

Advances in SQUID-detected magnetic resonance force microscopy Wit, M. de

Citation

Wit, M. de. (2019, June 18). Advances in SQUID-detected magnetic resonance force microscopy. Casimir PhD Series. Retrieved from https://hdl.handle.net/1887/74054

Version:Not Applicable (or Unknown)License:Leiden University Non-exclusive licenseDownloaded from:https://hdl.handle.net/1887/74054

Note: To cite this publication please use the final published version (if applicable).

Cover Page

Universiteit Leiden

The handle <u>http://hdl.handle.net/1887/74054</u> holds various files of this Leiden University dissertation.

Author: Wit, M. de Title: Advances in SQUID-detected magnetic resonance force microscopy Issue Date: 2019-06-18

Advances in SQUID-detected Magnetic Resonance Force Microscopy

PROEFSCHRIFT

TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT LEIDEN, OP GEZAG VAN RECTOR MAGNIFICUS PROF. MR. C.J.J.M STOLKER, VOLGENS BESLUIT VAN HET COLLEGE VOOR PROMOTIES TE VERDEDIGEN OP DINSDAG 18 JUNI 2019 KLOKKE 15:00 UUR

DOOR

MARTIN DE WIT

Geboren te Katwijk aan Zee in 1991

Promotor:	Prof. dr. ir. T.H. Oosterkamp
Promotiecommissie:	Dr. J.P. Davis (University of Alberta, Edmonton, Canada)
	Prof. dr. J.A. Marohn (Cornell University, Ithaca, USA)
	Prof. dr. E.R. Eliel
	Dr. M.I. Huber
	Prof. dr. J.M. van Ruitenbeek

Casimir PhD Series, Delft-Leiden 2019-14

ISBN 978-90-8593-400-4

An electronic version of this thesis can be found at https://openaccess.leidenuniv.nl

The work described in this thesis was performed at the Huygens - Kamerlingh Onnes Laboratory, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden.

This research is funded by the Netherlands Organisation for Scientific Research (NWO).

The cover shows an abstract illustration of the mechanical vibration isolation, one of the main achievements of this research resulting from the close collaboration between the scientists and technicians in our lab. Designed by Ilse Modder, www.ilsemodder.nl

Copyright © 2019 Martin de Wit Printed by: Gildeprint - Enschede

CONTENTS

1	Intr	roduction	1
	1.1	Development and applications of MRFM	2
	1.2	Principles of MRFM	4
	1.3	Sensitivity limit and the Oosterkamp approach	6
	1.4	Thesis Outline	8
2	Inst	rumentation: Fermat and Yeti	11
	2.1	Introduction	12
	2.2	MRFM detection chip	13
	2.3	Cantilever	18
	2.4	Fermat	21
	2.5	Cryostat Yeti	32
3	Vib	ration isolation with high thermal conductance for a cryogen-	
	free	dilution refrigerator	37
	3.1	Introduction.	38
	3.2	Filter design.	39
	3.3	Practical design and implementation	43
	3.4	Experimental results	47
	3.5	Conclusions	54
4	Fea	sibility of imaging in nuclear Magnetic Resonance Force Mi-	
	cros	scopy using Boltzmann polarization	57
	4.1	Introduction	58
	4.2	Methods	59
	4.3	Frequency shifts measured in copper	67
	4.4	Demonstration of volume sensitivity	70
	4.5	Imaging protons	72
	4.6	Conclusions	76
	4.7	Relevant NMR parameters of copper	77
	4.8	Spin diffusion length for copper	77

5	Density and T_1 of surface and bulk spins in diamond in high mag-			
	5 1	Introduction	19 00	
	5.1 5.9	Methods	81	
	53	Regults and discussion	87	
	5.4	Summary and outlook	01	
	5.5	Vacuum properties of the captilover	03	
	5.6	Fits with constant T _i times	. 95	
-	5.0		. 94	
6	Flux compensation for SQUID-detected Magnetic Resonance Force Microscopy 95			
	6.1	Introduction.	. 96	
	6.2	Circuit and calibration	. 98	
	6.3	Results	. 101	
	6.4	Conclusions and outlook	. 103	
7	\mathbf{Dis}	sipation of the alternating magnetic field source	105	
	7.1	Introduction.	. 106	
	7.2	Calorimetry at mK temperatures	. 106	
	7.3	Characterization of dissipation.	. 110	
	7.4	Models for the origin of dissipation	. 113	
	7.5	Suggestions to reduce dissipation	. 120	
	7.6	Reducing the effects of dissipation.	. 121	
	7.7	Conclusions	. 122	
8	Dot	uble-magnet cantilevers for increased magnetic field gradients	125	
	8.1	Introduction.	. 126	
	8.2	Intuition about magnetic field gradients	. 127	
	8.3	Signal-to-noise ratio	. 129	
	8.4	Fabrication of double-magnet cantilevers	. 130	
	8.5	Magnetic field distribution	. 132	
	8.6	Enhanced coupling strength to pickup loop	. 134	
	8.7	Spin-induced dissipation	. 135	
	8.8	Conclusions	. 139	
9	Val	orisation: the easy-MRFM	141	
	9.1	Necessity for a new characterization tool	. 142	
	9.2	Progress of the easy-MRFM	. 143	
	9.3	Future applications	. 146	

\mathbf{A}	Feed	back cooling of the cantilever's fundamental mode	147
	A.1 (Cantilever temperature and thermal noise force	148
	A.2 1	Feedback cooling of the cantilever's fundamental mode $\ldots \ldots \ldots$	151
в	Limit	tations of the mechanical generation of radio-frequency fields	155
	B.1 (Off-resonant coupling	156
	B.2 I	Non-linearities	158
	B.3	Temperature dependence of quality factor	158
\mathbf{C}	C Quenching of SQUID modulation under radio-frequency interfer-		
	ence		161
	C.1 (Quenched SQUID modulation	162
	C.2 1	Possibilities	163
D	Fabri	ication recipes	165
	D.1]	Detection chip \ldots	166
	D.2 1	Double layer resists for sputtering	167
	D.3 \$	Specific samples	169
	D.4 (Considerations for double-layer detection chips	170
Bil	oliogra	aphy	173
Sa	menva	atting	193
Cu	Curriculum Vitae		201
\mathbf{Lis}	t of P	Publications	203
Ac	knowl	edgements	205