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We consider charge pumping in a system of parafermions, implemented at fractional quantum Hall
edges. Our pumping protocol leads to a noisy behavior of the pumped current. As the adiabatic limit is
approached, not only does the noisy behavior persist but the counting statistics of the pumped current
becomes robust and universal. In particular, the resulting Fano factor is given in terms of the system’s
topological degeneracy and the pumped quasiparticle charge. Our results are also applicable to the more
conventional Majorana fermions.
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Adiabatic quantum pumping, first introduced by
Thouless [1], is a powerful instrument in studying proper-
ties of quantum systems. The underlying physics can be
related to the system’s Berry phase [1], disorder configu-
rations [2], scattering matrix and transport [3], critical
points [4], and topological properties [5–8]. In many cases
[1,4–8], adiabatic pumping is noiseless at zero temperature,
as the same number of quanta (of charge, spin, etc.) is
pumped every cycle and the pumping precision is increased
(the noise vanishes) as the adiabatic limit is approached. On
the other hand, noisy adiabatic quantum pumps are known
and have been extensively studied [9–14]. The simplest
(and a typical) example of such a noisy pump is two
reservoirs of electrons connected by a junction described by
a scattering matrix. As the phase of the reflection amplitude
r is varied from 0 to 2π, an electron is pumped with
probability jrj2 [9]. The probabilistic nature of the adiabatic
pumping process relies on the degeneracy of scattering
states. The pumped current and its noise are sensitive to jrj,
which in turn is highly sensitive to the system parameters.
In fact, in all such examples [9–14], the pumped current
and its noise depend on the details of the pumping cycle
and/or of coupling the system to external leads.
In this Letter, we implement the concept of adiabatic

pumping to a setup of topological matter. We find that,
when the adiabatic limit is approached, not only is the
pumped current noisy (a manifestation of the degeneracy of
the underlying Hilbert space), but it is also universal:
The current and its noise become largely independent of the
specific parameters used in the pumping cycle, and the
related Fano factor is directly related to the underlying
topological structure; cf. Eq. (1). Before going into tech-
nical details, we now summarize the essence and the
physical origin of our findings.
Qualitative overview of our protocol.—The topological

system underlying our adiabatic pump is an array of
parafermions (PFs), depicted in Fig. 1(a). Consider an

example of the system employing fractional quantum
Hall (FQH) puddles of filling factor ν ¼ 1=3. Each of
the superconducting (SC) domains, SCi, is characterized
by the fractional component of its charge Qi=e ¼
ð0; 1=3; 2=3;…; 5=3Þ, defined modulo 2e as charge quanta

FIG. 1. (a) The system layout. In the regions proximitized by
FMs and SCs, the FQH edges (of opposite spin FQH puddles each
of the same filling factor ν) are gapped out in two respective
distinct ways. Each domain wall between a SC and a FM region
hosts PF zeromode operators (blue stars). The free edges of spin-↑
and spin-↓ parts are glued together by total reflection at the FMs.
The bulk of the FQH puddles hosts QADs (denoted as 1 and 2)—
regions depleted by local gates. QADs behave as local enclaves
that can support FQH QPs. Tunnel couplings (red dashed and dot-
dashed lines) between QADs and parafermionic domain walls
allowQPs to tunnel between them, influencing the state of the PFs.
All the proximitizing SCs (FMs) are implied to be parts of a single
bulkSC (FM), respectively. (b) Themechanism ofQAD1 pumping
blockade. Under repeated pumping attempts, the system even-
tually reaches the state of SC1 domain charge Q ¼ 0, in which
pumping is blockaded. (c) The elementary cycle of the protocol
producing universal pumping noise.
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of 2e can be absorbed by the proximitizing SC. Each of the
two SC domains in Fig. 1(a) thus has d ¼ 6 states [15]. The
system’s topological nature renders the states of different
Qi degenerate, leading to d2-degenerate Hilbert space. Let
us now consider a coherent source that is capable of
injecting FQH quasiparticles (QPs) of charge e� ¼ e=3
into SC1. As the coherent source of QPs, we employ a
quantum antidot (QAD) [18–22], which is a depleted
region in the FQH incompressible puddle that can host
fractional QPs. At low energies, this injection can take
place only at domain walls between SC1 and the neighbor-
ing ferromagnetic (FM) domains. As a result of such an
injection, Q≡Q1 would change Q → ðQþ 1=3Þmod2.
The two trajectories of injection (through the left or the
right domain wall) interfere with each other, implying that
the probability of a successful injection may be smaller
than 1 (and even tuned to 0). The latter, PðQÞ, depends on
the domain charge Q. QAD1 used for the injection of QPs
into SC1 is denoted as 1 in Fig. 1(a).
It turns out that in the limit of adiabatic manipulation

with the QAD parameters, PðQÞ can be either 0 when the
interference is fully destructive or 1 otherwise [see the
discussion after Eq. (12)]. By tuning PðQ ¼ QBÞ ¼ 0 for
one of the system states QB, while PðQ ≠ QBÞ ¼ 1, one
blockades the repeated injectionofQPs as shown inFig. 1(b):
Starting from any state, the system eventually arrives in
Q ¼ QB, stopping any further injection of quasiparticles.We
dub this phenomenon a topological pumping blockade [23].
We now employ an additional QAD [QAD2, denoted as 2

in Fig. 1(a)] for lifting the blockade. AQP from QAD2 may
be injected to either the second or the third domain wall.
In the former case it would change the SC1 charge
QB → ðQB þ 1=3Þmod2, allowing for several more suc-
cessful injections fromQAD1, while in the latter case theQP
is injected to SC2, leavingQ unchanged. The probability of
each outcome is governed by the QP tunneling amplitude
from QAD2 to the respective domain wall. Consider a
protocol whose elementary cycle consists of d − 1 QP
injection attempts from QAD1 (sufficiently many to reach
the blockade irrespectively of the system initial state)
followed by disconnecting QAD1 from the array, then a
single injection from QAD2, and finally disconnecting
QAD2; cf. Fig. 1(c). Then in each cycle the number of
QPs successfully injected from QAD1 is determined by the
value ofQ at the beginning of the cycle and should therefore
be either 0 or 5 with the corresponding probabilities.
A more careful consideration, however, shows that the

mere connection of QAD2 to the two domain walls
simultaneously allows for transfer of QPs between SC1

and SC2: A QP can jump (through a virtual or a real
process) from one domain wall to the QAD and then to the
other domain wall. As a result, any stateQ at the beginning
of the cycle is possible. For example, if the QP from QAD2

is injected to SC1 and on top of that k QPs are transferred
from SC2 to SC1, then QB → ðQB þ ðkþ 1Þ=3Þmod2.

Moreover, transfers of k and kþ d QPs lead to the same
value of Q, and, therefore, these processes interfere. The
interference phases of these processes are sensitive to such
parameters as the strength of tunneling amplitudes between
QAD2 and the domain walls, the QAD potential, or the
duration of the injection process. In the adiabatic limit, a
tiny cycle-to-cycle variation of these parameters leads to a
strong variation of the interference phases. Therefore,
averaged over many pumping cycles, the probability of
starting the cycle in any of the d possible states Q is the
same and is equal to 1=d. The average current of charge
pumped from QAD1 into the array, I, and its zero-
frequency noise S, are then given, respectively, by

I ¼ I0
d − 1

2d
; S ¼ dþ 1

6
e�I; ð1Þ

where I0 ¼ e�=τ and τ is the duration of a single injection
attempt.
The model: Parafermions.—Following Refs. [27,28],

we consider a parafermion array realized on the boundary
of two ν ¼ 1=ð2pþ 1Þ FQH puddles, consisting of
electrons of opposite spin; cf. Fig. 1(a). The dynamics of
the respective FQH edges is described by fields ϕ̂sðxÞ,
s ¼ �1 ¼ ↑=↓, satisfying ½ϕ̂sðxÞ; ϕ̂sðyÞ� ¼ iπssgnðx − yÞ
and ½ϕ̂↑ðxÞ; ϕ̂↓ðyÞ� ¼ iπ [28]. The edges support
domains that are gapped by proximity coupling to
a SC or a FM; H ¼ Hedge þHSC þHFM, where Hedge ¼
ðv=4πÞ R L

0 dx½ð∂xϕ̂↑Þ2 þ ð∂xϕ̂↓Þ2� with edge velocity v,

HSC ¼ −
Δ
a

XN
j¼1

Z
SCj

dx cos
�
ϕ̂↑ðxÞ þ ϕ̂↓ðxÞffiffiffi

ν
p

�
; ð2Þ

HFM ¼ −
M
a

XNþ1

j¼1

Z
FMj

dx cos

�
ϕ̂↑ðxÞ − ϕ̂↓ðxÞffiffiffi

ν
p

�
; ð3Þ

with Δ (respectively, M) being the absolute value of the
induced amplitude for SC pairing (for tunneling between
edge segments proximitized by FMs), short-distance cutoff
a, and N ¼ 2 is the number of SC domains. All the
proximitizing SCs (FMs) are implied to be parts of a single
bulk SC (FM), respectively. The bulk SC is assumed to be
grounded. ForΔa=v,Ma=v >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ν − ln 2ν − 1

p
=ð2 ffiffiffi

2
p

πν2Þ
when ν ≤ 1=3 [29], and for any nonzero values ofΔa=v and
Ma=v when ν ¼ 1, each domain has a gap for QP
excitations. At low energies, each domain can be described
by a single integer-valued operator [27,28]

ϕ̂↑ðxÞ ∓ ϕ̂↓ðxÞ
2π

ffiffiffi
ν

p
����
x∈FMj=SCj

¼
�
m̂j;

n̂j:
ð4Þ

The only nontrivial commutation relation is ½m̂j;n̂l�¼ i=ðπνÞ
for j > l, while ½m̂j; n̂l� ¼ 0 for j ≤ l. Being integer-valued
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noncommuting operators, they are defined modulo
d ¼ 2=ν, i.e., m̂jðn̂jÞ ∼ m̂jðn̂jÞ þ d. The fractional compo-
nent of the jth SC domain’s charge Q̂j is given by
Q̂jmod2e¼ e�ðm̂jþ1 − m̂jÞmod2e¼ ν½ðm̂jþ1 − m̂jÞmodd�,
where e� ¼ νe and e are, respectively, the charge of the
fractional QP and the electron charge and we put e ¼ 1. The
parafermion array Hilbert space may be spanned by states
jm1; Q;m3i, where mj is the eigenvalue of m̂j and Q is the
eigenvalue of ðQ̂1mod2eÞ. Alternatively, one can use the
basis of jm1; S; m3i with S being the eigenvalue of
ν½ðn̂1 − n̂2Þmodd�. The possible values for both Q and S
are 0; ν;…; ðd − 1Þν≡ 2 − ν [31]. These two bases are
related as

jm1; S; m3i ¼
1ffiffiffi
d

p
Xðd−1Þν

Q¼0

eiπdQS=2jm1; Q;m3i: ð5Þ

Our protocols involve tunneling fractional QPs into the
parafermion array. At low energies, such tunneling may
take place only at the interfaces between different domains.
The low-energy projection of the QP operators is given by
(cf. Refs. [27,28])

α̂js ¼
�
eiπνðn̂lþsm̂lÞ; j ¼ 2l − 1;

eiπνðn̂lþsm̂lþ1Þ; j ¼ 2l;
ð6Þ

where j is the domain wall number and s ¼ �1 ¼ ↑=↓ is
the spin of the edge into which the QP tunnels. For ν ¼ 1,
α̂js become Majorana fermions.
In addition to the parafermion-hosting domain walls,

quantum antidots are the second main ingredient of our
model. We consider small QADs in the Coulomb blockade
regime. Such a QAD can be modeled as a system of two
levels, jqi and jqþ νi, corresponding to the QAD hosting
charge q or qþ ν, respectively. The QP operator on the
QAD and the QAD Hamiltonian assume then the forms

ψ̂QAD ¼
�
0 0

1 0

�
; ð7Þ

HQAD¼ νVQAD

�
ψ̂†
QADψ̂QAD−

1

2

�
¼VQAD

d

�
1 0

0 −1
�
; ð8Þ

where VQAD is an electrostatic gate potential. One can
consider several QADs, each described by such a two-level
Hamiltonian [32].
The Hamiltonian describing tunneling of QPs between a

QAD and the PF system is

Htun ¼
X
j

ηjsψ̂QAD;sα̂
†
js þ H:c: ð9Þ

Here ηjs is the tunneling amplitude to the jth domain
wall, and α̂js is the PF operator in this domain wall.

Fractional QPs can tunnel only through a FQH bulk but not
through a vacuum. The QAD is embedded in the FQH
puddle of spin s and is therefore coupled only to the PFs of
the same spin; this is indicated by index s of the QAD
operator.
Injection of a QP from QAD1.—In Fig. 1(a),

QAD1 is connected to parafermions α̂1↑ and α̂2↑. The
tunneling Hamiltonian (9) then allows for transitions
only between states jqþ νiQAD1

jm1; Q;m3i≡ j1i and
jqiQAD1

jm1; Qþ ν; m3 þ 1i≡ j0i. The problem of QP
tunneling can therefore be mapped onto a set of 2 × 2
problems each described by the Hamiltonian

HLZðtÞ ¼
� 1

d VQADðtÞ η�Q
ηQ − 1

d VQADðtÞ

�
; ð10Þ

ηQ ¼ e−iπνm1ðη1↑ þ η2↑e−iπ½Qþðν=2Þ�Þ: ð11Þ

For this Hamiltonian, consider the Landau-Zener problem
[33,34]: VQADðtÞ ¼ ν−1λt with λ > 0; at t ¼ −T the effec-
tive two-level system is prepared in the lower-energy state
jψð−TÞi ¼ j1i (j1i and j0i are the diabatic states of the
QAD-PF system). Then at t ¼ þT it will generally be in a
superposition of the two diabatic states. When T → þ∞,
the probability of staying in state j1i (i.e., not injecting
the QP) is

PLZ ¼ exp ð−2πγÞ; ð12Þ

where γ ¼ jηQj2=λ. Unless ηQ ¼ 0, the probability PðQÞ ¼
1 − PLZ of switching from j1i to j0i, i.e., of injecting
a QP to SC1 domain, is exponentially close to 1 in the
adiabatic limit (λ → 0, the limiting QAD potential
V0¼ν−1λT¼const≫maxQjηQj). By fine-tuning η1↑=η2↑¼
−e−iπ½QBþðν=2Þ� with a certain QB ¼ 0; ν;…; 2 − ν, one
achieves PðQBÞ ¼ 0. If the fine-tuning is imperfect, the
precision of PðQBÞ ¼ 0 is determined by how well ηQB

is

tuned to zero: jηQB
j≤ ffiffiffiffiffiffi

Cλ
p

implies PðQBÞ≤1−e−2πC≤2πC.
Summing up, in the adiabatic limit an injection attempt is
either successful with unit probability or has zero proba-
bility of success depending on the system state Q and
the tunneling amplitudes’ ratio η1↑=η2↑. Below, we
employ QAD1 with the above fine-tuned tunneling ampli-
tudes. A successful injection implies jm1; Q;m3i →
eiθQ jm1; Qþ ν; m3 þ 1i with phases θQ that are un-
important to us, while an unsuccessful one implies
jm1; QB;m3i → jm1; QB;m3i.
The origin of the topological pumping blockade

[Fig. 1(b)] now becomes clear. Define a pumping (injec-
tion) attempt as preparing QAD1 in the state jqþ νiQAD1

,
connecting QAD1 to parafermions, adiabatically sweeping
VQAD from −V0 to V0, and disconnecting the QAD from
the array. Prepare the array in a generic superposition of Q
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states. A single injection attempt transforms the initial state
of the QAD and parafermions:

jqþ νiQAD1

X2−ν
Q¼0

AQjm1; Q;m3i

→ jqþ νiQAD1
A0jm1; 2 − ν; m3i

þ jqiQAD1

X2−ν
Q¼ν

AQ−νeiθQ−ν jm1; Q;m3 þ 1i; ð13Þ

where we assumed without loss of generality that
QB ¼ 2 − ν. The injection attempt will be unsuccessful
(projecting the state to jQ ¼ QBi) with probability jA0j2,
while with probability 1 − jA0j2 the pumping attempt will
be successful, resulting in the Q state being a superposition
of jm1;Q;m3þ1i,Q¼ν;…;2−ν. After k−1 such attempts,
the array will be either in the state with Q ¼ QB or in a
superposition ofQ between ðk − 1Þν and 2 − ν≡ ðd − 1Þν.
Following d − 1 pumping attempts, the array state will
definitely have Q ¼ QB, and further pumping will be
blockaded [cf. Fig. 1(b)].
Consider now in detail the process of injecting of a QP

from QAD2. QAD2 is connected to parafermions α̂2↓ and
α̂3↓, rendering jm1; S; m3i a convenient basis to work with.
Indeed, the tunneling Hamiltonian (9) allows for transitions
only between states jqþ νiQAD2

jm1; S; m3i≡ j1i and
jqiQAD2

jm1; Sþ ν; m3 þ 1i≡ j0i. In this basis, tunneling
from QAD2 is described by the same Hamiltonian as in (10)
except ηQ should be replaced with

ηS ¼ eiπνm1ðη2↓e−iπ½Sþðν=2Þ� þ η3↓Þ: ð14Þ

The physics of injecting a QP from QAD2 is therefore
similar to that of injection from QAD1. However, we
employ QAD2 only in the nonblockaded regime. In other
words, ηS ≠ 0 for all S. Therefore, in the adiabatic limit the
injection is always successful, implying jm1; S; m3i →
eiθS jm1; Sþ ν; m3 þ 1i with phases

θS ¼
ðνV0Þ2
2λ

− π − i ln
ηS
jηSj

þ jηSj2
λ

�
1þ ln

ðνV0Þ2
jηSj2

�
: ð15Þ

These phases are of utmost importance for our protocol.
The terms proportional to λ−1 can be understood as
dynamical phases −

R
T
−T ESðtÞdt associated with the adia-

batic states of the process having energies ESðtÞ ¼
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jηSj2 þ ½VQADðtÞ=d�2

q
; cf. Fig. 2. In the adiabatic limit

λ → 0, these terms tend to infinity. As a result, the phase is
highly sensitive even to the tiniest variations of the
parameters involved. For a example, a small change
δV0 ≪ V0 of the limiting QAD potential V0 modifies
the phase by

δθS ¼
ðνV0Þ2

λ

δV0

V0

þ 2
jηSj2
λ

δV0

V0

; ð16Þ

which diverges in the adiabatic limit.
We are now in a position to discuss the pumping protocol

whose cycle is schematically shown in Fig. 1(c). After the
sequence of injection attempts from QAD1, the system
evolves into a state with Q ¼ QB, say, jm1; QB;m3i. The
injection of a QP from QAD2 evolves this state to

X2−ν
S¼0

eiθS jm1; Sþ ν; m3 þ 1ihm1; S; m3jm1; QB;m3i

¼
X
Q

AQjm1; Q;m3 þ 1i; ð17Þ

AQ ¼ 1

d

X2−ν
S¼0

eiπdðQ−QBÞS=2þiπQþiθS : ð18Þ

Therefore, the probability of pumping r QPs from QAD1 in
the next pumping cycle is given by jAQ¼QB−rνj2.
Assume that in each pumping cycle the limiting QAD2

potential V0 is slightly different. The phases θS exhibit then
cycle-to-cycle fluctuations; we are interested in the prob-
abilities jAQ¼QB−rνj2 averaged over these fluctuations:

hjAQj2iδV0
¼ 1

d2
X2−ν

S;S0¼0

eiπdðQ−QBÞðS−S0Þ=2heiðθS−θS0 ÞiδV0
: ð19Þ

Note that

δθS − δθS0 ¼ 2
jηSj2 − jηS0 j2

λ

δV0

V0

ð20Þ

diverges in the adiabatic limit for arbitrarily small fluctua-
tions δV0, provided that jηSj ≠ jηS0 j; the latter is generically

FIG. 2. Energy of adiabatic states when injecting a quasiparticle
from QAD2. The states of different S have different energies and
hence accumulate different dynamical phase during the process.
The sensitivity of the dynamical phase to the process parameters
is the origin of universal noise in our protocol.
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true. Hence, heiðθS−θS0 ÞiδV0
¼ 0 for S ≠ S0 and hjAQj2iδV0

¼
1=d. Therefore, the number of QPs pumped from QAD1 in
each cycle has a universal probability distribution, leading to
a universal counting statistics of the pumping current. In
particular, the average current and the zero-frequency noise
are given by Eq. (1).
Discussion.—The topological nature of our parafermion

system gives rise to a degenerate set of “scattering states.”
The latter render charge pumping in the adiabatic limit
noisy. In sharp contrast to earlier studies of noisy pumping,
here the average current as well as the noise (and, in fact,
the entire counting statistics) are found to be topology-
related universal. Specifically, the Fano factor ðdþ 1Þe�=6
is directly related to the topological degeneracy d of the
parafermionic space. In analogy with the quantum Hall
effect, where static disorder is needed to provide robustness
to the quantized Hall conductance, here we require (minute)
time-dependent (cycle-to-cycle) variations of the pumping
parameters used for QAD2. Majorana zero modes are a
special case of our protocol (d ¼ 2). In that case, the system
does not support fractional quasiparticles, and one pumps
electrons (rather than fractionally charged anyons) into the
array of topological modes; therefore, conventional quan-
tum dots (rather than quantum antidots embedded in FQH
puddles) can be employed. For realizing the Majorana
array, one can use the boundary between two ν ¼ 1
quantum Hall puddles or, alternatively, a set of Majorana
wires. The Fano factor will then be 1=2.
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