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CHAPTER 11  
 
Summary, Conclusions & Future 
Perspectives 
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Summary and conclusions 
Part I - Neurobiological and Clinical Effects of Sodium Oxybate 

GHB is an endogenous short-chain fatty acid synthesized locally within the CNS, 
mostly from its parent compound GABA. Approximately 1–2% of GABA converts to 
GHB, which is relatively rapidly converted into CO2 and H2O through the Krebs 
cycle. GHB for exogenous administration was first synthesized in the early 1960s 
and found to readily cross the blood-brain barrier into the CNS, where it displays 
distinct pharmacological effects. Evidence suggests a role for GHB as a 
neuromodulator/neurotransmitter, as GHB is synthesized in neurons 
heterogeneously distributed throughout the CNS, stored in vesicles, released via 
potassium-dependent depolarization into the synaptic cleft, and undergoes 
reuptake into the nerve terminal. Under endogenous conditions and 
concentrations, and depending on the cell group affected, GHB may increase or 
decrease neuronal activity by inhibiting the release of the primary co-localized 
neurotransmitter. For example, GHB may decrease neuronal activity when 
inhibiting the release of the excitatory neurotransmitter dopamine and increase 
neuronal activity when inhibiting the release of the inhibitory neurotransmitter 
GABA.  
 
Sodium oxybate is the sodium salt of GHB used for its exogenous oral 
administration. The behavioral effects induced by SXB appear to be mediated by 
GHB acting as a neuromodulator/neurotransmitter at GABAB receptors. After 
exogenous administration, it is likely that GHB acts at GHB binding site(s) and 
GABAB receptors, although it appears that most of the behavioral effects are 
mediated through the GABAB receptor. On neurons, supraphysiological 
concentrations of GHB have a qualitatively different effect than endogenous GHB 
concentrations. These elevated levels, mostly acting through GABAB modulation 
on various neuron groups, decrease neuronal activity. On washout from 
supraphysiological concentrations, increased neuronal responsiveness has been 
observed. This activity may underlie the sleep modulation seen when GHB is 
administered before nighttime sleep onset and, conversely, the wakefulness 
stimulating effects observed during the day following nighttime administration. 
 
A review of the pharmacology and physiological actions of GHB and SXB is 
presented in the first part of Chapter 2. In the second part of the same chapter, I 
review the evidence supporting a modulatory effect of GHB and SXB on sleep and 
wakefulness, both in healthy and in clinical populations. In Chapter 3, I examine 
the safety and efficacy of SXB in individuals with PD and sleep disorders. In Chapter 
4, I analyze the effect of nightly SXB administration on nocturnal sleep disruption 
in narcolepsy patients, a subject to which I return in Chapter 6. In Chapter 5, I 
review and compare the accessibility, purity, dosing, and misuse of illicit GHB and 
pharmaceutical SXB. In Chapter 7, I evaluate a possible association between 
narcolepsy, hypocretin neurons, the hormones ghrelin and leptin, and SXB.  
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GBH and SXB modulate sleep and wakefulness in healthy and in clinical populations 

GHB has shown a dose-dependent effect in decreasing sleep onset latency, 
promoting delta activity and enhancing sleep maintenance. These effects have 
been reported in both healthy and clinical populations. A review of these effects is 
presented in the second part of Chapter 2.  
 
In healthy subjects, GHB has been shown to decrease sleep onset latency, promote 
delta activity, and enhance SWS and sleep maintenance14,46,184,239. Similar effects 
have been described in clinical contexts. Evidence indicates that GHB/SXB may 
improve sleep in patients with insomnia47,246. Patients with fibromyalgia have also 
benefited from similar effects, with GHB/SXB being effective in decreasing not only 
sleep disruption, but also pain, fatigue and overall multidimensional 
function37,38,228,229,250. The beneficial effects of GHB/SXB in modulating sleep also 
extend to patients with neurodegenerative diseases. In the context of Alzheimer’s 
disease, an association between NREM sleep impairment and disease 
pathogenesis has been revealed267,268, with poor sleep correlating with the severity 
of cortical Aβ burden in Alzheimer’s disease patients272,273. Given the effects of GHB 
in increasing NREM SWS46, this establishes a therapeutic potential for GHB on 
Alzheimer’s disease pathogenic processes.  
 
In narcolepsy, the results of large, multicenter trials corroborate earlier work and 
demonstrate a consistent effect of SXB on SWS activity, yielding substantial, dose-
related increases in SWS duration and delta power. Additionally, dose-related 
reductions in stage 1 sleep and number of awakenings are apparent in the larger 
studies, as well as modest increases in total sleep duration and reductions in REM 
sleep duration at a dose of 9 g. Multiple measures of daytime sleepiness 
demonstrated consistent short- and long-term improvement when SXB was 
administered in combination with stimulant therapy or as the only wake-
promoting treatment. In addition, compared with modafinil, SXB as monotherapy 
appears to produce equal or greater improvement in daytime sleepiness in 
patients with narcolepsy with, or without, co-morbid cataplexy174,290,292–295. 
 
SXB can decrease excessive daytime sleepiness and fatigue in Parkinson’s disease  

Excessive daytime sleepiness and nocturnal sleep dysfunction associated with 
Parkinson’s disease have been well documented. However, a correlation between 
them had not been confirmed, and no specific treatments for nocturnal sleep 
problems in the Parkinson’s disease population had been explored. In chapter 3, 
the possibility of using SXB for EDS in subjects with Parkinson’s disease was 
evaluated in a multicenter, open-label, polysomnographic study1. It was 
hypothesized that using SXB as a treatment for nocturnal sleep dysfunction could 
also have a therapeutic effect in Parkinson’s disease-associated EDS.  
 
Twenty-seven subjects with Parkinson’s disease completed the study. The subjects 
started SXB therapy at a dose of 4.5 g per night, taken in 2 equal doses of 2.25 g, 
at bedtime and 2.5 to 4 hours later. After 2 weeks, the dose was increased to 6 g 
per night, and then increased weekly by 1.5 g to a maximum nightly dose of 9 g 
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(mean dose of 7.8 g SXB per night for 6 weeks). ESS scores were used as the primary 
efficacy point. The Fatigue Severity Scale, the Pittsburgh Sleep Quality Inventory, 
and PSG were assessed as secondary measures of daytime symptoms (FSS) and 
nocturnal symptoms (PSQI and PSG).  
 
Overall, nightly administration of SXB increased SWS, decreased subjective 
nighttime and daytime sleep problems, and reduced daytime fatigue in individuals 
with Parkinson’s disease. Improvements in the subjective ESS were similar to or 
better than those observed while using SXB as therapy for narcolepsy297,299. SXB 
was generally well tolerated.  
 
These results indicate that nightly SXB administration can have beneficial effects 
on EDS and fatigue associated with Parkinson’s disease. These findings also 
highlight the potential relevance of SXB as a therapeutic tool for Parkinson’s 
disease-associated sleep dysfunctions.  
 
SXB can reduce measures of sleep disruption and increase SWS in patients with 
narcolepsy.  

PSG studies have repeatedly demonstrated pathological changes in the nocturnal 
sleep of patients with narcolepsy525–527. Therapeutic approaches for narcolepsy-
associated nocturnal sleep disruption have provided limited benefit in improving 
daytime symptoms. Likewise, therapies for daytime symptoms of narcolepsy have 
provided little benefit for disrupted nocturnal sleep528.  
 
Multiple studies have reported improvements in subjective and objective 
measures of nocturnal sleep and daytime symptoms in patients with narcolepsy 
after nightly administration of SXB172,291,294,295. One such study demonstrated that 
8 weeks of nightly SXB administration robustly increased stage 3 and 4 sleep and 
delta power, while the frequency of nocturnal awakenings significantly 
decreased298, with these changes being associated with significant improvements 
in daytime narcolepsy symptoms49,298.  
 
Chapter 4 aims at further characterizing the efficacy of SXB for the treatment of 
EDS in patients with narcolepsy. A double-blind, placebo-controlled study was 
conducted in patients with narcolepsy undergoing stable therapy with modafinil 
(200–600 mg/day) for the treatment of EDS2. The effect of SXB was assessed both 
as monotherapy and in combination with modafinil. The intent-to-treat population 
consisted of 222 patients randomized to receive treatment with placebo (n=55), 
SXB (n=50), modafinil (n=63), or SXB + modafinil (n=54).  
 
Patients receiving modafinil maintained their previous dosage. Patients receiving 
SXB started the trial at a dose of 6 g/night, administered in two equal doses (at 
bedtime and 2.5–4 h later) for the first 4 weeks; the dose of SXB was then increased 
to 9 g/night for an additional 4 weeks. Treatment efficacy was assessed using 
overnight PSG, ESS and Maintenance of Wakefulness Test scores, and daily diary 
recordings. 
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After 4 weeks of treatment, patients treated with SXB, either alone or in 
combination with modafinil, showed significant increases in stage 3 and 4 sleep. 
SXB/modafinil-treated patients also demonstrated significant increases in total 
NREM sleep and delta power, along with decreased stage 1 sleep and nocturnal 
awakenings. After an additional 4 weeks of treatment with SXB at the 9 g/night 
dose, these changes became even more robust and were statistically significant in 
both SXB groups. It remained unclear whether this increased robustness of effects 
was related to the dose (6 or 9 g/night), the duration of SXB treatment (4 or 8 
weeks), or both.  
 
MWT sleep latency was significantly increased in SXB/modafinil-treated patients, 
compared to baseline modafinil treatment, whereas patients receiving either 
modafinil or SXB alone showed no significant change in MWT sleep latency. SXB-
treated patients and SXB/modafinil-treated patients also experienced significant 
improvements in ESS scores, as had been previously reported in detail299.  
 
The results from this trial, the first controlled study evaluating SXB as a single agent 
for the treatment of EDS in narcolepsy, suggested that, in addition to improving 
EDS, the nightly administration of SXB was associated with reduced nocturnal sleep 
disruption and improved sleep continuity, as indicated by the observed decreases 
in nighttime awakenings and increases in stage 3 and 4 sleep. 
 
SXB has less risk of misuse and abuse than illicit GBH 

Gamma-hydroxybutyrate sodium is the chemical name for SXB, but the acronym 
GHB also refers to the illicit formulations of the drug. Reports of abuse of illicit GHB 
as a “club drug” and “date-rape drug” have led to the scheduling of GHB as a 
controlled substance. The use of the chemical name ‘GHB’ to refer to both illicit 
GHB and to SXB has blurred the distinction between them and has clouded the 
notion that illicit GHB and SXB have different risks or liabilities of abuse.  
 
In Chapter 5, I address this issue by means of a review that aims at summarizing 
the differences in accessibility, purity, dosing, and relative abuse liability of 
pharmaceutical SXB (Xyrem®) and illicit GHB, focusing on the availability and 
prevalence of non-medical use, and the risks and consequences of misuse and 
abuse3.  
 
This review draws information from three types of sources: data from the peer-
reviewed scientific literature; data from national surveys of drug use, abuse, and 
law enforcement activity in the U.S., Europe, and Australia; and data from clinical 
trials and post-marketing surveillance from Jazz Pharmaceuticals on the rates of 
abuse, diversion, drug-facilitated sexual assault, and deaths associated with SXB.  
 
Data presented in this review supports the conclusion that there are substantial 
differences in the availability, purity, and dosing of illicit GHB compared to 
pharmaceutical SXB, and that the risks associated with illicit GHB are greater than 
those associated with pharmaceutical SXB. This review shows that the prevalence 
of illicit GHB use, abuse, intoxication and overdose has declined in the U.S. since it 
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became illegal, and that the abuse and misuse of pharmaceutical SXB has been rare 
since its introduction to the market. 
 
 
SXB can improve sleep fragmentation associated with narcolepsy 

In Chapter 6, I extend the studies from Chapter 4 by further analyzing the effects 
of nightly SXB administration on nocturnal sleep in narcolepsy patients. Chapter 6 
describes the first large randomized, double-blind, placebo-controlled, parallel 
group trial examining the impact of SXB on sleep architecture and narcolepsy 
symptoms4. The data presented in this chapter focus on the changes in nocturnal 
PSG parameters, providing additional information on the effects of SXB on 
nocturnal sleep.  
 
The trial was conducted with 228 adult patients with narcolepsy/cataplexy in the 
U.S., Canada, and Europe. Patients received either 4.5, 6, or 9 g/night of SXB or 
placebo, administered in 2 equally divided doses each night for 8 weeks. Following 
randomization, patients were started on placebo in single-blind fashion and 
recorded baseline cataplexy occurrences over a 14-day period. After the baseline 
analysis, patients started receiving SXB or placebo, and were titrated to their final 
dose during the first 4 weeks of treatment. Patients were then maintained at their 
assigned dose for the remaining 4 weeks of the study, before returning for the final 
efficacy and safety assessments. PSG and MWT were performed, and changes in 
narcolepsy symptoms and adverse events were recorded in daily diaries. 
 
Results showed that sleep latency was not significantly altered at any dose or 
treatment time. Total sleep time was significantly increased at the 8th week of 
treatment with the 9 g/night dose. The number of nocturnal awakenings 
significantly decreased at 4 weeks with all doses and remained so with the 6 and 9 
g/night doses at 8 weeks. Wake after sleep onset significantly decreased in the 9 
g/night group at 8 weeks. There was a significant association between dose and 
increased total sleep time, decreased number of awakenings, and decreased wake 
after sleep onset at 8 weeks. 
 
The duration of stage 1 sleep was significantly decreased with all SXB doses at 4 
weeks and remained so with the 6 and 9 g/night doses at 8 weeks; a significant 
dose association for the decrease in stage 1 sleep was found. The duration of stage 
2 sleep was unaltered. The duration of stage 3 and 4 sleep was significantly 
increased with the 6 g/night and 9 g/night groups at 4 weeks and with all SXB doses 
at 8 weeks, being significantly dose-dependent at both 4 weeks and 8 weeks. 
Median delta power was significantly increased with all SXB doses at both 4 and 8 
weeks, but a significant dose relationship was not observed. The duration of REM 
sleep was significantly decreased with the 9 g/night dose at 4 and 8 weeks.  
 
Other measures of efficacy, reported elsewhere, indicated that the nightly 
administration of 4.5, 6, and 9 g/night doses of SXB significantly decreased 
cataplexy attacks, and significantly improved subjective and objective measures of 
EDS and quality of life49,298,529. 



 

 - 228 - 

These results indicated that SXB induces dose-related improvements in measures 
of sleep continuity and that SXB may improve the sleep fragmentation that is 
commonly associated with narcolepsy. The continued improvements from week 4 
to week 8 also suggest a possible time-dependent effect. 
 
SXB’s influence on BMI is unlikely to involve changes in in the secretion of ghrelin 
or leptin 

Ghrelin and leptin, two hormones with important roles in regulating energy 
homeostasis201,375,376,381, can be directly sensed by hypocretin neurons, and their 
interaction with the hypocretin system has been shown to be involved in ingestive 
behavior202. 
 
Because hypocretin influences sympathetic nervous system activity, which in turn 
can affect the expression of both leptin and ghrelin, hypocretin deficiency may lead 
to altered levels of these hormones, potentially affecting ingestive behavior and 
energy metabolism. 
 
In narcolepsy patients, altered ingestive behavior and obesity are commonly 
observed and have been associated with hypocretin deficiency530–532. Since the 
hypocretin system has a key role in the regulation of sleep and wakefulness, with 
hypocretin deficiency also being associated with narcolepsy, it is possible that 
hypocretin deficiency may dysregulate feeding behavior and energy homeostasis. 
Therefore, in Chapter 7, I examine the link between narcolepsy, hypocretin 
neurons, the hormones ghrelin and leptin, and SXB, aiming at evaluating whether 
human hypocretin deficiency or SXB can alter the levels of these hormones, which 
could help explain the altered ingestive behavior and increased BMI seen in 
narcolepsy patients5. We investigated whether total blood ghrelin or leptin levels 
are altered in hypocretin-deficient narcoleptic patients compared to controls, and 
whether total ghrelin or leptin levels are influenced by SXB.  
 
Eight medication-free, male hypocretin-deficient narcolepsy with cataplexy 
patients and 8 healthy male controls, matched for age, BMI, and body fat 
percentage were included in this study. Plasma total ghrelin and leptin levels were 
assessed at baseline and after 5 consecutive nights of SXB treatment at a total dose 
of 6 g/night, administered in two equal doses of 3 g, 4 hours apart. PSG recordings 
were also performed.  
 
Both in controls and in narcolepsy patients, administration of SXB resulted in a 
significant decrease in stages 1/2 NREM and REM sleep over 24 hours, while at 
night, awakenings were significantly reduced and the percentage of SWS increased 
more than 2-fold. During the day, time spent in stages 1/2 NREM and REM sleep 
was reduced, and a trend towards longer periods of wakefulness was observed. No 
differences in ghrelin or leptin levels nor any effects of SXB on the plasma levels of 
either hormone were found. 
 
Even though a small number of patients was included in this study, the small 
intergroup differences indicate that the increased BMI of narcolepsy patients is 
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unlikely to be mediated by hypocretin deficiency-mediated changes in total ghrelin 
or leptin levels, and that SXB’s influence on body weight is unlikely to involve 
changes in the secretion of the hormones.  
 
Part II: Sleep, Eating, and Metabolism 

An overview of the epidemiological evidence linking sleep and obesity is presented 
in Chapter 8. In addition, I discuss how sleep affects metabolic, endocrine, immune, 
and circadian processes, how brain-processing circuits and functions are affected 
by sleep loss, and how this altered brain function can influence eating behavior. 
Chapter 9 discusses how manipulation of a single night of sleep may influence food 
preferences in humans. Chapter 10 examines how a short, outdoor excursion 
under Paleolithic-like eating, living, and sleeping conditions improves physiological 
and metabolic parameters in the body. 
 
Epidemiology shows a correlation between sleep loss and obesity 

The first part of Chapter 8 addresses the question of whether there is an 
epidemiological relationship between sleep loss and obesity. In 2012, 70 million 
U.S. adults reported getting less than six hours of sleep at night533. Sleep is a major 
public health concern, and insufficient sleep is related to motor vehicle crashes, 
industrial accidents, and medical errors534. Epidemiology studies show that there 
is a relationship between sleep duration and body weight, and show that sleep 
disruption impacts metabolism, immune function, and circadian rhythms. Because 
obesity rates are rising worldwide in adults and children305,535, it will be important 
to understand how sleep duration and quality affect human health.  
 
Objective measures of sleep reveal that total sleep time has not decreased over the 
last 50 years 
The second part of Chapter 8 addresses the question of whether actual sleep time 
as decreased in the last 50 years. A literature review found that sleep duration 
increased in some countries (Bulgaria, Poland, Canada, France, Britain, Korea, and 
the Netherlands), decreased in others (Japan, Russia, Finland, Germany, Belgium, 
and Austria), and was inconsistent in the U.S. and Sweden536, and later reports 
have shown that the number of individuals sleeping 6 hours or less has 
increased537,538. However, these studies cannot differentiate between people 
reporting that they sleep less versus people actually sleeping less. Objective 
measures of sleep duration can only be observed in a sleep laboratory under 
controlled conditions using sleep-recording techniques like PSG and actigraphy.  
Researchers first made use of this type of data in a meta-analysis of 65 studies over 
40 years to determine that sleep duration decreases with age539. Similarly, other 
researchers have used this type of data to determine that sleep duration has not 
decreased over the past 50 years540. 
 
Sleep manipulation can drive food preferences in humans 

Many laboratory studies and epidemiologic research have shown a connection 
between reduced sleep and increased weight. However, laboratory studies have 
used fairly extreme models of sleep in order to observe substantial changes in 
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metabolic parameters. Chapter 9 discusses how lowered alertness by a moderate 
change in sleep restriction might drive an individual’s food preferences and total 
calorie consumption.  
 
Fifty healthy, young participants completed two 3-hour study sessions. The first 
session was a baseline evaluation after an unmodified night of sleep. On the night 
prior to the second session, the amount of time in bed was manipulated to be 60-
130% of an individual’s sleep time. Changes in time in bed were linearly associated 
with changes in scores on the Stanford Sleepiness Scale, so that individuals who 
had less time in bed were less subjectively alert during the second session. During 
the middle of each session, participants were allowed to eat from eight different 
food items with varying degrees of healthfulness, caloric density and distribution, 
and number of calories.  
 
There was a linear relationship between a change in subjective alertness and a 
change in total calories consumed and total calories consumed relative to body 
weight. In addition, there was a positive correlation between subjective alertness 
and the number of calories consumed from “bad” food choices (i.e., gummy bears, 
cinnamon-sugar walnuts, toffee peanuts, and sweetened trail mix), but no 
correlation with the number of calories consumed from “good” food choices (i.e., 
apple rings, apricots, almonds, and fig bars). There was also a negative association 
between subjective alertness and the food quality rated by the participants, such 
that when participants rated themselves less alert, they ate foods that they rated 
less healthy. 
 
The study showed that manipulation of next-day alertness via the manipulation of 
sleep for a single night can have a detrimental impact on eating behaviors. 
Increased subjective feelings of sleepiness correlated with an increase in total 
calories consumed and with an increase in calories categorized as “bad” by the 
investigators and “less healthy” by the participants. This study suggests that when 
a person feels less alert, the hedonic processing for tempting foods may be 
increased. Previous studies have shown using fMRI that a night of sleep deprivation 
amplifies regions of the brain responsible for food decisions, and that these 
changes are associated with a greater desire for caloric density524. In addition, 
simulation of shift work under experimental conditions increases the likelihood of 
participants eating high-fat breakfast items compared to that of the control 
condition541. This agrees with a study showing that participants consumed a 
greater percentage of calories from fat compared to carbohydrates the day after a 
night of total sleep deprivation compared to a day following baseline sleep542.  
 
Alternatively, sleep loss might relax personal inhibitions against unhealthy foods. 
Sleep deprivation alters effort discounting, a principle that suggests that the value 
attached to a reward is inversely related to the amount of effort required to obtain 
it543. Perhaps participants with impaired alertness in our study ate unhealthy foods 
they might have otherwise avoided because they were less likely to make an effort 
as a result of their sleep deprivation. Sleep loss may also have shifted the focus of 
participants to foods that subjectively taste better, which correlates with less 
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healthy foods, from a focus on eating healthier foods. This type of bias has been 
reported in the context of economic preferences for monetary gambling where 
sleep deprivation favors the pursuit of large rewards, and reduces minimization of 
loss544. In our study, monetary gains would correspond to the pleasure of eating 
unhealthy foods, and losses would correspond to the detrimental effects of eating 
less healthy foods. Thus, sleep-deprived participants may have eaten more of the 
unhealthier food options because they were more pleasurable and discounted the 
negative effects of those unhealthy foods. 
 
Importantly, our study examined moderate impairments in sleep loss rather than 
total sleep deprivation. Insufficient sleep is a major health problem and related to 
an increase in chronic diseases, such as diabetes, depression, obesity, cancer, 
increased mortality, and reduced quality of life534. In addition, it has been shown 
that several consecutive days of chronic sleep restriction below 7 hours results in 
significant cognitive impairments that accumulate to levels comparable to that 
after a night of total sleep deprivation445. Thus, our study is relevant to food 
preferences and sleep impairments in modern society and consistent with 
epidemiological studies that show a relationship between sleep loss and weight 
gain338,545,546. 
 
 A short outdoor excursion under Paleolithic living conditions improves metabolic 
function and increases weight loss 

For more than 2.5 million years, humans have relied on foraging and gathering to 
supply food. Abundant, regular physical activity under natural lighting and 
temperature conditions to forage and hunt for food, and large meals in the 
evening, were the norm. The evolutionarily recent shift to readily available and 
calorically dense foods has contributed to a wave of ‘Western diseases,’ such as 
diabetes and obesity. Permanent food availability, increased meal frequency, and 
high glycemic foods have resulted in alternating peaks in blood sugar and elevated 
basal insulin levels547,548, which leads to visceral obesity, glucose intolerance, 
persistent elevated insulin, and low-grade inflammation549–551. As a result, the 
incidence of type 2 diabetes has been rising worldwide for decades552. 
Furthermore, obesity is caused a chronic imbalance between energy intake and 
energy expenditure and results in persistent low-grade inflammation throughout 
the body, such as elevated tumor-necrosis factor alpha (TNF-α), interleukin-1-beta 
(IL-1β), and macrophage counts in visceral adipose tissue553,554. TNF-α in 
cooperation with IL-1β enhances insulin resistance555, and experimentally induced 
hyperglycemia increases TNF-α and other pro-inflammatory cytokines, such as IL-
6 and C-reactive protein556–558. While pancreatic insulin secreted from elevated 
glucose levels suppresses inflammation559–561, this anti-inflammatory effect is 
reduced in a state of chronic insulin resistance. 
 
Early in our evolutionary history, caloric intake was counterbalanced by its 
seasonal availability, physical efforts, and knowledge of the surrounding 
environment562,563. Exercise before eating lowers postprandial inflammation and 
produces non-inflammatory molecules, such as lactoferrin, immunoglobulin A 
(IgA), and lysozyme564. These molecules are absent or reduced in overweight 
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individuals565 and they have increased postprandial inflammation, which leads to 
the development of cardiovascular disease, obesity, insulin resistance, and chronic 
low-grade inflammation565–567. Animal experiments have revealed that caloric 
restriction and intermittent fasting can suppress weight-gain-related illness and 
extend lifespan. In mice, caloric restriction increases lifespan by 30–40% by 
reducing levels of CRP and TNF-α568–570. Human studies have also begun to reveal 
the beneficial effects of caloric restriction571. 
 
In Chapter 10, I describe a study that examines participants on an outdoor nature 
trip for 4 days under Paleolithic-like living conditions. Individuals lived outdoors 
without tents and were required to hike throughout the day to simulate the activity 
level of gathering food. A small snack was provided after noon to mimic the 
delayed time to gather food, and a meal without modern, processed foods was 
provided at dinner time. This relatively moderate lifestyle change over a period of 
4 days resulted in dramatic improvements in physiological and metabolic 
parameters. Body weight, body fat, BMI, and visceral fat area all decreased as 
expected because of reduced caloric intake and increased exercise. Fasting 
glucose, insulin and HOMA also decreased significantly and CRP, the main indicator 
of low-grade inflammation, increased. Previously, it has been shown that trips into 
the forest stimulates human immune function and improves cardiovascular 
parameters572–574, perhaps as anticipatory protection from bacteria, viruses, 
insects, or other predators.  Natural living in our study may have had similar effects. 
 
This study shows that a short intervention under Paleolithic living conditions can 
dramatically improve physiological and metabolic parameters, which may aid in 
the prevention of obesity and type 2 diabetes. The individual factors responsible 
for these improvements are difficult to parse without further studies that isolate 
caloric restriction, outdoor activity, and intermittent fasting, but likely a 
combination of all three were partially responsible for the beneficial effects. 
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Future perspectives 
In Chapter 3, we evaluated the possibility of using SXB for EDS in subjects with 
Parkinson’s disease. Our results provided an indication that nightly SXB 
administration can have beneficial effects on EDS and fatigue associated with 
Parkinson’s disease. These putative therapeutic effects of SXB are worth pursuing 
in controlled trials using objective measures of daytime sleepiness. Confirming 
these results could establish SXB as an important therapeutic tool for Parkinson’s 
disease, with the capacity to improve patients’ quality of life. 
 
In Chapter 4, we studied the efficacy of SXB for the treatment of EDS in patients 
with narcolepsy. The results from this first controlled study evaluating SXB as a 
single agent for the treatment of EDS in narcolepsy suggested that, in addition to 
improving EDS, the nightly administration of SXB was associated with reduced 
nocturnal sleep disruption and improved sleep continuity, as indicated by the 
decreases in nighttime awakenings and increases in stage 3 and 4 sleep. This study 
was extended in Chapter 6 by further analyzing the effects of nightly SXB 
administration on nocturnal sleep in narcolepsy patients. The results indicated that 
SXB induces dose-related improvements in measures of sleep continuity and that 
SXB may improve the sleep fragmentation that is commonly associated with 
narcolepsy.  
 
Although a dose-dependent effect was observed, it remained unclear whether the 
changes in sleep architecture of narcolepsy patients induced by SXB are related 
only to the dose or also to the duration of SXB treatment. The continued 
improvements from week 4 to week 8 suggest a possible time-dependent effect 
that warrants further clarification.  
 
Additionally, it would be valuable to understand if the observed impact of SXB on 
sleep EEG activity represents pharmacologically-induced alterations in true sleep-
related activity, effects representing anesthetic-like changes, or epiphenomenal 
EEG activity unrelated to either sleep or anesthesia. 
 
In Chapter 7, we examined the link between narcolepsy, hypocretin neurons, the 
hormones ghrelin and leptin, and SXB, aiming at evaluating whether human 
hypocretin deficiency or SXB can alter the levels of these hormones, which could 
help explain the altered ingestive behavior and increased BMI observed in 
narcolepsy patients. Given that no differences in ghrelin or leptin levels nor any 
effects of SXB on the plasma levels of either hormone were found, it is unlikely that 
changes in total plasma ghrelin or leptin concentrations underlie the increased BMI 
and altered ingestive behavior in narcolepsy, as well as the effects of SXB 
administration on BMI.  
 
The small number of patients included in this study calls for further future 
investigations to confirm these findings and to further evaluate whether or not the 
sleep-wake instability intrinsic to hypocretin-deficiency drives the altered energy 
balance associated with narcolepsy. 
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In Chapter 8, we detailed the epidemiological evidence for the impact of sleep on 
human health. Future epidemiological studies will need to continue to monitor the 
rising rates of obesity, and how reduced sleep and impaired sleep quality affect 
this growing problem. Importantly, sleep is also related to depression, immune 
function, cancer, circadian rhythms, and other physiological processes. Because 
sleep is so interconnected to other processes, and loss of sleep has both human 
health and economic consequences, understanding how to improve and increase 
sleep will be central to happy workers and healthy economies. 
 
In Chapter 9, we showed that moderate manipulation of alertness via a sleep 
intervention for a single night can have a detrimental impact on eating behaviors 
including increased total caloric intake and increased caloric intake from unhealthy 
foods. However, we did not objectively record sleep with polysomnography or 
actigraphy, nor was manipulation of sleep controlled in a sleep laboratory. 
Furthermore, instead of relying on self-reported sleep as the main predictor in our 
analysis, we used the consequence of sleep loss—subjective daytime sleepiness. 
Future studies could measure and manipulate sleep loss in a more controlled 
fashion in a sleep laboratory to determine if objective measures of sleep and 
impairment correspond to our findings. In addition, because sleep curtailment was 
relatively mild, this probably reduced the statistical power of our correlation 
analysis compared to that of studies of severely impaired sleep or total sleep 
deprivation. Nevertheless, we could detect significant and meaningful correlations 
between small changes in alertness, typical of sleep disruptions in modern society, 
and changes in food preferences. 
 
Another caveat of our study is that we could not distinguish between changes in 
alertness and disruptions in an individual’s circadian rhythm. Participants were 
asked to delay their bedtime, which may have caused a small shift in circadian 
phase. Future studies could examine melatonin levels in participants to understand 
the relationship between a participant’s circadian rhythms, reduced alertness, and 
changes in food preferences. In addition, we only analyzed data from 50 
participants and 40 of the participants were women. To understand if there are 
differences between men and women, or to examine other demographic 
differences, such as ethnicity and age, future studies would need to include a larger 
sample size. 
 
In Chapter 10, we showed that a 4-day Paleolithic lifestyle change improved many 
bioelectric and biochemical parameters in study participants, including body 
weight, body fat, BMI, visceral fat area, fasting glucose, fasting insulin, and HOMA. 
C-reactive protein, which is a major indicator of low-grade inflammation, increased 
by an average of approximately 170%. However, we did not distinguish among the 
effects of caloric restriction, increased exercise, and outdoor living. Future studies 
could isolate these individual variables to determine which has the most impact on 
a participant’s health. Moreover, an increased number of participants as well as 
control subjects that do not undergo the intervention would improve the statistical 
robustness of these preliminary findings. 



 

 - 235 - 

 
Another caveat is that the duration of the intervention lasted for only 4 days. It’s 
unclear if the participants’ metabolic parameters would return to where they were 
before the intervention as they re-adapt to modern society. Another possibility is 
that extended periods of living under Paleolithic-like conditions may cause 
unintended or unforeseen harm. For example, increased exposure to parasites, 
bacteria, etc., or other increased environmental stresses could be detrimental to 
an individual’s wellbeing. Future studies could extend the trial intervention to 
longer periods of time or repeat the intervention at some periodic interval to 
assess if occasional, short-term natural trips have a longer-term, beneficial impact 
on health. In any case, this study provides an entry point to examine how simple 
lifestyle interventions can have dramatic improvements on an individual’s health. 
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