins in the sample including the position

dependent demagnetization ∆m

∆f0 = −1

2

f0

k0
ρ

∫
∆m

(
|B′′

||B0
|+ 1

B0
|B′

⊥B0
|2
)
dV, (4.12)

with ρ = 85 spins/nm3 the spin density of copper. Alternatively, one can also sum the

contribution of individual voxels, as long as the size of the voxels is small compared

to the effective resonant slice width.

4.3 Frequency shifts measured in copper

In this section, we present measured frequency shifts using the higher modes of our

cantilever as a source for the RF-field, on one hand to demonstrate that the higher

modes can indeed be used to perform full-fledged saturation experiments in MRFM,

and on the other to give some experimental verifications of the theory presented in

the Sec. 4.2.

We demonstrate the effectiveness of using the higher modes of the cantilever as

an RF field source, by exciting 4 different higher modes of the cantilever by sending

a current of 21 µArms through the RF wire. The frequencies of the selected higher

modes are 360 kHz, 540 kHz, 756 kHz, and 1.009 MHz. The positions of the resonant

slices corresponding to these frequencies are shown in Fig. 4.5(a). The height of the
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Figure 4.5: (a) Positions of the resonant slices corresponding to the cantilever higher modes

at 360 (black), 540 (red), 756 (green), and 1009 (blue) kHz. The black sphere at the top of the

image represents the cantilever magnet (radius 1.7 µm, to scale). (b) Direct frequency shift

∆f0 versus height h after exciting the spins by using the RF wire to drive the higher modes

of the cantilever indicated in (a), measured at T = 30 mK. Solid lines are the calculated

signals for a pulse duration tp = 0.3 s, and with BRF a free parameter. The error bars

indicate the standard deviation of 10 single-shot measurements.

magnet above the sample determines which of the resonant slices is in the sample, and

how much signal each of these slices produces. In Fig. 4.5(b), we show the measured

direct frequency shift ∆f0 as a function of the height for each of the higher modes,

averaging over 10 single measurements. The error bars are determined by fitting 10

single-shot measurements and calculating the standard deviation of the fitted ∆f0.

The solid lines in the figure are the calculated signals based on Eq. 4.12 using tp =

0.3 s. As the precise amplitude of the mechanically generated RF field is difficult to

control since it depends on the distance between the magnet and the RF wire, the
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Figure 4.6: Effect of the excitation pulse duration tp on the measured direct frequency shift

∆f0 for the higher modes of the cantilever at 540 (red), 756 (green), 1009 (blue), and 1299

(purple) kHz, measured at h = 0.95 µm and T = 30 mK. The inset shows the calculated

direct frequency shift as a function of the RF frequency, and also shows the position of the

higher modes in this calculation. As tp increases, the resonant slice broadens and the direct

frequency shift increases as expected from the resonant slice positions indicated in the inset.

The error bars indicate the standard deviation of 5 single-shot measurements.

height of the magnet above the sample, and the Q-factor of the higher mode, the

strength of the RF field is the only free fitting parameter.

From the fits we obtain fields of 38, 35, 38, and 33 µT for the 4 higher modes

as mentioned before. Evidently, the different higher modes enter the sample at the

predicted heights, with the correct overall magnitude of the direct frequency shift.

The small deviation between the data and calculation at the lower heights probably

results from a slightly changing BRF. This measurement can be considered as a crude

one-dimensional scan of the sample. Furthermore, considering that the current of 21

µArms corresponds to a field of only 0.2 µT at the position of the cantilever, 7 µm

away from the RF wire, this measurement indicates that using the higher modes to

generate the RF field results in an amplification of the RF field strength of more than

a factor of 160. No heating was observed on the sample holder, indicating a dissipated

power < 1 nW.

We can further demonstrate the effect of the pulse parameters on the effective

resonant slice width by doing a variation on the previous experiment. We now keep

the sample at a constant height, and vary the duration of the RF current used to excite
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each of the higher modes in order to broaden the resonant slice. By comparing the

measured increase of the signal for the various higher modes to the signal we expect

from Eqs. 4.7 and 4.12, we can confirm the applicability of these equations. This

experiment is shown in Fig. 4.6. The inset shows the calculated frequency shift as a

function of the RF frequency, as well as the position of the higher modes. From the

inset we see that for short pulses (a narrow resonant slice) we expect no signal from

the 540 kHz and 1.299 MHz higher modes, some signal from the 756 kHz higher mode,

and most signal from the 1.009 MHz higher mode. This behaviour is also observed in

the main figure, where the solid lines are the calculated frequency shifts based on Eq.

4.12. As tp is increased, even the resonant slices whose center is not in the sample

broaden enough that off-resonant spins start to create measurable frequency shifts,

with a good correlation between theory and experiment. The mismatch between the

measured and calculated signal for very short pulse durations is attributed to the large

Q-factor of the higher modes, which can be as high as 106, resulting in characteristic

time constants of up to 1 s. In that case, driving the higher mode for a very short

time still results in a long effective pulse duration determined by the slow ringdown

of the higher mode.

4.4 Demonstration of volume sensitivity

As shown in Fig. 4.2, we have a very clean frequency noise spectrum. To make full use

of this, we have attempted to determine our optimal frequency resolution. To achieve

this, we make a small adjustment to the measurement scheme, by switching off the

cantilever drive a couple of seconds before we apply the RF pulse. The amplitude

of the fundamental mode decays quickly due to the relatively low Q-factor of the

fundamental mode close to the sample. By the time the pulse is sent, the amplitude

of the cantilever is thermally limited to less than 0.1 nm. Directly after the pulse,

the cantilever drive is switched back on to measure the resonance frequency shift. In

this way, we prevent broadening of the resonant slice due to the cantilever amplitude

of about 30 nmrms, and are able to achieve very narrow resonant slices. Fig. 4.7

shows the relaxation curve measured at T = 21 mK and h = 1.0 µm, after an 882

kHz RF pulse with BRF = 172 µT and tp = 80 µs. The blue curve shows the result

of 410 averages with a total measurement time of over 10 hours, while the red curve

is a fit to the data following Eq. 4.2, from which we extract a direct frequency shift

of -5.4 mHz. The inset shows the difference between the measured data and the fit,

indicating that we can measure the frequency shift with a standard deviation of 0.1

mHz, consistent with the integrated frequency noise calculated from Fig. 4.2 and the

number of averages.
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Figure 4.7: Relaxation curve (1 Hz low-pass filter, 410 averages) measured at h = 1.0 µm

and T = 21 mK, for a pulse at frequency 882 kHz with BRF = 172 µT and tp = 80 µs. The

solid red line is a fit to Eq. 4.2, from which we extract ∆f0 = -5.4 mHz. The inset shows

the difference between the data and the exponential fit, indicating a standard deviation of

the measured frequency shift of 0.1 mHz.

We can try to estimate the total detection volume that was necessary to generate

this signal. In order to do so, we make the simplifying assumption that there exists

a critical detuning ∆ωC such that all spins at a detuning smaller than the critical

detuning (i.e. spins that feel a magnetic field between B0−∆ωC/γ and B0 + ∆ωC/γ)

are fully saturated, and spins at a detuning larger than the critical detuning are

completely unaffected by the pulse. We then calculate the signal for various values

of ∆ωC until we find the value for which the calculation matches the experiment. By

dividing the sample in small voxels and summing all voxels that satisfy the condition

specified above for the correct ∆ωC, we find an estimate for the detection volume.

For the data presented in Fig. 4.7 we find that this signal is the result of a critical

detuning ∆ωC/(2π) = 2.1 kHz, equivalent to a resonant slice with a full width of

approximately 4 nm. This corresponds to a total detection volume of (152 nm)3,

with a noise floor equal to (40 nm)3. This latter volume contains a total of 5.5 · 106

spins at a Boltzmann polarization of about 0.3%, corresponding to about 1.6 · 104

fully polarized copper nuclear spins2.

2This noise floor can also be expressed in terms of the magnetic moment, leading to a value of

approximately 2 · 10−22 J/T.
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Note that for very small resonant slice widths, spin diffusion might be a relevant

factor [33]. However, only spin diffusion during the RF pulse influences the size of

the detection volume. Since in this experiment the pulse duration is only 80 µs, we

calculate that the spin diffusion length is less than 0.1 nm (see supplementary mate-

rial for details about the expected spin diffusion), much smaller than the estimated

resonant slice width of 4 nm.

4.5 Imaging protons

With the volume sensitivities achieved on copper as demonstrated in Sec. 4.4, it is

worthwhile to discuss what such an experiment would look like for a sample containing

protons, the prime target spin for imaging purposes. Therefore, in this section, we

will calculate the signals that can be expected from a proton-rich sample, under the

assumption that it is possible to achieve the same low frequency noise as in the current

experiment on copper. 1H spins have spin S = 1/2, gyromagnetic ratio γH/(2π) = 42.6

MHz/T, and a magnetic moment µH = 1.41 ·10−26J/T . For MRFM, proton spins are

generally a bit more favourable than copper spins, as the higher gyromagnetic ratio

and magnetic moment mean a higher Boltzmann polarization and a larger coupling

between a single spin and the cantilever. We assume a proton spin density ρH = 50

spins/nm3, a typical value for biological tissue and polymers [16, 116]. Furthermore,

we assume T1 = 30 s and T2 = 0.1 ms. Note that the exact values for the relaxation

times do not matter that much as long as the conditions used for the derivation of

Eqs. 4.7 and 4.9 are met, and the RF pulse duration is short compared to T1.

We calculate the total volume necessary to get a frequency shift of 1.8 mHz, a signal

that can be measured in a single shot experiment assuming the SNR achieved on the

copper, and 0.5 mHz, which can be measured within 30 minutes (∼ 15 averages).

The results can be found in Table 4.1. We considered three different experimental

configurations, where we vary the size of the magnet in order to increase the field

gradients and thereby the signal per spin. The first configuration is a replication of

the experimental parameters as used for the copper measurement from Fig. 4.7: A

saturation experiment performed at a height of 1.0 µm and a temperature of 21 mK.

The optimal signal at this height is found for an RF frequency of 3.5 MHz (about

a factor of 4 higher than the RF frequency used for the copper due to the higher

gyromagnetic ratio). The other two configuration are simulations with magnets with

radii of 1.0 µm and 0.5 µm. To make a fair comparison, we calculate the signal for the

same Larmor frequency 3.5 MHz, which dictates measurement heights of 0.56 µm and

0.24 µm. All unmentioned parameters are kept constant. The predicted detection
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R0 (µm) h (µm) ∇rB0 (µT/nm) Vss V30min

1.7 1.00 100 (84 nm)3 (55 nm)3

1.0 0.56 170 (59 nm)3 (39 nm)3

0.5 0.24 370 (39 nm)3 (25 nm)3

Table 4.1: Calculated volume sensitivities Vss (volume required for 1.8 mHz frequency shift)

and V30min,DNP (volume required for a 0.5 mHz frequency shift). Calculations are done

for sample temperature T = 21 mK and RF frequency ωRF/(2π) = 3.5 MHz. The radial

magnetic field gradient ∇rB0 is calculated at 50 nm below the surface of the sample.

volumes for the different configurations are shown in Table 4.1.

Clearly, decreasing the size of the magnetic particle will enhance the volume sen-

sitivity, but there is a fundamental limit: the experiment described here relies on

removing the Boltzmann polarization of the sample, but as the detection volume goes

down, we enter the regime where statistical polarization becomes dominant. The

critical volume Vc for this transition is given by [122]

Vc =
4

ρH

(
kBT

~γB0

)2

, (4.13)

where it is assumed that the thermal energy is much larger than the Zeeman splitting.

For a temperature of 21 mK and a Larmor frequency of 3.5 MHz, Vc ∼ (11 nm)3.

Below this detection volume, measurements of the direct frequency shift would average

to zero.

However, further enhancement of the volume sensitivity can still be achieved by

increasing the Boltzmann polarization of the protons. This can be done by working

at higher Larmor frequencies by decreasing the tip-sample separation, or by applying

a strong external magnetic field. An external magnetic field of 8 T would increase

the Boltzmann polarization by roughly a factor of 100, but applying external mag-

netic fields in combination with our SQUID-based detection is challenging due to our

extreme sensitivity to magnetic noise. An appealing alternative is to use dynami-

cal nuclear polarization (DNP), as was recently demonstrated for MRFM by Isaac

et al. [116]. For suitable samples, e.g. nitroxide-doped polystyrene, DNP can be used

to transfer polarization from electron spins to nuclei. The maximum enhancement

of the nuclear polarization that can be achieved using this mechanism is given by

ε = γe/γH = 660. However, for protons at a Larmor frequency of 3.5 MHz and

temperature of 21 mK the initial Boltzmann polarization is about 0.4%, so our max-

imal enhancement is limited to a factor 250. Table 4.2 shows the calculated volume

sensitivities if we are able to use DNP to enhance the nuclear polarization, for the
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R0 (µm) h (µm) DNPeff (%) Vss,DNP V30min,DNP

1.7 1.00 10 (21 nm)3 (14 nm)3

1.7 1.00 100 (13 nm)3 (8.7 nm)3

1.0 0.56 10 (15 nm)3 (10 nm)3

1.0 0.56 100 (9.4 nm)3 (6.1 nm)3

0.5 0.24 10 (9.6 nm)3 (6.2 nm)3

0.5 0.24 100 (6.1 nm)3 (4.0 nm)3

Table 4.2: Calculated volume sensitivities Vss,DNP and V30min,DNP including DNP to en-

hance the nuclear polarization with an efficiency DNPeff . Calculations are done for sample

temperature T = 21 mK and RF frequency ωRF /(2π) = 3.5 MHz.

cases where we achieve DNP efficiencies of 10% and 100%. Even for the more real-

istic assumption of 10% efficiency, we find that a volume sensitivity below (10 nm)3

could be possible. This voxel size would make imaging based on measurements of the

Boltzmann polarization a viable approach to image biological samples, without the

demand for high RF field amplitudes and continuous application of this field, as was

the case for previous amplitude-based imaging [16].

Of course, there are some potential pitfalls that should be considered. First of all,

we have assumed that the frequency noise spectrum shown in Fig. 4.2 can be main-

tained. However, large 1/f noise has been reported at 4K on insulating samples like

polymers, attributed to dielectric fluctuations [68, 123]. This frequency noise scales

with the square of the charge difference between the sample and the tip. Therefore,

we believe it can be avoided, either by properly grounding both the tip and sample,

but also by biasing the tip to tune away any charge difference [124, 125].

A second limitation is that for the current experiment we require T1 times to

be between several seconds and minutes. When T1 is shorter than several seconds,

it becomes comparable to other time constants in our setup (e.g., the thermal time

constant of the sample holder), making it difficult to extract the signal. When T1 be-

comes longer than minutes, averaging measurements to increase the SNR will become

very time-consuming, although the total measurement time may come down by using

multiple resonant slices [126, 127]. Plus, as the duration of a measurement increases,

1/f noise will increasingly become a limiting factor. T1 times within the desired range

for suitable proton samples are reported at low temperatures [113, 116]. For very

pure samples with long T1 times, appropriate doping of the sample with impurities

can be used to reduce the relaxation time [128].
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Figure 4.8: Measured higher mode resonance frequencies of the cantilever, together with the

mode frequencies obtained from finite element calculations. The highest resonance mode

investigated is the 15th mode located at f15 = 4.4 MHz. In the simulations we only consider

higher modes that vibrate in the soft direction of the cantilever.

The final challenge is to maintain the low operating temperatures required for

the low frequency noise floor while sending RF pulses in the MHz range. The power

dissipated by the RF pulse, even when using a superconducting RF wire, increases

with the frequency. To apply a 0.1 mT RF pulse at a sample located 5 µm from the

RF wire at 3.5 MHz, we measure a dissipation of approximately 3 µW in our setup.

A continuous power pulse with this level of dissipation would locally heat the sample

to over 100 mK. We can avoid this source of dissipation by using the higher modes

of the cantilever, which can be excited up to the 15th mode at 4.4 MHz and possibly

beyond. In Fig. 4.8 we show the frequencies of the higher flexural modes together with

the calculated frequencies obtained from finite element calculations. The estimated

dissipation from the motion of a higher mode is well below 1 fW, since we measure

the higher modes to have Q-factors approaching one million. Note that exciting the

higher modes becomes harder for higher mode numbers, as the rotation angle of the

magnet (that partially determines the magnitude of the generated RF field) scales

with the inverse of the torsional stiffness κn ∝ n4. For the presented mode numbers

this can be compensated by increasing the amplitude of the driving force. We do

expect, however, that non-linearities of the cantilever will be the fundamental limit

for the maximum fields that we can generate using the higher modes [50].
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4.6 Conclusions

We have used the time-dependent solution of the Bloch equation to derive a concise

equation to calculate the frequency shifts in MRFM experiments, and applied this

to saturation experiments on a thin copper film. By using the higher modes of the

cantilever as a source for the RF fields, we have demonstrated that it is possible to

make one-dimensional scans of the copper film with near-negligible dissipation, and

that the measured direct frequency shifts are well reproduced by the presented theory.

Finally, we have shown that we have measured a frequency-shift signal with a volume

sensitivity of (40 nm)3. We have done all this at temperatures as low as 21 mK, made

possible by the SQUID-based detection of the cantilever motion and the low power

saturation protocol in combination with the mechanical generation of the RF fields.

The achieved volume sensitivity opens up the way for imaging based on measure-

ments of the Boltzmann polarization, which could allow for high resolution imaging

due to the direct gain from lower temperatures, and the favourable averaging com-

pared to statistical polarization based imaging. We have shown that modest technical

changes to our current setup can allow for experiments on protons with a spatial res-

olution of (25 nm)3, and that increasing the polarization, for instance using DNP, can

improve the resolution even further to below (10 nm)3. The magnet-on-tip geometry

allows for a larger choice in available samples, as it is still an open question whether

interesting biological samples can be attached to an ultrasoft MRFM cantilever for

approaches using the sample-on-tip geometry. When it is possible to measure on

different samples with the same low frequency noise as achieved in the current exper-

iment, high-resolution Boltzmann-polarization-based magnetic resonance imaging at

milliKelvin temperatures in a magnet-on-tip geometry could become a reality.
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Supplemental material

4.7 Relevant NMR parameters of copper

The relevant NMR properties for both isotopes of copper are given in Table 4.3. In all

calculations, we assume a combined spin density ρ = 85 spins/nm3, and spin-lattice

relaxation times T1 dictated by the Korringa relation TT1 = 1.2 sK [129].

Parameter Variable 63Cu 65Cu

Spin S 3/2 3/2

Natural abundance 69 % 31 %

Gyromagnetic Ratio γ/(2π) 11.3 MHz/T 12.1 MHz/T

spin-spin relaxation time T2 0.15 ms 0.15 ms

Table 4.3: Overview of the relevant NMR parameters for the two isotopes of copper. [109,

129, 130]

4.8 Spin diffusion length for copper

When attempting to measure the signal from very narrow resonant slices, spin dif-

fusion might be a relevant factor, as the transfer of polarization from spins within

the resonant slice to spins outside of the resonant slice would increase the effective

detection volume. Spin diffusion can be suppressed in high field gradients [32–34].

Assuming a spin density of 85 spins/nm3 and a nearest-neighbor distance a = 0.256

nm, we calculate that this requires field gradients of at least 1.3 MT/m. So the field

gradients in the presented experiments are insufficient to suppress the spin diffusion.

We can find the expected diffusion length following the calculation by Wagenaar

et al.[37], who assumes a transition rate W = 1/30T2 [131]. For T2 = 0.15 ms this

leads to a diffusion constant D = Wa2 = 15 nm2/s and a diffusion length lD =
√
Dtp.

Thus, for a pulse duration tp = 80 µs, we find a diffusion length of 0.04 nm. Since

the diffusion transports polarization away from the resonant slice in both directions,

this leads to a broadening of the resonant slice of 0.08 nm.
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