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Abstract
Recent experiments byGutiérrez et al (2016Nat. Phys. 12 950) on a graphene–copper superlattice
have revealed an unusual Kekulé bond texture in the honeycomb lattice—a Y-shapedmodulation of
weak and strong bondswith awave vector connecting twoDirac points.We show that this so-called
‘Kek-Y’ texture produces two species ofmasslessDirac fermions, with valley isospin locked parallel or
antiparallel to the direction ofmotion. In amagnetic fieldB, the valley degeneracy of theB-dependent
Landau levels is removed by the valley-momentum locking but aB-independent and valley-degenerate
zero-mode remains.

1. Introduction

The coupling of orbital and spin degrees of freedom is a promising new direction in nano-electronics, referred to
as ‘spin-orbitronics’, that aims at non-magnetic control of information carried by charge-neutral spin currents
[1–3]. Graphene offers a rich platform for this research [4, 5], because the conduction electrons have three
distinct spin quantumnumbers: in addition to the spinmagneticmoment s=±1/2, there is the sublattice
pseudospinσ=A,B and the valley isospin τ=K,K′.While the coupling of the electron spin s to its
momentum p is a relativistic effect, and veryweak in graphene, the coupling ofσ to p is so strong that one has a
pseudospin-momentum locking: the pseudospin points in the direction ofmotion, as a result of the helicity
operator p p px x y ys s sº +· in theDiracHamiltonian of graphene.

The purpose of this paper is to propose away to obtain a similar handle on the valley isospin, by adding a
term p t· to theDiracHamiltonian, which commutes with the pseudospin helicity and locks the valley to the
direction ofmotion.Wefind that this valley-momentum locking should appear in a superlattice that has
recently been realized experimentally byGutiérrez et al [6, 7]: a superlattice of graphene grown epitaxially onto
Cu(111), with the copper atoms in registry with the carbon atoms.One of six carbon atoms in each superlattice
unit cell ( 3 3´ larger than the original graphene unit cell)have no copper atoms below them and acquire a
shorter nearest-neighbor bond. The resulting Y-shaped periodic alternation of weak and strong bonds (see
figure 1) is called aKekulé-Y (Kek-Y) ordering, with reference to theKekulé dimerization in a benzene ring
(calledKek-O in this context) [7].

TheKek-O andKeK-Y superlattices have the sameBrillouin zone, with theK andK′ valleys of graphene
folded on top of each other. TheKek-O ordering couples the valleys by opening a gap in theDirac cone [8–12],
and it was assumed byGutiérrez et althat the same applies to theKek-Y ordering [6, 7].While it is certainly
possible that the graphene layer in the experiment is gapped by the epitaxial substrate (for example, by a
sublattice-symmetry breaking ionic potential [13–15]), wefind that the Y-shapedKekulé bond ordering by itself
does not impose amass on theDirac fermions4. Instead, the valley degeneracy is broken by the helicity operator
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p t· , which preserves the gapless Dirac point while locking the valley degree of freedom to themomentum. In a
magnetic field the valley-momentum locking splits all Landau levels except for the zeroth Landau level, which
remains pinned to zero energy.

2. Tight-bindingmodel

2.1. Real-space formulation
Amonolayer of carbon atoms has the tight-bindingHamiltonian

H t a b H.c., 1
r

r r r s
1

3

,å å= - +
=

+ ( )
ℓ

ℓ
†

ℓ

describing the hoppingwith amplitude tr,ℓ between an atomat site r a an m1 2= + (n m, Î ) on theA
sublattice (annihilation operator ar) and each of its three nearest neighbors at r s+ ℓ on theB sublattice
(annihilation operator br s+ ℓ). The lattice vectors are defined by s 3 , 11

1

2
= -( ), s 3 , 12

1

2
= - ( ), s 0, 13 = ( ),

a s s1 3 1= - , a s s2 3 2= - . All lengths aremeasured in units of the unperturbedC–Cbond length a0≡1.
For the uniform lattice, with t tr, 0ºℓ , the band structure is given by [16]

k k kE t, e . 2k s
0

1

3
iåe e=  =

=

( ) ∣ ( )∣ ( ) ( )
ℓ

· ℓ

There is a conical singularity at theDirac points K 3 1, 32

9
p=  ( ), where KE 0=( ) . For later usewe

note the identities

k k K k K K3 e . 32 i 3e e e= + = + +p
 + -( ) ( ) ( ) ( )

Figure 1.Honeycomb lattices with a Kek-OorKek-Y bond texture, all three sharing the same superlattice Brillouin zone (yellow
hexagon, with reciprocal lattice vectors K). Black andwhite dots labelA andB sublattices, black and red lines distinguish different
bond strengths. The lattices are parametrized according to equation (4) (withf=0) and distinguished by the index ν=1+q−p
modulo 3 as indicated. TheK andK′ valleys (at the greenDirac points) are coupled by thewave vector G K K= -+ - of theKekulé
bond texture and folded onto the center of the superlattice Brillouin zone (blue point).
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The bond-density wave that describes theKek-O andKek-Y textures has the form

t t

m n N a

1 2 Re e

1 2 cos , 4

r
K K s G rp q

, 0
i i

0
2

3
f p

= + D

= + D + - +

+ ++ -

⎡⎣ ⎤⎦
[ ]

( ) ( )
ℓ

ℓ

( )· ·ℓ

N q N p N p q p q b, , , , . 41 2 3 3= - = - = + Î ( )

TheKekuléwave vector

G K K 3 1, 0 54

9
pº - =+ - ( ) ( )

couples theDirac points. The coupling amplitude e0
iD = D fmay be complex, but the hopping amplitudes tr,ℓ

are real in order to preserve time-reversal symmetry. (Wenote that our definition ofΔ differs by a factor 3 from
that of [8].)

As illustrated infigure 1, the index

q p1 mod 3 6n = + - ( )

distinguishes theKek-O texture (ν=0) from theKek-Y texture (ν=±1). EachKekulé superlattice has a 2π/3
rotational symmetry, reduced from the 2π/6 symmetry of the graphene lattice. The two ν=±1Kek-Y textures
are each othersmirror image5.

2.2. Transformation tomomentum space
TheKek-O andKek-Y superlattices have the same hexagonal Brillouin zone, with reciprocal lattice vectors
K—smaller by a factor 1 3 and rotated over 30°with respect to the original Brillouin zone of graphene (see
figure 1). TheDirac points of unperturbed graphene are folded from the corner to the center of the Brillouin
zone and coupled by the bond-density wave.

To study the couplingwe Fourier transform the tight-bindingHamiltonian (1),

k k k K K

k K K

H a b p q a b

p q a b H.c. 7

k k k G k

k G k*

e e

e

=- - D + +

- D - - +

+ - +

+ - -

( ) ( ) ( )
( ) ( )

† †

†

Themomentum k still varies over the original Brillouin zone. In order to restrict it to the superlattice Brillouin
zonewe collect the annihilation operators at k and k G in the column vector
c a a a b b b, , , , ,k k k G k G k k G k G= - + - +( ) andwrite theHamiltonian in a 6×6matrix form:

k
k

k
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0
, 8k k
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e e e

=
D D
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D D

n
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˜ ˜
˜ ˜
˜ ˜

( )

k Gn ce , , 8p q
n

2 i 3 e eD = D = +p +˜ ( ) ( )( )

wherewe used equation (3).

3. Low-energyHamiltonian

3.1. Gapless spectrum
The low-energy spectrum is governed by the fourmodes u a a b b, , ,k k G k G k G k G= - + - +( ), which for small k lie
near theDirac points at G . (We identify theK valley with G+ and theK′ valleywith G- .)Projection onto this
subspace reduces the six-bandHamiltonian (8) to an effective four-bandHamiltonian,

H u
h

h
u h

0

0
, . 9k keff

1

1
*
e e

e e
= - =

D

D

n

n
n

n

n
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⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜
˜ ( )†

†

Corrections to the low-energy spectrum fromvirtual transitions to the higher bands are of order 0
2D .Wewill

include these corrections later, but for now assumeΔ0=1 and neglect them.

5
There are three sets of integers p q, 3Î for a given index q p1 mod 3n = + - , corresponding to textures on the honeycomb lattice

that are translated by one hexagon, or equivalently related by a±2π/3 phase shift ofΔ.

3

New J. Phys. 20 (2018) 023016 OVGamayun et al



The k-dependence of ne may be linearized near k 0= ,

t v k k k3 , i order , 10x y0 0 1 0
2e e= = + + ( ) ( ) ( )

with Fermi velocity v t a0
3

2 0 0 = . The corresponding 4-componentDirac equation has the form
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The spinorΨK contains thewave amplitudes on theA andB sublattices in valleyK and similarly KY ¢ for valleyK′,
but note the different ordering of the components [17]6.We have defined themomentumoperator
p ri= - ¶ ¶ , with p p px x y ys s s= +· . The Paulimatrices , ,x y zs s s , withσ0 the unitmatrix, act on the
sublattice degree of freedom.

For theKek-O texture we recover the gapped spectrumof Kekulé dimerized graphene [8],

pE v t3 for 0. 122
0
2 2

0 0
2 n= + D =∣ ∣ ( ) ( )

TheKek-Y texture, instead, has a gapless spectrum,

pE v 1 , for 1, 132
0
2

0
2 2 n=  D = ( ) ∣ ∣ ∣ ∣ ( )

consisting of a pair of linearly dispersingmodes with different velocities v 10 0 D( ). The two qualitatively
different dispersions are contrasted infigure 2.

3.2. Valley-momentum locking
The two gaplessmodes in theKek-Y superlattice are helical, with both the sublattice pseudospin and the valley
isospin locked to the direction ofmotion. To see this, we consider the ν=1Kek-Y texturewith a real 0D = D˜ .
(Complex D̃ and ν=−1 are equivalent upon a unitary transformation.)TheDiracHamiltonian (11) can be
written in the compact form

p pv v , 140 0 s tt s= Ä + Äs t( · ) ( · ) ( )

with the help of a second set of Paulimatrices τx, τy, τz and unitmatrix τ0 acting on the valley degree of freedom
7.

The two velocities are defined by vσ=v0 and vτ=v0Δ0.

Figure 2.Dispersion relation near the center of the superlattice Brillouin zone, for the Kek-O texture (blue dashed curves) and for the
Kek-Y texture (black solid). The curves are calculated from the fullHamiltonian (8) for 0.10D = D =∣ ˜ ∣ .

6
The ordering of the spinor components in equation (11b) is the so-called valley-isotropic representation ofDirac fermions.

7
For reference, we note that the unitary transformation from , , ,B K A K A K B K, , , ,y y y yY = - ¢ ¢( ) to , , ,B K A K A K B K, , , ,y y y yY¢ = ¢ ¢( )

transforms p pH v v0 0s tt s= Ä + Äs t( · ) ( · ) into p pv vz z s tt s= - Ä + Äs t( · ) ( · ).
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An eigenstate of the current operator

j p v v 150 0 s t s t= ¶ ¶ = Ä + Äa a s a t a ( )

with eigenvalue v vs t is an eigenstate ofσαwith eigenvalue+1 and an eigenstate of ταwith eigenvalue±1.
(The twoPaulimatrices act on different degrees of freedom, so they commute and can be diagonalized
independently.)This valley-momentum locking does not violate time-reversal symmetry, since the time-
reversal operation in the superlattice inverts all three vectors p, s, and t , and hence leaves unaffected8:

. 16y y y y* s t s tÄ Ä =( ) ( ) ( )

The valley-momentum locking does break the sublattice symmetry, since no longer anticommutes with
σz, but another chiral symmetry involving both sublattice and valley degrees of freedom remains:

. 17z z z z s t s tÄ = - Ä( ) ( ) ( )

3.3. Landau level quantization
Aperpendicularmagnetic fieldB in the z-direction (vector potential A in the x–y plane), breaks the time-reversal
symmetry (16) via the substitution p r A rei P- ¶ ¶ + º ( ) . The chiral symmetry (17) is preserved, so the
Landau levels are still symmetrically arranged around E=0, as in unperturbed graphene. Because the two
helicity operators sP · and tP · do not commute for A 0¹ , they can no longer be diagonalized
independently. In particular, thismeans the Landau level spectrum is not simply a superposition of two spectra
ofDirac fermionswith different velocities.

It is still possible to calculate the spectrum analytically (see appendix A).Wefind Landau levels at energies
E E E E, , ,n n n n- -+ - + -, n 0, 1, 2,= ¼, given by

E E n n n v v v2 1 1 1 4 , 18n B
2 4 1 2= +  + + s t

 -[ ( )( ) ¯ ] ( )

with the definitions v v v2 2= +s t¯ and E v eBB = ¯ .

In unperturbed graphene all Landau levels have a twofold valley degeneracy9: E En n 1=+
+
- for vτ=0. This

includes the zeroth Landau level: E E00 0= = -- -. A nonzero vτ breaks the valley degeneracy of all Landau levels
at E 0¹ , but a valley-degenerate zero-mode E 00 =- remains, see figure 3.

The absence of a splitting of the zeroth Landau level can be understood as a topological protection in the
context of an index theorem [18–21], which requires that either ix yP º P + P+ or ix yP º P - P- has a zero-
mode. If we decompose S S = P + P+ - - +, with S v vi ix y x ys s t t=  + s t ( ) ( ), we see that both S+ and

Figure 3. Landau levels in theKek-Y superlattice (Δ0=0.1,f=0, ν=1). The data points are calculated numerically [22] from the
tight-bindingHamiltonian (1)with bondmodulation (4). The lines are the analytical result from equations (18) and (19) for the first
few Landau levels. Lines of the same color identify the valley-split Landau level, the zeroth Landau level (red line) is not split.

8
The time-reversal operation y y s t= Ä( ) from equation (16) (with  complex conjugation) squares to+1 because the electron spin is

not explicitly included. If we do include it, wewould have sy y y s t= Ä Ä( ) , which squares to−1 as expected for a fermionic
quasiparticle. The combination of the time-reversal symmetry (16) and the chiral symmetry (17)places the superlattice in the BDI symmetry
classification of topological states ofmatter.
9
The Landau levels also have a twofold spin degeneracy, which could be resolved by the Zeeman energy but is not considered here.
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S− have a rank-two null space10, spanned by the spinors 1y
( ) and 2y

( ). So if f 0P =  , a twofold degenerate

zero-mode of is formed by the states f 1y 
( ) and f 2y 

( ).
All of this is distinctive for theKek-Y bond order: for theKek-O texture it is the other way around—the

Landau levels have a twofold valley degeneracy except for the nondegenerate Landau level at the edge of the band
gap11.

4. Effect of virtual transitions to higher bands

So farwe have assumed 10D  , and onemight ask how robust ourfindings are tofinite-Δ0 corrections,
involving virtual transitions from the 1e bands nearE=0 to the 0e band near E=3t0.We have been able to
include these to all orders inΔ0 (see appendix B), andfind that the entire effect is a renormalization of the
velocities vσ and vτ in theHamiltonian (14), which retains its form as a sumof two helicity operators. For real
Δ=Δ0 the renormalization is given by vσ=v0ρ+, vτ=v0ρ−with

1
1 2

1 2
1 . 191

2 0
0

0
2

r = - D
+ D

+ D


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

For complex e0
iD = D f the nonlinear renormalization introduces a dependence on the phasefmodulo 2π/3.

What this renormalization shows is that, as expected for a topological protection, the robustness of the
zeroth Landau level to theKek-Y texture is not limited to perturbation theory—also strongmodulations of the
bond strength cannot split it away from E=0.

5. Pseudospin-valley coupling

In zeromagnetic field the low-energyHamiltonian (14) does not couple the pseudospinσ and valley τ degrees of
freedom. A s tÄ coupling is introduced in theKek-Y superlattice by an ionic potentialμY on the carbon atoms
that line upwith the carbon vacancies—the atoms located at each center of a red Y in figure 1.We consider this
effect for the ν=1Kek-Y texture with a real 0D = D˜ .

The ionic potential acts on one-third of theA sublattice sites, labeled rY. (For ν=−1 it would act on one-
third of theB sublattice sites.) Fourier transformation of the on-site contribution a ar r rY Y Y Y

m å † to the tight-
bindingHamiltonian (1) giveswith the help of the lattice sum

k k G k Ge 20
r

k ri

Y

Yå d d dµ + - + +( ) ( ) ( ) ( )·

themomentum-spaceHamiltonian

k
k

k
H c

M
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0
, 21k k

Y 1

1
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⎛
⎝⎜

⎞
⎠⎟( )

( )
( )

( )†
†

M b
1 1 1
1 1 1
1 1 1

. 21Y Ym= -
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

The 1 block is still given by equation (8). The additional MY-block breaks the chiral symmetry.
Projection onto the subspace spanned by u a a b b, , ,k k G k G k G k G= - + - +( ) gives the effectiveHamiltonian

H u
m h

h
u m

0
, 1 1

1 1
. 22k keff

Y 1

1
Y Ym= - = -

⎛
⎝⎜

⎞
⎠⎟ ( ) ( )†

†

The correspondingDiracHamiltonian has the form (11)with an additional s tÄ coupling,

p pv v

. 23x x y y z z

0 0
1

2 Y

1

2 Y

 s tt s m

m s t s t s t

= Ä + Ä +

+ Ä + Ä - Ä

s t( · ) ( · )

( ) ( )

10
If we define the eigenstates ,a bñ∣ by , ,zs a b a a bñ = ñ∣ ∣ , , ,zt a b b a bñ = ñ∣ ∣ , then S+ annihilates 1, 11y = ñ+ ∣( ) and

v v1, 1 1, 12y = - ñ - - ñt s+ ∣ ∣( ) , while S− annihilates 1, 11y = - - ñ- ∣( ) and v v1, 1 1, 12y = - ñ - - ñt s- ∣ ∣( ) .
11

In aKek-O superlattice the Landau levels are given by E t n eBv3 2n
2

0 0
2

0
2= D +( ) , n=0, 1, 2,K, with a twofold valley degeneracy for

n 1 and a nondegenerate zeroth Landau level at t3 0 0 D .
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The energy spectrum,

p

p

E v v

E v v

,

, 24

1

2
Y

2 2
Y
2m m

=  -

=  + +

s t

s t





( )∣ ∣

( ) ∣ ∣ ( )

( )

( )

has two bands that cross linearly in p atE=0, while the other two bands have a quadratic p-dependence (see
figure 4). The pseudospin and valley isospin orientation for the two bands is illustrated infigure 5.

The three bands E 1
+
( ), E 1

-
( ), E 2

-
( ) that intersect at p=0 are reminiscent of a spin-oneDirac one. Such a

dispersion is a known feature of a potentialmodulation that involves only one-third of the atoms on one
sublattice [14, 15]. The spectrum remains gapless even though the chiral symmetry is broken. This is in contrast
to the usual staggered potential betweenA andB sublattices, which opens a gap via a z zs tÄ term [16].

6.Discussion

In summary, we have shown that the Y-shapedKekulé bond texture (Kek-Y superlattice) in graphene preserves
themassless character of theDirac fermions. This is fundamentally different from the gapped band structure
resulting from the original Kekulé dimerization [8–11] (Kek-O superlattice), and contrary to expectations from
its experimental realization [6, 7].

The gapless low-energyHamiltonian p pv v s t= +s t· · is the sumof two helicity operators, with the
momentum p coupled independently to both the sublattice pseudospin s and the valley isospin t . This valley-
momentum locking is distinct from the coupling of the valley to a pseudo-magnetic field that has been explored
as an enabler for valleytronics [23], and offers away for amomentum-controlled valley precession. The broken
valley degeneracywould also remove amajor obstacle for spin qubits in graphene [24].

A key experimental test of our theoretical predictionswould be a confirmation that the Kek-Y superlattice
has a gapless spectrum, in stark contrast to the gappedKek-O spectrum. In the experiment byGutiérrez et alon
a graphene/Cuheterostructure theKek-Y superlattice is formed by copper vacancies that are in registry with one
out of six carbon atoms [6, 7]. These introduce the Y-shaped hoppingmodulations shown infigure 1, but in
additionwillmodify the ionic potential felt by the carbon atom at the center of the Y.Unlike the usual staggered

Figure 4.Effect of an on-site potential Ym on the Kek-Y band structure of figure 2. The three bands that intersect linearly and
quadratically at the center of the superlattice Brillouin zone form the ‘spin-oneDirac cone’ of [14, 15]. The curves are calculated from
the fullHamiltonian (21) for 0.10 YmD = = .

Figure 5.Orientation of the expectation value of the pseudospin ,x ys s s=
 ( ) (left panel) and valley isospin ,x yt t t=

 ( ) (right panel)
in the two bands (24) atE>0. The pseudospin points in the direction ofmotion in both bands, while the valley isospin is locked
parallel to the direction ofmotion in one band (red arrows) and antiparallel in the other band (blue arrows).
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potential betweenA andB sublattices, this potentialmodulation in an enlarged unit cell does not open a gap
[14, 15].We have also checked that theDirac cone remains gapless if we include hoppings beyond nearest
neighbor. All of this gives confidence that the gapless spectrumwill survive in a realistic situation.

Further research in other directions could involve the Landau level spectrum, to search for the unique
feature of a broken valley degeneracy coexistingwith a valley-degenerate zero-mode. The graphene analogs in
optics and acoustics [25] could also provide an interesting platform for aKek-Y superlattice with amuch
stronger amplitudemodulation than can be realizedwith electrons.
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AppendixA. Calculation of the Landau level spectrum in aKek-Y superlattice

Wecalculate the spectrum in a perpendicularmagnetic field of a graphene sheet with a Kekulé-Y bond texture.
We start by rewriting theHamiltonian (14), with p AeP = + , in the form

S S , A1z z
1

2

1

2
 ms t= P + P + Ä+ - - + ( )

in terms of the raising and lowering operators

S v v

i , i , i ,

. A2
x y x y x y

0 0

s s s t t t
s t s t

P =P  P =  = 
= Ä + Äs t

  

   ( )

The chiral-symmetry breaking termμσz⊗τz that we have addedwill serve a purpose later on.
We know that theHermitian operatorΩ=Π+Π− has eigenvalues n eB2n w = , n=0, 1, 2,K, in view of

the commutator eB, 2P P =- +[ ] . So the strategy is to express the secular equation Edet 0- =( ) in a form
that involves only themixed products P P+ -, and no

2P+ or 2P-. This is achieved bymeans of a unitary
transformation, as follows.

We define the unitarymatrix

U exp i A3z y
1

4 0p s s t= + Ä⎡⎣ ⎤⎦( ) ( )

and reduce the determinant of a 4×4matrix to that of a 2×2matrix:

E U E U

E R
R E

E RR E

E R R E

det det

det

det if ,

det if ,
A4

2 2

2 2

 

m
m

m m
m m

- = -

= - +
- -

=
- - ¹
- - ¹ -

⎛
⎝⎜

⎞
⎠⎟

⎧⎨⎩

( ) ( )

( )
( )

( )

†

†

†

†

R
v v
v v

with . A5=
- P P
- P P

t s

s t

- -

+ +

⎛
⎝⎜

⎞
⎠⎟ ( )

Thematrix productRR† is not of the desired form, butR†R is,

R R
v v v v

v v v v
, A6

2 2

2 2
=

P P + P P - P P + P P

- P P + P P P P + P P
s t s t

s t s t

- + + - - + + -

- + + - + - - +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )

( )
( )†

involving onlyP P = W+ - and 1wP P = W +- + . Hence the determinant is readily evaluated for E m¹ - ,

E E R R
E v v v v

v v E v v
det det det

2

2
, A7

n

n n

n n

2 2

0

2 2 2 2
1 1

1
2 2 2 2

1

 m
m w w w w

w w m w w
- = - - =

- - - +

+ - - -
s s t

s t t=

¥ ⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

¯ ( )
( ) ¯

( )†

wherewe have abbreviated v v v2 2= +s t¯ .
Equating the determinant to zero and solving forEwe find four sets of energy eigenvalues

E E E E, , ,n n n n- -+ - + -, given by
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E v v v v E n n n v v v4 2 1 1 1 4 .

A8

n n n n B
2 2 1

2 1
2 1

2 1
2 4 2

1
2 2 4m w w w w w- = +  + = +  + +s t s t


+

-( )( ) ¯ ¯ ( ) [ ( )( ) ¯ ]

( )

In the second equationwe introduced the energy scale E v lB m= ¯ , with l eBm = themagnetic length. The
B-independent level E0 m=- becomes a zero-mode in the limit 0m  .

As a check on the calculation, we note that forμ=0, vτ=0we recover the valley-degenerate Landau level
spectrumof graphene [16],

E v l n E E2 , . A9n m n n 1= =s
- +

+
-( ) ( )

Another special case of interest isμ=0, v v v0= ºs t , when the twomodes ofDirac fermions have
velocities v vs t equal to 0 and 2v0. From equation (A8)we find the Landau level spectrum

E E v l n0, 2 2 1 . A10n n m0= = +- + ( ) ( )

Themodewith zero velocity remainsB-independent, while themodewith velocity 2v0 produces a sequence of
Landau levels with a 1/2 offset in the n-dependence.

Appendix B. Calculation of the low-energyHamiltonian to all orders in theKek-Y bond
modulation

We seek to reduce the six-bandHamiltonian (8) to an effective 4×4Hamiltonian that describes the low-energy
spectrumnear k 0= . For 10D  we can simply project onto the 2×2 lower-right subblock of n , which for
the 1n =∣ ∣ Kek-Y bondmodulation vanishes linearly in k . This subblock is coupled to the 0e band near E t3 0=
bymatrix elements of orderΔ0, so virtual transitions to this higher band contribute to the low-energy spectrum
in order 0

2D .Wewill now showhow to include these effects to all order inΔ0.
One complicationwhenwe go beyond the small-Δ0 regime is that the phasef of themodulation amplitude

can no longer be removed by a unitary transformation. Aswewill see, the low-energyHamiltonian depends onf
modulo 2π/3—sowe do not need to distinguish between the phase of e p q2 i 3D = Dp +˜ ( ) and the phase ofΔ.
The choice between 1n =  still does notmatter, the twoKek-Ymodulations being related by amirror
symmetry. For definiteness we take ν=+1.

We define the unitarymatrix

V a0
0

0
0

,
1 0 0
0 e 0
0 0 e

, B1i

i
= F

F
F = f

f

-⎜ ⎟
⎛
⎝

⎞
⎠

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟( ) ( )

D
D D
D D

b
1

2

2 2 2
2 1 1
2 1 1

, B1
0

0 0

0 0 0

0 0 0

 =
- D - D

D + -
D - +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ( )

with D 1 20 0
2= + D and evaluate

V V a
0

0

0

0
, B2

1

1

1

1







=

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

˜
˜

( )†
† †

D

b0

0

, B21 1

0 0 0 1 0 1

1 1

1 1

*

*

*

  

e r e r e

r e r e

r e r e

= =
-

+ - -

- - +

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
˜ ( )†

D
D D c

1

2
1 2 e 1 , B2

0
0
2

0
3i

0 0r = - D  + Df
- [ ( )] ( )

D
d2 e . B20

0

0

3i
0r =

D
+ Df( ) ( )

Thematrix elements that couple the lower-right 2×2 subblock of 1̃ to 0e are nowof order k, so the effect on
the low-energy spectrum is of order k2 and can be neglected—to all orders inΔ0.

The resulting effective low-energyHamiltonian has the 4×4 form (9), with h1 replaced by

h . B31
1 1

1 1

*

*

r e r e

r e r e
= + - -

- - +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

The phases of eir r= q
 

∣ ∣ can be eliminated by onemore unitary transformation, with the 4×4 diagonal
matrix
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diag e , e , e , 1 , B4i i i iQ = q q q q+- + + -( ) ( )

which results in

h

h

h

h
h

0

0

0

0
, . B5

1

1

1

1

1
1 1

1 1

r e r e
r e r e

Q Q = = + - -

- - +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝⎜

⎞
⎠⎟˜

˜

˜
˜ ∣ ∣ ∣ ∣

∣ ∣ ∣ ∣
( )†

† †

Finally, we arrive at the effectiveHamiltonian (14), with renormalized velocities:

p pv v v v v v, , , B60 0 0 0 s tt s r r= Ä + Ä = =s t s t+ -( · ) ( · ) ∣ ∣ ∣ ∣ ( )

D
D D

1

2
1 3 1 3 2 2 cos 3 . B72

0
2 0

4
0 0

2
0
3

0r f= + D  - D + D  -∣ ∣ ( ( ) ( ) ) ( )

To third order inΔ0 we have

v v v v1 cos 3 , cos 3 1 9 cos 6 . B80
3

2 0
2 1

2 0
3

0 0
3

2 0
2 1

16 0
3

0
4f f f= - D - D = D - D + D - + Ds t ( ) ( ) ( )

Figure B1.Velocities v v v1 = +s t and v v v2 = -s t of the two gaplessmodes in theKek-Y superlattice, as a function of the bond
modulation amplitudeΔ0 for two values of themodulation phasef. Thef-dependencemodulo 2π/3 appears to second order inΔ0.
The curves are calculated from equation (B7). Note that positive and negative values of v1, v2 are equivalent.

Figure B2.Kek-Y superlattice with a complex bond amplitude ei
0D = Df , according to equation (4)with ν=1. The three colors of

the bonds refer to three different bond strengths, adding up to 3t0. Forf=0 two of the bond strengths are equal to t 10 0- D( ) and
the third equals t 1 20 0+ D( ). This is the case shown infigure 1. Forf=π/6 the bond strengths are equidistant: t 1 30 0- D( ), t0,
and t 1 30 0+ D( ). The value ofΔ0 where a bond strength vanishes shows up infigure B1 as a point of vanishing velocity.
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For realΔ, whenf=0 and ρ± is real, equation (B7) simplifies to

1
1 2

1 2
1 . B91

2 0
0

0
2

r = - D
+ D

+ D


⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )

The velocities of the twoDiracmodes are then given by

v v v v

v v v v

1 1 2

1 2
,

1 . B10

1 0
0 0

0
2

2 0 0

= + =
- D + D

+ D
= - = - D

s t

s t

( )( )

( ) ( )

More generally, for complex e0
iD = D f both v1 and v2 becomef-dependent to second order inΔ0, see

figure B1.
Note that the asymmetry in 0D vanishes forf=π/6. For this phase the superlattice has three different

bond strengths (see figure B2) that are symmetrically arranged around the unperturbed value t0.
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