
 

Neutrino mass priors for cosmology from random matrices

Andrew J. Long,1 Marco Raveri,1,2 Wayne Hu,1,3 and Scott Dodelson4
1Kavli Institute for Cosmological Physics, University of Chicago, Chicago, Illinois 60637, USA

2Institute Lorentz, Leiden University, PO Box 9506, Leiden 2300 RA, The Netherlands
3Department of Astronomy and Astrophysics, Enrico Fermi Institute,

University of Chicago, Chicago, Illinois 60637, USA
4Department of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15312, USA

(Received 1 December 2017; published 13 February 2018)

Cosmological measurements of structure are placing increasingly strong constraints on the sum of the
neutrino masses, Σmν, through Bayesian inference. Because these constraints depend on the choice for the
prior probability πðΣmνÞ, we argue that this prior should be motivated by fundamental physical principles
rather than the ad hoc choices that are common in the literature. The first step in this direction is to specify
the prior directly at the level of the neutrino mass matrix Mν, since this is the parameter appearing in the
Lagrangian of the particle physics theory. Thus by specifying a probability distribution over Mν, and by
including the known squared mass splittings, we predict a theoretical probability distribution over Σmν that
we interpret as a Bayesian prior probability πðΣmνÞ. Assuming a basis-invariant probability distribution on
Mν, also known as the anarchy hypothesis, we find that πðΣmνÞ peaks close to the smallest Σmν allowed by
the measured mass splittings, roughly 0.06 eV (0.1 eV) for normal (inverted) ordering, due to the
phenomenon of eigenvalue repulsion in random matrices. We consider three models for neutrino mass
generation: Dirac, Majorana, and Majorana via the seesaw mechanism; differences in the predicted priors
πðΣmνÞ allow for the possibility of having indications about the physical origin of neutrino masses once
sufficient experimental sensitivity is achieved. We present fitting functions for πðΣmνÞ, which provide a
simple means for applying these priors to cosmological constraints on the neutrino masses or marginalizing
over their impact on other cosmological parameters.
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I. INTRODUCTION

Measurements of the cosmic microwave background
(CMB) [1,2] and large scale structure [3–5] are currently
being used to constrain—and one day, hopefully to
measure—the spectrum of neutrino masses. The two
squared mass splittings are already known from terrestrial
experiments [6,7], and cosmological probes are sensitive to
the sum of the three neutrino masses, Σmν. Therefore a
combination of terrestrial and cosmological measurements
can be used to completely determine the neutrino mass
spectrum.
When cosmological data is used to extract a limit on

Σmν, the analysis is generally performed using Bayesian
inference [8]. In this framework one is required to select a
prior probability distribution πðΣmνÞ, which reflects one’s
a priori expectation for the sum of neutrino masses before
the cosmological data is considered.
The assumed prior can have a dramatic impact on the

inferred posterior probability distributions, not only for the
neutrino mass itself but also for other cosmological
parameters due to degeneracies. Until recently, cosmologi-
cal measurements did not have enough sensitivity for the
prior to matter much, and for simplicity most analyses set

Σmν ¼ 0. However, the enhanced precision of the Planck
CMB data [1,2], meant that assuming Σmν ¼ 0 would lead
to a shift in the value of the Hubble constant (that is a
noticeable fraction of its errors) as compared to assuming
Σmν ≈ 0.06 eV, which is the minimum value allowed by
the terrestrial experiments. Thereafter, most analyses
allowed for non-zero neutrino mass by simply shifting
the delta function prior from Σmν ¼ 0 to Σmν ≈ 0.06 eV.
We are now moving into the era where analyses need to

account for the reality that we do not know the value of Σmν

by allowing it to vary in the fits. In choosing a prior for Σmν

we have more options than simply the flat and logarithmic
distributions; since there are three neutrino masses, there
are other options that seem closer to the fundamental
parameters, and these options may lead to dramatic
differences in the inferred parameter constraints. For
example, the authors of Ref. [9] advocate a Gaussian
(hyper)prior on the logarithm of the individual masses,
and they find that given the mass splittings, the prior alone
strongly favors minimal masses, the normally ordered
spectrum over the inverted one, and the impact on other
cosmological parameters that these preferences imply
(cf. Ref. [10]).
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In Sec. II we review the importance of priors in
establishing cosmological limits on Σmν. Even amongst
commonly applied priors, the 95% confidence upper limit
can vary by as much as 20%. More extreme logarithmic
priors can lead to qualitatively different conclusions.
Therefore, understanding the origin of the prior has
emerged as an essential ingredient of any cosmological
analysis.
Here we argue for a prior on the most fundamental

parameters in the theory: the elements of the neutrino mass
matrix Mν that appears in the Lagrangian. This approach
follows in the footsteps of earlier work on the “anarchy
hypothesis” or “anarchy principle” in studies of the neutrino
flavor problem [11] (see also Refs. [12–21]). By specifying a
probability distribution for Mν, we derive a probability
distribution over the sum of neutrino masses Σmν. Since
the structure of the mass terms in the Lagrangian depends on
whether the neutrinos are Dirac or Majorana particles and
whether the Majorana mass arises from the seesaw mecha-
nism, the distribution over Σmν also depends on the physical
origin for the neutrino masses.
On the one hand, this approach can be viewed as a

phenomenological exercise. We are simply displacing the
prior from Σmν to Mν. When our work is viewed in this
way, the interesting question is whether the flat prior on
Σmν, which is typically assumed in cosmological studies,
arises from reasonable, basis-independent priors onMν; we
will see that it does not. (To motivate the flat prior, note that
it is the Jeffreys prior for a noise-dominated measurement).
There is an even more ambitious interpretation of this

approach. It is reasonable to treat the neutrino mass matrix
as random if the fundamental theory admits many vacua
across which the neutrino mass spectrum varies. Then the
prior on Mν reflects the uncertainty inherent in the under-
lying theory. The landscape of string theory vacua is a
concrete example [22], but of course string theory is not
developed to a point where the probability distribution over
Mν can be calculated.
Nevertheless, if we understand that the random matrix

description arises from some unknown fundamental theory,
then we can restrict the form of the prior on Mν with some
reasonable assumptions about the character of that theory.
Following Ref. [12], the primary assumption in our work is
that the probability distribution overMν should be invariant
under bi-unitary flavor transformations. In other words, if
two matrices are related to one another by a change of
basis, then they should be equally probable. Since this
assumption is a specific implementation of the anarchy
hypothesis [11], we will refer to this principle as the basis-
independent anarchy hypothesis (BAH). In this work we do
not consider models in which the neutrino mass matrix
encodes an underlying symmetry structure, although such
models are also motivated from fundamental physical
principles, and we do not expect the results of our analysis
to apply to these models as well. For an analysis of neutrino

mass priors in hierarchal mass models we refer the reader
to Ref. [23].
We will see that the priors πðΣmνÞ resulting from these

simple assumptions are strongly informative compared with
current data. This can either be viewed as undesirable for a
prior or can be interpreted as a testable target for future
measurements. As a stark example, generically under the
BAH, a detection of Σmν ¼ 0.1 eV would rule out the
seesawmechanism at approximately 99.7% CL significance.
This remainder of this article is organized as follows. We

illustrate in Sec. II the importance of neutrino mass priors
with a simple example. Section III introduces the reader to
random matrices and explains how to calculate the prob-
ability distribution over Σmν. Section IV discusses how a
specific probability distribution over the neutrino mass
matrix Mν determines the probability distribution over
Σmν. The paper concludes in Sec. V where we summarize
our results and discuss the possible implications for
cosmological studies and limits on Σmν.

II. IMPORTANCE OF NEUTRINO MASS PRIORS

Several recent studies [9,10,24] (see also Refs. [25–31])
have investigated how much the prior on Σmν affects limits
on cosmological parameters and odds ratios for normal
versus inverted ordering. In Fig. 1 we show several
recently-discussed priors. The top panel shows both a flat
in Σmν (flat-linear) and a flat in logðΣmνÞ (flat-log) prior in
the range Σmν ∈ ð0.06; 1Þ eV. If the likelihood is Gaussian
in Σmν then the Jeffreys prior, which is calculated as the
square root of the determinant of the Fisher information
matrix, is flat-linear Σmν ∈ ð0;∞Þ eV [32,33] (cf. [9,24]).1

The bottom panel shows priors on Σmν that arise when the
distribution over the lightest neutrino mass mL is assumed
to be either flat-linear mL ∈ ð0; 0.33Þ eV or flat-log
mL ∈ ð0.01; 0.33Þ eV. The other heavier neutrino masses
are determined by fixing the squared mass splittings to their
best-fit measured values, and the hierarchy is assumed to
have either the normal or inverted ordering (NO or IO)
where the larger splitting is between the heaviest or lightest
neutrinos respectively; for additional details see Sec. III F.
Note that in the flat-log case, the lower boundary is
arbitrary since mL, unlike Σmν, is not bounded by splitting
data. We will return to this point below.
Let us now illustrate how much these prior choices affect

the inferred limit on Σmν from a measurement Σm̂ν.
We assume a Gaussian likelihood, LðΣm̂νjΣmνÞ ¼ N exp
½−ðΣm̂ν − ΣmνÞ2/ð2σ2Þ� where the normalization factor N

1The Jeffreys prior takes its shape from the constraining power
of the data itself but is no more or less physically motivated than
the other ad hoc priors. For example regions of parameter space
where the data have no sensitivity are arbitrarily rejected by the
prior. Note also, Jeffreys’ rule that a scale parameter should have a
flat-log prior is not always in accord with the Jeffreys prior,
especially for noise dominated measurements.
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ensures that
R∞
−∞ dΣm̂νL ¼ 1, and σ models the experi-

mental uncertainty. We consider the six priors πðΣmνÞ that
are shown in Fig. 1. Assuming a measurement Σm̂ν ¼ 0
and an uncertainty σ ¼ 0.3 eV, we calculate the posterior
on Σmν as PðΣmνÞ ¼ E−1Lð0 eVjΣmνÞπðΣmνÞ where the
evidence E ensures that

R
∞
0 dΣmνP ¼ 1. The 95% CL

region is estimated to be

Σmν/eV < 0.61; 0.46; 0.59; 0.60; 0.42; 0.43 ð1Þ

for the flat-linear prior on Σmν, the flat-log prior on Σmν,
the flat-linear prior on mL with NO, flat-linear prior on mL
with IO, flat-log prior onmL with NO, and flat-log prior on
mL with IO. This exercise demonstrates that the 95% CL
upper limit on Σmν varies by approximately 20% for the
family of priors shown in Fig. 1.
In fact, even larger variations in the upper limit on Σmν

can be obtained in principle. For the log prior on mL the
lower boundary of 0.01 eV is arbitrary, and it represents
another ad hoc assumption—namely, that the lightest
neutrino’s mass is not much smaller than the smaller mass
splitting. However, suppose that we further decrease the
lower boundary on mL. Since most of the allowed prior
volume is at small mL, the prior probability increasingly
favors the smallest possible value of Σmν that is consistent
with the splitting data. For example if we take the limit to
10−4 eV, the 95% CL upper limit on Σmν is strengthened
by almost a factor of 2 from 0.42 eV to 0.26 eV for NO and
from 0.43 eV to 0.30 eV for IO. This is similar to the result
found in Ref. [9]. There if one assumes that the individual
masses are Gaussian distributed in the log, the normal
ordering is also strongly preferred. The difference between

our arbitrarily bounded flat case and the Gaussian case is
that they then marginalize over the mean and width of the
Gaussian so as to effectively place a lower bound that is
comparable to the splittings.
In these more extreme examples, the prior assumptions

qualitatively change the interpretation of the data. Without
any physical principle to favor one prior over another, these
changes simply represent ad hoc assumptions with no clear
way to judge their merit or implications for neutrino
physics. As such, the spread of values can be interpreted
as a theoretical bias on upper limits for Σmν that is bounded
from below only by the minimal values allowed by the
splitting data.
This situation will change as the cosmological data

improve beyond the 10−1 eV level and begin to detect
Σmν. Compared to the prior choices in Fig. 1, the data will
become more informative than the prior, thereby reducing
the 20% scatter. On the other hand the more extreme case of
a flat prior in logmL with an arbitrarily small lower cutoff
would continue to strongly favor a minimal Σmν. If the data
measure otherwise, we would then reject the theory that
produced this prior. However to reiterate, without a
physical motivation for such a prior, it is difficult to assess
the implications of that rejection for neutrino physics.
Therefore in both the current and future contexts, it is

important to make a stronger connection between the
assumed priors and the neutrino physics that underly them.
In particular we can ask the question whether any of the six
ad hoc priors that were discussed above or the more
extreme versions of the logmL priors can be motivated
by models of random neutrino mass matrices, which are
more closely connected to models of neutrino mass at the
Lagrangian level.

III. RANDOM NEUTRINO MASS MATRICES

In this section we develop the formalism for lepton
masses and random matrices. The reader will find Ref. [34]
to be a useful resource in the mathematical theory of
random matrices. For applications to lepton matrices we
mostly follow the original work on the anarchy hypothesis,
and the equations in this section will be familiar from
Ref. [12].

A. Charged lepton and neutrino mass matrices

Let the mass matrix for the three flavors of charged
leptons (electron, muon, and tau) be denoted by Me. In a
general basis, Me need not be diagonal, but rather it is a
3-by-3 matrix with complex entries. We can diagonalize
Me with a singular value decomposition

Me ¼ UeM̂eV
†
e; ð2Þ

where Ue and Ve are unitary matrices and M̂e ¼
diagðme1; me2; me3Þ is the diagonal matrix of real and

FIG. 1. Ad hoc choices for the prior probability on Σmν.
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non-negative singular values, which correspond to the
physical particle masses.
The matrix Me is specified by 18 real numbers, corre-

sponding to the real and imaginary parts of each matrix
element. Therefore each Me represents a point in the 18-
dimensional space R18, and the measure in this space is
defined by

d18Me ¼ ΠijdRe½ðMeÞij�d Im½ðMeÞij�: ð3Þ

The factorization in Eq. (2) specifies a change of coor-
dinates from Re½Me� and Im½Me� to M̂e, Ue, and Ve. In
terms of these new variables, the measure is written as

d18Me ¼ J eðM̂eÞd3M̂ed9Ued9Ve/d3φe ð4Þ

where

J eðM̂eÞ ¼ me1me2me3ðm2
e1 −m2

e2Þ2
× ðm2

e2 −m2
e3Þ2ðm2

e3 −m2
e1Þ2 ð5Þ

is the determinant of the Jacobian of the transformation (2).
Note that J eðM̂eÞ only depends upon the singular values of
Me. The measure over the space of singular values is
written as d3M̂e ¼ dme1dme2dme3. The measure over the
space of unitary matrices, also known as the Haar measure,
is denoted by d9Ue for Ue and d9Ve for Ve. The unitary
matrices can be parametrized by 3 angles and 6 phases, and
an explicit expression for the Haar measure in these
coordinates appears in Ref. [12]. The SVD (2) is not
uniquely defined, but rather it remains invariant under a
Uð1Þ3 transformation, which takes Ue → UeΦ and Ve →
VeΦ where Φ ¼ diagðeiφe1 ; eiφe2 ; eiφe3Þ. Consequently, the
measure (4) is modded out by d3φe ¼ dφe1dφe2dφe3.
Let us next consider the mass matrix for the three flavors

of neutral leptons (electron, muon, and tau neutrinos),
which is denoted as Mν. Currently the origin of neutrino
mass remains an open question. In general, any mass
generation mechanism falls into one of two categories,
which have implications for the structure of Mν. Either the
neutrinos and antineutrinos are distinct Dirac particles,
implying that Mν is a 3-by-3 complex matrix, or the
neutrinos and antineutrinos are identical Majorana par-
ticles, implying thatMν is a 3-by-3 complex and symmetric

matrix. The seesaw mechanism, which we discuss in
Sec. III B, is one specific scenario that gives rise to massive
Majorana neutrinos. We treat the seesaw model separately,
because (as we discuss in Sec. III C) it is more natural to
implement the probability distribution on the high-scale
matrices rather than the low-energy neutrino matrix.
The symmetric mass matrix for Majorana neutrinos

admits a Takagi decomposition, whereas the general mass
matrix for Dirac neutrinos requires a singular value
decomposition. Using these techniques, the neutrino mass
matrix is factorized as

Mν ¼
�
UνM̂νV

†
ν; Dirac

UνM̂νUT
ν ; Majorana ðe:g: seesawÞ

ð6Þ

where Uν and Vν are unitary matrices and M̂ν ¼
diagðmν1; mν2; mν3Þ is the diagonal matrix of real and
non-negative singular values, which correspond to the
physical neutrino masses.
Having diagonalized both the charged and neutral lepton

mass matrices (2) and (6), the lepton mixing matrix (PMNS
matrix) is constructed as

UPMNS ¼ U†
eUν; ð7Þ

which quantifies the mismatch between the unitary trans-
formations that diagonalize Me and Mν.
The space of matrices Mν is 18-dimensional if the

neutrinos are Dirac particles, but it is only 12-dimensional
if the neutrinos are Majorana particles, because the
Majorana condition requires Mν to be symmetric. Thus
the measure over Mν is defined by

(
d18Mν ¼ Πij dRe½ðMνÞij� d Im½ðMνÞij�; D

d12Mν ¼ Πi≤j dRe½ðMνÞij� d Im½ðMνÞij�; M
: ð8Þ

The decompositions in Eq. (6) provide a change of
coordinates, and the measure becomes

(
d18Mν ¼ J νðM̂νÞd3M̂νd9Uνd9Vν/d3φν; D

d12Mν ¼ J νðM̂νÞd3M̂νd9Uν; M
ð9Þ

where the Jacobian determinant is

J νðM̂νÞ ¼ mν1mν2mν3 ×

� ðm2
ν1 −m2

ν2Þ2ðm2
ν2 −m2

ν3Þ2ðm2
ν3 −m2

ν1Þ2; D

jm2
ν1 −m2

ν2jjm2
ν2 −m2

ν3jjm2
ν3 −m2

ν1j; M
; ð10Þ

the measure over singular values is d3M̂ν ¼ dmν1dmν2dmν3, and the measure over unitary matrices is defined in the
same way as for Me [see the text below Eq. (5)]. The factors of m2

νi −m2
νj correspond to the phenomenon of eigenvalue

repulsion, which probabilistically disfavors degeneracy; this effect is more pronounced in the Dirac model than the
Majorana model.
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B. Majorana masses from the seesaw mechanism

One compelling scenario for the generation of a
Majorana mass is the seesaw mechanism [35–40]. The
Type-I seesaw model contains a 3-by-3 complex matrixMD
and a 3-by-3 complex, symmetric matrixMM. In the seesaw
regime where the singular values of MM are much larger
than the singular values ofMD, the neutrino mass matrix is
well-approximated by

Mν ¼ −MDM−1
M MT

D: ð11Þ

Note that Mν is a 3-by-3 complex, symmetric matrix. The
measures d18MD and d12MM are defined in analogy with
the Dirac and Majorana cases of Mν (8). Eigenvalue
repulsion in Mν is also strong in the seesaw case as
demonstrated empirically in Ref. [12].

C. Probability over matrices

Now we promote Me, Mν, MD, and MM to be random
matrices. The differential probability measure is written as

dP ¼

8>><
>>:

fðMe;MνÞd18Med18Mν; D

fðMe;MνÞd18Med12Mν; M

FðMe;MD;MMÞd18Med18MDd12MM; S

ð12Þ

which define the Dirac (D), Majorana (M), and seesaw (S)
models, respectively. The probability densities, f and F, are
real-valued, positive, integrable, and normalized such
that

R
dP ¼ 1.

Since the seesaw model is also a model of Majorana
neutrinos, it may seem redundant to distinguish these cases.
There are various models in which high-scale lepton-
number violation gives rise to a Majorana neutrino mass
matrix, but since the seesaw model is a particularly
compelling and well-studied scenario, we consider this
model separately. If the Majorana mass does arise from the
seesaw mechanism, then it is possible to derive fðMe;MνÞ
from FðMe;MD;MMÞ. To make this connection concrete,
first invert the seesaw relation (11) to determine the
Majorana mass matrix as MM ¼ −MT

DM
−1
ν MD, which

defines a transformation from MM to Mν. Let the
Jacobian of this transformation be denoted as
JMνðMD;MνÞ, such that d18MDd12MM ¼JMνðMD;MνÞ
d18MDd12Mν. Marginalizing over the unobservable matrix
MD yields

fðMe;MνÞ ¼
Z

d18MDJMνðMD;MνÞ

× FðMe;MD;−MT
DM

−1
ν MDÞ; ð13Þ

which is the same probability density that appears in the
Majorana case of Eq. (12). In practice, we find that it is
easier to study the seesaw model by sampling from theMD

and MM matrices directly rather than evaluating the
Jacobian and integrals that appear in Eq. (13).

D. Basis-independent anarchy hypothesis

The basis-independent anarchy hypothesis (BAH) pro-
vides guidance in selecting the probability densities f
and F that appear in Eq. (12). In this section we clarify
the meaning and implications of the BAH. Specifically, we
show how the Lagrangian transforms under a basis-
changing flavor transformation, and we require the prob-
ability distribution over matrices to be invariant under
this transformation. A reader who is more interested in
the phenomenological implications may choose to skip this
section.
In writing the Lagrangian, it is convenient to work with

the 2-component spinor notation [41]. The six charged
leptons (electron, muon, tau, and antiparticles) are repre-
sented by the six fields ðeLÞi and ðeRÞi for i ¼ 1, 2, 3, and
the neutrinos are represented by the fields ðνLÞi and ðνRÞi.
The subscripts L and R indicate left- and right-chiral Weyl
spinors, respectively. The masses and weak interactions of
these fields are encoded in the Lagrangian2

L ⊃
gffiffiffi
2

p ν†Lσ̄
μeLWþ

μ − e†LMeeR þOν þ H:c: ð14Þ

where the vector field Wþ
μ represents the two charged

W-bosons, and where

Oν ¼

8>><
>>:

−ν†LMννR; D

− 1
2
νTLMννL; M

−ν†LMDνR − 1
2
νTRMMνR; S

ð15Þ

are the neutrino mass terms. In the seesaw model, integrat-
ing out the heavy fields νR gives rise to a Majorana mass
matrix Mν for the light neutrinos, which is of the seesaw
form (11), Mν ¼ −MDM−1

M MT
D.

Now consider a basis-changing flavor transformation.
The fields in the new basis (primed) can be expressed as

e0L ¼ UeLeL; ν0L ¼ UνLνL; e0R ¼ UeReR;

ν0R ¼ UνRνR; and Wþ0
μ ¼ Wþ

μ ð16Þ

where UeL , UνL , UeR , and UνR are unitary matrices
(UU† ¼ 1). The mass terms in Eq. (14) take the same
form in the new basis provided that we identify the mass
matrices in the new basis (primed) as

2The mapping onto 4-component spinor notation is explained
in Ref. [41]. For instance, ν†Lσ̄

μeLWþ
μ þ H:c: ¼ Ψνγ

μPLΨeWþ
μ þ

H:c: and e†LMeeR þ H:c: ¼ ΨeMeΨe and νTLMννL þ H:c: ¼
Ψc

νMνΨν.
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M0
e ¼ UeLMeU

†
eR ; M0

D ¼ UνLMDU
†
νR ;

M0
M ¼ U�

νRMMU
†
νR ;

and M0
ν ¼

8>><
>>:

UνLMνU
†
νR ; D

UνLMνUT
νL ; M

UνLMνUT
νL ; S

: ð17Þ

The weak interaction [first term in Eq. (14)] is not invariant
in general, but instead it transforms to ðg/ ffiffiffi

2
p Þðν0LÞ†σ̄μ

ðUνLU
†
eLÞe0LWþ

μ .
The physical motivation for the anarchy hypothesis is

that some unspecified high energy physics provides an
ensemble of theories, i.e. vacua, across which the lepton
masses vary. The principle of basis-independence further
asserts that mass matrices related by a basis-changing
flavor transformation should be equally probable. In other
words, basis-independence restricts the allowed form of the
probability densities fðMe;MνÞ and FðMe;MD;MMÞ that
we introduced in Eq. (12). In general there are various ways
to implement basis independence:

BAH: Require the probability densities to satisfy
fðMe;MνÞ¼fðMe;M0

νÞ and FðMe;MD;MMÞ¼FðMe;
M0

D;M
0
MÞ, which enforces basis-independence only on

the neutrino mass matrices.
B2: Require the probability densities to satisfy
fðMe;MνÞ ¼ fðM0

e;M0
νÞ and FðMe;MD;MMÞ ¼

FðM0
e;M0

D;M
0
MÞ where the primed matrices are given

by Eq. (17) with UeL ¼ UνL .
B3: Require the probability densities to satisfy
fðMe;MνÞ ¼ fðM0

e;M0
νÞ and FðMe;MD;MMÞ ¼

FðM0
e;M0

D;M
0
MÞ for arbitrary UeL and UνL .

The basis-independent anarchy hypothesis of Ref. [12] is
denoted by BAH, whereas B2 and B3 correspond to
alternative strategies for enforcing basis independence.
As argued in Ref. [11] the large lepton mixing angles and

the comparable neutrino masses does not point to any
underlying (flavor symmetry) structure in the neutrino
sector. This motivated the authors of Ref. [11] to propose
the anarchy hypothesis. In the charged lepton sector, on the
other hand, the masses are very hierarchical (me∶mμ∶mτ ¼
1∶200∶3500), which suggests that a different physical
mechanism is at play, e.g. the Froggatt-Nielsen mechanism.
Hence, basis independence is imposed only on the neutrino
mass matrix through the BAH, rather than on both lepton
mass matrices as with either B2 or B3.
The BAH requires that the probability densities are

constructed from basis-invariant functions of M ∈
fMD;MM;Mνg that include the determinant d ¼ j detMj
and the traces tn ¼ Tr½ðM†MÞn�. Note that these functions
only depend upon the singular values of the corresponding
matrix. If we use these functions to build the probability
densities, it follows that the distributions over angular
variables, such as the phases and mixing angles in UPMNS,
are simply given by the Haar measure. In this way, the

assumption of basis-independence leads to a powerful
prediction for the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix parameters [12].
Let us close this section by remarking upon the distinction

between BAH, B2, and B3. If the stochastic nature of the
mass matrices arises from high energy physics above the
weakscale, then the interactionsof the leptons should respect
SUð2ÞL gauge invariance. This is implemented by combin-
ing eL and νL into the lepton doublet L ¼ ðνL; eLÞ and
requiring them to transform in the same way under flavor
transformations.Hence in this context it is only reasonable to
expect f and F to be invariant under flavor transformations
that obeyUeL ¼ UνL, i.e. functions satisfying B2. The set of
functions that satisfy B3 also satisfy BAH and B2. In fact
BAH and B2 imply B3 but not all functions that satisfy B2
also satisfy BAH, for instance Tr½MeM

†
eMνM

†
ν�. Upon

factorizing Me and Mν with Eqs. (2) and (6), we can write
this function as Tr½M̂2

eUPMNSM̂
2
νU

†
PMNS�, which depends on

both the singular values (M̂e and M̂ν) and the basis-invariant
PMNS matrix (7). Thus if we were to enforce basis
independence with B2 rather than the BAH, we would find
that the probability density may depend directly on the
PMNS matrix. However, we chose instead to enforce basis
independencewith the BAH, because the hierarchical nature
of the charged lepton masses points to an underlying
symmetry principle for their mass generation, as we have
already discussed above.

E. Probability densities after BAH

Following Refs. [11,12] let us now adopt the BAH
assumption to write a simplified expression for the prob-
ability density fðMe;MνÞ that appears in Eq. (12). In this
section we focus on only the Dirac and Majorana models,
since the corresponding expressions for the seesaw model
are more cumbersome and less illuminating. The BAH
implies that the distribution over the neutrino mass matrix
is independent from the distribution over the charged lepton
matrix, and it follows that fðMe;MνÞ can be written as a
sum of factorizable components. We focus on the simplest
case for which

fðMe;MνÞ ¼ peðMeÞpνðM̂νÞ ð18Þ
where pν only depends on Mν through the singular values
M̂ν. Then upon using the matrix measure decomposition in
Eq. (9) the probability measure (12) becomes dP ¼
dPedPν where dPe ¼ peðMeÞd18Me and

dPν ¼
�
pνðM̂νÞJ νðM̂νÞd3M̂νd9Uνd9Vν/d3φν; D

pνðM̂νÞJ νðM̂νÞd3M̂νd9Uν; M
:

ð19Þ
The dP’s are separately normalized such that

R
dP ¼ 1.

Noting that d18Me ⊃ d9Ue and d9Ued9Uν¼ d9Ued9UPMNS,
we see that the distribution over the PMNS angles and
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phases is simply given by the Haar measure d9UPMNS [12].
Since we are primarily interested in the distribution over
masses, we integrate over the angular variables to obtain

dPν ¼
�
pνðM̂νÞJ νðM̂νÞd3M̂νV2; D

pνðM̂νÞJ νðM̂νÞd3M̂νV1; M
ð20Þ

where V1 ¼ 2π6/3 and V2 ¼ π9/3 are the volumes of the
compact angular spaces.

F. Summed mass and squared splittings

The neutrino mass spectrum is not known, but rather the
sum of the masses, Σmν ¼ mν1 þmν2 þmν3, has been
constrained, and the squared mass splittings have been
measured. Conventionally the mass splittings are defined as
δm2 ¼ m2

ν2 −m2
ν1 and Δm2 ¼ m2

ν3 − ðm2
ν1 þm2

ν2Þ/2 where
the three mass eigenvalues are identified by the flavor
content of the corresponding neutrino eigenstate (e.g.,
conventionally mν3 is the mass of the neutrino with the
smallest νe content). However, as discussed in Sec. III C,
we are interested in basis-independent probability measures
over the space of neutrino mass matrices that lead to
probability measures over the mass eigenvalues that are
independent of the mixing angles (flavor composition).
In other words, mν1, mν2, and mν3 have the same statistics.
Consequently, the data cannot be implemented as δm2 ¼
m2

ν2 −m2
ν1 ∼ 10−5 eV2, for instance, since this expression

singles out ν2 and ν1. In fact, the data tells us that the
splitting between any two masses must be 10−5 eV2; it
could be m2

ν2 −m2
ν1 ∼ 10−5 eV2, but it could also be m2

ν1 −
m2

ν2 ∼ 10−5 eV2 or m2
ν3 −m2

ν1 ∼ 10−5 eV2 just as well.
To identify a basis-independent parametrization of the

spectrum, let us begin by defining mH, mM, and mL to be
the masses of the heaviest, medium, and lightest neutrinos,
respectively. These masses are basis-independent functions
of the spectrum. Next let us define

Σmν ¼ mL þmM þmH ð21aÞ

Δm2
HM ¼ m2

H −m2
M ð21bÞ

Δm2
ML ¼ m2

M −m2
L ð21cÞ

where Δm2
HM (Δm2

ML) is the squared mass splitting
between the two heavier (lighter) mass eigenstates. It is
useful to define h ¼ sign½Δm2

HM − Δm2
ML� that lets us

distinguish the two scenarios

NO∶ h ¼ þ1; Δm2
HM > Δm2

ML ð22aÞ

IO∶ h ¼ −1; Δm2
HM < Δm2

ML; ð22bÞ

which define normal ordering (smaller splitting on bottom)
and inverted ordering (smaller splitting on top).

To connect with measurements of the neutrino mass
spectrum, it is useful to introduce the squared mass
splittings δm2 and jΔm2j. Let us define,

δm2 ¼ Min½Δm2
HM;Δm2

ML� ð23aÞ

jΔm2j ¼ Max½Δm2
HM;Δm2

ML� þ δm2/2 ð23bÞ

such that δm2 is the smaller of the two squared mass
splittings, and jΔm2j is the larger of the two squared mass
splittings plus half the smaller splitting. For example,
consider a spectrum for which mν1 < mν2 < mν3 and the
smaller splitting is on the bottom, m2

ν2 −m2
ν1 < m2

ν3 −m2
ν2.

In this case, we can write δm2 ¼ m2
ν2 −m2

ν1 and
jΔm2j ¼ m2

ν3 − ðm2
ν1 þm2

ν2Þ/2. Alternatively, consider a
spectrum mν3 < mν1 < mν2 with the smaller splitting on
the top, m2

ν2 −m2
ν1 < m2

ν1 −m2
ν3. Then, δm

2 ¼ m2
ν2 −m2

ν1

and jΔm2j ¼ jm2
ν3 − ðm2

ν1 þm2
ν2Þ/2j. However, as we dis-

cussed at the start of this section, we do not let these
relations with ðmν1; mν2; mν3Þ define the squared mass
splittings, because they are not basis-independent.
Observations of neutrino flavor oscillations (see [6] for a

review) have furnished measurements of the squared mass
splittings δm2 ¼ ð7.37� 0.17Þ × 10−5 eV2 and jΔm2j ¼
ð2.50� 0.04Þ × 10−3 eV2 (NO) and jΔm2j ¼ ð2.46�
0.04Þ × 10−3 eV2 (IO) [42]. The data admits two scenarios
for mass ordering (22) depending on whether the smaller
splitting is on the bottom (NO) or on the top (IO). Let
PdataðΔm2

HM;Δm2
MLÞ denote a probability density over the

squared mass splittings that encodes these measurements.
Using Eq. (23) the mass splitting measurements imply that
Pdata is bi-modal with one peak at Δm2

HM ≈ jΔm2j and
Δm2

ML ≈ δm2 for h ¼ þ1 (NO), and a second peak at
Δm2

HM ≈ δm2 and Δm2
ML ≈ jΔm2j for h ¼ −1 (IO).

Equation (21) defines a transformation from ðmν1;
mν2; mν3Þ to ðΣmν;Δm2

HM;Δm2
MLÞ. Let the corresponding

Jacobian determinant be denoted as J 123ðΣmν;Δm2
HM;

Δm2
MLÞ such that dmν1dmν2dmν3 ¼ J 123dΣmνdΔm2

HM
dΔm2

ML. In terms of these new variables, the differential
probability measure (20) becomes

dPν ¼ PðΣmν;Δm2
HM;Δm2

MLÞ
× dΣmνdΔm2

HdΔm2
ML ð24Þ

where the probability density is given by

PðΣmν;Δm2
HM;Δm2

MLÞ
¼ pνðM̂νÞJ νðM̂νÞJ 123ðΣmν;Δm2

HM;Δm2
MLÞ; ð25Þ

and it is normalized such that
R
dPν ¼ 1.

Since the transformation from ðmν1; mν2; mν3Þ into
ðmH;mM;mLÞ involves minimization and maximization
functions, it is nonanalytic when any of the two masses are
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equal. This makes it difficult to calculate the Jacobian
across the full parameter space. However, the problem
simplifies significantly for probability densities pνðM̂νÞ
that respect basis-independence. For a given triplet
ðmL;mM;mHÞ there are six possible ways to identify
ðmν1; mν2; mν3Þ. Thanks to the basis-independence of
the prior, each of these parameter combinations must be
equally probable. Thus, the full parameter space
ðmν1; mν2; mν3Þ can be subdivided into six “copies.”
Without loss of generality, we can work in the region
where mν1 < mν2 < mν3, which lets us identify mL ¼ mν1,
mM ¼ mν2, and mH ¼ mν3. Working in this wedge of
parameter space, the probability density is multiplied by
6 to account for a sum over the copies.
With the procedure described above it is straightforward

to calculate J 123, but the expression is unwieldy, and we
will not reproduce it here. However, it is important to
understand how J 123 scales with Σmν. Note that J 123 has
mass dimension −2, and one can verify that it scales
as J 123 ∼ ðΣmνÞ−2 in the regime where Σmν ≫

ffiffiffiffiffiffiffiffiffiffiffi
jδm2j

p
,ffiffiffiffiffiffiffiffiffiffiffiffi

jΔm2j
p

. For comparison, we determine the scaling of
J νðM̂νÞ by inspecting Eqs. (10) and (21). In the regime
where the splittings are small, we have

J ν ∼
� ðΣmνÞ3ðδm2Þ2jΔm2j4; D

ðΣmνÞ3ðδm2ÞjΔm2j2; M
: ð26Þ

The factors of δm2 and jΔm2j correspond to the eigenvalue
repulsion that we discussed below Eq. (10). Then, the
probability density in Eq. (25) goes as P ∼ pνðM̂νÞ×
ðΣmνÞ1, which is linearly rising in Σmν if pν is flat. We
will make use of this fact in the following sections.
Equation (25) gives the joint probability density over the

summed neutrino mass and the squared mass splittings. We
are also interested in the conditional probability over Σmν

after requiring the squared mass splittings to match their
measured values and also requiring the hierarchy to be
either normal or inverted. Thus we calculate

πðΣmνjhÞ ¼
6

ENO þ EIO

×
Z

dΔm2
HMdΔm2

MLPðΣmν;Δm2
HM;Δm2

MLÞ

× PdataðΔm2
HM;Δm2

MLÞ

×

�
ΘðΔm2

ML < Δm2
HMÞ; h ¼ þ1 ðNOÞ

ΘðΔm2
HM < Δm2

MLÞ; h ¼ þ1 ðIOÞ :

ð27Þ

The bimodal probability distribution Pdata, which is
defined below Eq. (23), implements the mass splitting
measurements. The step function, which satisfies ΘðxÞ ¼ 1
for x ≥ 0 and ΘðxÞ ¼ 0 for x < 0, lets us condition on the

hierarchy. The normalization factor ENO þ EIO is the sum of
the evidences for the NO and IO cases separately so
that

P
h¼�1

R∞
0 dΣmνπðΣmνjhÞ ¼ 1.

IV. BASIS-INDEPENDENT ANARCHY
PRIORS ON Σmν

In the context of random mass matrices, the neutrino
mass prior πðΣmνÞ is precisely the marginalized probability
from (27). How does the BAH guide us in choosing a prior?
We first show in Sec. IVA, that the common ad hoc priors
on Σmν discussed in Sec. II appear highly contrived in the
BAH context. Arguably the three most natural choices for
probability distributions over Mν are flat, Gaussian, and
logarithmic distributions over each matrix element.
Interestingly the logarithmic distribution is forbidden by
the BAH. The Gaussian distribution has a similar behavior
to the flat distribution (see Sec. A), and so we focus on the
latter in Sec. IV C.

A. Relationship to ad hoc priors

In Sec. II we looked at a few ad hoc priors on Σmν, such
as flat-linear and flat-log, that are commonly used for
cosmological data analyses. In this section we discuss
whether these priors can arise in the framework of random
neutrino matrices subject to the BAH condition.
In constructing the distribution πðΣmνjhÞ, the only

freedom is to specify the probability density pνðM̂νÞ that
appears in Eq. (25). Recall that the requirement of basis-
independence (BAH) means that we must construct pνðM̂νÞ
from functions of the neutrino mass matrix Mν that are left
invariant under the basis-changing flavor transformation;
see Sec. III D. This severely constraints the functional
forms that we can use; examples of viable functions include
the determinant, d ¼ j detMνj ¼ mν1mν2mν3, and the
traces, tn ¼Tr½ðM†

νMνÞn� ¼ ðm2
ν1Þnþðm2

ν2Þnþðm2
ν3Þn for

positive, integer n.
Cosmological studies typically set a flat-linear prior

on Σmν, and we can ask whether this choice is reasonable
from the context of random neutrino matrices. Note that
taking pνðM̂νÞ ∝ ½J νðM̂νÞ�−1 in Eq. (20) results in dP ∝
dm1dm2dm3, which is flat in each of the three neutrino
masses. To obtain a distribution that is flat in Σmν we
should consider Eqs. (24) and (25). Recall that J 123 ∼
ðΣmνÞ−2 for Σmν ≫ Δm2

HM;Δm2
ML, as we discussed

above Eq. (26). Thus, we should take pνðM̂νÞ ∝
½J νðM̂νÞ�−1ðm1m2m3Þ2/3, because m1∼m2∼m3∼Σmν/3
in the degenerate regime. This results in a prior that is
flat in Σmν for Σmν ≫ Δm2

HM;Δm2
ML.

To understand whetherpνðM̂νÞ ∝ ½J νðM̂νÞ�−1ðdet M̂νÞ2/3
is a reasonable prior, let us express it in terms of the matrix
invariants. The Jacobian factor J νðM̂νÞ appears in Eq. (10)
where it is expressed as a function of the singular valuesmνi.
WritingJ ν instead in terms of the matrix invariants, d and tn
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defined above, it takes the formJ ν ¼ Cd for Dirac neutrinos
and C1/2d for Majorana neutrinos where C ¼ ð−27d4 þ
5d2t31 − 1

4
t61 − 9d2t1t2 þ t41t2 − 5

4
t21t

2
2 þ 1

2
t32Þ. Thus taking

pν ∝ ½J ν�−1d2/3 leads to a distribution that is asymptotically
flat inΣmν, but it givespν a highly non-trivial dependence on
Mν. Similar arguments hold for all of the six ad hoc priors
that were discussed in Sec. II.

B. Log prior on matrix elements

It is customary to use a logarithmic prior for dimen-
sionful “scale” parameters. Therefore it is natural to
consider imposing such a prior for the neutrino mass
matrix. In order to place a logarithmic prior on the real
and imaginary parts of each matrix element, we should
choose the probability density fðMe;MνÞ from Eq. (12) to
be proportional to ½ΠijðReMνÞijðImMνÞij�−1 with some
cutoffs at small and large mass to ensure integrability.
However, this product of matrix elements cannot be
expressed in terms of the basis-independent matrix invar-
iants, d and tn from Sec. IVA. Consequently a logarithmic
prior on the matrix elements is not consistent with the BAH.
This is an example of how theory-motivated assumptions
like the BAH provide guidance in choosing a physically-
motivated prior.

C. Flat prior on matrix elements

In this section we introduce a probability density that
will be the focus of our extensive numerical study in the
following sections. Consider the probability density that is
flat in the real and imaginary parts of each element of the
neutrino mass matrix Mν. In terms of the probability
density pνðM̂νÞ from Eqs. (12) and (18), this distribution
is expressed as

pνðM̂νjμνÞ ¼ NΘðμ2ν − Tr½M̂†
νM̂ν�Þ ð28Þ

for the Majorana and Dirac models. Here ΘðxÞ is the unit
step that evaluates toΘ ¼ 1 for x ≥ 0 andΘ ¼ 0 otherwise.
The parameter μν controls the neutrino energy scale. In the
seesaw model the probability density FðMe;MD;MMÞ
from Eq. (12) is chosen to be

FðMe;MD;MMjμD; μMÞ
¼ NΘðμ2D − Tr½M†

DMD�ÞΘðμ2M − Tr½M†
MMM�Þ: ð29Þ

Since we are only interested in the spectrum of light
neutrinos, which is given by the seesaw relation (11),
the relevant observables will only depend upon the effective
neutrino scale

μν ¼
μ2D
μM

: ð30Þ

For the Dirac and Majorona models, notice that the step
function imposes a hard upper bound on the neutrino mass

spectrum, mν ≤ μν or Σmν ≤
ffiffiffi
3

p
μν, but there is no such

bound for the seesaw model.
The normalization factors N are obtained by imposingR
dP ¼ 1 over the space of random matrices. For the

Dirac model
R
dP equals N times the volume of the 18-

dimensional ball3 with radius μν; for the Majorana model it
equals N times the volume of a 12-dimensional ellipsoid;
and for the seesaw model

R
dP is the product of these two.

Solving for the normalization factor gives:

N ¼

8>><
>>:

1
3
Γð10ÞV−1

2 μ−18ν ; D
16
3
Γð7ÞV−1

1 μ−12ν ; M
16
9
Γð7ÞΓð10ÞV−1

1 V−1
2 μ−12M μ−18D ; S

; ð31Þ

where ΓðzÞ denotes the Gamma function, and where V1 and
V2 were given below Eq. (20). The high power of μν
appears to compensate the mass dimensions of d12Mν,
d18Mν, and d18MDd12MM in the Majorana, Dirac, and
seesaw models, respectively; see Eq. (12).

D. Methodology

We have performed an extensive semianalytical and
numerical analysis of the probability distributions appear-
ing in Eqs. (28) and (29). In the remainder of this section
we describe the numerical techniques, and in the following
section we describe the results for Σmν.
A semianalytical analysis is computationally feasible

for the (M) and (D) models. Recall that the probability
distribution over the neutrino mass sum and squared
splittings was given by Eq. (25) where pνðM̂νÞ is given
by Eq. (28). Upon fixing the mass splittings to their best-fit
measured values, the distribution over the neutrino mass
sum is given by Eq. (27) for both NO and IO cases. These
integrals are evaluated numerically with Mathematica.
In addition we perform a fully numerical analysis for all

three models: (M), (D), and (S). Here we implement the
mass splitting measurements as a Gaussian likelihood.
To perform the numerical integrals we Markov Chain
Monte Carlo (MCMC) sample the full space of random
matrices by means of the emcee algorithm [43]. We analyze
the resulting distributions with the GETDIST package [44].
To compute the overall normalization of the probability
densities we use the algorithm described in [45] and direct
nested sampling integration with multinest [46,47]. We
shall hereafter refer to the normalization of the probability
densities as the evidence, E.
For the (M) and (D) models the semianalytical analysis

provides a test of the accuracy of the MCMC integration,
which is the only technique that we use to study the (S)
model. Overall, we find excellent agreement for the (M)
and (D) models (see Fig. 7 below), and these tests further

3The volume of the n-dimensional unit ball is πn/2/Γðn/2þ 1Þ.
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validate the pipeline that we apply to the (S) model. In all
three models the precision of the results is also estimated
with several split-tests on the MCMC samples. In particular
we require stability of the results to: residual burn-in
samples by discarding relevant fractions of the initial
samples; subdivision of the samples in uncorrelated and
correlated subsamples; and convergence of the results by
discarding relevant fractions of the last samples.
The difference between the evidence calculations for the

semianalytical and numerical cases is Δ log10 E ¼ 0.2ð0.2Þ
in the (M) model NO (IO) and Δ log10 E ¼ 0.003ð0.3Þ in
the (D) case for NO (IO). In these cases, the semianalytical
calculation is the more accurate and we use these in our
results below. This should be compared with the numerical
error reported by multinest that reads Δ log10 E ¼ 0.1ð0.1Þ
in the (M) case and Δ log10 E ¼ 0.01ð0.4Þ in the (D) case.
In the (S) case, where the semianalytical results are not
available, the multinest estimate of the evidence error
Δ log10 E ∼ 0.2ð0.3Þ and the nested sampling and impor-
tance nested sampling estimates are within this error
estimates.

E. Implications for Σmν

Let us now discuss the numerical results. We first
investigate the probability distributions over the summed
neutrino masses and the squared mass splittings that are
predicted from a flat-linear distribution on individual
matrix elements (28) and (29). At this point we do not
fix the squared mass splittings to equal their measured
values, but we explore the parameter space more broadly.
Figure 2 shows the joint distribution of the sum of the

neutrino masses against the distribution of one squared
mass splitting after marginalizing over the other squared
mass splitting for both the NO and IO cases from the
numerical analysis. Masses are expressed in units of the
neutrino energy scale μν since, without reference to external
data to fix the energy scale, the prior distribution is
invariant against rescaling. The predicted distributions
are strongly influenced by two boundaries in the parameter
space: the first boundary requires the lightest neutrino mass
to be positive (mL > 0), which implies

Σmν ≥ Σmmin
ν ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

HM þ Δm2
ML

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

ML

q

Σmmin
ν ≃

�
0.05895� 0.00041 eV; NO

0.09919� 0.00081 eV; IO
; ð32Þ

where we have used the mass splitting measurements from
Sec. III F. The second boundary is imposed by the step
function in Eq. (28), which implies Σmν ≤

ffiffiffi
3

p
μν for the

(M) and (D) models.
Flavor oscillation measurements determine the squared

mass splittings, which corresponds to selecting a horizontal
section of the parameter space in Fig. 2. The (S) model,
shown on the right panels of Fig. 2, displays a strong

degeneracy: for any μν, once the squared mass splittings are
fixed, the most probable value of Σmν can be read off from
the equality in Eq. (32), which corresponds to mL ¼ 0. For
the (D) and (M) models, on the other hand, fixing Δm2

leads to a distribution over Σmν that peaks at approximately
μν, regardless of the chosen value for Δm2.
To better understand the distribution over Σmν at fixed

splittings, it is useful to consider Fig. 3, which shows the
distribution over Σmν for a fixed μν with the two squared
mass splittings set equal to their best-fit measured values.
The distribution πðΣmνÞ from the semianalytical analysis
is observed to rise linearly and peak at Σmν ¼

ffiffiffi
3

p
μν.

The linearly rising distribution can be understood from
the discussion around Eq. (26) where we argued that
P ∝ pðM̂νÞðΣmν/μνÞ, which grows linearly with Σmν for
flat pðM̂νÞ. This argument also implies that NO and IO
occur with equal probability if the mass splittings are fixed
to their measured values, and μν is fixed to a larger value.
However, the evidence ENO þ EIO drops substantially from
5.6 × 103 at μν ¼ 0.1 eV to 1.6 × 10−8 at μν ¼ 1.0 eV for
the (M) model, and it drops from 8.4 × 101 to 2.4 × 10−16

for the (D) model. The additional suppression for the
(D) model is a result of eigenvalue repulsion, and this
behavior can be understood analytically. The probability
density over the summed masses and squared splittings is
given by Eq. (25) where the Jacobian determinant J ν is
given by Eq. (10); see also Eq. (26). The phenomenon of
eigenvalue repulsion is manifest in J ν through the factors
of ðm2

νi −m2
νjÞ. The mass dimension of these factors is

compensated by factors of μ−2ν through the normalization
(31). Taking μν to be much larger than the scale of the
measured mass splittings results in a suppression that
makes such models very improbable; the suppression
factors are ∼ðδm2/μ2νÞ2ðΔm2/μ2νÞ4 for (D) and ∼ðδm2/μ2νÞ
ðΔm2/μ2νÞ2 for (M). Thus the overall probability of satisfy-
ing the observed mass splittings is extremely small unless
μν is comparable to the larger splitting.
Next we explore the relationship between the ordering,

the neutrino energy scale μν, and the observed splittings.
In Fig. 4 we show the distribution of the two splittings
marginalized over Σmν or equivalently over mL, in units of
the neutrino mass scale μν from the numerical analysis. The
solid black line divides the regions of parameter space that
correspond to the normally ordered mass spectrum (NO)
and inverted ordered spectrum (IO). In general NO is
preferred with respect to IO increasingly from (M) to (D) to
(S), as it occupies more volume in parameter space. In the
(M) case this volume factor corresponds to an odd ratio of
4∶1 in favor of NO, in the (D) case of 6∶1 in favor of NO
and 22∶1 in the (S) case.
By studying Fig. 4 we can also understand the effect of

imposing the mass splitting measurements. Fixing the
squared mass splittings to equal their measured values
selects two solutions in the ðΔm2

HM;Δm2
MLÞ space, which
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extend to two lines in the scaled space ðΔm2
HM/μ

2
ν;

Δm2
ML/μ

2
νÞ indicated by the dashed line for NO and the

dot-dashed line for IO. Where these lines intersect the high
probability regions determines the best values of μν for
explaining the splittings. Now we see that taking Σmν ≫ffiffiffiffiffiffiffiffiffiffiffi
jδm2j

p
,

ffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2j

p
selects a model in the low probability

tail, which agrees with the behavior seen in Fig. 3 that we
discussed in the previous paragraph. Thus even though
such a case would produce a Σmν distribution that peaks atffiffiffi
3

p
μν for (D) and (M), it would be a highly unlikely

realization of the underlying matrix elements. Instead the
probability is maximal for a value of μν that is comparable
to scale of the larger mass splitting: μν ¼ 0.02–0.1 eV
depending on the scenario. For smaller values of μν the
probability decreases, and it becomes identically zero in
the (D) and (M) models because the prior (28) requires
mν ≤ μν.

The key point in the preceding discussion is that in the
context of a specific neutrino mass generation mechanism
the mass splittings are informative on the neutrino energy
scale μν, because the measured mass splittings set a
preferred scale for the mass matrix elements, and thus μν
should not be chosen a priori. Instead we take it as a
hyperparameter and allow the mass splittings to determine
its posterior probability distribution. We assume a wide,
uninformative, flat-linear prior on μν ∈ ð0; 1Þ eV since
we have no strong theoretical preference for one value
of the neutrino energy scale over another. Figure 5 shows
the resulting distribution of μν after marginalizing over the
other model parameters from the numerical analysis. For all
three models and both hierarchies, the distribution is
sharply peaked around a maximum value that depends
on the mechanism and hierarchy. The confidence levels on
the neutrino scale are reported in Table I.

(a) (b) (c)

FIG. 2. The probability distribution over the mass sum, Σmν ¼ mL þmM þmH , and one of the squared mass splittings, Δm2
HM ¼

m2
H −m2

M and Δm2
ML ¼ m2

M −m2
L, after marginalizing over the other splitting. The three panels correspond to different models for the

origin of neutrino mass: Left, we sample the Dirac neutrino mass matrix Mν with a flat distribution on its matrix elements and cutoff
Tr½M†

νMν� ≤ μ2ν (28); Middle, we sample the (symmetric) Majorana neutrino mass matrix Mν with a flat distribution on its matrix
elements and cutoff Tr½M†

νMν� ≤ μ2ν (28); Right, we sample the high-scale Dirac and Majorana mass matrices,MD and MM, with a flat
distribution on their matrix elements and separate cutoffs μD and μM (29), and then we use the seesaw relation (11) to calculate the
neutrino mass matrix, which only depends on the ratio μν ¼ μ2D/μM. The orange (red) region indicates models with normal (inverted)
mass ordering for which Δm2

HM > Δm2
ML (Δm2

HM < Δm2
ML). Requiring mL > 0 forbids the parameter space where

Σmν <
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

HM þ Δm2
ML

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Δm2

ML

p
, which corresponds to the upper-left gray triangle. Additionally the prior (28) forbids Σmν >ffiffiffi

3
p

μν in the Dirac and Majorana cases, which corresponds to the yellow rectangle in the left and middle panels. The darker and lighter
shades correspond respectively to the 68% C.L., 95% C.L. and 99.7% C.L. regions.
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As discussed in the Appendix the sharpness of the μν
peak makes this distribution extremely stable against
different prior choices for μν; for instance, raising the
upper limit on μν from 1 eV does not affect the resultant
distribution on Σmν. For the seesaw model one can also
specify the hyperprior on the cutoffs of the high-scale
matrices, μD and μM from Eq. (29), and let the correspond-
ing distribution on μν be inferred from Eq. (30). As long as
the resulting distribution on μν is uninformative, the
distributions over Σmν are unaffected. However, the evi-
dences are affected, which complicates model comparison
between (S) and either (D) or (M).
After marginalizing over μν, the distribution over Σmν

from the numerical analysis is shown in Fig. 6. This is

dramatically different for the (D) and (M) models from the
distribution with μν held fixed, which we showed in Fig. 3.
The falling distribution at high Σmν comes from the
combination of the Σmν ≤

ffiffiffi
3

p
μν limit and the decreasing

probability at high μν shown in Fig. 5, whereas the peak
comes from the fact that for all μν consistent with the
splittings, the Σmν distribution rises near the minimum. In
contrast the distribution over Σmν for the (S) model falls off
strongly at large Σmν for both fixed μν and marginalized μν.
The 68% confidence levels on the neutrino mass sum and

other parameters from the numerical analysis are reported
in Table I. Evidences are reported in Table II and come from
the semianalytical calculation for (M) and (D) and the
numerical multinest calculation for (S).

(a) (b) (c)

FIG. 4. The probability distribution over the squared mass splittings, Δm2
HM and Δm2

ML, after marginalizing over the mass sum, Σmν.
The notation and shading are defined in the caption of Fig. 2. The solid black line divides models with normal ordering
(Δm2

ML < Δm2
HM) from those with inverted ordering (Δm2

HM < Δm2
ML). Along the black dashed and dot-dashed lines we fix

Δm2
HM and Δm2

ML to equal their measured values (see Sec. III F), and we slide the value of μν.

(a) (b)

FIG. 3. The probability distribution over the sum of neutrino masses after the squared mass splittings are fixed to their best-fit
measured values, and the neutrino mass scale is fixed to be μν ¼ 0.1 eV (1.0 eV) in the left (right) panel. The shape of the probability
distributions are identical for both the Majorana and Dirac models, but the shapes are distinguished for normal and inverted ordering. For
a fixed μν the most probable value is Σmν ¼

ffiffiffi
3

p
μν, and increasing μν moves the peak to larger Σmν, but at the same time it reduces the

overall probability of obtaining the observed squared mass splittings (not shown on the figure); i.e., the evidence decreases rapidly with
increasing μν (see discussion in the text).
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We notice that once splitting measurements are factored
into our study, the preference for NO with respect to IO
becomes higher; the evidence increases by Δ log10 E ¼ 2.1
for (D), Δ log10 E ¼ 1.3 for (M), and Δ log10 E ¼ 2.7 for
(S). These odds are easily understood from Figs. 4 and 5.
Consider first the (D) model with the splittings fixed to their
measured values and NO assumed (dashed line in Fig. 4).
Figure 5 shows that the most probable value for the
neutrino energy scale is μν ≈ 0.06 eV, which lies between
the 2σ (95% C.L.) and 3σ (99.7% C.L.) contours in Fig. 4.
On the other hand, if IO is assumed (dot-dashed line), the
most probable value is μν ≈ 0.08 eV from the right panel of
Fig. 5, and it lies outside of the 3σ contour and closer to the
4σ (0.99993% C.L.) one in Fig. 4. The probability of these
two events explains the approximately 130∶1 odds favoring
NO over IO that was reported above. Consider next the (M)
model for which the most probable neutrino energy scales
are μν ≈ 0.06 eV for NO and μν ≈ 0.08 eV for IO, which
correspond to points in Fig. 4 that are at the 2σ and 3σ
levels, respectively. The relative probability of these two
events explains the 19∶1 odds in favor of NO for (M). In (S)
the maximal μν occurs at μν ≈ 0.025 eV for NO and at
μν ≈ 0.05 eV for IO, and the corresponding points in Fig. 4
are at approximately the 0.5σ level (NO) and slightly above
3σ (IO). This explains the odds of approximately 470∶1 in
favor of NO for (S).

The evidence results in Table I also allows us to com-
ment on the odds of different models summed over the two
hierarchies. Given equal prior odds of S:M:D, conditioning
to the mass splitting data gives us odds of 830∶3.3∶1.

F. Fitting formulas

In this section we present an empirical fitting formula
that approximates the probability distribution over Σmν for
practical applications. This is constructed from three
building blocks.
The first component is a smooth cutoff at the minimal

value of the sum of the masses given by Eq. (32): xmin ¼
0.05895 eV (xmin ¼ 0.09919 eV) with width σmin ¼
0.00041 eV (σmin ¼ 0.00081 eV) for NO (IO). The cutoff
is implemented as a smoothed step function:

Step ðx; μ; σÞ≡ 1

2

�
1þ Erf

�
x − μffiffiffi
2

p
σ

��
; ð33Þ

where μ is the value at which the function transitions from
zero to one, and σ is the width of the transition.
The second component is a skewed Gaussian distribution

that describes the behavior of the peak of the distribution.
The center of the Gaussian is denoted by x̄, its width is σx̄,
and the skewness is α.

(b)

FIG. 5. The probability distribution over the neutrino energy scale μν after marginalizing over the mass sum and imposing the mass
splittings measurements. In the left (right) panel we implement the mass splitting measurement with normal (inverted) ordering.

TABLE I. Marginalized 68% C.L. results on the neutrino prior distribution. Notice that the distributions that are used to extract these
bounds are markedly non-Gaussian. Higher confidence regions can be easily computed from the fitting forms in Sec. IV F.

Model Σmν [eV] μν [eV] mL [eV] mM [eV] mH [eV]

Dirac NO 0.069þ0.01
−0.007 0.055þ0.006

−0.003 0.008þ0.007
−0.004 0.01þ0.005

−0.002 0.0509þ0.001
−0.0008

Majorana NO 0.07þ0.02
−0.01 0.057þ0.009

−0.006 0.009þ0.009
−0.006 0.011þ0.008

−0.002 0.051þ0.002
−0.001

Seesaw NO 0.06þ0.004
−0.002 0.03þ0.01

−0.01 0.0þ0.003
−0 0.0087þ0.0006

−0.0005 0.0505þ0.0005
−0.0005

Dirac IO 0.11þ0.01
−0.009 0.074þ0.007

−0.006 0.01þ0.009
−0.006 0.05þ0.002

−0.001 0.051þ0.002
−0.001

Majorana IO 0.12þ0.02
−0.01 0.079þ0.01

−0.009 0.015þ0.01
−0.01 0.051þ0.003

−0.002 0.051þ0.003
−0.002

Seesaw IO 0.102þ0.009
−0.006 0.05þ0.03

−0.02 0.0þ0.01
−0 0.05þ0.002

−0.002 0.05þ0.002
−0.002
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The third component is a power law cutoff at large Σmν.
To prevent this component from dominating at small mass,
it is cut off using a smooth transition centered at x̂ with
width σx̂. The exponent of the power law cutoff is taken to
be p ¼ −16, −10, and −12 for the Dirac, Majorana, and
seesaw models, respectively.
Joining these pieces together we obtain a fitting function

for the prior πðΣmνÞ:

PfitðxÞ ¼ N · Stepðx; xmin; σminÞ

×
� ffiffiffi

2
pffiffiffiffiffiffiffiffi
πσ2x̄

p Stepðx; x̄; αÞ exp
�
−
ðx − x̄Þ2
2σ2x̄

�

þAStepðx; x̂; σx̂Þ
�
x
x̂

�
p
�
: ð34Þ

The relative amplitude between the exponential and power
lawbehavior is given byA. The coefficientN ensures that the
fitting function is normalized such that

R
∞
0 dxPfitðxÞ ¼ 1.

Table II summarizes the parameters of the fitting for-
mulas for the three different models considered in Sec. IV C
(Dirac, Majorana, seesaw) and the two spectrum orderings
(NO, IO). For the (D) and (M) models we have fit to the
semi-analytical results, since they are more accurate, and

for the (S) model we fit to the numerical results. A reference
implementation of the fitting formulas can be found at
https://github.com/mraveri/Neutrino_Prior. For all six cases
we observe a very good agreement between the semi-
analytical results, the numerical results, and the fitting
formula; this agreement is illustrated in Fig. 7. In the (M)
and (D) cases, the fitting formula agrees with the semi-
analytical results at 1% on the 95% C.L. intervals and at 5%
on the 0.99993 C.L. (4σ) intervals; in the (S) case, the
fitting formula agrees with the numerical results at 1% on
the 95% C.L. intervals and at 10% on the 0.99993 C.L. (4σ)
tails, but note that the numerical results themselves become
increasingly poorly sampled in the tails.
Table II summarizes the parameters of the fitting

formulas for six different combinations of orderings and
mass models. The reader may choose to combine these
fitting functions by marginalizing over orderings or
models. The (totally) marginalized probability distribution
is calculated as

Pfit;totðxÞ ¼
P

iEiΠiPfitðxjiÞP
iEiΠi

; ð35Þ

where PfitðxjiÞ is given by Eq. (34) for one of the rows of
Table II, the evidences Ei appear in Table II, and we

TABLE II. Parameters for the fitting formula discussed in Sec. IV F. We also report in the first column the model prior volume, without
considering splitting data, and, in the second column, the overall normalization of the prior distributions once splitting data are included
and we marginalize over μν.

Model log10 E log10 N x̄ [eV] σx̄ [eV] α [eV] log10 (A eV) x̂ [eV] σx̂ [eV] p

Dirac NO 3.08 −0.006035 0.06109 0.01700 0.002484 −0.6430 0.1315 0.01603 −16
Majorana NO 3.58 −0.01028 0.06164 0.02416 0.003215 0.1945 0.1336 0.01251 −10
Seesaw NO 6.00 26.91 −0.4099 0.04301 0.01624 −26.25 0.0779 0.007016 −12

Dirac IO 0.96 −0.01345 0.1033 0.01792 0.002936 −0.2773 0.1713 0.01876 −16
Majorana IO 2.31 −0.02738 0.1039 0.02490 0.003634 0.4442 0.1705 0.01359 −10
Seesaw IO 3.33 65.07 0.0000 0.01851 −0.006123 −62.94 0.09837 0.003094 −12

(a) (b)

FIG. 6. The probability distribution over the neutrino mass sum after marginalizing over the neutrino energy scale μν and imposing the
squared mass splittings measurements. In the left (right) panel we implement the mass splitting measurement with normal (inverted)
ordering. The vertical black dashed line indicates the minimal value of Σmν consistent with the mass splittings (32), which is obtained by
setting the mass splittings to their best-fit measured value and setting the lightest neutrino mass to zero.
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allowed for the possibility of having a prior Πi on the ith
model. Note that within each mass model (Dirac, Majorana,
or seesaw), we have assumed ΠIO/ΠNO ¼ 1. Then to obtain
the prior πðΣmνÞ appearing in Fig. 6, it is necessary to scale
the fitting function by ENO/ðENO þ EIOÞ for the NO dis-
tribution and by EIO/ðENO þ EIOÞ for the IO distribution.
In Fig. 7 we show the distribution of Σmν after

marginalizing over the two hierarchy to form the total
distribution in the (D,M,S) models. We also showcase here
the agreement between different ways of obtaining such
distributions by plotting the fitting formula against the
semianalytical results and the numerical ones. This total prior
can then be used in cosmological parameter estimation.
As an example let us return to the test case considered

in Sec. II. Recall that this test case involved cosmological
data that constrained Σmν to an uncertainty of σ ¼ 0.3 eV
around zero. If we repeat the same calculation for the priors
in Table IV F instead, we obtain the following 95% CL
upper limits: Σmν < 0.0975 eV for (D), 0.126 eV for (M),
and 0.0730 eV for (S) after marginalizing over the ordering
with Eq. (35). Since the distributions are sharply peaked
toward small masses, the inferred 95% CL upper limits are
stronger than the ones we obtained for the flat-linear and
flat-log priors in Sec. II.

V. CONCLUSION

In this work we have discussed the choice of priors on
the sum of neutrino masses Σmν for cosmological data
analyses. Whereas it is customary to assume a flat prior on
Σmν, which is an ad hoc choice, we have instead argued
that the physically motivated choice is to specify the prior
at the level of the neutrino mass matrix Mν. In this regard,
our study extends earlier work on neutrino flavor model
building with the anarchy hypothesis and applies that
formalism to cosmological observables. Specifically, we

focus on the basis-independent anarchy hypothesis (BAH)
that assigns equal probability to any matrices that can be
related by a change of basis. Subject to the BAH restriction,
simple priors on Mν include a flat or Gaussian distribution
on its individual matrix elements.
One of the main conclusions of our work, is that these

simple implementations of the BAH generally disfavor the
degenerate regime where the neutrino mass scale is much
larger than the mass splittings, Σmν ≫

ffiffiffiffiffiffiffiffiffiffiffi
jδm2j

p
,

ffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2j

p
.

This is because the probability distribution over elements
of the neutrino mass matrix Mν necessarily selects a scale
μν, e.g. the cutoff on a flat distribution or the variance
of a Gaussian distribution. Due to the phenomenon of
eigenvalue repulsion, high probability spectra have Σmν ∼ffiffiffiffiffiffiffiffiffiffiffi
jδm2j

p
∼

ffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2j

p
∼ μν, and in particular, degenerate

spectra are especially unlikely. The repulsion effect can
be understood from the Jacobian determinant that relates
the distribution over (mass) matrix elements to the dis-
tribution over (mass) eigenvalues. This determinant [see
Eq. (10) or (26)] is proportional to jδm2j and jΔm2j, which
makes the probability density proportional to jδm2j/μ2ν
and jΔm2j/μ2ν. Then in order for the measured mass
splittings to be a probable realization, it is necessary to
take μν∼

ffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2j

p
∼0.05 eV, see Fig. 5, which also implies

Σmν ∼ 0.05 eV, see Fig. 6. Consequently, simple basis-
independent priors at the level of the neutrino mass matrix
translate into distributions over Σmν that peak around the
smallest value allowed by the measured mass splittings
(32), roughly 0.06 eV for normal ordering and 0.10 eV for
inverted ordering.
Using the same reasoning as above, one can see that a

flat distribution over Σmν, which is often assumed in
cosmological studies, is highly improbable for simple
basis-independent priors onMν. In other words, this ad hoc
prior assumption is not well motivated from fundamental

(a) (b) (c)

FIG. 7. The probability distribution over the neutrino mass sum after marginalizing over the neutrino energy scale μν, marginalizing
over the ordering of the mass spectrum, and imposing the mass splitting measurements. For the Dirac and Majorana models, there is an
excellent agreement between the semi-analytical calculation and the fully numerical MCMC results; a semi-analytic calculation was not
performed for the seesaw model. In all three cases, the empirical fitting function also matches extremely well.
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physical principles described by random, anarchical
neutrino mass matrices.
In order to obtain qualitatively different results, it is

necessary to chose a prior on Mν that is not simple. As we
discuss in Sec. IVA, one can counterbalance the effects of
eigenvalue repulsion by choosing the prior on the neutrino
mass matrix to be the reciprocal of the Jacobian determi-
nant. Although this leads to a wider tail in the Σmν

distribution (see Appendix), now the prior is expressed
as a very complicated function of the neutrino mass matrix,
which undercuts the physical motivation for the anarchy
hypothesis.
Our main quantitative results appear in Sec. IV where we

focus on a particular prior distribution that is flat in the
individual elements of the neutrino mass matrix out to a
scale μν for the Dirac and Majorana models, and it is flat in
the separate high-scale Dirac and Majorana matrices for the
seesaw model. We derive the distributions of the sum of
neutrino masses and the squared mass splittings, and our
results are discussed in Sec. IV C. Most notably, the
predicted distribution over the sum of neutrino masses
Σmν appears in Fig. 6. For all three models (Dirac,
Majorana, and seesaw) the distribution is sharply peaked
close to the lowest value allowed by the measured neutrino
mass splittings, but the models are notably distinguished by
the behavior in the tail of the distribution at high Σmν. We
find that this prior prefers the mass spectrum with normal
ordering over inverted ordering with odds 130∶1 for (D),
19∶1 for (M), and 470∶1 for (S); see also Fig. 4 [cf.,
Ref. [9]]. We thoroughly tested the stability of these results
under the various assumptions that are used to build the
prior distributions; for a detailed discussion see Appendix.
The reader is encouraged to apply the prior probabilities

πðΣmνÞ appearing in Fig. 6 to cosmological data analyses
of other cosmological parameters, and an empirical fitting
formula is available in Sec. IV F. Since the distributions in
Fig. 6 are sharply peaked, this offers some justification for
cosmological studies that simply fix Σmν to equal the
minimal value consistent with the measured squared mass
splittings (32), roughly 0.06 eV for NO and 0.1 eV for IO.
In fact the priors that we have presented here may be useful
from a phenomenological perspective if one seeks to have a
prior that favors minimal mass but also allows for the
possibility that a true preference by the data may drive the
fit to larger Σmν. For practical applications, we recommend
the reader start with the prior for the Majorana model, since
it is least sharply peaked.
Let us close by discussing the impact of our analysis for

cosmological probes of neutrino mass and their potential
implications for neutrino mass models. Given the current
sensitivity of the cosmological measurements, the priors
πðΣmνÞ discussed here are presently more informative than
the data. In this sense the priors can be viewed as providing
targets for future experimental searches. In particular, our
priors define several challenging objectives of increasing

experimental sensitivity, which can be inferred from
marginalized distributions in Figs. 6 and 7 and their
corresponding fitting functions in Sec. IV F. If you detect
Σmν ≳ 0.13 eV with sufficient experimental accuracy4 then
you rule out the Dirac model (i.e., it is disfavored at greater
than 99.7% confidence); if you detect Σmν ≳ 0.18 eV then
you rule out the Majorana model; and if you detect Σmν ≳
0.10 eV then you rule out the seesaw model. By the time
when the cosmological measurements reach this level of
sensitivity to Σmν, the ordering of the neutrino mass
spectrum may already be known from terrestrial experi-
ments. If the neutrino mass spectrum has normal (inverted)
ordering, and you detect Σmν ≳ 0.12 eV (0.18 eV) then
you rule out the Dirac model; if you detect Σmν ≳ 0.17 eV
(0.23 eV) then you rule out the Majorana model; and if you
detect Σmν ≳ 0.097 eV (0.17 eV) then you rule out the
seesaw model. Recall however that the odds for normal
versus inverted ordering in each case already disfavors any
mass value for the latter case.
In this way, increasing accuracy to Σmν from cosmo-

logical observations will test the hypothesis that neutrino
masses arise from unspecified high energy physics that can
be described by effectively random mass matrices distrib-
uted such that matrices related by a change of flavor basis
are equally probable. As we have explored in this work, the
phenomenon of eigenvalue repulsion in the simplest
implementation of the basis-independent anarchy hypoth-
esis requires Σmν to be not much larger than the scale of
the larger squared mass splittings,

ffiffiffiffiffiffiffiffiffiffi
Δm2

p
∼ 0.05 eV, which

leads to a tension with the data if Σmν is measured to be
larger (see previous paragraph). If next-generation experi-
ments measure a large Σmν, what does this imply for the
basis-independent anarchy hypothesis? In such a situation,
one is forced to abandon the simplest implementation of
the BAH that we consider in this work. One can never-
theless construct potentially viable models if the prior on
the mass matrix is chosen to counterbalance the eigenvalue
repulsion, but such baroque priors are not in the spirit
of the anarchy hypothesis and they undercut its physical
motivation.
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APPENDIX: STABILITY OF THE PRIOR ON Σmν

In order to assess the stability of our main results, which
appear in Sec. IV C and specifically Fig. 6, we enumerate
here the various assumptions, and we test the effect of
relaxing or modifying each assumption. Overall we find
that the prior πðΣmνÞ is very robust to what we called
simple priors in the main text.
In calculating πðΣmνÞ, which appears in Fig. 6, we have

made two key assumptions: the probability distribution is
assumed to be flat in the matrix elements with a cutoff at
TrM†

νMν ¼ μ2ν (28); the cutoff μν is marginalized with a flat
prior from 0 eV to 1 eV.
Let us first discuss how our results depend upon the prior

on the neutrino energy scale μν. As we saw in Fig. 5, the
distribution over μν is sharply peaked. As such it is difficult
to change the distribution πðΣmνÞ with relatively unin-
formative priors on μν. To demonstrate this point we show
in Fig. 8 the distribution πðΣmνÞ calculated from various
different priors on μν, namely (1.a) a flat prior on μν ∈
ð0 eV; 1 eVÞ, (1.b) a flat prior on μν ∈ ð0 eV; 10 eVÞ, (1.c)
a flat prior on log μν ∈ ðlog 0.1 eV; log 1 eVÞ, and (1.d) a
flat prior on log μν ∈ ðlog 0.01 eV; log 10 eVÞ. In these
cases the evidences for the models read: log10 EðaÞ ¼ 3.1,
log10 EðbÞ ¼ 2.1, log10 EðcÞ ¼ 0.14, and log10 EðdÞ ¼ 3.5.
As we can see in Fig. 8 (1.a, 1.b, 1.d), once the μν prior
encompasses the region where the μν posterior peaks,
without adding significant curvature, the prior distributions
πðΣmνÞ are almost identical. Case (1.a) is a factor ten
preferred to (1.b) as the latter has wider prior on μν that do
not contain significant posterior. Case (1.d) is a factor two
preferred with respect to case (1.a) as it assigns more
weight to the region of smaller μν where the posterior is
peaked. When the prior on μν excludes the region of
maximum posterior, as in Fig. 8 (1.c), and selects out a
particular value of μν, the shape of the distribution is
changed but the model has overall smaller probability
with odds 800∶1 with respect to case (1.a). In this case the
hyperprior on μν counteracts the natural tendency from
eigenvalue repulsion that favors Σmν ∼

ffiffiffiffiffiffiffiffiffiffiffiffi
jΔm2j

p
∼ μν ∼

0.05 eV but also makes the observed splittings relatively
unlikely; see Sec. V. While the figure only shows the
(D) model, similar results hold for the (M) and the (S)
models, relying on the peaked structure of the μν posterior.
In other words, the prior distribution πðΣmνÞ is insensitive
to the prior on μν as long as these priors on μν have
negligible curvature around the region of parameter space
where the distribution of μν peaks. Notice that in the (S)

model a flat-log prior on the effective neutrino energy scale
corresponds to a log prior on both the seesaw energy scales
[μD and μM in Eq. (29)].
Let us next discuss how our results depend upon the prior

over neutrino mass matrix elements. We also show in Fig. 8
the distribution πðΣmνÞ calculated from various different
priors on Mν, namely (2.a) the flat prior pνðM̂νjμνÞ ∝
Θðμ2ν − Tr½M̂†

νM̂ν�Þ from Eq. (28), (2.b) a Gaussian prior
pνðM̂νjμνÞ ∝ exp½−Tr½M†

νMν�/2μ2ν�, and (2.c) a prior that
balances eigenvalue repulsion pνðM̂νjμνÞ ∝ jJ νðM̂νÞj−1
ðdetMνÞ2/3 that was discussed in Sec. IVA. We marginalize
each distribution over the neutrino energy scale with a flat
distribution μν ∈ ð0; 1Þ eV. For these cases the evidences
are log10 EðaÞ ¼ 3.1, log10 EðbÞ ¼ 2.4, log10 EðcÞ ¼ 4.1.
The distribution πðΣmνÞ is nearly identical for the flat
and Gaussian priors, although the evidence prefers the flat
case. On the other hand, the third prior balances the
eigenvalue repulsion factors in J ν ∼ jm2

νi −m2
νjj by taking

pν ∝ jJ νj−1, which increases the evidence, and the addi-
tional factor of pν ∝ ðdetMνÞ2/3 enhanced the high mass
tail. In summary, the results presented already in Sec. IV C
are robust against changing the prior on Mν due to the
presence of eigenvalue repulsion, which prefers the mass
scale of the prior to lie close to the mass scale of the
measured neutrino mass splittings. In order to obtain
qualitatively different results, it is necessary to choose a
prior on Mν that counterbalances the eigenvalue repulsion.

FIG. 8. Stability of the prior πðΣmνÞ against the various
assumptions.
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