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Soft materials can self-assemble into highly structured phases that
replicate at the mesoscopic scale the symmetry of atomic crystals.
As such, they offer an unparalleled platform to design mesostruc-
tured materials for light and sound. Here, we present a bottom-
up approach based on self-assembly to engineer 3D photonic and
phononic crystals with topologically protected Weyl points. In
addition to angular and frequency selectivity of their bulk opti-
cal response, Weyl materials are endowed with topological surface
states, which allow for the existence of one-way channels, even in
the presence of time-reversal invariance. Using a combination of
group-theoretical methods and numerical simulations, we identify
the general symmetry constraints that a self-assembled structure
has to satisfy to host Weyl points and describe how to achieve such
constraints using a symmetry-driven pipeline for self-assembled
material design and discovery. We illustrate our general approach
using block copolymer self-assembly as a model system.
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The propagation of waves in spatially periodic media is de-
scribed by band theory, which determines the frequencies that

can propagate in a given direction and at a given wavelength.
While band theory was first developed to understand the behav-
ior of electrons and phonons in solids, it applies to all kinds of
waves. For example, photonic crystals are spatially periodic struc-
tures encompassed by such a description (1), which most notably
can host a photonic band gap resulting in peculiar optical proper-
ties, such as the structural coloration of several butterflies’ wings
(2, 3).

A band structure is typically a complicated set of bands, which
to a casual observer, seem to cross each other every possible way.
This is, in fact, not the case: degeneracies in a band structure
mainly appear at highly symmetric points and stem from the exis-
tence of additional symmetries (beyond translation invariance).
However, so-called accidental degeneracies also exist, which are
not enforced by the presence of a particular symmetry (4–6).
Accidental degeneracies are generically rare and unstable, as
they require a fine tuning of the system parameters to exist. How-
ever, such degeneracies may be protected by the existence of a
particular singular configuration of the Bloch eigenstates in the
neighborhood of the degenerate point (similar to a vortex or a
hedgehog), which confers them with a topological character and
hence, robustness against certain perturbations.

The simplest of such topological degeneracies are so-called
Weyl points, where a 3D band structure locally exhibits a lin-
ear band crossing in all directions (7–9). Crucially, such a Weyl
point is characterized by a topological charge, which describes
the singularity in the Bloch eigenstates near the crossing point.
Weyl points are robust against perturbations, which means that
they can be moved in momentum space but not made to disap-
pear unless they annihilate with a Weyl point of opposite charge,
similar to hedgehog–antihedgehog pairs in real space in liquid
crystals (10). Note that the Weyl points that we consider here
generically occur at finite frequency and do not require a particu-
lar symmetry. In contrast, mechanical symmetry-protected Weyl
points (similar to Dirac points in graphene) and Weyl lines occur
at zero frequency (11–15). There, a chiral symmetry is essential
to define the topological quantities and in turn, reveals a duality

between zero-frequency free mechanical motions and so-called
self-stress modes (16–21).

Excitations following the Weyl equation (7–9) have been
experimentally observed in electronic condensed matter in the
so-called Weyl semimetal tantalum arsenide (22–26) as well as
in photonic (27–32), phononic, and acoustic (33–36) crystals and
in homogeneous magnetized plasma (37). Beyond their funda-
mental importance, such discoveries may pave the way for mul-
tiple applications enabled by the peculiar properties of Weyl
points, such as their angular and frequency selective response
and the existence of topologically protected arc surface states
(called Fermi arcs in the electronic context) that appear at the
boundary of finite samples, even when time-reversal invariance
is not broken (38–43). This is in sharp contrast with gapped
topological materials, where the existence of one-way channels
requires breaking time-reversal invariance in some way, such as
with external drives (44–47), magnetic or rotation fields (48–51),
or active materials (52, 53).

All photonic Weyl materials designed up to now are based on
top-down approaches (28–32, 39, 54–59). In this article, we show
how soft matter self-assembly (60) provides a viable bottom-up
strategy to realize Weyl materials for sound and light. Block
copolymers are used as a paradigmatic example of soft materi-
als that self-assemble into a variety of highly structured phases
arising from the competition between elastic energy and sur-
face tension (61). However, our strategy is applicable to a wider
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range of self-assembled materials, because it is rooted in symme-
try. In the same way as the arrangement of atoms into various
crystalline structures is responsible for the diverse properties of
natural materials, the self-assembly of soft mesoscopic structures
with various space group symmetries provides an unparalleled
platform to synthesize unique materials.

Fully unleashing the potential of soft matter self-assembly in
material design involves a constant interplay between the full-
wave optical (or acoustic, etc.) equations of motion of the sys-
tem on one hand and its structural description in terms of free
energy minimization subject to external fields and constraints on
the other hand. Those problems are generally not analytically
tractable and require considerable computational power to be
solved numerically for a wide range of parameters. Here, our
goal is to design a bottom-up method to create Weyl materi-
als. While self-assembly is a global process taking place in real
space, Weyl points exist in reciprocal space, as they are features
of the band structure describing wave propagation in the sys-
tem. Hence, we have to solve an inverse problem involving both
descriptions. To shortcut this difficulty, we combine a minimum
input of full-wave computations with a comprehensive symmetry
analysis that determines analytically the desired symmetry break-
ing fields without performing heavy numerical simulations.

This article is organized as follows. In the first section, we
review the definition of a Weyl point and the properties of band
structures with such singularities. This allows us to identify a first
set of symmetry constraints on our candidate systems. The sec-
ond section is devoted to the realization of a self-assembled block
copolymer structure that meets this set of minimal requirements,
namely breaking inversion symmetry. We then move on to iden-
tify what (other) symmetries should be broken to obtain Weyl
points and how to do so by applying suitable strains. We then
confirm that the designed photonic structure indeed exhibits
Weyl points through full-wave computations of Maxwell equa-
tions. Simulating the self-assembled structures with broken sym-
metries is required to determine the quantitative features of the
band structure and most crucially, to show our method. How-
ever, to predict the existence of Weyl points, our framework
only requires the band structure of the unmodified system with-
out symmetry-breaking alterations. This enables the extension
of our design to other kinds of waves: from the full-wave band
structures of the unperturbed dispersive photonic, phononic, and
acoustic systems, we can predict that only the first two will exhibit
Weyl points when altered and strained. The last section provides

a generic blueprint for mesostructured material design by self-
assembly.

Weyl Points and Symmetry Requirements
The 3D band structure of an electronic system possessing Weyl
points exhibits linear band crossings locally described by the
Hamiltonian (7–9)

H (k) = qi vij σj , [1]
where q = k − k0 is the wave vector relative to the Weyl point’s
position k0, σj indicates the Pauli matrices, and vij is an invert-
ible effective velocity matrix describing the band crossing at first
order in q . While this description seems at first sight peculiar to
quantum mechanical systems, it is also applicable to all kinds of
waves, as we will see in the following with the example of light.
Crucially, such a Weyl point is characterized by an integer-valued
topological charge, which describes the singularity in the eigen-
states near the crossing point, and it can be expressed as (8, 9)

C1 = sgn det(v). [2]

Although the existence of such topologically protected Weyl
points does not require a particular symmetry, a crucial inter-
play between such degeneracies and symmetries exists. Notably,
Weyl points cannot be obtained when both time-reversal sym-
metry and space inversion symmetry are present (8, 62), because
inversion symmetry requires a Weyl point located at point k
on the Brillouin zone to have a partner of opposite charge at
−k . Time-reversal symmetry requires a Weyl point located at
k to have a partner of the same charge at −k , which implies
that this topological charge must be zero and that no Weyl
points exist. Hence, either time-reversal or inversion symmetry
(or both of them) has to be lifted to allow for Weyl points in
the band structure. In a time-reversal invariant system, Weyl
points come in pairs of points with identical charge, and the
simplest situation then consists of two such pairs with opposite
charges (Fig. 1B).

A hallmark of Weyl materials is the existence of topological
surface states at the interface with a band gap material. At a
plane interface, such as the one pictured in Fig. 1A, the trans-
lational invariance is preserved in two directions, and the surface
is described by a 2D surface Brillouin zone as represented in Fig.
1B. In addition to conical dispersions stemming from the projec-
tion of the bulk Weyl points, the surface band structure features
a manifold of arc surface states (represented in purple in Fig.
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Fig. 1. Bulk Weyl points and arc surface states. (A) Sketch of an interface between a band gap material and a Weyl material. Arc surface states (purple)
appear at this interface. (B) In a time-reversal invariant system, inversion symmetry has to be broken for Weyl points to exist. The simplest situation consists
of four Weyl points with charges ±1 (red and blue, respectively) in the bulk Brillouin zone (bulk BZ). A plane interface preserves space periodicity in two
directions and is hence described by a 2D surface Brillouin zone (surface BZ). Crucially, topological arc surface states (represented in purple) appear between
Weyl points of opposite charge on the surface BZs. (C) The surface dispersion relation at the interface between a Weyl material and a gapped system
features conical dispersions relations, which are the projections of the Weyl points. In addition, a manifold of topological arc surface states (light purple)
appears. The intersection of this manifold with a plane of constant frequency (or energy) is sometimes called a Fermi arc in reference to the situation in
electronic solid-state physics, where this plane is set at the Fermi energy. (D) The arc surface states may be observed by creating defects at the interface to
couple them with incident waves.
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1C) of topological origin. Let us consider a monochromatic beam
of light or sound shone on the system. Depending on the wave
frequency and its wave vector, it may be either reflected or trans-
mitted in the bulk material as ruled by the band structure. When
the beam hits the interface, it may also excite the arc surface
states. At all frequencies close to the Weyl points, there is an
arc-shaped curve in momentum space connecting the locations
of the Weyl cones, representing the set of wave vectors at which
topologically protected surface states are present.

The arc surface states arise from the topology of bulk states:
pictorially, they can be seen as the projections of a bulk “Dirac
string” connecting the Weyl points.∗ As the Dirac string is not
gauge invariant, however, topology only determines the connec-
tivity of the surface states (i.e., which Weyl points are connected).
Beyond their fundamental importance, one of the main interests
of arc surface states is the fact that their topological origin con-
fers them a certain robustness to perturbations. Such arc states
were experimentally observed in 3D materials both for light (29–
32, 58) and for sound (33, 35). Although time-reversal invari-
ance is preserved, unidirectional wave propagation immune to
backscattering can be observed at the interface (30, 31, 33). This
robustness is, however, not as strong as in a system with broken
time-reversal invariance, as a component of the tangent momen-
tum has to be (at least partially) conserved (30, 31, 33).

While the bulk Weyl points are most useful when they are
spectrally isolated from other bands (27, 28), the arc sur-
face states do not require such a frequency isolation (31). At
microwave frequencies, arc surface states were observed by plug-
ging an antenna into the sample (31). At lower wavelengths, they
could be observed as follows: a defect, such as a small hole drilled
at the surface of a Weyl material, allows a coupling between the
surface states and freely propagating light on the outside. Let us
consider several of such holes drilled at different places on the
surface of the material as represented in Fig. 1D. In the absence
of surface states at the light’s frequencies, a light beam shone on
one of such holes propagates in the bulk and quickly disappears
from the interface: all of the defects but the source are dark.
In contrast, when surface states are present, a sizeable part of
the beam intensity propagates at the interface in directions con-
trolled by the positions of the arc states in the surface Brillouin
zone. As a consequence, a handful of the holes are illuminated.
It is worth noting that the surface of a Weyl metamaterial can
only support arc surface modes if the conservation laws prohibit
hybridization of such modes with the electromagnetic continuum
outside. For the interface between Weyl materials and the vac-
uum, this requires the Weyl points to be below the light cone in
the reciprocal space. When this is not the case, one has to con-
sider an actual interface with a band gap material. In this case,
the hole can simply be extended into the band gap material.

Self-Assembling Inversion-Asymmetric Gyroids
In this article, we assume time-reversal invariance and concen-
trate on inversion symmetry breaking to avoid the need for
external drives, magnetic fields, or active materials. However,
generically breaking inversion symmetry leads to uninteresting
band structures. We adopt the following strategy: (i) start with
highly symmetric structures possessing particular degeneracies
and (ii) split such degeneracies into Weyl points by applying
carefully chosen symmetry-breaking perturbations. Implement-
ing both steps through a bottom-up strategy is very challenging.
Our goal is to overcome this difficulty using soft self-assembly.

The first example of a photonic crystal displaying Weyl points
was engineered by milling and stacking dielectric layers into a

∗More precisely, the topology of the band structure is fully characterized not only by
the charges of the Weyl points but by weak first Chern numbers (or weak Fu–Kane–
Mele invariants) defined on 2D planes or surfaces of the bulk Brillouin zone (63–65). In
contrast, the exact shape of the topological surface states is indeed not determined
by the topology and depends on the boundary conditions (31). In particular cases,
it can, however, be predicted from the bulk through the entire data of the Berry
connection (66).

highly symmetric structure called a double gyroid, in which addi-
tional holes were deliberately drilled at strategic points to reduce
the symmetry of the system (28). A gyroid is an infinitely con-
nected triply periodic surface of zero mean curvature discovered
by Alan Schoen (67). The surface of the gyroid divides space
into two regions corresponding to the interpenetrating labyrinth
structures shown in Fig. 2.

A remarkable fact from soft matter science is that double
gyroids naturally self-assemble in situations where two or several
linked components have repulsive interactions with each other.
In such circumstances, the minimization of surface energy con-
strained by the presence of links between the immiscible com-
ponents can lead to a variety of minimal surfaces, among which
is the gyroid surface. Gyroids generically appear in various soft
materials, such as liquid crystals (70–72), amphiphilic surfactants
(73, 74), dispersions of anisotropic and patchy colloids (75–79),
and block copolymers (61, 80, 81) to name but a few.

AB diblock copolymers are the archetypal example of such
a self-assembling soft material. They are composed of two
immiscible polymer blocks denoted by A and B glued together
by covalent bonds. For a well-chosen set of system parame-
ters (typically the average degree of polymerization, the rel-
ative fractions of A and B, and the Flory–Huggins parame-
ter characterizing the interaction energy between the blocks A
and B), the constrained minimization of the interface energy
leads to a double-gyroid structure, where two minority net-
works of opposite chirality are interwoven inside a matrix
majority network (82, 83). The interface between one of the
minority networks and the matrix is a gyroid surface, a triply
periodic constant curvature surface (67, 84, 85), which is well-
approximated by the isosurface g(x , y , z )≡ sin(2πx ) cos(2πy) +

sin(2πy) cos(2πz ) + sin(2πz ) cos(2πx ) = t (with 0≤ t <
√

2)
(86), where x , y , and z are measured in units of the unit cell
size a . The second minority network is obtained from the first
through space inversion. Hence, one of the gyroidal minority
networks is described by g(x , y , z )≥ t , while its chiral partner,
obtained by space inversion, is described by g(−x ,−y ,−z )≥ t .
Both are composed, say, of the A blocks, while the majority
matrix is composed of the B blocks.

Crucially, the resulting structure has inversion symmetry that is
almost impossible to get rid of without local modifications. This is
certainly possible in engineered structures like the milled struc-
tures in ref. 28, where one has direct control on the shape of
the unit cell, but it is not compatible with a bottom-up material
synthesis scheme. To take advantage of a self-assembly scheme,
we instead choose to use ABC triblock terpolymers, which self-
assemble in a double gyroid where two chemically distinct gyroid-
shaped minority networks of opposite chirality are interwoven
inside a matrix majority network (82, 83). For instance, one of
the gyroidal labyrinths may be composed of A blocks, but its
image by space inversion is then composed of C blocks, and
the matrix is still composed of B blocks. The resulting struc-
ture is called an asymmetric double gyroid or an alternating
double gyroid. After the polymer self-assembly, standard tech-
niques allow us to selectively etch one of the gyroidal minority
networks and to replace it with a high-permittivity material (87,
88) [for example, by metal (68, 69) or dielectric (89, 90) deposi-
tion]. Crucially, the chemical difference between both gyroidal
networks allows us to induce an optical asymmetry between
them either by depositing materials of different dielectric con-
stants or through the use of a mild etching agent to tune their
respective radii. The last step is to get rid of the majority net-
work matrix. The whole process is summarized pictorially in Fig.
2. After this process is complete, we are left with a structure
where the dielectric constant is εA for g(x , y , z )≥ tA, εB for
g(−x ,−y ,−z )≥ tB , and εair = 1 outside of such regions. Simi-
larly, a phononic crystal can be obtained by inducing an asym-
metry in the elastic properties of the two gyroidal networks. In
the following, we focus on photonic crystals for concreteness, but
full details on acoustic and phononic crystals are provided in SI
Appendix.
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Fig. 2. Self-assembly process and effect of strain. (A) The self-assembly of triblock terpolymers leads to “colored” double gyroids, where the two minority
networks (red and blue) are chemically distinct (68, 69). Starting from the self-assembled structure, a series of selective etching, partial dissolution, and
backfilling steps leads to an asymmetric double gyroid made of high dielectric constant materials, which constitute a 3D photonic metacrystal. Crucially, the
photonic band structure of such a system has a threefold degeneracy at the center of the Brillouin zone (the Γ point), which is represented in purple in B,
Upper Right. This threefold degeneracy can be split into a set of Weyl points by an appropriate strain (in this case, pure shear) represented in red and blue
(for Weyl points of charge 1 and −1, respectively) in B, Lower Right.

Effective Description of the Band Structure
To obtain Weyl points, the symmetry of the double gyroid must
be reduced further. Full-wave numerical simulations reveal that
the photonic band structure of a dielectric double gyroid has a
threefold quadratic degeneracy at the Γ point (the center of the
first Brillouin zone) (91). From the point of view of symmetries,
the threefold degeneracy is allowed by the existence of 3D irre-
ducible representations of the subgroup of symmetries leaving
the Γ point invariant, namely the irreducible representation T1g

of the full octahedral group m3̄m (or Oh in Schoenflies nota-
tion) (SI Appendix). This threefold degeneracy can be split into
pairs of Weyl points by symmetry-breaking perturbations (27, 39)
as represented in Figs. 2B and 3. The systematic description of
a band structure near a high-symmetry point of the Brillouin
zone as well as the effect of symmetry-breaking perturbations
can be obtained from group theory. This approach, known as the
method of invariants, originated within condensed matter physics
(92–96), but it also applies to photonic systems (97, 98) and more
generally, to all kinds of waves in periodic media.

For example, in the absence of charges and currents, Maxwell
equations can be written in a convenient way as

i∂t
(
E
H

)
=

[(
ε 0
0 µ

)−1(
0 i rot
−i rot 0

)](
E
H

)
, [3]

where E and H are the electric and magnetic fields, respec-
tively, while ε and µ are the spatially varying permittivity and
permeability of the medium, respectively. In this form, the oper-
ator in square brackets, called the Maxwell operator, plays the
role of a Hamiltonian† (1, 99, 100). This full-wave Maxwell
equation is usually impossible to solve analytically: one has to

†For normal materials where permittivity and permeability are strictly positive, the
Maxwell operator is Hermitian with respect to a relevant scalar product (1, 99). An
additional constraint stemming from the source-free equations has to be taken into
account, which commutes with the Maxwell operator.

resort to numerical simulations. However, with minimal input
from a numerical full-wave solution complemented with the full
knowledge of symmetries in the problem, one can determine an
effective Hamiltonian, which is sufficient for perturbative design
purposes. Similar considerations apply to other kinds of waves
propagating in periodic media (for example, elastic waves) (SI
Appendix).

By reducing the full description of the system (contained in the
Maxwell operator) to the subspace spanned by a few relevant
degrees of freedom, one obtains an effective Hamiltonian de-
scribing a few bands in the vicinity of a (usually high-symmetry)
point k0 of the Brillouin zone. For example, the eigenstates
involved in a degeneracy at k0 can then be used as a basis to
describe the effective Hamiltonian operator as a matrix H (q),
where q = k − k0. Both the Maxwell operator and the effective
Hamiltonian operator are invariant with respect to the symme-
tries g of the group of the wave vector k0, defined as the subgroup
of symmetries that leave k0 invariant. The general idea of the the-
ory of invariants is that symmetries can be used to construct the
effective Hamiltonian matrix from scratch by combining a set of
basis matrices X (which form a basis of, say, the space of 3× 3
Hermitian matrices) and irreducible functions K(q) of the wave
vector components (like q2

x + q2
y + q2

z ). The basis matrices rep-
resent operators in the basis of eigenstates at k0. As such, they
change when a symmetry operation is applied. This is also the
case in irreducible functions as the symmetry operation is applied
to the momentum vector. As the effective Hamiltonian operator
is invariant when a symmetry is applied, it is possible to deter-
mine all terms allowed by symmetry by selecting all combinations
of the form K(q)X , which are left invariant by the action of the
symmetries.

More precisely, if the eigenstates at k0 form an irreducible
representation Γ, then the matrix representation H (q) of the
effective Hamiltonian operator describing the corresponding
bands will be covariant with respect to the symmetries. Namely,
D(g)H (g−1q)D(g)−1 =H (q), where D is a representation of
Γ acting on the effective Hamiltonian by its adjoint action as a
representation of Γ×Γ∗. The effective Hamiltonian can then be
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Fig. 3. Reducing the symmetry. In A–C, we show the various structures of interest: (A) the (symmetric) double gyroid, (B) the asymmetric double gyroid, and
(C) the strained asymmetric double gyroid (with shear strain). For the double gyroid, the group of the wave vector Γ is the octahedral group Oh (m3̄m in
Hermann–Mauguin notation), while it is the octahedral rotation group O (432) for the asymmetric double gyroid. When strain is applied to the asymmetric
double gyroid, its symmetry is reduced, which corresponds at the Γ point to a subgroup of the octahedral rotation group O. Such subgroups are organized
in a Hasse diagram. (The octahedral rotation group is indeed a subgroup of the full octahedral group Oh, which has more subgroups that are not relevant
here and were not represented. As strain preserves inversion symmetry, any strained symmetric double gyroid still has an inversion center. The point group
at Γ is then the product of the inversion group S2 with a subgroup of O. Such situations can be achieved by starting from the symmetric double gyroid.
In addition, there are other mixed subgroups of Oh, which cannot be directly realized through our method.) In D–F, the method of invariants predicts the
qualitative features of the band structure of the modified double gyroids (B and C).

constructed by combining basis matrices X (γ,µ) of the irreducible
representations Γγ appearing in decomposition of this prod-
uct and irreducible functions of the wave vector components
Kγ,µ(q) as

H (q) =
∑
γ

aγ
∑
µ

X (γ,µ)Kγ,µ∗(q), [4]

where aγ indicates arbitrary constants chosen such that H (q) is
Hermitian and where µ labels the basis elements in the same irre-
ducible representation.

Given (i) the input of the space group Ia3̄d of the double
gyroid and (ii) the fact, known from full-wave computations, that
a threefold band crossing transforming according to the 3D irre-
ducible representation T1g exists at the Γ point, the method of
invariants yields the following effective Hamiltonian, describing
the band structure in the vicinity of this crossing (SI Appendix):

H0(k) = a
(0)
1 Id + a

(2)
1 k2 Id + a

(2)
12

(
K Λ +K Λ†

)
+ a

(2)

25′
(
kxky LxLy + c.p.

)
+O(k3)

, [5]

where k2 = k2
x + k2

y + k2
z and c.p. stands for “circular permuta-

tion” (of the indices). Matrices Li are 3 × 3 Hermitian angu-
lar momentum matrices satisfying [Li ,Lj ] = i εijkLk and L2

x +
L2
y +L2

z = 2Id, and Id is the identity matrix. We also defined
K = (k2

x +ωk2
y +ωk2

z ) and Λ =L2
x +ωL2

y +ωL2
z with ω= ei2π/3.

In this expansion, the indices of the coefficients a(p)
I refer to the

irreducible representation ΓI from which the invariant term was
constructed and the exponent in parentheses to the order of the
irreducible polynomial composed of the wave vector components
(at the Γ point, k0 = 0, so that q = k). Finally, in addition to space
symmetries, time-reversal invariance is imposed by considering
only time-reversal even combinations.

The main interest of the method of invariants is that it allows
us to determine what new terms can be added to the preced-

ing effective Hamiltonian when the symmetry is reduced. This
enables us to qualitatively predict the effect of perturbations on
the band structure as illustrated in Fig. 3. As we have seen, the
very first step toward inducing Weyl points is the removal of inver-
sion symmetry from the structure (Fig. 3C). Hence, the point
group at Γ becomes the chiral octahedral group 432 (or O in
Schoenflies notation). However, this modification does not allow
a constant term in the effective Hamiltonian: only a new linear
term of the form kxLx + kyLy + kzLz appears due to the reduc-
tion of the irreducible representation T1g and T1u of Oh to T1

in O. Hence, the quadratic band crossing at Γ cannot be lifted
by such a term (Fig. 3D), and a further reduction in symmetry is
required.

Strain and Symmetries
The simplest yet global way to reduce the symmetry of a struc-
ture is to apply a mechanical strain. The key point is that this
strategy is compatible with self-assembly, unlike local modifica-
tion or patterning of the individual building blocks. The asymme-
try between the enantiomeric (i.e., nonidentical mirror images of
each other) gyroidal components described in the previous sec-
tion reduces the space group Ia3̄d [International Union of Crys-
tallography (IUC) no. 230] of the symmetric double gyroid to
I4132 (IUC no. 214). When strain is applied, this space group is
further reduced.

We choose to apply the shear strain

ε=

(
cos θ sin θ 0
sin θ cos θ 0

0 0 1

)
[6]

written in the Cartesian coordinates of the standard conven-
tional cell (not the primitive cell). This transformation (illus-
trated in Fig. 3E) reduces the space group of the asymmetric
double gyroid to F222 (IUC no. 22) when θ is nonzero [the
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method to compute the space groups of the structures, based on
the open source spglib library (101), is detailed in SI Appendix].
Correspondingly, the point group at the Γ point is 222 (or D2 in
Schoenflies notation). As we shall see, the effective description
of the band structure near the Γ point predicts the appearance of
Weyl points in this situation.

The effect of a reduction in symmetry on the effective Hamil-
tonian can be determined using subduction rules between the
original symmetry group and its subgroup, which describe how
the original irreducible representations combine into the new
ones. In a system with lower symmetry, it is possible to combine
some X γ and Kδ in a way that was previously not allowed. In
our case, going from Oh to D2 allows various new terms in the
effective Hamiltonian, which becomes H (k) =H0(k) + ∆H (k),
where

∆H (k) =β± Λ±+ γi ki Li + δ±K± Id + ζ± k2 Λ±, [7]

Λ+ = Λ + Λ†, and Λ−= i(Λ−Λ†) while K+ =K and K−=K .
Implicit summation over i = x , y , z and ± is assumed. (We
imposed, as an additional constraint, that time-reversal symme-
try be preserved.) In this expression, β±, γi , δ±, and ζ± are
generically nonvanishing free parameters, which depend on the
details of the system. The strained symmetric double gyroid can
also be described in such a way: the only difference is that all
symmetry groups now include inversion symmetry. Shear strain
then reduces the point group at Γ from Oh to D2h, which imposes
γi = 0.

Particularly noteworthy in Eq. 7 are the constant terms with
prefactors β±, which allow the threefold degeneracy at Γ to
be lifted. As such constant terms do not break inversion sym-
metry, they cannot single-handedly lead to the appearance of
Weyl points. Instead, they split the threefold degeneracy into
an entire nodal line of degeneracies, similar to the one pre-
dicted in ref. 27, which is robust against (small) inversion-
preserving perturbations. In contrast, a perturbation of the form
Eq. 7 generically breaks inversion symmetry and produces Weyl
points as observed in Fig. 3F (SI Appendix discusses typical
spectra of the effective Hamiltonians with different symme-
tries). Hence, we can predict that, in a well-chosen parame-
ter range, the strained asymmetric double gyroid will exhibit
Weyl points.

Numerical Computation of Photonic Band Structures
To confirm the existence of Weyl points in the strained asym-
metric double gyroid, we proceed to a full-wave computation of
the band structure using the well-established open source pack-
age MPB, which determines the fully vectorial eigenmodes of
Maxwell equations with periodic boundary conditions (102). Lin-
ear crossings between the fourth and fifth bands are observed
in the situation described in the previous section (in Fig. 4B,
the relevant bands are red and purple, and the Weyl points and
avoided crossing are marked by gray circles). In this case, the
difference between a nodal line and a set of Weyl points has to
be searched on the Γ−P line. In the asymmetric double-gyroid
structure, a local gap separates the fourth and fifth bands along
this line, which closes in the inversion-symmetric structure. To
ensure that such crossings are indeed Weyl points, we compute
their topological charge from the numerically computed eigen-
modes (SI Appendix). We find that the topological charge of the
crossing point on the Γ−H ′ axis is +1, while the charge of the
crossing point on the Γ−N ′ axis is −1 (the crossing points on
the Γ−N ′ and Γ−H ′ axes have the same charge as their time-
reversal counterparts).

An asymmetry only in either the dielectric constants or the
gyroids’ thicknesses is sufficient to obtain photonic Weyl points.
The effects of both perturbations are similar but not identical:
their combination may allow us to optimize for additional fea-
tures in the band structure (not necessarily topological; for exam-
ple, avoiding frequency overlaps) (an example is in SI Appendix).
Here, we focus on the Weyl points: the effect of the dielectric
constant asymmetry on the local gap on the Γ−P line and on the
positions of the Weyl points is shown in Fig. 5B (the effect of the
gyroid thickness asymmetry can be found in SI Appendix). While
the strain angle affects both the relative positions of the Weyl
points and the gap on Γ−P (Fig. 5A), the relative positions of
the Weyl points are almost not affected by the asymmetry.

Additionally, both the dielectric and thickness asymmetries
gradually open a complete band gap between the second and
third bands. Here, this effect is unwanted, as it reduces the band-
width available for the Weyl points. It may, however, turn out
to be useful in other contexts. As the strain tends to reduce
the size of this band gap, we also obtain a 3D strain-tunable
photonic band gap material (103, 104), with properties that can
be adjusted through the dielectric and thickness asymmetries.

A

B Fig. 4. Photonic band structures. Photonic band
structures of (A) the symmetric double gyroid and
(B) the shear-strained asymmetric double gyroid. The
threefold quadratic band crossing at the Γ point
of the band structure of the unperturbed double
gyroid is split into Weyl points on the Γ−N′ and
Γ−H′ lines (in contrast, there is no crossing on
the Γ− P line, which distinguishes the pair of Weyl
points from a nodal line). The first eight bands of the
band structures were computed with the MPB pack-
age (102) on a (64× 3)3 grid, with (A) εA = εB = 16,
tA = tB = 1.1, and θ= 0 and (B) εA = 20.5, εB = 11.5,
tA = tB = 1.1, and θ= 0.3. Here, ω0 = 2πc/a, where
c is the speed of light in vacuum.
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A B

Fig. 5. Evolution of the main features of the photonic band structures.
Evolution of characteristic features of the Weyl points, represented in C,
with (A) the strain angle θ and (B) the dielectric asymmetry δε≡ εB− εA.
Here, the band structures are computed with the set of parameters in
Fig. 4B on a (32× 3)3 grid. We plot both the minimum of the local gap
between the fourth and the fifth bands, ∆fΓP

45 = min{|f5(k)− f4(k)| | k∈
Γ− P}, and the normalized positions of the two inequivalent Weyl points,
ŵ+ = w+/‖ΓN′‖ and ŵ− = w−/‖ΓH′‖. The gray dashed lines correspond
to the value at which each parameter is kept constant in other figures.
The abrupt jump in the position of one of the Weyl points near θ= 0.4
is an artifact: another set of band crossings appears on the Γ−N′ and
Γ−H′ lines near this value (SI Appendix). For the local gap, light green
regions delimited by dashed lines correspond to the order of magnitude of
symmetry-breaking numerical errors (SI Appendix). The data are not mean-
ingless below this threshold, but the effects of the strain and structural
asymmetry are not distinguishable from the spurious numerical reduction
of symmetry. Similarly, ŵ± should both vanish at θ= 0 (which is clearly not
the case). This provides an order of magnitude of the uncertainty on both
observables.

Such tunable gap materials have been used to realize strain sen-
sors (105). Here, we can envision a combination of such strain-
sensing methods with an optical tracking of the strain-induced
Weyl points to achieve a high-precision measure of mechanical
properties.

Self-Assembled Weyl Materials for Light and Sound
While we focused on photonic systems, the same group-
theoretical analysis applies to other kinds of waves. We consider
three examples where Weyl points were already shown: (i) dis-
persive photonic media (37) (i.e., with a frequency-dependent
dielectric tensor), (ii) phononic crystals (34), and (iii) acoustic
crystals (33, 35, 36). To show the possibility of obtaining a self-
assembled Weyl material, we only need to consider the band
structure of an unperturbed double gyroid and look for an essen-
tial threefold degeneracy at the Γ point. The rest follows from
our group-theoretical analysis. As we shall see, such a threefold
degeneracy appears in both dispersive photonic and phononic

systems but does not seem to arise in the considered acoustic
system, at least at reasonably low frequencies.

When light propagates in a structure made of a metal or in a
dielectric at high frequency, the plasma oscillations of the elec-
tron density couple with the electromagnetic field, leading to a
dispersive photonic crystal where the propagation of light is still
described by Maxwell equations but with a frequency-dependent
dielectric tensor (106, 107). We consider a double gyroid made
of a Drude metal with the plasma frequency of gold, the band
structure of which is represented in Fig. 6A. In dispersive pho-
tonic crystals, the scale invariance of Maxwell equations is not
valid anymore, as the plasma frequency provides a length scale.

A

B

C

Fig. 6. Band structures of the unperturbed double gyroid for different
waves. (A) Dispersive photonic band structure of a metallic double-gyroid
structure made of a Drude metal with the plasma frequency of gold stand-
ing in vacuum. (B) Phononic band structure for an elastic double gyroid in
steel embedded in an epoxy elastic matrix. (C) Acoustic band structure for
sound in air confined outside of a double gyroid with hard wall boundary
conditions. In the dispersive photonic and phononic band structures (A and
B), a threefold degeneracy (highlighted by gray circles) is found. As such, we
expect such systems to exhibit Weyl points when strained. In A, ω0 = 2πc/a,
where c is the speed of light in vacuum. We use the plasma frequency of gold,
ωp/2π' 2.19× 1015 Hz (108), and a' 500 nm. The loss termΓ is initially set to
0, and the results show no significant deviations from the case computed with
the tabulated value Γ/2π= 5.79× 1012 Hz (108). In B, ω0 = 2πct/a, where ct

is the speed of transverse waves in epoxy. The values assumed for the lon-
gitudinal and transverse speeds of sound in steel and epoxy are obtained
from the components of elastic tensor CIJ as c2

t = C44/ρ and c2
` = C11/ρ from

the values in refs. 109–111, namely ρepoxy = 1180 kg m−3, Cepoxy
11 = 7.61 GPa,

and Cepoxy
44 = 1.59 GPa and ρsteel = 7780 kg m−3, Csteel

11 = 264 GPa, and Csteel
44 =

81 GPa. In C, ω0 = 2πcair/a, where cair is the speed of sound in air. All compu-
tations are performed with a 48× 48× 48 grid. More details on the model
and computation are in SI Appendix.
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The case of a unit cell of size a = 100 nm was previously con-
sidered in ref. 68. At such scales, the threefold degeneracy may
still be present but is overlapped by highly dense plasma bands,
and it cannot be identified. Here, we consider a unit cell of size
a = 500 nm. A threefold degeneracy appears near ω/ω0∼ 0.5.
Inspection of the eigenvectors shows that the electric field trans-
forms along the 3D irreducible representations T1u (more details
are in SI Appendix). Similarly, in a phononic crystal, elastic waves
propagate in a spatially periodic structure. Here, we consider
a double gyroid made of steel embedded in an epoxy matrix,
which couples elastically the two enantiomeric gyroids (110). As
observed in Fig. 6 A and B, a threefold degeneracy is found near
ω/ω0∼ 0.95. Inspection of the numerical eigenvectors shows
that they also transform according to the 3D irreducible repre-
sentation T1u (more details are in SI Appendix). According to
our analysis, such threefold degeneracies will be split into Weyl
points by inducing an asymmetry in the enantiomeric gyroid net-
works and applying an appropriate strain in both the dispersive
photonic and phononic systems.

By contrast, we consider the case of an acoustic system,
where sound propagates in air outside a double gyroid-shaped
labyrinth. Here, no threefold degeneracy at Γ seems to appear
in the band structure (at least below ω/ω0∼ 1.75) (Fig. 6C and
SI Appendix) for the values of the parameters we considered.
As a consequence, we do not expect Weyl points to appear
under strain at those frequencies. Finally, the band structure of
electrons constrained to move on gyroid-shaped nanostructured
semiconductors displays multiple degeneracies (113, 114), which
could also give rise to Weyl points under strain. In this situa-
tion, however, one has to take into account the spin degrees of
freedom of the electrons, which are also affected by the curva-
ture, and therefore, we can draw no definitive conclusion from
our analysis, which would have to be adapted to include double-
group representations.

The self-assembly of asymmetric double-gyroid structures has
already been shown experimentally in block copolymers (69).
Directed self-assembly can induce mechanical strains in the
direction of growth (115), which according to our symmetry anal-
ysis, would automatically lead to the appearance of Weyl points
without the need of applying external perturbations. Moreover,
gyroid-based systems appear to be unusually resistant to the
appearance of cracks when strained (116–118), possibly as a
result of their 3D cocontinuous structure, making them a partic-
ularly good fit for our strain-based design. The size a of the unit
cell of the structures obtained by block polymer self-assembly
crucially depends on the blocks’ molar mass. With current exper-
imental techniques, the accessible unit cell sizes range from a
few nanometers to a hundred nanometers (83, 119). In pho-
tonic crystals, this constraint on the unit cell size means that
we can expect Weyl points to appear at wavelengths of order
λopt∼ a/0.5' 200 nm (or smaller), which are at UV wavelength.
Depending on the materials used in the process, the light fre-
quency may be high enough for the dielectric function not to
be constant anymore, but as we have shown, Weyl points can
also occur in dispersive photonic crystals. While the direct obser-
vation of a Weyl band structure at such frequencies is chal-
lenging, such self-assembled photonic crystals could be used in
X-ray/UV optics (for example, to realize Veselago lenses as pro-
posed in ref. 42).

To generate an optical response in the visible spectrum, it
would be interesting to explore hierarchical self-assembly of
gyroids using soft building blocks larger than standard polymeric
monomers, such as superstructures formed by anisotropic col-
loids (75, 78), or liquid crystalline phases (72).

Symmetry-Driven Discovery of Self-Assembled Materials
Both the possible existence of a threefold degeneracy and its split-
ting into Weyl points are predicted by group theory. In this study,
we did not need to make an initial guess of a structure lead-
ing to a threefold degeneracy at Γ, because we used the well-
known example of a double gyroid. Note, however, that symmetry

Fig. 7. Symmetry-driven mesostructured material discovery pipeline. To
obtain mesostructured materials with a set of desired properties, we sug-
gest the following automated discovery pipeline. We start from a library of
self-assembled structures, which is scanned for candidates matching symme-
try requirements for a set of target properties. This requires us to automat-
ically determine the space group of each structure: a script space group.py
does this job for structures represented as a skeletal graph (SI Appendix).
A best candidate for the initial structure is then selected, and its properties
are numerically computed. For example, we compute the band structure,
from which the topological charges of the Weyl points (if any) are deter-
mined by a script weyl charge.py. An effective description is then extracted
from the numerical data: here, we need to determine the irreducible rep-
resentations of the numerical eigenvectors, a job performed by the script
irreps.py (SI Appendix). The effective description then allows us to deter-
mine which modifications should lead to the desired properties (for exam-
ple, through a symmetry reduction). Here, this step could also be automated
using https://github.com/greschd/kdotp-symmetry. Finally, the properties of
the modified structure are numerically determined and compared with the
desired properties. In case of failure, a new initial structure is selected from
the library, and the process is iterated.
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considerations can also guide this first step, as they determine in
which structures essential degeneracies can exist (120), such as
frequently used both in solid-state physics (121–123) and for clas-
sical waves (124, 125). This approach combined with an iterative
search through libraries of self-assembled structures could pro-
vide an extension of our results to different systems. We devel-
oped open source Python packages that perform some of the tasks
required (details are in SI Appendix): (i) the script space group.py
numerically determines the space group of a structure repre-
sented as a skeletal graph in the presence and absence of mechan-
ical deformations using the open source library spglib (101), (ii)
the script irreps.py numerically determines the irreducible rep-
resentations of the numerical eigenvectors, and (iii) the script
weyl charge.py computes numerically the charges of the Weyl
nodes for an arbitrary band structure using a gauge-invariant
method (126–132). Fig. 7 provides a schematic representation of

an automated self-assembled mesostructured material discovery
pipeline, which would blend computationally intensive full-wave
simulations and the group theoretical tools used in this study. In
such a scheme as well as in our work, symmetries act as a powerful
guide in the wealth of self-assembled structures (61, 83, 87, 133)
by both identifying candidate systems and determining suitable
perturbations to achieve a given response.
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